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Abstract

It is well-known that physical laws for large chaotic dynamical systems are revealed
statistically. The main concern of this manuscript is numerical methods for dissipative
chaotic infinite dimensional dynamical systems that are able to capture the station-
ary statistical properties of the underlying dynamical systems. We first survey results
on temporal and spatial approximations that enjoy the desired properties. We then
present a new result on fully discretized approximation of infinite dimensional dissipa-
tive chaotic dynamical systems that is able to capture asymptotically the stationary
statistical properties. The main ingredients in ensuring the convergence of the long
time statistical properties of the numerical schemes are: (1) uniform dissipativity of
the scheme in the sense that the union of the global attractors of the numerical ap-
proximations is pre-compact in the phase space; (2) convergence of the solutions of
the numerical scheme to the solution of the continuous system on the unit time in-
terval [0, 1] modulo an initial layer, uniformly with respect to initial data from the
union of the global attractors. The two conditions are reminiscent of the Lax equiv-
alence theorem where stability and consistency are needed for the convergence of a
numerical scheme. Applications to the complex Ginzburg-Landau equation and the
two-dimensional Navier-Stokes equations in a periodic box are discussed.
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1 Introduction

The long-time dynamics of many infinite-dimensional dynamical systems are very complex
with abundant chaotic/turbulent behaviors. The observed complex behaviors are not nec-
essarily related to the possible loss of regularity of the solution (say the three dimensional
Navier-Stokes equations). Even the simple logistic map, the Lorenz 63 and the Lorenz 96
models possess intrinsic chaotic behavior which renders long-time approximation of a generic
single trajectory extremely difficult. On the other hand, it is well-known that statistical prop-
erties of these kind of systems are much more important, physically relevant and stable than
single trajectories [11, 18, 20, 26, 27, 43]. Indeed, much of the classical turbulence theories,
such as the famous Kolmogorov U3

L
scaling law of the energy dissipation rate per unit mass

as well as the Kolmogorov k−
5
3 energy spectrum in the inertial range in three dimensional

homogeneous isotropic turbulence, are presented in the statistical forms [27, 11]. Therefore,
for complex physical processes, due to the intrinsic stochasticity, it is necessary to consider
statistical properties (averaged quantities) of the system instead of properties of individual
orbit (see for instance [27, 11, 43, 26, 20]).

For a given abstract autonomous continuous in time dynamical system determined by a
semi-group {S(t), t ≥ 0} on a separable Banach space H, we recall that if the system reaches
a statistical equilibrium in the sense that the statistics are time independent (stationary
statistical properties), the probability measure µ on H that describes the stationary statisti-
cal properties can be characterized via either the strong (pull-back) or weak (push-forward)
formulation [11, 20, 26, 43, 44].

Definition 1 (Invariant Measure (Stationary Statistical Solution)). Let {S(t), t ≥ 0} be a
continuous semi-group on a Banach space H which generates a dynamical system on H. A
Borel probability measure µ on H is called an Invariant Measure(Stationary Statistical
Solution) of the dynamical system if

µ(E) = µ(S−1(t)(E)), ∀t ≥ 0,∀E ∈ B(H) (1)

where B(H) represents the σ-algebra of all Borel sets on H. Equivalently, the invariant mea-
sure µ can be characterized through the following push-forward weak invariance formulation∫

H

Φ(u) dµ(u) =

∫
H

Φ(S(t)u) dµ(u), ∀t ≥ 0 (2)

for all bounded continuous test functionals Φ.
Invariant measure (stationary statistical solution) for a discrete dynamical system gen-

erated by a map Sdiscrete on a Banach space H is defined in a similar fashion with the
continuous time t replaced by discrete time n = 0, 1, 2, . . ..

A closely related object associated with the long-time behavior of a dynamical system is
the global attractor which we recall for convenience [11, 13, 38].
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Definition 2 (Global Attractor and Dissipative System). Let {S(t), t ≥ 0} be a continuous
semi-group on a Banach space H which generates a continuous dynamical system on H.
A set A ⊂ H is called the global attractor of the dynamical system if the following three
conditions are satisfied.

1. A is compact in H.

2. A is invariant under the flow, i.e.

S(t)A = A, for all t ≥ 0. (3)

3. A attracts all bounded sets in H, i.e., for every bounded set B in H,

lim
t→∞

distH(S(t)B,A) = 0. (4)

Here, distH denotes the Hausdorff semi-distance in H between two subsets which is defined
as

distH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖H (5)

where ‖ · ‖H = ‖ · ‖ denotes the norm on H.
The global attractor for a discrete dynamical system induced by a map Sdiscrete on a

Banach space H is defined in a similar fashion with the continuous time t replaced by discrete
time n = 0, 1, 2, . . ..

A dynamical system is called dissipative if it possesses a global attractor. It is easy to
see, thanks to the invariance and the attracting property, that the global attractor, when it
exists, is unique [13, 38]. The reader is cautioned that our definition of dissipativity may be
slightly different (weaker) from the traditional notation [13, 38].

Notice that the global attractor is a set in the phase space. Knowledge of the global
attractor only usually provides very little information on the dynamics. On the other hand,
knowledge of an invariant measure would allow us to calculate various statistical quantities
such as the moments.

We are usually interested in
∫
H

Φ(u) dµ(u) (statistical average) for various test functionals
Φ. These test functionals are also called observables in physics literature. One approach to
estimate these observables is to estimate the invariant measure µ directly. This is the so-
called directly approach [33]. In the finite dimensional case, one can try to approximate the
probability density function (pdf) p associated with the invariant measure by solving the
Liouville equation [20]

∂

∂t
p(u, t) +∇ · (F (u)p(u, t)) = 0 (6)

where the forcing term F (u) defines the dynamical system in the sense that d
dt
S(t)u =

F (S(t)u). However, computing the invariant measure (or the associated pdf in the finite
dimensional case) is usually very difficult and costly if the spatial dimension is high. One of
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the commonly used alternative methods in calculating the statistical quantity is to substitute
spatial average by long time average under Boltzmann’s assumption of ergodicity ([11, 20,
26, 44]) ∫

H

Φ(u) dµ(u) = lim
t→∞

1

t

∫ t

0

Φ(S(s)u) ds.

This is usually termed indirect method. Although the above relationship is true for each
ergodic invariant measure µ and almost all initial data with respect to µ, the relationship is
in general false for non-ergodic invariant measure since the long time average which exists
for almost all initial data (with respect to the given invariant measure) may depend on the
initial data and hence may not be a constant (the spatial average) ([20, 44]). One way to
circumvent this difficulty is to replace the long time limit by Banach (generalized) limits ([21],
section 4.2) which are bounded linear functionals on the space of bounded functions that
agree with the usual long time limit on those functions whenever the long time limit exists.
One may show via the so-called Bogliubov-Krylov argument that these generalized long
time averages over trajectory lead to invariant measures (may depend on the chosen Banach
limit and initial datum u) of the system for appropriate dissipative dynamical systems, and
the spatial and temporal averages are equivalent (see for instance [11] section 4.3, or [47]
Theorem 2).

It is usually impossible to derive analytical formula for long-time statistical properties
for most of the physically interesting systems. Therefore, we need to resort to numerical
methods in generic situations. Even under the ergodicity assumption, it is not at all clear
that classical numerical schemes which provide accurate approximation on finite time interval
will remain meaningful for stationary statistical properties (long time properties) since small
error will be amplified and may accumulate over long time. (A noticeable exception is when
the underlying dynamics is asymptotically stable where statistical approach is not necessary
since there is no chaos. See for instance [12, 14, 19].) Indeed, let Sk be the solution operator
of a one-step scheme with time step k = ∆t, and assume that the scheme is of order m so
that the following type of error estimate holds ‖S(nk)u − Snku‖H ≤ C exp(αnk)km where
C > 0, α are constants. We then have on a time interval [0, T ], an a priori error bound on the

long time average of the order of km exp(αT )−exp(αk)
exp(αk)−1 which diverges as T approaches infinity for

a positive α. The positivity of α follows from the existence of a positive Lyapunov exponent
(the existence of chaotic behavior). Even if the long time averages of the scheme converge,
the limit is not necessarily that of the original dynamical system under approximation since
the two limits of letting the time interval going to infinity and the limit of letting the time
step approach zero are not commutable in general. Extra work is needed to verify the limit
is the desired one.

Therefore, it is of great importance and a challenge to design and analyze numerical
methods that are able to capture stationary statistical properties of infinite dimensional
complex dynamical system. We will focus on dissipative systems for simplicity. Addressing
issues like this is of great importance in numerical study of climate change since the climate
is customary estimated via long time integration of the system.

We will demonstrate below that the central idea in the design of numerical algorithms
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that are capable of capturing the long-time statistical properties is the faithfulness to the
underlying (dissipative) dynamical system. More specifically, we will illustrate below that
the key ingredient in algorithms that are able to capture the long-time statistical properties
is the uniform dissipativity and the uniform convergence on the unit time interval (modulo
an initial layer) for initial data coming out of a compact subset of the phase space. It is
easy to see that the assumptions are natural. Since the underlying dynamical system is
dissipative, it is natural to require that the numerical scheme inherit the dissipativity of
the continuous in time system so that the scheme is uniformly dissipative (for small time
steps). The uniform convergence of the numerical scheme for initial data from the global
attractor on the unit time interval is also expected for most reasonable numerical schemes.
Another ingredient in the theory, satisfied by almost all well behaved continuous in time
dissipative system, is the strong continuity of the underlying dynamical system on the unit
time interval uniformly with respect to initial data from the union of the global attractors.
Once the desired natural conditions are discovered, the proof of the main result is relatively
straightforward.

In practice, the design of numerical schemes that are efficient and uniformly dissipative
is the primary challenge. The verification of uniform convergence on the unit time interval,
although tedious in many cases, is quite standard in the sense that it is usually a refinement
of the standard convergence analysis of the numerical scheme under investigation. These
points will be illustrated via two examples later.

These two requirements are reminiscent of the conditions in the Lax-Richtmyer equiva-
lence theorem [22, 21]. Here the uniform dissipativity plays the role of stability. The uniform
convergence on the unit time interval for appropriate initial data can be interpreted as con-
sistency. This is because a point in the phase space for statistical solutions is analogous to
a point in the physical space for standard solutions. A statistical solution that emanates
from a single point in the phase space is a solution to the underlying dynamical system
(generated by PDEs for instance) in the usual sense. And the unit time interval (or any
finite time interval) for long-time behavior plays the role of a single time step in classical
numerical scheme.

There are abundant works on how to approximate the global attractors or some other
invariant structures for various dissipative systems. See for instance [30, 31, 15, 16, 23, 24,
28, 34, 51] among many others. There has been a lot of work on temporal approximation
of dissipative dynamical systems such as the two dimensional incompressible Navier-Stokes
system and the one-dimensional Kuramoto-Sivashinsky equation (see [12, 15, 17, 30, 31, 41,
9, 10] among others) that preserves the dissipative property in some sense. Despite the
importance of long-time statistical properties, there are relatively few results on numerical
schemes designed to capture these features (see [29, 33, 42] for the case of Hamiltonian
ODEs and related topics, and [3, 4, 32, 39, 40, 48, 49, 50] for various case studies for
dissipative PDEs and for general theory on temporal and spatial discretization that captures
the long time statistical properties asymptotically). The primary new contribution of this
manuscript is a new set of criteria on fully discretized one-step schemes that guarantees the
convergence of the long time statistical properties of the algorithms under investigation. As
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a by-product, we also present an abstract result on criteria that ensure the convergence of
the global attractors of the numerical schemes.

The rest of the manuscript is organized in the follows. In section 2, we present our abstract
theory on numerical algorithms that are able to reproduce the long time statistical behavior
of the underlying dynamical system asymptotically. Old results on temporal and spatial
approximations, as well as a new result on fully discretized approximation will be presented.
We illustrate the application of the abstract results on complex Ginzburg-Landau equation
and the two-dimensional Navier-Stokes equation in a periodic box in section 3. Concluding
remarks will be presented in the last section.

2 Abstract results

The purpose of this section is to present a few abstract results on different types of approxi-
mation (temporal, spatial or fully discretized) of a continuous in time dissipative dynamical
system on an infinite dimensional phase space, that captures the long-time statistical prop-
erties asymptotically. The overriding theme is to be faithful to the original system in the
sense that the approximations must be uniformly dissipative and uniformly convergent on
the unit time interval (modulo an initial layer).

We first consider temporal discretization since long time approximation seems to be one of
the key issues involved. The following abstract result on time discretizations that guarantees
the convergence of long-time statistical property can be found in [49].

Theorem 1 (Temporal discretization). Let {S(t), t ≥ 0} be a continuous semi-group on a
separable Hilbert space H which generates a continuous dissipative dynamical system (in the
sense of possessing a compact global attractor A) on H. Let {Sk, 0 < k ≤ k0} be a family
of continuous maps on H which generates a family of discrete dissipative dynamical system
(with global attractor Ak) on H. Suppose that the following two conditions are satisfied.

TH1: [ Uniform dissipativity] There exists a k1 ∈ (0, k0) such that {Sk, 0 < k ≤ k1} is
uniformly dissipative in the sense that

K =
⋃

0<k≤k1

Ak (7)

is pre-compact in H.

TH2: [ Uniform convergence on the unit time interval] Sk uniformly converges to S on the
unit time interval (modulo an initial layer) and uniformly for initial data from the
global attractor of Sk in the sense that for any t0 ∈ (0, 1)

lim
k→0

sup
u∈Ak,nk∈[t0,1]

‖Snku− S(nk)u‖ = 0. (8)
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Moreover, we assume that S(t) is uniformly continuous on K over the unit time interval in
the sense that for any T ∗ ∈ [0, 1]

lim
t→T ∗

sup
u∈K
‖S(t)u− S(T ∗)u‖ = 0. (9)

Then, the invariant measures of the discrete dynamical system {Sk, 0 < k ≤ k0} converge
to invariant measures of the continuous dynamical system S. More precisely, let µk ∈ IMk

where IMk denotes the set of all invariant measures of Sk. There must exist a subsequence,
still denoted {µk}, and µ ∈ IM (an invariant measure of S(t)), such that µk weakly con-
verges to µ, i.e.,

µk ⇀ µ, as k → 0. (10)

Moreover, extremal statistics converge in an upper-semi-continuous fashion in the sense that
for any bounded continuous functional Φ on the phase space H, there exist ergodic invariant
measures µk ∈ IMk and an ergodic invariant measure µ ∈ IM, such that

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Snk (u0)) =

∫
H

Φ(u)dµk(u) = lim
N→∞

1

N

N∑
n=1

Φ(Snk (v0)), a.s. w.r.t.µk, (11)

sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt =

∫
H

Φ(u)dµ(u) = lim
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)v0)dt, a.s. w.r.t.µ,(12)

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N∑
n=1

Φ(Snk (u0)) ≤ sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt. (13)

Remark: The separable Hilbert space can be replaced by a ball in the same space. Such
kind of set-up may be useful in cetain applications [32].

Next, we consider spatial discretization. The following abstract result on spatial dis-
cretization that ensures convergence of long-time statistical properties can be found in [48].

Theorem 2 (Spatial discretisation). Let {S(t), t ≥ 0} be a dissipative dynamical system
on a Hilbert space H with global attractor A. Let {SN(t), t ≥ 0} be a family of dissipative
dynamical systems on Hilbert spaces HN with global attractors AN ⊂ HN . Assume there is
a continuous embedding of EN : HN ↪→ H. Suppose that the following two assumptions are
satisfied:

SH1 [Uniform dissipativity]

K =
⋃

∞>N≥N0

EN(AN)

is pre-compact in H.

SH2 [Finite time uniform convergence] For any t ∈ (0, 1] we have

lim
N→∞

sup
u∈AN

‖EN(SN(t)u)− S(t)(ENu)‖ → 0.
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Then for any sequence of invariant measures µN ∈ IMN of the dynamical system SN , there
must exists a subsequence, still denoted {µN}, and an invariant measure µ ∈ IM of S(t)
such that

E∗NµN ⇀ µ,

where E∗N is the lift operator induced by the continuous embedding EN in the sense that for
any bounded continuous test functional ϕ on H∫

H

ϕ(u) d(E∗NµN)(u) :=

∫
HN

ϕ(EN(u)) dµN(u). (14)

Practical implementation of the schemes requires both temporal and spatial discretiza-
tion. Our next goal here is to extend our criterion on semi-discrete in time or space schemes
(discrete in time but continuous in space, or discrete in space but continuous in time dynam-
ical systems) with convergent stationary statistical properties to the case of fully discrete
schemes (finite dimensional in space and discrete in time dynamical systems, or maps on
finite dimensional spaces). We anticipate that the guiding principle in selecting schemes
that are able to capture stationary statistical properties, i.e., be faithful to the underlying
dynamical system, remain essentially the same within the dynamical system approach. In
particular, we can show that the main ingredient remains to preserve the stability (in the
sense of uniform dissipativity) and consistency (in the sense of pathwise convergence on the
unit time interval), reminiscent of the Lax-Richtmyer equivalence theorem. Just as in the
semi-discrete in space case, we need a continuous linear map (embedding operator) Eh that
maps the finite dimensional space into the underlying infinite dimensional phase space.

Theorem 3 (Fully discretized approximation). Let {S(t), t ≥ 0} be a dissipative dynamical
system on a Hilbert space H with global attractor A. Let {Sh.k, h ≤ h0, k ≤ k0} be a family of
dissipative dynamical systems on Hilbert spaces Hh with global attractors Ah,k ⊂ Hh. Suppose
there exists a linear continuous map Eh : Hh ↪→ H that maps Hh into H. Moreover, assume
that the following two assumptions are satisfied by the discrete dynamical system {Sh,k}:

H1 [Uniform dissipativity] There exists h1 > 0, k1 > 0 such that

K =
⋃

h≤h1,k≤k1

Eh(Ah,k)

is pre-compact in H.

H2 [Uniform convergence on the unit time interval] For any t0 ∈ (0, 1] we have

lim
h,k→0

sup
u∈Ah,k,nk∈[t0,1]

‖EhSnh,ku− S(nk)Ehu‖ = 0. (15)

Moreover, we assume that S(t) is uniformly continuous on K over the unit time interval in
the sense that for any t ∈ [0, 1]

lim
τ→t

sup
u∈K
‖S(τ)u− S(t)u‖ = 0. (16)
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Then for any sequence of invariant measures µh,k ∈ IMh,k, the set of all invariant
measures of Sh,k, of the fully discrete dynamical system Sh,k, there must exists a subsequence,
still denoted {µh,k}, and an invariant measure µ ∈ IM of S(t) such that

E∗hµh,k ⇀ µ,

where E∗h is the lift operator induced by the continuous embedding Eh in the sense that for
any bounded continuous test functional ϕ on H∫

H

ϕ(u) d(E∗hµh,k)(u) :=

∫
Hh

ϕ(Eh(u)) dµh,k(u). (17)

Moreover, extremal statistics converge in an upper-semi-continuous fashion in the sense
that for any bounded continuous functional Φ on the phase space H, there exist ergodic
invariant measures µh,k ∈ IMh,k and an ergodic invariant measure µ ∈ IM, such that

sup
u0∈Hh

lim sup
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) =

∫
Hh

Φ(Ehu)dµh,k(u)

= lim
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(v0)), a.s. w.r.t. µh,k,(18)

sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt =

∫
H

Φ(u)dµ(u)

= lim
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)v0)dt, a.s. w.r.t. µ, (19)

lim sup
h,k→0

sup
u0∈Hh

lim sup
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) ≤ sup

u0∈H
lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt. (20)

Proof: Thanks to the definition of the lift of invariant measures of Sh,k (17), the continuity
of the embedding operator Eh, and the Kakutani-Riesz representation theorem [21], we
see that {E∗hµh,k} must be a family of Borel probability measures on H. Moreover, since
K =

⋃
0<k≤k1,h≤h1 EhAh,k is pre-compact in H by (H1), and since all invariant measures

are supported on the global attractor [11, 47] and µh,k ∈ IMh,k, we see that {E∗hµh,k} is
tight in the space of all Borel probability measures on H thanks to Prokhorov’s theorem
[1, 21, 11]. Hence, it must have a convergent subsequence, still denoted {E∗hµh,k}, and a
Borel probability measure µ on H so that

E∗hµh,k ⇀ µ,

i.e., ∫
Hh

ϕ(Ehu) dµh,k(u)→
∫
H

ϕ(u) dµ(u), as h, k → 0
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for all bounded and continuous functionals ϕ on H.
Our goal is to show that µ is invariant under S(t), i.e., µ ∈ IM.
Now we fix a t ∈ (0, 1] and let nk = b t

k
c be the floor of t

k
(the largest integer dominated

by t
k
), and let ϕ be any smooth (C1) test functional with compact support. We have∫

H

ϕ(S(t)u) dµ(u) = lim
h,k→0

∫
Hh

ϕ(S(t)Ehu) dµh,k(u)

= lim
h,k→0

∫
Hh

ϕ(S(nkk)Ehu) dµh,k(u) +R1

= lim
h,k→0

∫
Hh

ϕ(EhS
nk
h,ku) dµh,k(u) +R1 +R2

= lim
h,k→0

∫
Hh

ϕ(Ehu) dµh,k(u) +R1 +R2

=

∫
H

ϕ(u) dµ(u) +R1 +R2

where we have utilized the weak convergence of E∗hµh,k to µ, the boundedness and continuity
of ϕ, ϕ ◦ S(t), ϕ ◦ Eh, the invariance of µh,k under Sh,k, and the notation

R1 = lim
h,k→0

∫
Hh

(ϕ(S(t)Ehu)− ϕ(S(nkk)Ehu)) dµh,k(u),

R2 = lim
h,k→0

∫
Hh

(ϕ(S(nkk)Ehu)− ϕ(EhS
nk
h,ku) dµh,k(u).

Thanks to the uniform continuity of S(t) (with τ = nkk in (16)), the assumption that
ϕ ∈ C1 with compact support, the mean value theorem, and the fact that the support of
µh,k is contained in the global attractor Ah,k [48], we have

|R1| ≤ sup
u∈H
‖ϕ′(u)‖ sup

u∈Ah,k
‖S(t)Ehu− S(nkk)Ehu‖

≤ sup
u∈H
‖ϕ′(u)‖ sup

u∈K
‖S(t)u− S(nkk)u‖

→ 0 as k → 0.

Likewise, thanks to the mean value theorem, the assumption that ϕ ∈ C1 with compact
support, and the uniform convergence of Sh,k (with t0 = t/2 in (15), and k ≤ t/3) over the
unit time interval (modulo an initial layer), we have

|R2| ≤ sup
u∈H
‖ϕ′(u)‖ sup

u∈Ah,k
‖S(nkk)Ehu− EhSnkh,ku‖

→ 0 as h, k → 0.

Therefore, ∫
H

ϕ(S(t)u) dµ(u) =

∫
H

ϕ(u) dµ(u)
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which is exactly the weak invariance (2) for the smooth (C1) test functional with compact
support and t ∈ (0, 1].

For a general bounded continuous test functional ϕ, we can first approximate it by a finite
dimensional test functional of the form ϕ◦Pm where Pm is the orthogonal projection onto the
m-dimensional subspace spanned by the first m elements of a given (fixed) orthonormal basis
of H [11]. (This is where the assumption that H is a separable Hilbert space is utilized.)
We can then approximate ϕ ◦ Pm by smooth test functionals with compact support using
mollifiers and truncation [21] since only the value of ϕ ◦Pm on the compact global attractor
is relevant for the statistics. This proves short time weak invariance (2) for any bounded
continuous test functional ϕ and t ∈ (0, 1].

Now for a general t > 1, we exists a unique positive integer n and t∗ ∈ (0, 1] such that
t = n+ t∗. Hence ∫

H

ϕ(S(t)u) dµ(u) =

∫
H

ϕ(Sn(1)S(t∗)u) dµ(u)

=

∫
H

ϕ(S(t∗)u) dµ(u)

=

∫
H

ϕ(u) dµ(u)

where we have utilized the semi-group property of S(t), the strong continuity of S(t), the
short time weak invariance that we proved above with t = 1 n times, and t = t∗ one time.

This ends the proof of the convergence of the invariant measures.

The first half of the results on the extremal statistics is a consequence of the fact that
extremal statistics are saturated by ergodic invariant measures (see for instance [44], or [47]
Theorem 5). We sketch the proof for convenience.

Recall that for any fixed bounded continuous test functional Φ and initial data u0, it is
possible to choose a special Banach limit LIM which agrees with the lim sup on the orbit
[21, 47] and hence there exists invariant measures µu0 ∈ IM such that

LIMT ∗→∞
1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt = lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt =

∫
H

Φ(u) dµu0(u).

Likewise, since Φ◦Eh is a bounded continuous test functional on Hh, there exists a µh,k,u0 ∈
IMh,k such that

LIMN→∞
1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) = lim sup

N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) =

∫
Hh

Φ(Ehu) dµh,k,u0(u).

On the other hand, extremal points of the set of invariant measures are ergodic ([44] or
[47] Theorem 3). Hence, there exist ergodic invariant measures µh,k ∈ IMh,k, µ ∈ IM such
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that

sup
νh,k∈IMh,k

∫
Hh

Φ(Ehu) dνh,k(u) =

∫
Hh

Φ(Ehu) dµh,k(u) = lim
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)), a.s. w.r.t.µh,k,

sup
ν∈IM

∫
H

Φ(u) dν(u) =

∫
H

Φ(u) dµ(u) = lim
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt, a.s. w.r.t.µ.

Combining the above two sets of equations together with the tightness of IMk, IM, we
arrive at (18, 19).

As for the upper semi-convergence of the extremal statistics stated in (20), we have,
thanks to the uniform dissipativity and Prokhorov’s theorem, there exists a subsequence
(still denoted {µh,k}) and ν ∈ IM such that

E∗hµh,k ⇀ ν, as h, k → 0,

sup
u0∈Hh

lim sup
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) =

∫
Hh

Φ(Ehu) dµh,k(u).

Since IM is tight in the space of Borel probability measures on H, there exists an
ergodic invariant measure νmax ∈ IM such that supµ̃∈IM

∫
H

Φ(u) dµ̃ =
∫
H

Φ(u) dνmax [47].
Therefore,

lim sup
h,k→0

sup
u0∈Hh

lim sup
N→∞

1

N

N∑
n=1

Φ(EhS
n
h,k(u0)) = lim sup

h,k→0

∫
Hh

Φ(Ehu) dµh,k(u)

=

∫
H

Φ(u) dν(u)

≤ sup
µ̃∈IM

∫
H

Φ(u) dµ̃(u)

=

∫
H

Φ(u) dνmax(u)

= lim
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt a.s. w.r.t. νmax

≤ sup
u0∈H

lim sup
T ∗→∞

1

T ∗

∫ T ∗

0

Φ(S(t)u0) dt.

This completes the proof of the theorem.
Remark: The results remain the same if the separable Hilbert space H is replaced by a ball
within the same space as long as the global attractors are contained in this ball, and the ball
is invariant under the dynamics.

In application, the discrete dynamical systems {Sh,k} are usually generated by numerical
schemes, with finite dimensional phase space Hh of the original infinite dimensional dynam-
ical system (generated by a time-dependent PDE). In another word, Snh,k(u) is the solution
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to the numerical scheme. For the case of conformal spatial discretisation, the embedding op-
erator can be taken as the natural inclusion operator. However, the case with non-conformal
spatial discretization such as finite difference discretisation is more challenging. Appropriate
interpolation operators can be utilized in the finite difference case (see the next section).
The uniform dissipativity of the numerical scheme can be established via the existence of a
uniform (in mesh size) absorbing ball in discrete form in another separable Hilbert space V
which is compactly imbedded in H in the case of strongly dissipative system (see the next
section for two examples). The finite time uniform convergence comes with classical numeri-
cal analysis for reasonable schemes and the smoothing property of the underlying dissipative
system.

A by-product of the convergence analysis of the invariant measures presented here is the
convergence of the global attractors of the scheme to that of the underlying system. This is
also within expectation since the global attractors carry the support of the invariant measures
[48]. The convergence of the global attractors under discretization has been discussed for the
two dimensional Navier-Stokes system, reaction-diffusion equation, and for finite-dimensional
dynamical systems (see [30, 34, 15, 23, 51, 24] among others). Therefore our result on the
convergence of global attractors may be viewed as a generalization and abstraction of these
results. However, we would like to point out that the convergence of the global attractors
is established under much weaker assumption: one only needs the uniform boundedness
of the union of the global attractors (K), instead of the pre-compactness (plus finite time
uniform convergence for data from K). Because of this important distinction, it is possible to
have schemes that are able to capture the global attractor asymptotically but not necessarily
the stationary statistical properties (invariant measures). There are also interesting works on
persistence under approximation of various invariant sets (such as steady state, time periodic
orbit, inertial manifold etc) both for PDEs and ODEs under appropriate assumptions (such
as spectral gap condition that is usually associated with inertial manifold theory, see [34, 16,
37, 38] and the references therein). We also notice that the convergence of invariant sets and
the convergence of stationary statistical properties are two related but very different issues
associated with the long-time behavior. It is easy to construct two dynamical systems with
exactly the same global attractor or inertial manifold, but with totally different dynamics or
stationary statistical properties.

Next, we show the convergence of the global attractors under weaker assumptions, namely
the uniform boundedness of K (the union of the global attractors), and uniform convergence
on finite time interval (modulo an arbitrary initial layer).

Theorem 4 (Convergence of Global Attractors). Let {S(t), t ≥ 0} be a continuous semi-
group on a Banach space H which generates a dissipative dynamical system (in the sense
of possessing a compact global attractor A) on H. Let {Sh,k, 0 < k ≤ k0, 0 < h ≤ h0} be a
family of continuous maps on Hh which generates a family of discrete dissipative dynamical
system (with global attractor Ah,k) on Hh. Assume that there is a continuous embedding
operator Eh that maps Hh into H. Suppose that the following two conditions are satisfied.

H3: [ Uniform boundedness] There exist k1 ∈ (0, k0], h1 ∈ (0, h0] such that {Sh,k, 0 < k ≤
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k1, 0 < h ≤ h1} is uniformly bounded in the sense that

K =
⋃

0<k≤k1,0<h≤h1

Eh(Ah,k) (21)

is bounded in H.

H4: [ Finite time uniform convergence] Sh,k uniformly converges to S on any finite time
interval (modulo an initial layer) and uniformly for initial data from the global attractor
of the scheme in the sense that there exists t0 > 0 such that for any t > t0 > 0

lim
h,k→0

sup
u∈Ah,k,nk∈[t0,t]

‖EhSnh,ku− S(nk)Ehu‖ = 0. (22)

Then the global attractors converge in the sense of Hausdorff semi-distance, i.e.

lim
h,k→0

distH(EhAh,k,A) = 0. (23)

Proof: Since K is bounded, for any given ε > 0, there exists a Tε > t0 > 0 such that

distH(S(t)K,A) <
ε

2
, ∀t ≥ Tε

because the global attractor A attracts all bounded set, in particular K.
Now for an arbitrary element uh,k ∈ Ah,k in the global attractor of Sh,k, there exists a

vh,k ∈ Ah,k such that uh,k = Snkh,kvh,k where nk = bTε+1
k
c, since the global attractor Ah,k is

invariant under Sh,k.
Thanks to the uniform convergence on [Tε, Tε + 1] and the fact that vh,k ∈ Ah,k, we have,

there exist kε > 0, hε > 0 such that

‖Ehuh,k − S(nkkEh)vh,k‖ = ‖EhSnkh,kvh,k − S(nkk)Ehvh,k‖ <
ε

2
,∀ k ≤ kε, h ≤ hε.

This implies that

distH(EhAh,k,A) = sup
uh,k∈Ah,k

dist(Ehuh,k,A)

≤ sup
uh,k∈Ah,k

(‖Ehuh,k − S(nkk)Ehvh,k‖+ dist(S(nkk)Ehvh,k,A))

≤ ε, k ≤ kε, h ≤ hε.

This completes the proof for the convergence of the global attractors.

We would like to reiterate the point that the uniform boundedness assumption H3 is
much weaker than the uniform dissipativity assumption H1 for infinite dimensional systems
although they are equivalent for finite dimensional systems. This is an important difference
and hence it is theoretically possible to have schemes that are able to capture the global
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attractor asymptotically but not the invariant measures necessarily for infinite dimensional
systems. Conditions H4 and H2 are almost the same. H2 is slightly stronger than H4 in some
sense since H2 requires the uniform convergence of the scheme on [t0, 1],∀t0 ∈ (0, 1) while
H4 only requires the uniform convergence of the scheme on [t0, t] (t ≥ 1) with one t0 ∈ (0, 1).
On the other hand, H4 is slightly stronger than H2 in some other sense since only t = 1
is needed in H2. They are usually valid for the same type of reasonable numerical schemes
and hence normally makes no difference. Therefore convergence of the global attractors
is usually easier to establish than the convergence of the invariant measures (stationary
statistical properties). Related results on convergence of global attractors can be found in
[13, 34, 28] among others.

Remark: We also point out that the semi-discretization in time results derived in [49] are
special cases of the fully discretized results presented here. In order to recover the semi-
discretization in time case, we simply set Hh = H and Eh = I (the identity operator) in
our fully discretized results above. Likewise, the semi-discretization in space case presented
in [48] is a special case of the fully discretized results proved above. In order to recover the
semi-discretization in space case, we simply set Sh,k = Sh = SN , Eh = EN ,Ah,k = Ah = AN .

3 Examples

Here we offer two applications of the abstract results presented above. The examples that
we have here are the one-dimensional Ginzburg-Landau equation and the two-dimensional
Navier-Stokes equation in a periodic box. The choice of these examples is both for their phys-
ical significance and for their mathematical simplicity. The mathematical difficulty usually
lies in the verification of the uniform dissipativity of the schemes. The uniform convergence
(15) on the unit time interval (modulo an initial layer) is usually straightforward although
could be tedious. Most of the standard convergence analysis imply this uniform convergence
result as long as the global attractor is sufficiently smooth. The uniform continuity of the
underlying dynamical systems for the examples chosen here are well-known.

3.1 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation is a very important equation that emerges naturally
as the the amplitude equation at the onset of instability, in transition to turbulence in
chemical mediums and in phase transition among others. This equation has been extensively
studied as a model equation for chaotic infinite dimensional dynamical system (see [38]
and references therein). Various numerical analysis and simulations on the model are also
available (see for instance [23, 24] for some of the numerical analysis works among many
others). The model takes the form

∂u

∂t
= Ru + (1 + iν)

∂2

∂x2
u− (1 + iµ)|u|2u,u(0) = u0, (24)
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together with periodic boundary condition on the interval Ω = [0, 1]. Here R > 0, ν, µ are
real parameters.

The equation generates a continuous dissipative infinite dimensional dynamical system
on H = L2

per(Ω) [38]. There is a natural orthonormal basis {Ψl = e2πilx, l = 0,±1,±2, . . .}
which are the eigenfunctions of the principal linear operator ∂2

∂x2
with the associated periodic

boundary condition.
For simplicity, we consider backward Euler in time and centered difference in space for

discretization. More specifically, let k be the time-step size, h = 1/J be the grid size. Let
unj be our approximation to u(jh, nk) with periodicity in j of period J . Introducing the
standard forward (right) difference operator D+, the backward (left) difference operator D−,
and the centered difference operator D2 = D+D− so that (D2un)j = 1

h2
(unj+1− 2unj + unj−1),

the scheme that we consider then takes the form

un+1
j − unj
k

= Run+1
j + (1 + iν)(D2un+1)j − (1 + iµ)|un+1

j |2un+1
j ,unj (0) ∈ C. (25)

Here the unknown at each time step is un = (un0 , · · · ,unJ−1) together with periodic extension
when the index goes beyond 0 or J − 1. Therefore, the phase space for the fully discrete
numerical algorithm is

Hh = CJper
where the subscript per denotes periodicity in j with period J . The space is equipped with
the discrete L2 norm

‖u‖2Hh =
J−1∑
j=0

h|uj|2.

Hh has a natural orthonormal basis

ψl = (1, e2πilh, . . . , e2πil(J−1)h), l = d−J
2
e, . . . , 0, . . . , bJ

2
c

that consists of the eigenvectors of D2. A discrete H1 space, denoted H1
h, can then be defined

via the following discrete H1 norm

‖u‖2H1
h

= ‖u‖2Hh + uTD2ū,u ∈ Hh.

A natural embedding operator from Hh to H is given by the following interpolation
operator

Ehu =

l=bJ
2
c∑

l=d−J
2
e

alΨl, if u =

l=bJ
2
c∑

l=d−J
2
e

alψl.

(Notice that our extension operator Eh is denoted Θ−1 in [23].) It is easy to see that Eh is
an isometry. Furthermore, thanks to Lemma 2.3 [23], the discrete and continuous H1 norms
are equivalent in the sense that

2

π
‖Ehu‖H1 ≤ ‖u‖H1

h
≤ ‖Ehu‖H1 .
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This H1 norm equivalence together with Theorem 3.4 of [23] implies that the scheme gen-
erates a dissipative dynamical system with uniform dissipativity sinceK =

⋃
h≤h1,k≤k1 Eh(Ah,k)

is bounded in H1
per and hence pre-compact in H.

The uniform convergence of the scheme over the unit time interval for initial data from
K, i.e., the verification of (15), is a standard albeit tedious (see Lemma 2.5 [23] for a related
result in the semi-discrete case). The uniform continuity of the solution semigroup associated
with the complex Ginzburg-Landau equation (24)) is straightforward. We leave the detail
to the interested reader.

Therefore, the conditions in the main theorem can be verified, and hence the results are
valid. In particular, long time statistical properties of the numerical scheme (25) converge
to those of the equation (24).

3.2 Two-dimensional Navier-Stokes equations

Here we consider the application of the main abstract result to the well-known two-dimensional
Navier-Stokes system in a periodic box Ω in stream-function - vorticity formulation [25, 6, 37].

∂ω

∂t
+∇⊥ψ · ∇ω = ν∆ω + f, (26)

−∆ψ = ω, (27)

where ω is the vorticity, ψ is the stream fucntion, ν is the viscosity, and f is the (time-
independent) external body force.

We first recall a few notations and facts from a recent work [32] (section 4) for convenience.
Consider a 2-D periodic box Ω = (0, 1)× (0, 1). For a given positive integer n, we define

N = Nx = Ny = 2n+ 1, we set hx = 1/Nx = 1/Ny = hy = h. All variables are evaluated at
the regular numerical grid (xi, yj), with xi = ih, yj = jh, 0 ≤ i, j ≤ N .

Let Hh = {all periodic function over the given 2-D numerical grid with grid size h}. For
f ∈ Hh, assume its discrete Fourier expansion is given by

fi,j =

[N/2]∑
k1,l1=−[N/2]

(f̂Nc )k1,l1e
2πi(k1xi+l1yj). (28)

The collocation interpolation operator Eh is then defined as

Ehf(x) =
n∑

k1,l1=−n

(f̂Nc )k1,l1e
2πi(k1x+l1y). (29)

Eh maps Hh into H = L2
per(Ω). As a result, its collocation Fourier spectral approximations

to first and second order partial derivatives (in x direction) are given by

(DNxf)i,j =
n∑

k1,l1=−n

(2k1πi) (f̂Nc )k1,l1e
2πi(k1xi+l1yj), (30)
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(
D2
Nxf

)
i,j

=

[N/2]∑
k1,l1=−[N/2]

(
−4π2k21

)
f̂k1,l1e

2πi(k1xi+l1yj). (31)

The corresponding collocation spectral differentiations in y directions can be defined in the
same way. In turn, the discrete Laplacian, gradient and divergence operators can be defined
as

∆Nf =
(
D2
Nx +D2

Ny

)
f, ∇Nf =

(
DNxf
DNyf

)
, ∇N ·

(
f1
f2

)
= DNxf1 +DNyf2, (32)

at the point-wise level.
Moreover, given any periodic grid functions f and g (over the 2-D numerical grid), the

discrete L2 norm and inner product are introduced as

‖f‖2 = ‖f‖H0
h

=
√
〈f, f〉, with 〈f, g〉 = h2

2n∑
i,j=0

fi,jgi,j. (33)

Meanwhile, such a discrete L2 inner product can also be viewed in the Fourier space other
than in physical space, with the help of Parseval identity:

〈f, g〉 =
n∑

k1,l1=−n

(f̂Nc )k1,l1(ĝ
N
c )k1,l1 =

n∑
k1,l1=−n

(ĝNc )k1,l1(f̂
N
c )k1,l1 , (34)

in which (f̂Nc )k1,l1 , (ĝNc )k1,l1 are the Fourier interpolation coefficients of the grid functions
f and g in the expansion as in (28). Furthermore, a detailed calculation shows that the
following formulas of summation by parts are also valid at the discrete level:〈

f,∇N ·
(
g1
g2

)〉
= −

〈
∇Nf,

(
g1
g2

)〉
, 〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 . (35)

This allows us to define the discrete H1 norm as

‖f‖2H1
h

= ‖f‖2H0
h

+ 〈f,−∆Nf〉 .

It is known that the embedding operator defined in (29) has the following desired continuity
property (Lemma 4.1 [32] for instance).

‖Ehϕ‖Hk ≤ C ‖ϕ‖Hk
h
,∀ϕ ∈ Hh, k = 0, 1, (36)

where C is a constant independent of ϕ. A simple interpolation argument implies that the
above inequality remains valid for fractional order Sobolev spaces Hδ, δ ∈ (0, 1) as well.
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Next we introduce our fully discrete algorithm where we treat the nonlinear convection
term explicitly for the sake of numerical convenience, and the diffusion term implicitly to
preserve the L2 stability.

ωn+1 − ωn

∆t
+

1

2
(un ·∇Nω

n +∇N · (unωn)) = ν∆Nω
n+1 + fn, (37)

−∆Nψ
n+1 = ωn+1, (38)

un+1 = ∇⊥Nψn+1 =
(
DNyψn+1,DNxψn+1

)
, (39)

where we have utilized a now standard technique in ensuring the skew-symmetry of the
nonlinear term [36].

It is observed that the numerical velocity un+1 = ∇⊥Nψn+1 is automatically divergence-
free:

∇N · u = DNxu+DNyv = −DNx(DNyψ) +DNy(DNxψ) = 0, (40)

at any time step. Meanwhile, note that the nonlinear term is a spectral approximation to
1
2
un·∇ω and 1

2
∇ · (uω) at time step tn. Furthermore, a careful application of summation by

parts formula (35) gives

〈ω,u·∇Nω +∇N · (uω)〉 = 〈ω,u·∇Nω〉 − 〈∇Nω,uω〉 = 0. (41)

In other words, the nonlinear convection term appearing in the numerical scheme (37), so-
called skew symmetric form, makes the nonlinear term orthogonal to the vorticity field in
the L2 space, without considering the temporal discretization. This property is crucial in
the stability analysis for the Fourier collocation spectral scheme (37)-(39) as presented in
section 4 in [32].

We now recall that sections 4.3, 4.4 and 4.5 in [32] imply that a sufficiently large ball in
Hδ
h, denoted Bδ(C̃1), is invariant under the discrete dynamics determined by the scheme (37)

with a mild time-step restriction. Moreover, the scheme generates a dissipative dynamical
system on Bδ(C̃1) for sufficiently small time-step size k. Furthermore, the attractors Ah,k
of the scheme is uniformly bounded in H1

per independent of h and k as long as they are
sufficiently small. This, together with the continuity of the embedding operator Eh, implies
the uniform dissipativity of the scheme.

The uniform continuity of the solution semigroup to the 2D Navier-Stokes equation in a
periodic box with data from a ball in H1

per is well-know [7]. The uniform convergence over
the unit time interval for initial data from a ball in H1

per is straightforward although tedious.
We leave the detail to the interested reader.

Combining the above we see that the abstract result with Hh(= Hδ
h) replaced by the ball

Bδ(C̃1) ⊂ Hh is applicable to the efficient scheme (37) for the 2D Navier-Stokes equation in
a periodic box. Therefore, the long-time statistical properties of the scheme (37) converge
to those of the 2D NSE.
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The result above can be easily generalized to the barotropic quasi-geostrophic equation
with dissipation and external forcing [26].

∂q

∂t
+∇⊥ψ · ∇q = Dψ + f, (42)

q = −∆ψ + Fψ + βy, F ≥ 0, β > 0, (43)

D = −
k∑
j=1

dj(−∆)j, dj ≥ 0 ∀j,
k∑
j=2

dj > 0. (44)

Here ψ(x, y; t) represents the stream-function of the barotropic flow, q denotes the potential
vorticity, F > 0 is the F-plane constant related to the stratification of the fluid, β > 0 is
the beta-plane constant, d1 is the Ekman damping coefficient, d2 is the eddy/Newtonian
viscosity coefficient, dj, j ≥ 3 are the coefficients of various hyper-viscosity, and f represents
external forcing. The convergence of long-time statistical properties for the Fourier spec-
tral discretisation of this equation is the natural spatial discretisation for this problem was
discussed in [48].

4 Conclusions and Remarks

We have presented several general/abstract results on the convergence of stationary sta-
tistical properties of various approximations of infinite dimensional dissipative dynamical
systems. Temporal, spatial as well as combined temporal-spatial discretization are all con-
sidered. The two natural conditions that are crucial to the convergence of the stationary
statistical properties are uniform dissipativity of the scheme; and some kind of uniform con-
vergence of the scheme on [0, 1] modulo an initial layer. The conditions are natural and
reminiscent of those in the Lax equivalence theory.

Applications to the the complex Ginzburg-Landau equation and the two-dimensional
Navier-Stokes equation in a periodic box are sketched. One of the immediate goals is to
implement the numerical scheme for the 2D NSE for the study of 2D turbulence. We will
report our numerical results elsewhere.

There are many questions that merits further investigation. For instance, the convergence
presented here is weak convergence without any rate. It would be very desirable to have
algorithms with a rate of convergence, at least for a few physically important observables,
similar to the case of stochastic differential equations [35, 8]. It would also be desirable to
consider higher order in time scheme so that we could take relatively large time-step in order
to reach statistical equilibrium quickly. Some special cases are considered in [40, 50] but a
general theory is still missing.

We hope that this work will stimulate further work on numerical schemes that are able
to capture stationary statistical properties of infinite dimensional dissipative systems.
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