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We study two novel decoupled energy-law preserving numerical schemes for solving the Cahn-

Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw

cell. In the first scheme, the velocity in the Cahn-Hilliard equation is treated explicitly so that

the Darcy equation is completely decoupled from the Cahn-Hilliard equation. In the second

scheme, an intermediate velocity is employed in the Cahn-Hilliard equation which allows for

the decoupling. We show that the first scheme preserves a discrete energy law with a time-

step constraint, while the second scheme satisfies an energy law without any constraint and is

unconditionally stable. Ample numerical experiments are performed to gauge the e�ciency and

robustness of our scheme. c� (Year) John Wiley & Sons, Inc.
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I. INTRODUCTION

In the present contribution, we consider solving numerically the Cahn-Hilliard-Darcy

(CHD) system which is a di↵use interface model for two-phase incompressible flow in

D R A F T June 21, 2015, 9:26pm D R A F T



2 D. HAN AND X. WANG

porous medium or a Hele-Shaw cell. The model in dimensionless form is given as follows

ReDa

�

@u

@t
+ ↵(�)u = �rp� ✏�1

We⇤
�rµ, (1.1)

r · u = 0, (1.2)

�
@�

@t
+r · (�u) = 1

Pe
r · (m(�)rµ), (1.3)

µ = �3 � �� ✏2��, (1.4)

where Re is the Reynolds number, Da is the Darcy number (a measure of the perme-

ability relative to the area of the domain), � is the porosity, We⇤ is the modified Weber

number (a measure of kinetic energy vs surface energy), ✏ is a constant representing the

non-dimensionalized thickness of the transition layer between the two phases, Pe is the

di↵usional Peclet number measuring the importance of advection over di↵usion, and m

is the dimensionless mobility. Here ↵(�) is the reciprocal of the dimensionless hydraulic

conductivity defined as ↵(�) = ⌘(�)
⇧ with ⌘(�) the dimensionless viscosity coe�cient and

⇧ the dimensionless permeability. Throughout, we assume ↵(�) and m(�) are bounded

below and above, i.e.,

0 < ↵1  ↵(�)  ↵2, 0 < m1  m(�)  m2. (1.5)

The Eqs. (1.1) and (1.2) are the Darcy system with time derivative retained for flow

in porous medium [3, 30]. u is the nondimensionalized seepage velocity and p is the

non-dimensionalized modified pressure [24]. The last two Eqs. (1.3) and (1.4) are the

Cahn-Hilliard equation written as a system of two second order equations. � is the non-

dimensionalized order parameter/phase field variable which takes values {1} and {�1} in

the pure fluids and vary continuously across the transition layer between the two fluids.

µ is the dimensionless chemical potential. Note that the Reynolds number and Darcy

number are typically small for flow in porous medium. Formally setting Da = 0 in Eq.

(1.1), one recovers the standard Cahn-Hilliard-Hele-Shaw/Darcy system studied by many

authors [24, 25, 39, 38, 37, 26, 21]. The current version of the CHD model is heuristically

more accurate than the standard one as the non-stationary e↵ect is neglected in the static

Darcy equation, cf. [16, 5].
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We close the system with the following initial and boundary conditions

u|t=0 = u0, (1.6)

�|t=0 = �0, (1.7)

@n�|@⌦ = 0, (1.8)

@nµ|@⌦ = 0, (1.9)

u · n|@⌦ = 0. (1.10)

Here n is the unit outer normal of the boundary @⌦; Eq. (1.8) is a Neumann boundary

condition for phase field variable; Eq. (1.9) means that there is no chemical flux through

the boundary; Eq. (1.10) is the usual no penetration boundary condition for fluid ve-

locity. With boundary conditions (1.8)-(1.10), it is clear that the CHD system is energy

dissipative according to the following energy law

dE

dt
= � ✏�1

We⇤Pe

Z

⌦
m(�)|rµ|2 dx�

Z

⌦
↵(�)|u|2 dx  0, (1.11)

where E is the total energy

E = ReDa

Z

⌦

1

2�
|u|2 dx+

1

We⇤

Z

⌦
�
⇥1

✏
F (�) +

✏

2
|r�|2⇤ dx. (1.12)

The first integral in Eq. (1.12) is the kinetic energy, and the second one represents the

total free energy with the homogeneous free energy density function F (�) = 1
4 (�

2 � 1)2.

The main purpose of this work is to design e�cient and stable numerical algorithms for

solving the CHD system (1.1)–(1.4). We note that the interfacial thickness ✏ in the system

is typically small for macroscopically immiscible binary fluids [2, 27, 28]. Thus the CHD

Eqs. represent a coupled nonlinear system that describes physical phenomena of steep

spatial variation within a small transition region. Energy-law preserving schemes are

preferred for solving such systems for a number of reasons. On one hand, the preservation

of the energy law (1.11) is essential for the numerical scheme to capture the correct long

time dynamics of the system. On the other hand, the inherent stability from energy law

preserving schemes would allow for relatively larger time stepping for solving such a sti↵

problem [31]. A key idea in the development of energy-law preserving schemes for systems

of variational structure is convex splitting (see [8, 39, 36, 20, 32, 15] among many others).

Indeed, the convex splitting idea has already been applied to the standard Cahn-Hilliard-
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4 D. HAN AND X. WANG

Darcy model [39], Cahn-Hilliard-Stokes model [6] and Cahn-Hilliard-Navier-Stokes model

[22, 33, 11, 13, 17] to generate unconditionally stable (with discrete energy law) schemes.

The idea of convex-splitting will be one of the key components in the design of our

numerical schemes as well.

Despite the abundance of the literature on coupled energy law preserving numerical

schemes for phase field fluid models, the work on decoupled schemes are few. In this

work, we propose and compare two decoupled energy-law preserving numerical schemes

for solving the CHD system. In the first scheme Eqs. (2.11)-(2.13), the decoupling is

realized through treating the velocity in the Cahn-Hilliard equation explicitly. Such an

idea has been used by many practitioners in the actual computation of Cahn-Hilliard fluid

models as well as other advection-di↵usion problems. The rational is that the velocity

appears as a low-order term (u ·r�) in the Cahn-Hilliard equation and is not supposed

to contribute to a severe CFL-like condition, cf. [31]. We show that the first scheme

indeed satisfies a discrete energy law with a mild time-step constraint. Our first scheme

is inspired by [22] where a similar result for the Cahn-Hilliard-Navier-Stokes model was

derived. In the second numerical scheme (2.14)–(2.16), we take a fractional stepping

approach to decouple the computation of Cahn-Hilliard equation and fluid equation.

Following the work of Minjeaud [29] (see also [14]), we employ an intermediate velocity

(cf. (2.17)) defined only through the Korteweg force ✏�1

We⇤�rµ in the Cahn-Hilliard

equation. We show that the scheme satisfies an energy law free of time step constraint.

Recently, this fractional stepping idea has been generalized to solving Cahn-Hilliard-

Navier-Stokes type of systems in various contexts, cf. [34, 35].

There are several unconditionally stable but coupled numerical schemes for solving the

standard CHD system without explicit time derivative in Eq. (1.1). In [39], Wise pro-

poses an unconditionally stable finite di↵erence, nonlinear multigrid numerical scheme.

Owing to the convex-splitting discretization of the chemical potential equation and im-

plicit treatment of the pressure for the advective velocity in the Cahn-Hilliard equation,

he is able to show the unconditionally unique solvability and unconditional stability of

his numerical scheme. The same time discretization in conjunction with the local dis-

continuous Galerkin method is employed by Guo et al. in [12]. The energy stability

of their scheme is also established. We refer to [6] for a similar scheme for solving the
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Cahn-Hilliard-Brinkman system. Though the energy stability is preserved in all these

schemes, one has to solve the nonliner system in a coupled fashion. In [14], Han designs a

decoupled unconditionally stable scheme by combining fractional stepping and pressure

stabilization. But the scheme only satisfies a modified energy law with the addition of

pressure gradient in the definition of the discrete energy functional. Nonetheless, the

scheme is more e�cient in theory than the coupled schemes thanks to the decoupling.

The remainder of the paper is structured as follows. In section II., we first present the

definition of weak formulation for the CHD system. We then introduce the two numerical

schemes for solving the CHD system. We show that both schemes satisfy discrete energy

laws at the end of section II.. Some numerical results are presented in section III. to

gauge the accuracy, stability and e↵ectiveness in capturing topological changes of the

numerical schemes.

II. THE NUMERICAL SCHEME

A. The weak formulation

We formulate the CHD system (1.1)-(1.4) under the boundary conditions (1.8)- (1.10) in

a weak form. To this, we introduce the following Hilbert spaces

X = L2(⌦), M = L2
0(⌦) = {q 2 L2(⌦),

Z

⌦
q = 0}, (2.1)

H = {v 2 L2(⌦),r · v = 0,v · n|@⌦ = 0}, (2.2)

Y = H1(⌦). (2.3)

A weak formulation and solutions to the initial-boundary value problem (1.1)–(1.10)

can be defined similarly as [9].

Definition. Let �0 2 Y,u0 2 H. A quadruple {u, p,�, µ} is called a weak solution of

problem (1.1)-(1.10) if it satisfies

u 2 L1(0, T ;H), ut 2 L
4
3 (0, T ;H0) (2.4)

� 2 L1(0, T ;Y ) \ L4(0, T ;L1(⌦)), @t� 2 L2(0, T ;Y 0), (2.5)

µ 2 L2(0, T ;Y ), p 2 L
4
3 (0, T ;M), (2.6)
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and there hold, 8{v, q, v,'} 2 X⇥M ⇥ Y ⇥ Y and t 2 (0, T ) a.e.

ReDa

�
h@tu,vi+ (↵(�)u,v)� (p,r · v) + ✏�1

We⇤
(�rµ,v) + (r · u, q) = 0, (2.7)

�h@t�, vi �
�

�u,rv
�

+
1

Pe
(M(�)rµ,rv) = 0, (2.8)

(µ,')� (�3 � �,')� ✏2(r�,r') = 0, (2.9)

with initial condition u|t=0 = u0,�|t=0 = �0.

The regularity requirements in (2.4)–(2.6) are suggested by the energy law Eq. (1.11).

The existence of such a weak solution can be established similarly as [9] (see also [38, 18,

26]).

B. The fully discrete numerical schemes

Let N be a positive integer and 0 = t0 < t1 < · · · < tN = T be a uniform partition of

[0, T ]. Denote by k := tn � tn�1, n = 1, 2 . . . N , the time step-size.

Let Th be a regular, quasi-uniform triangulation of the domain ⌦ in 2D with mesh

size h. We introduce the continuous mixed finite element approximations of X and M

based on Th, denoted by Xh and Mh respectively. Furthermore, we assume Xh and Mh

satisfy the inf-sup condition for the divergence operator, i.e.,

9C > 0, sup
vh2Xh

(r · vh, qh)

||vh||H1
� C||qh||L2 , 8qh 2 Mh.

In Xh, we assume the following inverse inequality holds [22]

9C > 0, ||vh||L4  C
1

h1/2
||vh||L2 , 8vh 2 Xh. (2.10)

Commonly used finite element spaces for Xh and Mh include the Taylor-Hood finite

element space and the Mini finite element space, cf. [10]. Similarly, we define Yh a

continuous finite element approximation of Y . Typical examples of Yh include

Yh = {vh 2 C(⌦̄)
�

�vh|K 2 Pr(K), 8K 2 Th},

where Pr(K) is the space of polynomials of degree less than or equal to r on the triangle

K.
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DECOUPLED SCHEMES FOR CAHN-HILLIARD-DARCY SYSTEM 7

We now introduce our first fully discrete numerical scheme, denoted by (N1) hereafter:

find {un+1
h , pn+1

h ,�n+1
h , µn+1

h } 2 Xh ⇥Mh ⇥ Yh ⇥ Yh such that

ReDa

�

�un+1
h � un

h

k
,vh

�

+ (↵(�n
h)u

n+1
h ,vh)� (pn+1

h ,r · vh)

+
✏�1

We⇤
(�n

hrµn+1
h ,vh) + (r · un+1

h , qh) = 0, 8vh 2 Xh, qh 2 Mh, (2.11)

�
��n+1

h � �n
h

k
, vh

�� �

�n
hu

n
h,rvh

�

+
1

Pe
(m(�n

h)rµn+1
h ,rvh) = 0, 8vh 2 Yh, (2.12)

(µn+1
h ,'h)�

�

(�n+1
h )3 � �n

h,'h

�� ✏2(r�n+1
h ,r'h) = 0, 8'h 2 Yh, (2.13)

with initial condition u0
h = u0h,�

0
h = �0h, where u0h,�0h are the projection of u0,�0 in

Xh, Yh, respectively.

Note that the velocity in the Cahn-Hilliard equation (2.12) is treated explicitly in time.

Thus the Darcy equation (2.11) is completely decoupled from the rest of the equations.

One can solve the system sequentially: first solve the Cahn-Hilliard Eqs. (2.12) and

(2.13) for �n+1
h and µn+1

h by, for instance, Newton’s method; then solve the linear Darcy

equation (2.11) for un+1
h and pn+1

h . In comparison to the coupled scheme, i.e., treating

velocity implicitly un+1
h in Eq. (2.12), scheme (N1) is much more e�cient, cf. the

e�ciency test in section III..

Next, following the operator-splitting strategy introduced in [29], we propose another

decoupled numerical scheme (N2) as follows:

find {un+1
h , pn+1

h ,�n+1
h , µn+1

h } 2 Xh ⇥Mh ⇥ Yh ⇥ Yh such that

ReDa

�

�un+1
h � un

h

k
,vh

�

+ (↵(�n
h)u

n+1
h ,vh)� (pn+1

h ,r · vh)

+
✏�1

We⇤
(�n

hrµn+1
h ,vh) + (r · un+1

h , qh) = 0, 8vh 2 Xh, qh 2 Mh, (2.14)

�
��n+1

h � �n
h

k
, vh

�� �

�n
hu

n+1
h ,rvh

�

+
1

Pe
(m(�n

h)rµn+1
h ,rvh) = 0, 8vh 2 Yh, (2.15)

(µn+1
h ,'h)�

�

(�n+1
h )3 � �n

h,'h

�� ✏2(r�n+1
h ,r'h) = 0, 8'h 2 Yh, (2.16)

with the intermediate velocity un+1
h defined as

ReDa

�

un+1
h � un

h

k
+

✏�1

We⇤
�n
hrµn+1

h = 0. (2.17)
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We note that the intermediate velocity un+1
h never appears in the real computation.

Indeed, upon substitution (Eq. (2.17)), we see that the only unknown variables in Eq.

(2.15) and Eq. (2.16) are �n+1
h , µn+1

h . Thus the Cahn-Hilliard system (Eqs. (2.15) and

(2.16)) is completely decoupled from the Darcy equation (2.14). Also, note that formally

un+1
h is a first order approximation of un

h. Therefore we expect scheme (N2) to be a first

order scheme for the Cahn-Hilliard-Darcy system.

Remark. We remark that the pairing Yh⇥Yh of equal order finite element spaces is a

natural choice for �h and µh. Recall also that the Cahn-Hilliard equation is a fourth order

equation, upon substitution of the definition of the chemical potential. Eqns. (2.12) and

(2.13) are thus a mixed finite element formulation for solving the Cahn-Hilliard equation.

The equal order finite element spaces Yh⇥Yh is a stable pair for the biharmonic operator

(cf. [4]) in the sense that there holds the inf-sup condition

sup
�h2Yh

(r�h,r'h)

||�h||H1
� c||'h||H1 , 8'h 2 Yh \ L2

0(⌦),

where L2
0(⌦) is the subspace of L2(⌦) with mean zero. The equivalence of the two spaces

seems also necessary for higher-order stability estimates which are keys to establish opti-

mal error estimates, cf. Remark 2.4 of [7].

C. Stability of the fully discrete schemes

In this subsection, we study the stability of the decoupled numerical schemes (N1) and

(N2). We will show that scheme (N1) (Eqs. (2.11)-(2.13)) is conditionally energy-

stable with a time step-size constraint, whereas the scheme (N2) (Eqs. (2.14)-(2.13))

is unconditionally stable. Without ambiguity, we denote by (f, g) the L2 inner product

between functions f and g.

First, we show that the fully discrete scheme (N1) satisfies an energy law under a

mild CFL-like condition. We define a discrete analog of the energy functional (1.12) as

follows

En = ReDa

Z

⌦

1

2�
|un

h|2 dx+
1

We⇤

Z

⌦
�
⇥1

✏
F (�n

h) +
✏

2
|r�n

h|2
⇤

dx. (2.18)
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Theorem 2.1. At each time step, for any mesh parameters k, h and any ✏ > 0, there

exists a unique solution {un+1
h , pn+1

h ,�n+1
h , µn+1

h } to the scheme (N1) Eqns. (2.11)–

(2.13). Moreover, if the following time step constraint is satisfied

k  C
ReDa✏We⇤m1

�
1
2Pe

�

8✏We⇤E0 + 2�|⌦|�
1
2

h, (2.19)

the solution of the scheme (N1) satisfies a discrete energy law

En+1 � En

k
 �||

q

↵(�n
h)u

n+1
h ||2L2 � ✏�1

2We⇤Pe
||
q

m(�k
h)rµn+1

h ||2L2

� �✏

2We⇤k
||r(�n+1

h � �n
h)||2L2 . (2.20)

Proof. The unique solvability of Eqns. (2.11)–(2.13) can be established easily thanks

to the decoupling and the convex-splitting treatment of the chemical potential equation.

Here we highlight the ideas in the proof and refer to the appropriate references. Given

�n
h,u

n
h, Eqns. (2.12)–(2.13) amount to a first-order convex-splitting discretization of the

Cahn-Hilliard equation with a known forcing term. Thus the unique solvability of the

Cahn-Hilliard part follows from a variational argument by exploiting the convexity in

the design and the gradient flow structure of the system, cf. [22, 39]. Once µn+1
h is

known, Eq. (2.11) is a mixed finite element approximation of the Darcy equation. Its

unique solvability is guaranteed by the inf-sup compatibility between Xh and Mh, cf.

[10]. We point out that the unique solvability can also be established via a monotonicity

argument, cf. [17, 18].

We proceed to show that the energy law (2.20) is valid under the time step constraint

(2.19). Testing Eq. (2.11) with vh = un+1
h and qh = pn+1

h , and utilizing the identity

a(a� b) = 1
2 [a

2 � b2 + (a� b)2], one obtains

ReDa

2�k
[||un+1

h ||2L2 � ||un
h||2L2 + ||un+1

h � un
h||2L2 ] + ||

q

↵(�n
h)u

n+1
h ||2L2

+
✏�1

We⇤
(�n

hrµn+1
h ,un+1

h ) = 0. (2.21)

Next, taking the test function vh = µn+1
h in Eq. (2.12) gives

�
��n+1

h � �n
h

k
, µn+1

h

�� �

�n
hu

n
h,rµn+1

h

�

+
1

Pe
||
q

m(�n
h)rµn+1

h ||2L2 = 0. (2.22)
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Finally, we test Eq. (2.13) with 'h = ��n+1
h ��n

h

k . Recall the following inequality associ-

ated with the first order convex-splitting of F [31]

F (�n+1
h )� F (�n

h)  [(�n+1
h )3 � �n

h][�
n+1
h � �n

h].

We conclude that

� 1

k

�

µn+1
h ,�n+1

h � �n
h

�

+
1

k

�

F (�n+1
h )� F (�n

h), 1
�

+
✏2

2k
[||r�n+1

h ||2L2 � ||r�n
h||2L2 + ||r(�n+1

h � �n
h)||2L2 ]  0. (2.23)

Multiplying the inequality (2.23) with � and adding the result with Eq. (2.22), one

has

�

k

�

F (�n+1
h )� F (�n

h), 1
�

+
�✏2

2k
[||r�n+1

h ||2L2 � ||r�n
h||2L2 ]�

�

�n
hu

n+1
h ,rµn+1

h

�

 � 1

Pe
||
q

m(�n
h)rµn+1

h ||2L2 � �✏2

2k
||r(�n+1

h � �n
h)||2L2 . (2.24)

We next add Eq. (2.21) and inequality (2.24) scaled by ✏�1

We⇤ to obtain

ReDa

2�k
[||un+1

h ||2L2 � ||un
h||2L2 + ||un+1

h � un
h||2L2 ] +

�✏�1

kWe⇤
�

F (�n+1
h )� F (�n

h), 1
�

+
�✏

2We⇤k
[||r�n+1

h ||2L2 � ||r�n
h||2L2 ]  � ✏�1

We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2

� �✏

2We⇤k
||r(�n+1

h � �n
h)||2L2 � ||

q

↵(�n
h)u

n+1
h ||2L2 � ✏�1

We⇤
�

�n
hrµn+1

h , [un+1
h � un

h]
�

.

(2.25)

We now control the last term in (2.25) as follows (cf. [22] for a similar argument)

| ✏
�1

We⇤
�

�n
hrµn+1

h , [un+1
h � un

h]
�|

 ✏�1

We⇤
||�n

h||L4 ||un+1
h � un

h||L4 ||rµn+1
h ||L2

 ✏�1

We⇤
p
m1

||�n
h||L4 ||un+1

h � un
h||L4 ||

q

m(�n
h)rµn+1

h ||L2 , cf. (1.5)

 ✏�1Pe

2We⇤m1
||�n

h||2L4 ||un+1
h � un

h||2L4 +
✏�1

2We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2

 C
✏�1Pe

2hWe⇤m1
||�n

h||2L4 ||un+1
h � un

h||2L2 +
✏�1

2We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2 ,

D R A F T June 21, 2015, 9:26pm D R A F T



DECOUPLED SCHEMES FOR CAHN-HILLIARD-DARCY SYSTEM 11

where the last inequality follows from the inverse inequality (2.10). The quantity ||�n
h||2L4

can be bounded in terms of the total energy En. Notice that
Z

⌦
(�n

h)
4 dx  2

Z

⌦

�

[(�n
h)

2 � 1]2 + 1
 

dx  8

Z

⌦
F (�n

h) + 2|⌦|.

It follows from the definition of En in (2.18) that

||�n
h||2L4  �

8✏We⇤En/�+ 2|⌦|�
1
2 .

Assuming En  E0 for the time being, one can write the above inequality as

||�n
h||2L4  �

8✏We⇤E0/�+ 2|⌦|�
1
2 . (2.26)

Thus if the following condition is satisfied

k  C
ReDa✏We⇤m1

�
1
2Pe

�

8✏We⇤E0 + 2�|⌦|�
1
2

h,

one has

| ✏
�1

We⇤
�

�n
hrµn+1

h , [un+1
h � un

h]
�|  ReDa

2�k
||un+1

h � un
h||2L2 +

✏�1

2We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2 .

(2.27)

Taking into account of inequality (2.27), one derives from inequality (2.25) the following

modified energy law

ReDa

2�k
[||un+1

h ||2L2 � ||un
h||2L2 ] +

�✏�1

kWe⇤
�

F (�n+1
h )� F (�n

h), 1
�

+
�✏

2We⇤k
[||r�n+1

h ||2L2 � ||r�n
h||2L2 ]  � ✏�1

2We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2

� �✏

2We⇤k
||r(�n+1

h � �n
h)||2L2 � ||

q

↵(�n
h)u

n+1
h ||2L2 . (2.28)

In particular, it follows that En+1  En. Thus an induction argument concludes the

proof.

Remark. Explicit time stepping for velocity in the Cahn-Hilliard equation as in

scheme (N1) is a natural and common practice for the numerical simulation of Cahn-

Hilliard fluid models, cf. [31]. It decouples the computation of Cahn-Hilliard equation

and fluid equations, thus reducing the computational cost. The stability of such a time

D R A F T June 21, 2015, 9:26pm D R A F T



12 D. HAN AND X. WANG

stepping scheme is investigated in [22] in the context of Cahn-Hilliard-Navier-Stokes fluid

model where a similar time step constraint as (2.19) is established. Another CFL-like

condition is suggested numerically in [1] by considering the solvability of the numerical

scheme at a single time step. The result is for Cahn-Hilliard-Navier-Stokes system, and

is independent of the spatial resolution.

Now we show that the numerical scheme (N2) is unconditionally energy-stable.

Theorem 2.2. At each time step, for any mesh parameters k, h and any ✏ > 0, there

exists a unique solution {un+1
h , pn+1

h ,�n+1
h , µn+1

h } to the scheme (N2) Eqns. (2.14)–

(2.16). Moreover, the solution of the scheme (N2) satisfies a discrete energy law

En+1 � En

k
 �||

q

↵(�n
h)u

n+1
h ||2L2 � ✏�1

We⇤Pe
||
q

m(�n
h)rµn+1

h ||2L2

� �✏

2We⇤k
||r(�n+1

h � �n
h)||2L2 � ReDa

2�k
(||un+1

h � un
h||2L2 + ||un+1

h � un+1
h ||2L2), (2.29)

where the intermediate velocity un+1
h is defined in Eq. (2.17), and the discrete energy

law is given by (2.18).

Proof. The solvability of the scheme (N2) can be established in the same way as

the scheme (N1). Indeed, by using the definition of the intermediate velocity (2.17),

Eq. (2.15) can be rewritten in the form of Eq. (2.12) with a modified mobility function

m̃(�n
h) := m(�n

h) +
✏�1k�Pe
We⇤ReDa (�

n
h)

2.

For the stability, we note that the treatment of the Cahn-Hilliard system (Eqns. (2.15)

and (2.16)) are the same as in the proof of Theorem 2.1, cf. Eqs. (2.22) and (2.23). One

can obtain (compare to Eq. (2.24))

�

We⇤k

n1

✏

�

F (�n+1
h )� F (�n

h), 1
�

+
✏

2
[||r�n+1

h ||2L2 � ||r�n
h||2L2 ]

o

� ✏�1

We⇤
�

�n
hu

n+1
h ,rµn+1

h

�

 � ✏�1

PeWe⇤
||
q

m(�n
h)rµn+1

h ||2L2 � �✏

2We⇤k
||r(�n+1

h � �n
h)||2L2 . (2.30)

Next, we multiply Eq. (2.17) by un+1
h and integrate

ReDa

2�k
[||un+1

h ||2L2 � ||un
h||2L2 + ||un+1

h � un
h||2L2 ] +

✏�1

We⇤
(�n

hrµn+1
h ,un+1

h ) = 0. (2.31)
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In view of the definition of the intermediate velocity (2.17), the Darcy Eq.(2.14) can be

reformulated as 8vh 2 Xh, qh 2 Mh,

ReDa

�

�un+1
h � un

h

k
,vh

�

+ (↵(�n
h)u

n+1
h ,vh)� (pn+1

h ,r · vh) + (r · un+1
h , qh) = 0.

Taking the test function vh = un+1
h in the above equation, one has

ReDa

2�k
[||un+1

h ||2L2 � ||un+1
h ||2L2 + ||un+1

h � un+1
h ||2L2 ] + ||

q

↵(�n
h)u

n+1
h ||2L2 = 0. (2.32)

The energy law (2.29) now follows from adding up Eqs. (2.30), (2.31) and (2.32).

III. NUMERICAL EXPERIMENTS

In this section, we report some numerical results to show the accuracy and e�ciency of

the numerical scheme (N1) (Eqns. (2.11)–(2.13)) and the scheme (N2) (Eqs. (2.14)–

(2.16)). Throughout, we take Yh to be the P1 or P2 finite element function space. For

Xh and Mh, the celebrated Taylor-Hood finite elements (P2–P1) and Mini finite elements

(P1b–P1) will be used. We solve the nonlinear equations (2.12)-(2.13) and (2.15)-(2.16),

respectively, by the classical Newton’s method. All the numerical tests are performed

using the free software FreeFem++ [19].

A. Convergence test

In our first numerical test, we verify the first order convergence in time for both the

scheme (N1) and the scheme (N2). For convenience, we take all the parameters in the

CHD system (1.1)–(1.4) to be unity and work on the unit square ⌦ = [0, 1]⇥ [0, 1]. We

proceed by the method of manufactured solutions. Specifically, we assume that there are

forcing terms in Eqns. (1.1), (1.3) and (1.4) such that the exact solutions of the system

are as follows

u =
⇣

� sin2(⇡x) sin(2⇡y) cos(t), sin2(⇡y) sin(2⇡x) cos(t)
⌘

,

p = cos(t)(xy � 1

4
),

� = cos(t) cos(⇡x) cos(⇡y),

µ = sin(t)cos(⇡x) cos(⇡y).
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14 D. HAN AND X. WANG

We use P2–P2 finite elements for �n+1
h and µn+1

h , P2–P1 pair for un+1
h and pn+1

h .

The spatial resolution is fixed at h = 0.01
p
2 such that the spatial error is negligible

compared to temporal error in the following calculation. We successively decrease the

time step-size k. We compute the solution up to a final time T = 0.5 and record the

error measured in L2 norm. An error estimate of the form O(h3) +O(k) is anticipated

for u,�, µ, whereas the one for pressure is O(h2) +O(k), cf. [7] for similar results. The

first order convergence in time is clearly shown in Fig. 1. We mention that we have also

carried out Cauchy convergence tests by simultaneously decreasing temporal and spatial

step-size. Our results (not included here) also verify the first order in time convergence

rate.
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(a) Scheme (N1) (b) Scheme (N2)
FIG. 1. Temporal convergence test: L2 error of the velocity u, the pressure p, and the order

parameter � as a function of time step k. The solid green line is the reference line e = 0.08k.

The final time is T = 0.5. h = 0.01
p
2. P2–P2 is used for � and µ, P2–P1 is used for u and p.

The other parameters are set to be unity.

B. Stability test

In this subsection, we study and compare the stability of the scheme (N1) and scheme

(N2) by numerical experiments. The numerical test is the standard shape relaxation

driven by surface tension that is studied by many authors [23, 39, 17, 34]. We consider a

binary fluid of square shape at rest initially (cf. Fig. 2). The surface tension e↵ect will

drive the square to become a circular shape in a way such that the total energy decreases

D R A F T June 21, 2015, 9:26pm D R A F T



DECOUPLED SCHEMES FOR CAHN-HILLIARD-DARCY SYSTEM 15

to a minimal. Thus this numerical test is a good choice for the study of the capabilities

of energy-law preserving (stability) of the schemes.

FIG. 2. The initial shape of the order parameter for simulations of shape relaxation.

To better address the multiple spatial scales of the problem, we explore the adaptive

mesh refinement of FreeFem++ (cf. [19]) which uses a variable metric/Delaunay auto-

matic meshing algorithm. Specifically, we adapt the mesh according to the Hessian of

the order parameter such that approximately four grid cells are located across the di↵use

interface.

The problem parameters are set as follows: ✏ = 0.01, We⇤ = 1, Pe = 1
✏ , � = 0.5,

ReDa
� = 0.1, ↵(�) = 10, and m(�) = 1. This set-up of the problem corresponds to an

extreme case in the sense that the theoretical time step constraint in (2.19) for the scheme

(N1) is at the order of 10�6. We plot the evolution of the total energy in time associated

with (N1) and (N2), respectively, using di↵erent time step-sizes. From Fig. 3 (a), we see

that the discrete energy is non-increasing for the scheme (N1) with k = 2e�4. However,

when k = 3.5e � 4, the discrete total energy of (N1) starts increasing very quickly (cf.

Fig. 3 (b)). In contrast, the discrete energy for (N2) appears to be non-increasing, even

at k = 0.01.
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(a) stable cases, N1 and N2 (b) unstable case, N1, k = 3.5e� 4

FIG. 3. Stability test: time evolution of the total energy of Scheme (N1) and (N2) at di↵erent

time step-sizes.

Two snapshots of the relaxed shape at time t = 0.002 are shown in Fig. 4. The

scheme (N2) well captures the relaxation of the square shape using relatively large time

step k = 0.01, whereas oscillations and instabilities start to grow around the corners of

the square when computed by the scheme (N1) with k = 3.5e� 4. We remark that the

(a) N2, k = 0.01 (b) N1, k = 3.5e� 4
FIG. 4. Snapshots of the shape at t = 0.002.

time step constraint (2.19) for (N1) is only a su�cient condition for the validation of a

discrete energy law. In this numerical example, it is clear that much larger time step is
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allowed (10�6 vs. 10�4). Also, the result here seems to echo with part of the numerical

findings in [1], i.e., the time step constraint is independent of spatial resolution.

C. E�ciency test

Here we compare the e�ciency of the scheme (N1) and the scheme (N2) in terms of CPU

time. We will also compare their performance relative to a fully coupled unconditionally

stable scheme which is a variant of the scheme (N1) with the velocity treated implicitly

in Eq. (2.12). Since our schemes are relatively e�cient, this set of numerical tests are

carried out in a Dell Inspiron 15-7537 laptop with the following specifications: Intel Core

i7 4510U (quad CPUs, dual core, 2.0 GHZ); 16G RAM. The test problem is the same

as the one in convergence test, i.e., all parameters are unity. We keep a record of the

CPU time in seconds for each scheme running up to T = 0.5 at the same time step. The

spatial resolution is set as h = 0.02
p
2. P2 finite elements are used for u,�, µ and P1 is

used for pressure p. The nonlinear systems are solved using Newton’s iteration method

with the same tolerance 1e� 8.

The averaged computation time with di↵erent time step-sizes is summarized in Table

I. In comparison, we see that the decoupled schemes are three to four times faster than

the fully coupled scheme, not to mention the extra memory cost for the coupled scheme.

Also, the scheme (N2) is slightly faster than the scheme (N1), possibly due to the better

stability of N2 considering virtually the same implementation of both schemes. Note

that the computational time does not scale with k, since we are solving nonlinear systems

using iterative methods.

TABLE I. E�ciency test: actual CPU time in seconds for each scheme with various time steps

computed to T = 0.5. The problem parameters are all unity.

scheme k = 0.1 k = 0.05 k = 0.025 k = 0.0125 k = 0.00625 k = 0.003125

Coupled 166.80 362.86 697.40 777.47 1562.98 3137.42

N1 41.18 76.69 158.38 200.11 383.46 769.99

N2 38.72 74.74 157.09 198.94 381.66 769.12
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D. Interface pincho↵

One of the main advantages of the di↵use interface models is that they can capture

topological transitions of the fluids interface (in the sense of sharp interface model)

smoothly, cf. [27]. In this experiment, we demonstrate the e↵ectiveness of our numerical

schemes in the simulation of binary fluids with topological interface changes. Due to the

unconditional stability, we will mainly use scheme (N2).

We consider a situation where a light fluid layer initially sandwiched by two heavy

fluid layers in a square domain ⌦ = [0, 2⇡]⇥ [0, 2⇡] (cf. Fig. 5). For simplicity, we assume

that the density variance of two fluids is small so that a Boussinesq approximation can

be employed. Specifically, we take the background density as 1.0 and add the following

buoyancy term to the Darcy equation in (1.1)

�b(�)ŷ = �G(⇢(�)� ⇢̄)ŷ = �G
⇢1 � ⇢2

2
(�� �̄)ŷ := ��(�� �̄)ŷ,

where ŷ is the unit vector pointing upwards (ŷ = (0, 1)), G is the gravitational constant,

⇢(�) = 1+�
2 ⇢1 + 1��

2 ⇢2 with ⇢2 ⇡ ⇢1 = 1.0, ⇢̄ is the spatially averaged density , �̄ is

the spatially averaged order parameter, and � = G⇢1�⇢2

2 . Introducing two flat interfaces

with small perturbations

y1(x) = ⇡ � (0.5 + 0.1 cos(x)), y2(x) = ⇡ + (0.5 + 0.1 cos(x)),

then the initial condition for the phase field variable is defined as

�0 = tanh
�y � y1(x)p

2✏

�

tanh
�y � y2(x)p

2✏

�

.

In the simulation, boundary conditions (1.8)–(1.10) are imposed. A similar experiment

has been carried out in [25] with periodic boundary condition, see also [14].

In the simulation shown in Fig. 6, we take ✏ = 0.05, Pe = 20, We⇤ = 4, m(�) = 1.0,

� = 2.946, ↵(�) = 1+�
2 1.2 + 1��

2 6, � = 0.5 and ReDa
� = 0.01. For time stepsize, we

choose k = 0.001. In space, P1b–P1 finite elements are used for u and p, and P1–P1

finite elements are used for � and µ. We adapt the mesh every five time steps according

to the Hessian of the order parameter such that at least 6 grid cells are located across

the di↵use interface.

Contour plots in gray scale of the order parameter are shown in Fig. 6. In the

language of sharp interface models, the upper interface is unstably stratified. The heavy
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FIG. 5. The initial configuration of the phase field variable. ✏ = 0.05. The dash lines are the

zero contour of the interfaces.

fluid layer penetrates the light fluid layer, eventually causes the pincho↵ of the light fluid

layer. The break-up event is captured by our numerical algorithm. The e↵ectiveness of

the empirical adaptive mesh refinement can be observed from Fig. 7 as well where one

can not di↵erentiate the triangles in the interfacial region due to the dense density there.

IV. CONCLUSION

We propose and compare two decoupled energy-law preserving numerical schemes for

solving the Cahn-Hilliard-Darcy system modelling two-phase incompressible flows in

porous medium or a Hele-Shaw cell. In the first scheme, explicit treatment of the veloc-

ity in the Cahn-Hilliard equation is utilized to decouple the computation. The scheme
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t = 1.5 t = 2

t = 2.4 t = 2.5
FIG. 6. Interface pincho↵ due to buoyancy: contour plots of the order parameter in gray scale.

✏ = 0.05, Pe = 20, We⇤ = 4, m(�) = 1.0, � = 2.946, k = 0.001, � = 0.5, ReDa
� � 0.01 and

↵(�) = 1+�
2 1.2 + 1��

2 6.

is shown to be uniquely solvable and satisfy a discrete energy law with a time step

constraint. The second numerical scheme employs an intermediate velocity (fractional

stepping) in the computation of Cahn-Hilliard equation. Moreover, we show that the

scheme satisfies a discrete energy law without any time constraint. We provide numeri-

cal evidence that both schemes work properly. The schemes present in the paper can be

potentially generalized to solve other di↵use interface models for groundwater flow, for

instance, the Cahn-Hilliard-Stokes-Darcy system [15].
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(a)mesh at t = 1.5 (b) mesh at t = 2.4
FIG. 7. Adaptive mesh refinement: meshes associated with the computation at t = 1.5 and

t = 2.4, respectively.

Another decoupling strategy by combining fractional stepping and pressure stabiliza-

tion is proposed in [14] for solving a Cahn-Hilliard-Hele-Shaw system. The scheme is

show to satisfy a modified discrete energy law as well. Though our schemes in this paper

and the scheme in [14] are shown to be e�cient, they are only first order accurate in

time. The ideas in the design of decoupled energy-law abiding numerical schemes do not

seem to have a direct generalization to higher order schemes. The design of higher order

accurate, decoupled, energy-law preserving schemes requires further investigation.
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