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Abstract

This paper presents a new structural framework for multidimensional default risk. We
define the time of default as the first time the log-return of the stock price of a firm jumps
below a (possibly nonconstant) default level. When stock prices are exponential Lévy,
this framework is equivalent to a reduced form approach, where the intensity process is
parametrized by a Lévy measure. The dependence between the default times of firms
within a basket of credit securities is the result of the jump dependence of their respective
stock prices, making the link between the equity and credit markets. We value a first-to-
default basket CDS as an application.
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A Structural Jump Threshold Framework

1 Introduction

There currently exist two main classes of models for default risk: structural and reduced form
models. We refer to [4, 5, 15, 17, 21] for the first class of models, and to [6, 11, 12, 23] for the
second. Both types of models define a framework for understanding credit risk by modeling
the timing of the default of a firm. In the framework of structural models, the default time τ
is the first passage time of the firm’s value process below a given threshold. In reduced form
models, τ is an ad hoc function of market observables such as interest rates, which are not
directly linked to the firm’s fundamentals, with spreads that are estimated statistically.

A structural model has the advantage of a transparent economic interpretation with a
direct link to firm values. However, with the gradual abandonment of geometric Brownian
motion in favor of jump models for underlying stock prices, structural models generally lack
explicit formulas for default probabilities, especially in the multi-dimensional case. Reduced
form models tend to enjoy explicit default formulas for more general stock price processes, but
are more loosely linked to asset fundamentals. In this paper we present a modeling approach
to pricing credit derivatives on firms and portfolios of firms that combines advantages of both
structural and reduced form models.

To motivate our approach, consider Figure 1, showing the stock price of MF Global near
its bankruptcy. The firm’s default occurred not at the largest drop in the firm’s value, but
later at the largest drop in the firm’s return.
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(b) MF Global. Daily log returns.

Figure 1: Bankruptcy of MF Global, October-November 2011. Bankruptcy occurred on
Oct. 31, 2011, not at the largest absolute drop in stock price, but at the largest relative drop.

Our approach is the following. We consider rapid changes in the stock price St as rep-
resented by the instantaneous log-return at time t, log(St/St−). The default time of a firm
is modeled as the first time that the log-return of the stock price jumps below a (possibly
non-constant) default level. That is, we take the default time τ to be given by

τ = inf{t > 0 : log(St/St−) ≤ at}
where at is a (negative) default threshold and St is the stock price process. Our analysis
requires only that St is an exponential Lévy process, and yields simple pricing formulas that
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are easy to compute even in the multi-dimensional case without the need for PIDE solvers or
Monte Carlo simulation.

For a portfolio of N stocks, we only need to assume that the prices are driven by the
components of an RN -valued Lévy process. By means of the use of Lévy copulas, we can
decouple the dependence structure of the jumps from the set of individual jump intensities
of the firms. As in the work of Marshall and Olkin [19], we restrict attention throughout this
paper to the case N = 2 in order to simplify the analysis and notation, though the results all
carry over similarly for general N .

For illustration, we price a first-to-default basket credit default swap on two underliers.
The formulas are explicit and allow for separate calibration of the individual stock processes
and the dependence structure.

Our approach enjoys these advantages:

1. as a structural model it is directly linked to the observable stock price process St. It
may be calibrated directly to St, giving us an advantage over typical structural models
formulated in terms of a firm value process that is not directly observable;

2. the framework allows for the use of a consistent set of underlying models to price credit
derivates and options on the same assets;

3. probabilities and prices are explicit, equivalent to reduced form models, and furthermore
the dependence structure enters the model in an explicit way that can be separately
calibrated or studied;

4. the method gives explicit solutions for multidimensional problems (e.g. basket CDS
pricing);

5. the general results do not depend on any ad hoc price modeling choices, but hold gener-
ally for any exponential Lévy stock price models, i.e. only rely on the mild assumption
that log-prices jointly have independent and stationary increments. This provides the
flexibility to use most of the currently popular price process models, including pure
jump processes like Variance Gamma, Normal Inverse Gaussian, CGMY, and tempered
stable processes.

Because the instantaneous log-return vanishes except where the process St jumps, this ap-
proach won’t work for continuous price models like geometric Brownian motion. This could
explain why our approach would not have been obvious or tractable in the early days of asset
pricing theory when Brownian motion was the primary innovation. Since then, however, we
know that asset returns are not Normal, but require heavy-tailed distributions to describe
them [18]. As a result, Lévy models have generally replaced Gaussian models for price and
risk models that need to be sensitive to the distribution of extreme events. More recent work
on the dependence of Lévy processes, especially the Lévy copula theory of Tankov [25], now
make this new framework tractable in a way that it would not have been in the 1960’s.

The event of default is determined by the relationship between the log-return of the stock
price and the default level at. The modeler may choose to think of the default level as a
quantity only accessible to the firm management, or, as in the reduced form framework, as a
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statistical level estimated by credit derivatives. The possibility that the default level might
be stochastic provides quite a bit of flexibility for the modeler to adjust the probability of
default in relation to the variability of the stock price. In this sense, our jump-default frame-
work shifts attention regarding default events from the absolute level of the stock price to its
log-variability, which, in the case of pure jump processes, is wholly measured by the jump
distribution.

This jump-default framework has the disadvantage, from a structural perspective, that the
default event is only triggered by large downward price jumps. There is no level below which
the price can slowly diffuse to trigger default. For constant default thresholds, this means the
default framework presented here should be thought of as focused on relatively short term
sudden and unpredictable defaults that take the market by surprise. This is consistent with
the typical debt collection process of margin calls and debt payments incurred by a firm as
a discontinuous and somewhat unpredictable process. It is tempting to imagine that during
a slow decline, firms have more time to reorganize their assets and debts to avoid default.
On the other hand, a trend or diffusion could be incorporated into the default threshold pro-
cess at in order to re-introduce a version of a slow diffusion-related trend in default probability.

This paper is organized as follows. In Section 2 we describe the default model in the one-
dimensional case and develop the single-name default probability formulas in terms of tail
integrals of the log-price process. Section 3 develops our analysis of the dependence structure
of jumps of a multi-dimensional Lévy process. We start by characterizing the dependence of
jumps of a two dimensional homogeneous Poisson process in terms of the joint distribution
of survival times, which is bivariate exponential and always follows a Marshall-Olkin copula.
This is true independently of the choice of Lévy process, with parameters depending on the
Lévy measures. This result generalizes to two-dimensional Lévy processes in Theorem 3.15.

Section 4 presents the joint survival probability formulas for constant, deterministic, and
stochastic default levels. These are applied in Section 5 to the problem of pricing a first-to-
default basket CDS, to illustrate the use of the results of Section 4. We emphasize the fact
that the dependence structure is decoupled from the single-name default probabilities, and so
can be modeled independently. Concluding remarks are in Section 6, and proofs of most of
the Propositions and Theorems are collected in Section 7.

Acknowledgement: the authors thank the editors and anonymous referees for helpful com-
ments.

2 A structural jump-threshold model

Before developing the dependence ideas needed to describe multi-name default probabilities
and basket default prices, we describe our default framework for a single asset. For standard
definitions and basic concepts involving random measures, Lévy processes and Lévy measures,
we refer the reader to any of a variety of excellent available references, including [1, 2, 7, 8,
16, 22, 24].

We assume that the interest rate process (rt)t≥0 is a constant r. Let Yt be a one-
dimensional Lévy process on a filtered probability space (Ω,F ,P, (Ft)t≥0), denote by boldface
i the imaginary unit, and ψ(u) = logE[eiuY1 ] the characteristic exponent of Y1. With this
notation, we model the movements of the stock price S of a firm as a general exponential

July 2, 2016 4



A Structural Jump Threshold Framework

Lévy process by
St = s exp{rt+ Yt + tψ(−i)}. (1)

With this specification, the discounted value of the stock price S̃t = Ste
−rt is an (Ft)t≥0-

martingale under P. Recall that a Lévy process Y has an associated Lévy measure λ, such
that, for a Borel measurable set A ∈ B(R \ {0}), λ(A) is the expected number of jumps of Y
per unit time with jump size Yt − Yt− ∈ A.

The price process St is the solution of the stochastic differential equation

dSt = St−
(
rdt+ σdWt +

∫
R(ex − 1){X(dt× dx)− dt× λ(dx)}

)
, S0 = s > 0, (2)

where X is the Poisson random measure on [0,∞)×(R\{0}) with intensity Leb×λ associated
to Y via the Levy-Itô decomposition. (Leb denotes Lebesgue measure.) We call X a temporal
Poisson random measure ( tprm ) on R \ {0} with intensity λ.

An important quantity associated to Y is the tail integral of the process Y , defined to be
the function Λ(x) =

∫
(−∞,x] λ(dw), for x < 0. This can be interpreted as the intensity of a

Poisson process that jumps whenever Y jumps downward by more than −x, i.e. Yt−Yt− ≤ x.
(See Section 3.2 for more details.)

Since Brownian motion is a Lévy process, we can think of this stock price model as a
natural generalization of the geometric Brownian model

dSt = St(rdt+ σdWt)

to a much wider class of processes that includes jump diffusions and many popular pure jump
processes [8].

Given a firm with stock price S, the event of default is defined as the first time the log
return of the stock price jumps below a default threshold level a < 0, where a can in general
be non-constant and non-deterministic. More precisely:

Definition 2.1 (Default time, default level process). Given the exponential Lévy stock price
St defined above, a default level process is a real-valued Ft-progressively measurable random
process {at} uniformly bounded below zero. The corresponding default time τ is defined as

τ(ω) = inf{t > 0 : log(St(ω)/St−(ω)) ≤ at(ω)}. (3)

The default level at represents the percentage value of a shock observed in the stock price
at time t needed to trigger default. In many cases at can be deterministic or constant.

In order to price credit derivatives on S, we need to evaluate the survival probabilities,
described next.

Proposition 2.2 (Default probability, hazard rate, stochastic default level). Suppose the stock
price St is an exponential Lévy process and at is a predictable default level process independent
of St.

Then

1. the survival probability is given by

P(τ > t) = E[exp

{
−
∫ t

0
Λ(au)du

}
] (4)

where Λ(a) =
∫

(−∞,a] λ(dw) is the tail integral of the process Y .
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2. the hazard rate (also sometimes called the instantaneous default rate or local default
rate) Ht is, for a.e. t,

Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= E[Λ(at) | τ > t] =

E
[
Λ(at)e

−
∫ t
0 Λ(as)ds

]
E
[
e−

∫ t
0 Λ(as)ds

] . (5)

An important special case for applications is the case where the default level at is a
deterministic function of time (for example, piecewise constant, as in [11]).

Corollary 2.3 (Default probability, hazard rate, deterministic default level). Let the stock
price S of a firm be an exponential Lévy process (1) and suppose the default level at is deter-
ministic. The survival probability up to time t > 0 is given by

P(τ > t) = exp

{
−
∫ t

0
Λ(au)du

}
. (6)

Furthermore, for almost every t ≥ 0, the hazard rate Ht exists and is given by

Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= Λ(at). (7)

If in addition the default level at is right continuous and the Lévy measure λ of Y is non-
atomic, then equation (7) holds for all t ≥ 0.

If the default threshold level at is constant, at = a, then we obtain the even simpler
formulas

P(τ > t) = e−tΛ(a), (8)

and

Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= Λ(a). (9)

We notice that the typical formulas of reduced form models are appearing here in this
structural context. In this simplest case of constant default level, the default time is expo-
nential, and the average waiting time to default, Λ(a), is parametrized by the Lévy measure
of the underlying process. The reason for this is that the “tail process” Nt marking jumps of
Yt beyond the default threshold is a homogeneous Poisson process with mean Λ(a).

To be more specific, we write E = R \ {0} and I(z,A) to be the indicator function with
value 1 if z ∈ A and value 0 otherwise. If we define

Nt(ω) =

∫
[0,t]×E

I(z, (−∞, a])X(ω, ds× dz), (10)

then N is a homogeneous Poisson process. The proof of the non-constant case proceeds by
establishing that the tail process

Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds× dz). (11)

is a non-stationary Poisson process with intensity (Λ(at))t≥0. (All proofs appear in Section
7.)
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Example 2.4. Assume that the dynamics of the the stock price S of a firm is given by (1),
where λ is the Lévy measure of an α-stable process,

λ(dx) = α

(
c+

x1+α
1x>0 +

c−
| x |1+α

1x<0

)
, (12)

α ∈ (0, 1) ∪ (1, 2), c−, c+ > 0. Then the tail integral of λ on the negative axis becomes

∀ x ∈ (−∞, 0), Λ(x) =
c−
| x |α . (13)

Therefore the survival probability for a constant default level a is

P(τ > t) = e−tc−/|a|
α
. (14)

The two following examples show how one can construct models with nonconstant deter-
ministic intensities.

Example 2.5 (Piecewise constant default level). Let 0 = t0 < t1 < . . . < tI and define the
default level a such that

∀ t ≥ 0, at =
I∑
i=1

ai1[ti−1,ti)(t) + aI1t≥tI , (15)

where ai < 0, i = 1, . . . , I. For t ∈ [tk, tk+1), k = 1, . . . , I − 1, the survival probability up to
time t is

P(τ > t) = exp

{
−

k∑
i=1

Λ(ai)(ti − ti−1)− Λ(ak)(t− tk)
}
. (16)

Example 2.6 (Linear default level, α-stable process). Assume that the Lévy measure of Y
is as in Example 2.4 with α ∈ (1, 2) and that the default level is represented by the function
a : t→ at = min(βt− γ,−ε) for ε > 0. Then, for t < (γ − ε)/β, the hazard rate (Ht)t≥0 is

Ht = Λ(at) =
c−

| βt− γ |α , (17)

and the survival probability is

P(τ > t) = exp

{
c−

β(α− 1)

[
(γ − βt)1−α − γ1−α]} . (18)

We plot the default level (at)t≥0 for the piecewise constant and linear models of Examples
2.5 and 2.6 in Figure 2.

Further discussion, and examples with stochastic default levels, may be found in [9]. We
emphasize that our results for stochastic default levels are limited to the case when the default
level process at is assumed independent of the stock price process St. When this is the case,
the extension from the deterministic to the stochastic case is straightforward. The hazard
rates are included in the statements above to add some intuition to the results, but we only
need the survival probabilities to compute CDS prices in later sections.
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Figure 2: Survival probabilities (left) and default level (at)t≥0 (right) in a jump threshold
model with deterministic default level and α-stable Lévy measure. α = 3/2, c− = 1/100.
Market value taken from [24].

3 Jump dependence for Lévy processes

We need to develop a few ideas and notations for the dependence of jumps of Lévy processes
in this section, in terms of which the default pricing formulas will be expressed later. We
follow some of the literature and choose to simplify notation by restricting attention to two
dimensions. However, nothing changes except notational complexity in considering higher
dimensional dependence.

3.1 Two-dimensional homogeneous Poisson processes

It’s helpful to start with the special case of homogeneous Poisson processes, and then move to
general Lévy processes. Here the term “Poisson process”, with no other modifiers, will always
mean a classical one-dimensional homogeneous Poisson process on R+.

Because the survival times of a Poisson process are exponential random variables, we need
to understand univariate and bivariate exponential variables.

First we recall the two-dimensional version of the memoryless property as developed by
Marshall and Olkin [19].

Definition 3.1 ([19], Two-dimensional memoryless property). A pair of non-negative random
variables (S, T ) has the memoryless property if

∀ s1, s2, t ≥ 0, P(S > s1 + t, T > s2 + t | S > t, T > t) = P(S > s1, T > s2). (19)

Marshall and Olkin showed that the only pair of random variables (S, T ) which satisfies
3.1 is the bivariate exponential random vector.

Definition 3.2 ([19], Bivariate exponential random vector). A pair of random variables S and
T forms a Bivariate exponential random vector if there exist λ, µ, ρ ≥ 0, with ρ ∈ [0,min(λ, µ)],
such that

∀s, t ≥ 0, P(S > s, T > t) = e−(λ−ρ)s−(µ−ρ)t−ρmax(s,t). (20)

We write (S, T ) ∼ bE(λ, µ, ρ).
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If (S, T ) ∼ bE(λ, µ, ρ) it follows that S and T are exponential with parameters λ and µ,
respectively, written S ∼ E(λ) and T ∼ E(µ).

We can understand the bivariate exponentials in terms of exponential marginals and the
classical notion of copulas (e.g. Nelsen [20], to be distinguished from the Lévy copulas de-
scribed below). Given two one dimensional exponential random variables S and T with
respective parameters λ and µ, it is a remarkable fact that the only copula making (S, T ) a
bivariate exponential random vector is the three parameter Marshall-Olkin copula.

Definition 3.3 (Three parameter Marshall-Olkin copula). Let λ, µ ∈ R+ and ρ ∈ [0,min(λ, µ)].

The three parameter Marshall-Olkin copula is the function Cλ,µρ : [0, 1]2 → [0, 1] defined by

Cλ,µρ (u, v) = uvmin(u−ρ/λ, v−ρ/µ). (21)

The claims above are included in the following summarizing statement.

Theorem 3.4 ([19], [20], Characterization of a bivariate exponential). Let S, T be random
variables on a probability space (Ω,F ,P). The following are equivalent:

(i) (S, T ) satisfies the two-dimensional memoryless property.

(ii) (S, T ) is a bivariate exponential random vector.

(iii) S and T are exponential and there exists three independent exponential random variables
U, V,W such that S = min(U,W ) and T = min(V,W ).

(iv) There exists λ, µ ≥ 0, and 0 ≤ ρ ≤ min(λ, µ) such that

∀ s, t ≥ 0, P(S > s, T > t) = Cλ,µρ (e−λs, e−µt). (22)

Condition (iv) above immediately implies that S and T are exponential E(λ) and E(µ),
respectively. A simple fact about exponential random variables is that if Y1 ∼ E(µ1) and
Y2 ∼ E(µ2) are independent, then Z = min(Y1, Y2) ∼ E(µ1 + µ2). Hence, in case the condi-
tions of Theorem 3.4 hold, we can take U ∼ E(λ− ρ), V ∼ E(µ− ρ), and W ∼ E(ρ).

We now are interested in two-dimensional processes Y = (N,M), where N and M are
one-dimensional Poisson processes. It is not difficult to see that not all such processes Y need
be two-dimensional Lévy processes, because the jumps of N could depend on past values of
M , for example. We therefore introduce the following definition.

Definition 3.5 (Two dimensional Poisson process). A two dimensional Poisson process Y =
(N,M) is a two dimensional Lévy process where N and M are one dimensional Poisson
processes.

Definition 3.6 (Joint survival times of a two dimensional process with Poisson margins).
Let N,M be two Poisson processes on (Ω,F ,P, (Ft)t≥0). Define for u ∈ [0,∞),

τu = inf{t ≥ 0 : Nt+u > Nu}, and γu = inf{t ≥ 0 : Mt+u > Mu}. (23)

The collection {(τu, γu), u ≥ 0} is called the collection of joint survival times of the two
dimensional process (N,M).
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The following theorem summarizes the main properties of two dimensional Poisson pro-
cesses we need in the next section. See also [8] for a related discussion of the decomposition
facts.

Theorem 3.7. Let N and M be two Poisson processes on (Ω,F ,P, (Ft)t≥0)) with parameters
λ and µ. Suppose (N,M) is a two dimensional Poisson process.

Then

(i) - there exists ρ ≤ min(λ, µ), such that every pair of the collection {(τu, γu), u ≥ 0} of joint
survival times of N and M is bE(λ, µ, ρ), and for all s, t > 0,

P(τu > s, γu > t) = Cλ,µρ (e−λs, e−µt), (24)

and

(ii) - There exists three independent adapted Poisson processes N⊥, M⊥ and L on (Ω,F ,P, {Ft}t≥0),
with respective parameters λ− ρ, µ− ρ and ρ, such that the decomposition (25) holds:

Nt = N⊥t + Lt

Mt = M⊥t + Lt. (25)

It follows immediately that for any two-dimensional Poisson process (N,M), either N and
M are independent, or there is a positive probability that N and M jump together.

The survival times of a two-dimensional Poisson process actually enjoy a somewhat stronger
property than bivariate exponential. Define the piecewise linear function Θ : R+×R+×R→
R+ by

Θ(s, t, η) = Leb([0, t] ∪ [η, s+ η]),

where Leb denotes Lebesgue measure. Notice that Θ(s, t, 0) = max(s, t).

Proposition 3.8 (Two-parameter family of survival times). If (N,M) is a two-dimensional
Poisson process with survival times (τu, γv), then there are non-negative constants λ, µ, ρ with
ρ ≤ min(λ, µ), such that for all u, v, s, t ≥ 0,

P (τu > s, γv > t) = exp(−(λ− ρ)s− (µ− ρ)t− ρΘ(s, t, u− v)).

In particular, each member of the diagonal subfamily {(τu, γu), u ≥ 0} is bivariate exponential
bE(λ, µ, ρ) in the ordinary sense.

3.2 Two dimensional Lévy processes

Theorem 3.7 extends to general Lévy processes, for which we need to extend the notion of
joint survival times. For general Lévy processes, these are now dependent on the size of the
jumps in each component. For a one dimensional Lévy process, we first summarize some
convenient notation and terminology.

First, for x ∈ R \ {0}, the tail process Nx of N at level x is the counting process defined
by

Nx
t (ω) = #{0 ≤ s ≤ t : 4Ns(ω) ∈ I(x)}, ω ∈ Ω, t ≥ 0. (26)
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Writing I(x) = [x,∞) if x > 0 and I(x) = (−∞, x], if x < 0, we say that the tail integral
induced by N is

Λ(x) =

∫
I(x)

λ(dw), (27)

and for u ≥ 0, the survival time τxu of N at level x is

τxu = inf{t ≥ 0 : Nx
t+u > Nx

u}. (28)

If X denotes the tprm of N , and using the notation

Xt(I(x)) = X([0, t]× I(x)),

we see that the tail process Nx of N is nothing more than the Poisson process (Xt(I(x)))t≥0

with mean Λ(x) and the survival time τxu is an exponential random variable with parameter
Λ(x).

Following our study of two dimensional Poisson processes, we next define the notion of mem-
oryless property for processes.

Definition 3.9 (Two dimensional memoryless property for processes). Let N and M be two
one-dimensional Lévy processes. We say that the joint survival times of N and M satisfy the
two dimensional memoryless property if: for all x, y ∈ R \ {0}, all u ≥ 0, and all s1, s2, t ≥ 0,

P(τxu > s1 + t, γyu > s2 + t | τxu > t, γyu > t) = P(τx0 > s1, τ
y
0 > s2). (29)

It is straightforward to verify, using Theorem 3.4, that the joint survival times of N and
M satisfy the two dimensional memoryless property if and only if for all x, y ∈ R \ {0}, there
exists ρ(x, y) ∈ [0,min{Λ(x),Γ(y)}] such that all the pairs of the collection {(τxu , γyu), u ≥ 0}
are bivariate exponential with parameters Λ(x), Γ(y), ρ(x, y).

In case the condition in Definition 3.9 appears to be rather strong, we note that every
two-dimensional Lévy process satisfies it.

Proposition 3.10. Let (Nt,Mt)t≥0 be a two dimensional Lévy process. Then the joint sur-
vival times of N and M satisfy the memoryless property 3.9.

Proof: Since, for x, y ∈ (R \ {0})2, the process (Nx,My) is a Lévy process with Poisson
marginals, we may apply Theorem 3.7.

3.3 Lévy Copulas

In this subsection we describe the jump dependence of Lévy processes in terms of Lévy copulas,
introduced by Tankov in [25] for Lévy processes with positive jumps and extended to general
Lévy processes in [13]. Just as a classical copula connects the distribution of a multivariate
random variable to its marginal distributions, in a similar way a Lévy copula connects marginal
tail integrals to a multidimensional tail integral.

Definition 3.11 (Tail integral induced by a Lévy measure). Let π be a two dimensional Lévy
measure. The tail integral Π induced by π is the function Π : (R \ {0})2 → (0,∞) such that

Π(x, y) = π(I(x)× I(y)). (30)
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Definition 3.12 ([8, 13], Two dimensional Levy copula). A function ρ : [−∞,∞]2 →
[−∞,∞] is a Lévy copula if

(i) ρ(u, v) 6=∞ for (u, v) 6= (∞,∞)

(ii) ρ(u, v) = 0 if u = 0 or v = 0.

(iii) ρ is 2-increasing: if a1 ≤ b1 and a2 ≤ b2, then

ρ(a1, a2) + ρ(b1, b2)− ρ(a1, b2)− ρ(b1, a2) ≥ 0.

(iv) ρ(∞, u)− ρ(−∞, u) = ρ(u,∞)− ρ(u,−∞) = u, u ∈ [0,∞).

Example 3.13 (Archimedian Lévy copulae). Examples of two dimensional Lévy copulae can
be constructed [25] from a generator function φ with

ρ(u1, u2) = φ−1(φ(u1) + φ(u2))(1{uv≥0} − 1{uv<0})

so that ρ satisfies Def. 3.12.

(i) The Clayton Lévy copula

ρ(u, v) = (| u |−θ + | v |−θ)−1/θ(1{uv≥0} − 1{uv<0}), (31)

for values of the parameters θ > 0 was introduced in [25]. It has generator φ(θ) =| u |−θ.

(ii) The Frank Lévy copula with generator φ(u) = − log(1− e−η|u|), η > 0, is

ρ(u, v) = −1

η
log
{

1− (1− e−η|u|)(1− e−η|v|)
}

(1{uv≥0} − 1{uv<0}). (32)

In our setting we will only be interested in u, v < 0 (corresponding to negative jumps), so
in that case the term (1{uv≥0} − 1{uv<0}) = 1 and can be ignored in the examples above. We
can restrict attention to Lévy copulas ρ : [−∞, 0]2 → [0,∞].

Notation: Let sgn be the function that returns the sign of a real number, i.e. sgn(x) = 1 if
x > 0 and sgn(x) = −1 if x < 0. We denote by Π̄ the function such that, for (x, y) ∈ (R\{0})2,
Π̄(x, y) = sgn(xy)Π(x, y). Similarly, if Λ is a one dimensional tail integral, we denote Λ̄ the
function such that, x ∈ R \ {0}, Λ̄(x) = sgn(x)Λ(x).

The fundamental theorem for Lévy copulas is the following.

Theorem 3.14 ([13], Sklar-Kallsen-Tankov theorem for Lévy processes). Let Y = (N,M)
be an R2-valued Lévy process with Lévy measure π. Let Π be the tail integral induced by
π with marginal tail integrals Λ and Γ. Then, there exists a Lévy copula ρ so that for all
x, y ∈ (R \ {0})2,

Π̄(x, y) = ρ(Λ̄(x), Γ̄(y)). (33)

If Λ and Γ are continuous, then ρ is unique. Otherwise, it is unique on Range(Λ)×Range(Γ).

Conversely, Let ρ be a 2-dimensional Lévy copula and let N and M be two one dimensional
Lévy processes with respective tail integrals Λ and Γ. Then there exists a two dimensional Lévy
process Y with marginal tail integrals Λ and Γ and Lévy copula ρ. The tail integral Π induced
by the Lévy measure of Y is given by (33).
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Theorem 3.14 states that a two-dimensional Lévy measure can be constructed starting
from either sides of Eq. (33). Given two one dimensional Lévy measures λ and µ, there exists
a two dimensional Lévy measure π such that the margins of π are precisely λ and µ, and
∀ (x, y) ∈ (R \ {0})2,

π(I(x)× I(y)) = Π(x, y) = sgn(xy)ρ(Λ̄(x), Γ̄(y)). (34)

The meaning of (34) is that the intensity of the jumps of a two dimensional Lévy process
Y = (N,M) jointly greater than (x, y) is a function of the intensities of the jumps in N and
M larger than x and y respectively. For our application to credit risk, we pay particular
attention to pairs (x, y) in the third quadrant, i.e. (x, y) ∈ (−∞, 0)2. In this case, Eq. (34)
becomes

Π(x, y) = π((−∞, x]× (−∞, y]) = ρ(Λ̄(x), Γ̄(y)). (35)

3.4 Dependence Theorem

The following Theorem summarizes the main results of this section.

Theorem 3.15 (Dependent Lévy processes and survival times). Let N and M be two one
dimensional Lévy processes on (Ω,F ,P, (Ft)t≥0) with respective Lévy measures λ and µ and
tail integrals Λ and Γ.

Suppose Y = (N,M) is a two dimensional Lévy process. Let X denote its tprm , with
intensity π, and tail integral

Π(x, y) = E X1(I(x)× I(y)) = π(I(x)× I(y)), x, y ∈ R \ {0}.

Then the following statements hold.

(i) - The joint survival times of N and M satisfy the two-dimensional memoryless property.

(ii) - for each x, y ∈ R \ {0}, all the pairs of the collection {(τxu , γyu), u ≥ 0} are bivariate
exponential with parameters Λ(x), Γ(y) and Π(x, y).

(iii) - For u ≥ 0, the joint survival times (τxu , γ
y
u) of N and M at the level (x, y) are such that,

∀ s, t ∈ R+, P(τxu > s, γyu > t) = Cλ,µρ (e−Λ(x)s, e−Γ(y)t), (36)

where Cλ,µρ is the 3 parameter Marshall-Olkin copula 3.3 with parameters

ρ = Π(x, y), λ = Λ(x), and µ = Γ(y). (37)

(iv) - There exists a Lévy copula L : [−∞,∞]2 → [−∞,∞] such that

∀ x, y ∈ R \ {0}, Π(x, y) = sgn(xy)L(Λ̄(x), Γ̄(y)). (38)

A few things are worth pointing out here. First, this Theorem applies generally to all
two-dimensional Lévy processes Y = (N,M). Despite that generality, the joint survival
probabilities have a very specific structure, in which the marginal survival probabilities are
always coupled by a Marshall-Olkin copula with parameters determined by the Lévy measure π
of Y and the Lévy measures of the margins N and M . The three Marshall-Olkin parameters
are simply given by the three tail integrals of Y , N , and M , and so the dependence of
ρ(x, y), λ(x), µ(y) on x and y is completely determined by π.
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From the modeling perspective, this conveniently provides an explicit expression for the
joint survival probabilities, and the modeler can choose or fit the marginal processes separately
from the choice of Lévy copula describing the jump dependence. This is directly analogous
to building a multivariate probability distribution by choosing the margins and the (classical)
copula separately.

4 A Multi-name structural default model

In order to price basket credit derivatives, we need the two dimensional version of our default
survival probability formulas, presented here. We work on the complete filtered probability
space (Ω,F ,P, (Ft)t≥0) and assume that the two stock prices S1 and S2 of firm 1 and firm 2,
respectively, can be written in terms of a two dimensional Lévy process Y = (Y 1, Y 2)

∀ ω ∈ Ω, t ∈ R+, S1
t (ω) = ert+Y

1
t (ω)+tψ1(−i), S2

t (ω) = ert+Y
2
t (ω)+tψ2(−i), (39)

where ψi is the characteristic exponent of Y i
1 , i = 1, 2, and i is the imaginary unit.

We denote by X the tprm on E = R2 \ {0} of Y , and by π the Lévy measure of Y ,
satisfying π[| x |2 ∧1] <∞.

The tail integral 3.11 of Y is the function Π : (R \ {0})2 → (0,∞) such that

∀ (x, y) ∈ E, Π(x, y) = π(I(x)× I(y)) =

∫
I(x)×I(y)

π(du× dv), (40)

and we write Π̄(x, y) = sgn(xy)Π(x, y).
Likewise, for the one dimensional Lévy processes Y 1 and Y 2, we denote the respective

Lévy measures λ and µ, and the tail integrals by Λ and Γ, with Λ̄(x) = sgn(x)Λ(x) and
Γ̄(x) = sgn(x)Γ(x).

As in Definition 2.1, the default of firm i ∈ {1, 2} is the first time the log-return of its
stock price jumps to or below the default level ait, with default times

τi(ω) = inf{t > 0 : log(Sit(ω)/Sit−(ω)) ≤ ait(ω)}, i = 1, 2. (41)

Proposition 4.1 (Joint survival probability, stochastic level). For i = 1, 2, let ait be a default
level and τi the default time for Si, as in (41), where the stock prices Si are given by (39) and
driven by a two-dimensional Lévy process Y with tail integral Π and marginal tail integrals Λ
and Γ. Assume the default levels are both independent of Y .

Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and ∀ s, t ≥ 0,

P(τ1 > s, τ2 > t) = E[exp−
{∫ s

0
Λ(a1

u) du+

∫ t

0
Γ(a2

u) du−
∫ s∧t

0
Π(a1

u, a
2
u) du

}
] (42)

= E[exp−
{∫ s

0
Λ(a1

u)du+

∫ t

0
Γ(a2

u)du−
∫ s∧t

0
ρ(Λ̄(a1

u), Γ̄(a2
u))du

}
]. (43)

The proof (see Section 7) proceeds by establishing the case of deterministic default level
first.
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Corollary 4.2 (Joint survival probablity, deterministic default level). Let τ1 and τ2 be the
default times, for deterministic default levels a1, a2, of two firms with respective stock prices
given by (39) driven by a two-dimensional Lévy process Y with marginal tail integrals Λ and
Γ. Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and ∀ s, t ≥ 0,

P(τ1 > s, τ2 > t) = exp−
{∫ s

0
Λ(a1

u)du+

∫ t

0
Γ(a2

u)du−
∫ s∧t

0
ρ(Λ̄(a1

u), Γ̄(a2
u))du

}
. (44)

Recall the notations x∧y = min(x, y) and x∨y = max(x, y). The previous corollary gives
information about the distribution of the first default time τ (1) = τ1 ∧ τ2. Since P(τ (1) > t) =
P(τ1 > t, τ2 > t), we immediately obtain

Corollary 4.3 (First-to-default survival probability, deterministic default level). Let τ1 and
τ2 be the default times, for deterministic default levels a1

t , a
2
t , of two firms with respective stock

prices given by (39) driven by a two-dimensional Lévy process Y with marginal tail integrals
Λ and Γ. Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and

∀ t ≥ 0, P(τ (1) > t) = exp−
∫ t

0
Λ(a1

s) + Γ(a2
s)− ρ(Λ̄(a1

s), Γ̄(a2
s))ds. (45)

These formulas become simplified in case the default levels a1, a2 are constant:

P(τ1 > s, τ2 > t) = Cλ,µρ (e−Λ(a1)s, e−Γ(a2)t) (46)

= exp−
{
sΛ(a1

s) + tΓ(a2
t )− (s ∧ t)ρ(Λ̄(a1

(s∧t)), Γ̄(a2
(s∧t)))

}
. (47)

where Cλ,µρ is the 3 parameter Marshall-Olkin copula of Definition 3.3 with

λ = Λ(a1), µ = Γ(a2), and ρ = ρ(Λ̄(a1), Γ̄(a2)). (48)

Equivalently, (τ1, τ2) is bivariate exponential bE(λ, µ, ρ). Likewise the first-to-default distri-
bution simplifies to

P(τ (1) ≤ t) = 1− exp−t
{

Λ(a1) + Γ(a2)− ρ(Λ̄(a1), Γ̄(a2))
}
. (49)

To gain some intuition, we can compute the joint hazard rate, stated here in the simplest
case.

Proposition 4.4 (Joint hazard rate, constant default levels). For constant default levels
a1, a2, the joint hazard rate JHt is given by

JHt ≡ lim
h↓0

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t)

h
= ρ(Λ̄(a1), Γ̄(a2)) (50)

or, equivalently,
JHt = π((−∞, a1)× (−∞, a2)). (51)

Proposition 4.4 means that the Lévy copula ρ is responsible for the instantaneous joint
default of both firms. For example, in the case of the independent Lévy copula ρ⊥,

∀ (u, v) ∈ [−∞,∞]2, ρ⊥(u, v) = u1[v=∞] + v1[u=∞], (52)

the joint local default rate is 0, and the default times τ1 and τ2 are independent.
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Example 4.5. Consider the commonly used case of piecewise constant default levels. Let
0 = t0 < t1 < . . . < tI and define the default levels ait, i ∈ {1, 2} such that

∀ t ≥ 0, ait =
K−1∑
k=1

aik1[ti−1,ti)(t) + aiK1t≥tI , (53)

where ak < 0, i = 1, . . . ,K. For t ∈ [tk, tk+1), k = 1, . . . ,K − 1, the survival probability of the
FtD up to time t is then

P(τ (1) > t) = exp

{
−

k∑
i=1

θi(ti − ti−1)− θk(t− tk)
}
, (54)

where the constants θk are given by

θk = Λ1(a1
k) + Λ2(a2

k)− ρ(Λ̄1(a1
k), Λ̄2(a2

k)). (55)

5 Pricing of a first to default basket CDS

In this section, we illustrate the pricing of a First-to-Default swap (FtD) with the multidimen-
sional structural jump threshold framework we have developed. We discuss how the modeler
can choose a particular Lévy copula to obtain a spectrum of dependence regimes, separately
from the choice of the individual stock price processes. We also give some examples of the
first-to-default spread term structures.

5.1 The model set-up

A First-to-Default (FtD) swap is a contract which protects against the first default observed
in a basket of defaultable bonds. A spread over the risk free rate is paid periodically on the
notional value of the contract. When default occurs, the difference between the recovery value
of the bond and its face value is paid back to the holder of the FtD.

We assume there are two defaultable bonds in the CDS basket. Each bond has the same
recovery value R. We denote by τ1 and τ2 the default times of firm 1 and 2, respectively, and
τ (1) the time of the first default in the basket, τ (1) = min(τ1, τ2). The two legs of an FtD are
shown in Figure 3.

In order to price this 2-defaultable bond FtD, we assume that the default free rate r > 0 is
constant, and that the protection buyer pays the spread m(1) continuously until the maturity
T of the contract. The price of the FtD contract is such that both legs have the same present
value (see Fig. 3). If we denote P the risk neutral probability, the spread of an FtD is such
that the value of the default leg DLt at time t is equal to the fixed leg FLt. Explicitly,

DLt = (1−R)

∫ t

0
e−rsdP(τ (1) ≤ s)

FLt = m(1)

∫ t

0
e−rsP(τ (1) > s)ds.

Integration by parts for the expression of the default leg gives:

DLt = (1−R)

[
(e−rt(1− P(τ (1) > t))− (e−rt − 1)− r

∫ t

0
e−rsP(τ (1) > s)ds

]
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t

m(1)△i m(1)△i m(1)△i m(1)△i

(1 − R)

t0 = 0

τ (1)

tN = T

. . .

1

Figure 3: Cash flows involved in a First-to-Default swap. Above T is the maturity of the
contract, R is the recovery rate, 4i = ti − ti−1.

so that the FtD spread at par is

m(1) = (1−R)
1− e−rTP(τ (1) > T )− r

∫ T
0 e−rsP(τ (1) > s)ds∫ T

0 e−rsP(τ (1) > s)ds
. (56)

In order to value this contract, one therefore only needs to know the joint survival proba-
bility P(τ1 > s, τ2 > t). We have already solved this problem explicitly in the previous section.

In summary, we model the dynamics of the stock prices S1
t , S

2
t of firm 1 and 2 as exponential

Lévy according to

∀ ω ∈ Ω, t ∈ R+, Sjt (ω) = ert+Y
j
t (ω)+tψj(−i), j = 1, 2 (57)

where the process Y = (Y 1, Y 2) is a two dimensional Lévy process. We denote by λ the (two
dimensional) Lévy measure of Y , which is determined uniquely by the Lévy measures λ1, λ2

of Y 1 and Y 2, respectively, along with a Lévy copula ρ describing the dependence between
the jumps of Y 1 and Y 2 (hence S1 and S2).

In our structural model, the default times are the first time the stock returns cross the
default levels a1 and a2 respectively:

τi = inf{t > 0 : log(Sit/S
i
t−) ≤ ai}, i = 1, 2. (58)

With this set-up, Corollary 2.3 gives the survival probability of each firm up to time
0 < t < T ,

P(τi > t) = e−tΛi(ai), (59)

where Λi =
∫ ai
−∞ λi(dw) is the tail integral of the process Y i.

Furthermore Corollary 4.3 gives us the first-to-default probabilities

P(τ (1) > t) = exp−t
{

Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2))
}
, (60)

where recall that Λ̄i(ai) = −Λi(ai) since ai < 0.
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This leads us to a simple explicit expression for the FtD spread:

m(1) = (1−R)
[
Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2))

]
. (61)

To see this, we use equation (56) to determine m(1), where the survival probability is given
by equation (60). For notational convenience, define

Θ = Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2)). (62)

From the equation(60), we have
P(τ (1) > t) = e−tΘ, (63)

so we could call Θ the “intensity” of the first-to-default process, even though we have a
structural default framework. We have

m(1) = (1−R)
[1− e−rT e−ΘT − r

∫ T
0 e−rse−Θsds]∫ T

0 e−rse−Θsds
. (64)

These integrals are easily computed and the expression simplifies to

m(1) = (1−R)Θ, (65)

which is equation (61).

We can describe, via equation (61), two limiting cases of dependence. Since Lévy copulas
are bounded from above and from below [13], one can explicitly write an expression for m(1)

when S1 and S2 are

(I) Independent. The Lévy copula ρ is at its lower bound:

ρ(u, v) = u1[v=∞] + v1[u=∞].

Then,

m(1) = (1−R)
{

Λ1(a1) + Λ2(a2)− (Λ1(a1)1[Λ2(a2)=∞] + Λ2(a2)1[Λ1(a1)=∞])
}
, (66)

and since a1, a2 < 0, this gives us

m(1) = (1−R) {Λ1(a1) + Λ2(a2)} = m1 +m2. (67)

In the equation above, m1 and m2 are the par spreads of CDS contracts on firm 1 and
firm 2 respectively. We therefore obtain that the price of the protection against the
first-to-default two-defaultable basket, when the two underlyings are independent, is
equal to the sum of the protections against each, respectively.

(II) Dependent. The Lévy copula ρ is at its upper bound

ρ(u, v) = min(u, v).

This yields the following expression for m(1),

m(1) = (1−R) max(Λ1(a1),Λ2(a2)) = max(m1,m2). (68)

Therefore when the two underlyings are completely dependent, the price of the protec-
tion against the first to default in the basket is equal to the most expensive of the two
premia on each of the underlyings.
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5.2 Choosing a dependence structure between stock prices

To illustrate the complete computation of the FtD CDS spread, we now make some explicit
choices for the model inputs. We assume that λ1 and λ2 are the Lévy measures of two one
dimensional α-stable Lévy processes:

λi(dx) = αi

(
ci+

x1+αi
1x>0 +

ci−
| x |1+αi

1x<0

)
dx, (69)

with 1 < αi < 2 and ci+, c
i
− ≥ 0. The fact that αi ∈ (1, 2) places S1 and S2 in a regime of

infinite activity, i.e. that almost surely S1 and S2 have infinitely many jumps in compact
time intervals.

Since the measures λ1 and λ2 model the stock prices, these should be calibrated separately
either on historical log returns or option prices [8].

The tail integrals Λ1 and Λ2 of Y 1 and Y 2 respectively are of the form

∀ x < 0, Λi(x) =

∫ x

−∞
λi(du) =

ci−
| x |αi . (70)

To model the jump dependence, we choose the Frank Lévy copula

ρ(u, v) = −1

η
log
{

1− (1− e−η|u|)(1− e−η|v|)
}
. (71)

The Frank Lévy copula is symmetric and parametrized by η > 0.

We first illustrate the set-up of this framework in the case where the default levels a1, a2

are constant. In this case, we have seven parameters: our individual stock parameters αi, c
i
−,

i = 1, 2, the jump dependence parameter η, and the constant default levels a1, a2. We might
expect the default levels to be estimated from single-name CDS prices, and the dependence
parameter from, for example, existing market basket CDS prices.

The FtD par spread now comes from equation (61):

m(1) = (1−R)Θ, (72)

where the default intensity Θ is given by

Θ = Λ1(a1) + Λ2(a2)− (1/η) log[1− (1− e−ηΛ1(a1))(1− e−ηΛ2(a2))], (73)

and

Λi(ai) =
ci−
| ai |αi

, i = 1, 2. (74)

The joint survival probability of firm 1 and firm 2 until time T > 0 comes from Equation
(46). We show this probability distribution in Figure 4 as a function of the default levels a1

and a2 for a fixed maturity of T = 1 year and for various values of the dependence parameter
η. Smaller values of default levels lead to an immediate default while higher values means a
lower probability of default. The parameter η controls the shape of the joint distribution.

When jumps of S1 and S2 are nearly independent, η is near zero, and the first order
approximation of the intensity for small η gives us this simple linear formula for the dependence
of the spread on the jump dependence parameter:

m(1) ≈ (1−R)[Λ1(a1) + Λ2(a2) + ηΛ1(a1)Λ2(a2)]. (75)
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(c) η = 5

Figure 4: Joint default probability from Equation (46) at the level a1, a2. The dependence
is given by the Frank-Lévy copula Eq. (71). Tail integrals are α-stable, given in Eq. (70). We
choose α1 = 3/2, α2 = 7/4, c−1 = c−2 = 1/100. Small values of η correspond to the independent
case. Larger values means that a simultaneous default is more likely.

We conclude by computing the FtD spreads given in Eq. (56) for different maturities,
when the default level a(t) is a piecewise constant deterministic function. We assume that the
underlying stock process of each firm is an exponential α-stable process, with Lévy measure
given by Eq. (69). The tail integral corresponding to jumps in each component is there-
fore given by Eq. (70). For this example, we choose the parameters α1 = α2 = 1.25, and
c1
− = c2

− = 1/100. The default level a(t) is given in Fig. 5(a). The remaining parameter to
choose is then the dependence parameter η. We show Fig. 5(b) the term structure of FtD
spreads for three different values of η. By changing the value of this parameter, one can obtain
the entire spectrum of dependence regimes, from independence (see Eq. 66) to the complete
dependence case (see Eq. 67).

We note in closing that all these computations are straightforward and fast because we
need only implement explicit formulas for spread and survival probabilities in terms of our
explicit tail integrals.
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Figure 5: First-to-Default spreads m
(1)
t in Eq. (56) (right) in the set-up of our structural jump

threshold framework with piecewise constant default levels (left). The dependence between firms is
given by the Frank-Lévy copula Eq. (71). Tail integrals are α-stable, given in Eq. (70). We choose
α1 = α2 = 3/2, c−1 = c−2 = 1/100. A high value of the parameter η leads to a strong dependence

and the FtD spread m
(1)
t tends to max(m1

t ,m
2
t ). When η is small, this is the independence case,

m
(1)
t → m1

t +m2
t .
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6 Concluding remarks

The results above take advantage of recent advances in understanding the jump dependence
of Lévy processes to formulate a multi-dimensional structural default model framework that
has explicit pricing formulas similar to those of familiar reduced form models. One way to
think of this is that it is a way to interpret a reduced form model in terms of the underlying
price processes, which provides a way to link in a consistent way the prices of various credit
and option models with a common view of the underliers.

The results we have presented raise several additional questions. For the case N > 2, the
theory and formulas work out in the same way, except the notation becomes more burdensome.
However, since basket credit derivatives usually involve more than two underliers, a typical
application will require working things out for larger N . As a hint for how the formulas look,
we mention here without proof the formula for the survival probability of the first-to-default
time for N = 3 and constant default levels a1, a2, a3.

As before, one needs to calibrate three Lévy measures λ1, λ2 and λ3, and choose a Lévy
copula L in order to construct the full three-dimensional tail integral Π. The two-dimensional
marginal tail integrals Πi,j , in dimensions i, j, are then obtained from Π, and we can write
the survival probability of the first-to-default time as:

P(τ (1) > t) = exp[−t{Λ1(a1) + Λ2(a2) + Λ3(a3)

−Π1,2(a1, a2)−Π1,3(a1, a3)−Π2,3(a2, a3) + Π(a1, a2, a3)}] (76)

or

P(τ (1) > t) = exp{−t{1tΛ(1)1 + Π(a1, a2, a3)}} (77)

where Λ(1) is the matrix

Λ(1) =

 Λ1(a1) −Π1,2(a1, a2) −Π1,3(a1, a3)
0 Λ2(a2) −Π2,3(a2, a3)
0 0 Λ3(a3)

 , (78)

containing the contribution of each of the component to default risk.

We have deliberately avoided too much discussion of the stochastic default level, but there
are many interesting questions about how to compute prices conditional on partial information
about the default level, or when the default level is not independent of the stock price. (See
[10] for a discussion of partial information in the standard first-passage default model.) Also,
the question of how to model the default level at has been left mostly open in this paper.
This provides a significant source of extra flexibility. There are various interesting ways to
think of the process at as correlated to the stock price St to form a more delicate model. The
problem of developing pricing formulas in such cases is deferred to future work.

July 2, 2016 22



A Structural Jump Threshold Framework

7 Proofs

7.1 Proof of Proposition 2.2

As a warmup, consider the simple case of constant default level a. From (1),

∀ ω ∈ Ω, t ≥ 0, log(St/St−) = Yt − Yt− = 4Yt. (79)

The jump measure of Y is the tprm X on E = R \ {0} with intensity λ. The default time τ
is then

τ = inf{t > 0 : 4Yt ≤ a} = inf{t > 0 : Xt(−∞, a] > 0}. (80)

The process N such that for t ∈ R+, Nt = Xt(−∞, a] is a homogeneous Poisson process of
intensity Λ(a). With these remarks, the probability of default is then

P(τ ≤ t) = 1− P(Xt(−∞, a] = 0) = 1− e−tΛ(a). (81)

This simple argument extends to the case of non-constant deterministic default level at
by means of non-stationary Poisson processes.

Definition 7.1 ([7], Non-stationary Poisson process). A non-stationary Poisson process M
with intensity (λ(t))t≥0, where λ is a measurable deterministic function of time, is a counting
process with independent increments such that for all 0 ≤ s ≤ t, the increment Mt −Ms has
a Poisson distribution with parameter

∫ t
s λudu.

Notation: I(z,A) denotes the indicator function with value 1 if z ∈ A and 0 otherwise.

Proposition 7.2. Let a : R+ → (−∞, 0) be a measurable deterministic function bounded
below zero, and X a tprm on E = R \ {0} adapted to (Ft)t≥0 with intensity measure λ.
Define the process N such that

∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds× dz). (82)

Then N is a non-stationary Poisson process with intensity (Λ(at))t≥0.

Proof: Since a is bounded below zero, say at ≤ −ε for some ε > 0, and λ is a Lévy measure,
λ(−∞, at] = Λ(at) is uniformly bounded in t by λ(−∞,−ε] <∞.

The mapping (s, z) → G(s, z) = I(z, (−∞, as]) from R+ × R → R+ is deterministic, and
as such F-predictable, hence N is adapted.

To see that N is almost surely right continuous, note first that Nt(ω) is monotone increas-
ing in t for each ω. Let tn be a sequence of times converging to t0 from above. Ntn is then
monotone decreasing and so Ntn−Nt0 converges pointwise to a non-negative random variable
L. Moreover,

Ntn −Nt0 =

∫
(t0,tn]×E

G(s, z)X(ω, ds× dz)

≤
∫

(t0,tn]×(−∞,−ε]
X(ω, ds× dz)

and so E[Ntn −Nt0 ] ≤ (tn − t0)λ(−∞,−ε) converges to zero. By the dominated convergence
theorem, E[L] = 0, so L = 0 almost surely.
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Since X is a Poisson random measure and G takes only values 0 or 1, N jumps by one
almost surely, and has independent increments by the independence property of X. Hence N
is a counting process with independent increments.

It remains to show that the increment Nt − Nt′ is Poisson distributed with parameter∫ t
t′ Λ(as) ds; it suffices to compute the Laplace transform as

E e−β(Nt−Nt′ ) = exp{−(1− e−β)

∫ t

t′
Λ(as) ds}.

Since X is a Poisson random measure with intensity Leb× λ, where Leb is the Lebesgue
measure, for any measurable function f : [0,∞) × E → R+, we have the standard formula
([7], thm VI.2.9)

E e−X[f ] = exp{−(Leb× λ)[1− e−f ]}. (83)

Setting f(s, z) = β I(s, [t′, t]) I(z, (−∞, as]), we have

E e−β(Nt−Nt′ ) = E e−X[f ]

= exp{−(Leb× λ)[1− e−βI(s,[t′,t])I(z,(−∞,as])]}

= exp{−
∫ t

t′

∫ as

−∞
1− e−β dλds}

= exp{−(1− e−β)

∫ t

t′
Λ(as) ds}.

Now our next step is to prove Corollary 2.3.
The default time τ is the time of the first jump of Y below the varying level at. Define

the process N such that

∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds× dz). (84)

N counts the number of jumps of Ys falling in (−∞, as] over the times s, for s ∈ [0, t]. Prop.
7.2 shows that N is non-stationary Poisson with intensity (Λ(at))t≥0. Therefore, the survival
probability is

P(τ > t) = P(Nt = 0) = exp{−
∫ t

0
Λ(as)ds}. (85)

To compute the local default rate, note first that

P(τ ≤ t+ h | τ > t) =
P([Nt+h > 0] ∧ [Nt = 0])

P(Nt = 0)

=
P(Nt+h −Nt > 0)P(Nt = 0)

P(Nt = 0)

= P(Nt+h −Nt > 0) = 1− exp{−
∫ t+h

t
Λ(as) ds}.

If we write F (s) = Λ(as) =
∫ as
−∞ λ(dw), then F is bounded and measurable, hence inte-

grable on bounded intervals, so

P(τ ≤ t+ h | τ > t)

h
=

∫ t+h
t F (s) ds+ o(h)

h
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and the right hand side converges to F (t) = Λ(at) for almost every t by the Fundamental
Theorem of Calculus.

Additionally, if at is right continuous and λ has no atoms, then F (s) is right continuous
and the limit is equal to F (t) for all t.

To complete the proof for the case of stochastic default level, let Fat ⊂ Ft denote the
filtration generated by at. By the tower property of conditional expectation,

P(τ > t) = E[P(τ > t | Fat )].

Because of independence, conditioning on Fa doesn’t affect the distribution of Y , so the
computations in the previous proof carry over for each fixed path of at. Therefore

P(τ > t) = E[P(Nt = 0 | Fat )] = E[exp{−
∫ t

0
Λ(as)ds}]. (86)

The argument for the Hazard rate is similar with conditioning on Fat+h, since F is uniformly
bounded, with the use of the Dominated Convergence Theorem.

P(τ ≤ t+ h | τ > t) = E[1{τ≤t+h} | τ > t]

= E[E[1{τ≤t+h} | τ > t,Fat+h] | τ > t]

= E[P (Nt+h −Nt = 0 | Fat+h) | τ > t],

where

Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds× dz)

is a Cox process with intensity Λ(at) (see [7, VI.6.2]), and conditional on at is a non-stationary
Poisson process. Therefore

P(τ ≤ t+ h | τ > t) = E[1− exp{−
∫ t+h

t
Λ(as) ds} | τ > t].

Dividing by h and taking the limit as h → 0, we can pass the limit through the expectation
since Λ(as) is uniformly bounded, and the same argument as before gives us

Ht = E[Λ(at) | τ > t]

for a.e. t.

It remains to show that E[Λ(at) | τ > t] =
E
[
Λ(at)e

−
∫ t
0 Λ(as)ds

]
E
[
e−

∫ t
0 Λ(as)ds

] .

Following [3, Lemma 2.2.1, page 24] or [4, Sec 4.1], let {Ht} be the smallest filtration that
makes τ a stopping time. It is observed that any integrable Ht measurable random variable
Y is of the form

Y = h(τ ∧ t) = h(τ)1τ≤t + h(t)1τ>t (87)

for some Borel function h.
Now let X = Λ(at), an integrable F-measurable random variable.
Since E[X | Ht] is Ht measurable, we have

E[X | Ht] = h(τ)1τ≤t + h(t)1τ>t (88)
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for some Borel h. Multiplying both sides by 1τ>t and taking expectations gives

E[1τ>tE[X | Ht]] = h(t)E[1τ>t] = h(t)P(τ > t). (89)

Therefore
h(t) = E[X1τ>t]/P(τ > t). (90)

So, from equation (88),

E[X | τ > t] = h(t) = E[X1τ>t]/P(τ > t). (91)

That is,
Ht = E[Λ(at) | τ > t] = h(t) = E[Λ(at)1τ>t]/P(τ > t). (92)

Furthermore, using the tower property and conditioning on the filtration (Fat )t≥0 generated
by the process {at}, we have

E[Λ(at)1τ>t] = E [E[Λ(at)1τ>t | Fat ]] (93)

= E [Λ(at) E[1τ>t | Fat ]] (94)

= E [Λ(at) P(τ > t | Fat ])] (95)

= E [Λ(at) P(Nt = 0 | Fat ])] (96)

= E
[
Λ(at)e

−
∫ t
0 Λ(as)ds

]
. (97)

Combining this with (86) yields

Ht = E[Λ(at)1τ>t]/P(τ > t) =
E
[
Λ(at)e

−
∫ t
0 Λ(as)ds

]
E
[
e−

∫ t
0 Λ(as)ds

] . (98)

7.2 Theorem 3.7

The proof of Theorem 3.7 is separated into the following two Propositions.

Proposition 7.3. Let (N,M) be a two dimensional Poisson process with parameters λ, µ.
Then there exists ρ ≤ min(λ, µ) and three independent Poisson processes N⊥,M⊥, and L,
with respective parameters λ− ρ, µ− ρ, ρ, such that, for all t ≥ 0,

Nt = N⊥t + Lt

Mt = M⊥t + Lt.

In particular, unless ρ = 0 and then N = N⊥ is independent of M = M⊥, and jumps of L
correspond to simultaneous jumps of N and M .

Proof: Since N and M are Poisson, the jumps of the Lévy process (N,M) are limited to
the cases (∆Nt,∆Mt) = (1, 0), (0, 1), or (1, 1). By the Lévy-Itô decomposition [22], there is
a tprm X on E = [0,∞)2 \ {(0, 0)} with finite intensity π supported on the three points
(1, 0), (0, 1), (1, 1), and such that

(Nt,Mt) =

∫ t

0

∫
E
xX(ds× dx).
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Recall our notation Xt(A) = X([0, t]×A). For convenience of notation, we temporarily write
A = {(1, 0)}, B = {(0, 1)}, C = {(1, 1)} in E.

The integral above can then be written

(Nt,Mt) = (1, 0)Xt(A) + (0, 1)Xt(B) + (1, 1)Xt(C). (99)

Since X is a Poisson random measure, N⊥t = Xt(A),M⊥t = Xt(B), and Lt = Xt(C) are
Poisson processes with parameters π(A), π(B), and π(C), respectively, and are independent
because A,B,C are disjoint. Equation 99 says that

Nt = N⊥t + Lt

Mt = M⊥t + Lt.

If we let ρ = π(C), this means the parameter of N⊥ must be λ− ρ, and the parameter of
M⊥ must be µ− ρ. This completes the proof.

Proposition 7.4. Let N⊥,M⊥, and L be three independent Poisson processes with parameters
ν1, ν2, and ρ. If M and N are defined by

Nt = N⊥t + Lt

Mt = M⊥t + Lt (100)

then N and M are Poisson and the joint survival times of N and M are bivariate exponential
bE(ν1 + ρ, ν2 + ρ, ρ).

Proof: The sum of two independent F-Poisson processes is a Poisson process with respect to
(Ft)t≥0, see for instance [14]. Since N⊥,M⊥, and L are independent, N and M are Poisson
processes by construction.

For any u ≥ 0, we want to show that the joint survival times (τu, γu) have the bivariate
exponential distribution bE(ν1 + ρ, ν2 + ρ, ρ), in other words, for s, t ≥ 0,

P(Ns+u −Nu = 0,Mt+u −Mu = 0) = e−ν1s−ν2t−ρmax(s,t). (101)

The left hand side of this equation is, by hypothesis,

P(N⊥s+u −N⊥u = 0, Ls+u − Lu = 0,M⊥t+u −M⊥u = 0, Lt+u − Lu = 0). (102)

Since N⊥, M⊥, and L are independent and have stationary and independent increments,
we obtain

P(N⊥s+u −N⊥u = 0, Ls+u − Lu = 0,M⊥t+u −M⊥u = 0, Lt+u − Lu = 0)

= P(N⊥s+u −N⊥u = 0)P(M⊥t+u −M⊥u = 0)P(Ls+u − Lu = 0, Lt+u − Lu = 0)

= P(N⊥s = 0)P(M⊥t = 0)P(Lmax(s,t)+u − Lu = 0)

= e−ν1se−ν2te−ρmax(s,t).

7.3 Proposition 3.8

Proof: Since (N,M) is a Lévy process, we have the usual decomposition N = N⊥+L,M =
M⊥ + L, where N⊥,M⊥, L are independent Poisson with parameters λ− ρ, µ− ρ, ρ.

Let u, v be possibly different times, and consider the distribution of the survival times
(τu, γv).
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P (τu > s, γv > t) = P (Ns+u −Nu = 0,Mt+v −Mt = 0)

= P (N⊥s+u −N⊥u = 0, Ls+u − Lu = 0,M⊥t+v −M⊥v = 0, Lt+v − Lv = 0)

= P (N⊥s+u −N⊥u = 0)P (M⊥t+v −M⊥v = 0)P (Ls+u − Lu = 0, Lt+v − Lv = 0)

= e−(λ−ρ)se−(µ−ρ)tP (Ls+u − Lu = 0, Lt+v − Lv = 0)

We now claim P (Ls+u − Lu = 0, Lt+v − Lv = 0) = e−ρΘ(s,t,u−v). To see this, consider
the various cases in which [u, s + u] and [v, t + v] can overlap, and use the stationary and
independent increments properties of L.

7.4 Theorem 3.15

Proof:
Part (i) is Prop. 3.10. For part (ii), denote Nx and My the tail processes of N and M

at the level x and y, respectively, x, y ∈ R \ {0}. Nx and My are Poisson processes with
parameters Λ(x) and Γ(y) respectively. Since (N,M) is a two dimensional Lévy process,
(Nx,My) is a two dimensional Poisson process, and we proceed as in the proof of Prop. 7.3.

By the Lévy-Itô decomposition, there is a tprm Xx,y on E = [0,∞)2 \ {(0, 0)} with finite
intensity πx,y supported on the three points (1, 0), (0, 1), (1, 1), and such that

(Nx
t ,M

y
t ) =

∫ t

0

∫
E
zXx,y(ds× dz)

= (1, 0)Xx,y
t ({(1, 0)}) + (0, 1)Xx,y

t ({(0, 1)}) + (1, 1)Xx,y
t ({(1, 1)}). (103)

If we denote the three independent Poisson processes as N⊥t = Xx,y
t ({(1, 0)}), M⊥t =

Xx,y
t ({(0, 1)}), and Lt = Xx,y

t ({(1, 1)}), then the decomposition (103) satisfies the hypotheses
of Proposition 7.4, and hence the joint survival times are bivariate exponential. Since the
parameters of Nx

t and My
t are Λ(x) and Γ(y), respectively, it only remains to determine the

parameter ρ(x, y) of L.
Recall that if P is any Poisson process, its parameter is given by E(P1). So

ρ(x, y) = E(L1) = EXx,y
1 ({1, 1)}).

The number of joint jumps of (Nx,My) corresponds to the number of jumps of (N,M) of
amplitude jointly larger than (x, y). Therefore

ρ(x, y) = E X1 (I(x)× I(y)) = Π(x, y) (104)

and the proof of (ii) is complete.
Part (iii) follows from Theorem 3.7 and part (iv) from Theorem 3.14.

7.5 Proof of Proposition 4.1

As a warmup, first consider the easiest case of constant default levels a1, a2. With (39), an
equivalent definition for the default times (41) is

τi = inf{t > 0 : 4Y i
t ∈ I(ai)}, i = 1, 2. (105)

Clearly, τ1 and τ2 are the joint survival times of Y 1 and Y 2 at the level a1 and a2 respectively.
Since the process Y = (Y1, Y2) is a Lévy process, Prop. 3.10 shows that τ1 and τ2 satisfy
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the two dimensional memoryless property. Thm. 3.15 shows that τ1 and τ2 are exponential
random variables with parameters Λ(a1) and Γ(a2), and that there exists a parameter ρ ∈
[0,min(Λ(a1),Γ(a2))] such that

∀ s, t ≥ 0, P(τ1 > s, τ2 > t) = Cλ,µρ (e−Λ(a1)s, e−Γ(a2)t), (106)

where Cλ,µρ is the 3-parameter Marshall-Olkin copula 3.3 with

λ = Λ(a1), and µ = Γ(a2). (107)

Furthermore, Theorem 3.15(iv) implies, since sgn(a1a2) = 1, that there exists a Lévy copula
ρ(·, ·) such that

ρ = Π(a1, a2) = π(I(a1)× I(a2)) = ρ(Λ̄(a1), Γ̄(a2)). (108)

The next step is to prove Corollary 4.2. The proof relies on a slight extension of Prop.
7.2 to sets of R2. For convenience of notation we write B(ε) for the disk of radius ε, i.e. for
ε > 0, B(ε) = {x ∈ R2 : | x |≤ ε}, and denote B(ε)c its complement.

Definition 7.5. Let (E,B(E)) be a measurable space. We say that the function B : R+ →
B(E) is a measurable set function in E if the mapping I : R+ × E → R, defined by I(s, z) =
I(z,Bs), is measurable on R+ × E.

Proposition 7.6. Let E = R2 \ {(0, 0)} with B(E) the Lebesgue measurable subsets of E.
Let B : R+ → B(E) be a measurable set function in E that is bounded away from 0, i.e.
∃ ε > 0, Bt ∈ B(ε)c, ∀t ≥ 0. Let X be a tprm on E adapted to Ft with intensity π, where π
is a Lévy measure. Define the process N such that

∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z,Bs)X(ω, ds× dz). (109)

Then N is a non-stationary Poisson process with intensity (π(Bt))t≥0.

Proof: The mapping (s, z) → I(z,Bs) = 1 if z ∈ Bs, 0 otherwise, is deterministic and
therefore F-predictable, so N is adapted. Furthermore, N jumps by 1 almost surely and has
independent increments by construction from X.

Since Bt ⊂ Bc
ε for some ε > 0, and π is a Lévy measure, π(Bt) ≤ π(B(ε)c) < ∞. As

before, since Nt is increasing, given a sequence of times tn converging to t from above, the
random variables Ln = Ntn −Nt are monotone decreasing and bounded below by 0. Thus Ln
converges to a non-negative random variable L. Furthermore,

Ln =

∫
(t,tn]×E

I(z,Bs)X(ω, ds× dz) ≤
∫

(t,tn]×E
I(z,B(ε)c)X(ω, ds× dz)

≤
∫

(t,tn]×B(ε)c
X(ω, ds× dz).

Therefore, E[Ln] ≤ (tn−t)π(B(ε)c) <∞ converges to 0. The dominated convergence theorem
implies that E[L] = 0, hence L = 0 almost surely, so N is a right continuous process.
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To show that N is a non-stationary Poisson process with intensity π(Bt), it remains to
show that, for 0 ≤ s ≤ t, the increments Nt − Ns of N have the Poisson distribution with
parameter

∫ t
s π(Bu)du. It is sufficient to compute its Laplace transform, 0 ≤ s ≤ t, β ≥ 0,

E exp−β(Nt −Ns) = exp

{
−(1− e−β)

∫ t

s
π(Bu)du

}
. (110)

The result above is obtained by letting f : [0,∞) × E → R+ be the function defined as
f(u, z) = βI(u, [s, t])I(z,Bu). Since f is measurable, we can use the formula (83)

Ee−X[f ] = exp{−(Leb× π)[1− e−f ]}. (111)

Eq. (110) follows from the same computations as for the proof of Prop. 7.2.

Lemma 7.7. Let Y be a two dimensional Lévy process with Lévy measure π and tail integrals
Λ and Γ. Let a, b ∈ (−∞, 0) and define the set A = R2 \ (a,∞)× (b,∞). Then there exists a
Lévy copula ρ(·, ·) such that

π(A) = Λ(a) + Γ(b)− ρ(Λ̄(a), Γ̄(b)). (112)

Proof: For convenience of notation we define the sets

B = (−∞, a)× R, C = (−∞, a)× (−∞, b), D = R× (−∞, b).

The set A can be decomposed in the following disjoint sets

A = (B \ C) ∪ (D \ C) ∪ C.

Considering the margins of π, we have π(B) = Λ(a) and π(D) = Γ(b), and since π is a
measure, this gives

π(A) = Λ(a) + Γ(b)− π((−∞, a)× (−∞, b)).
We conclude with an application of Thm. 3.14, which gives the existence of a Lévy copula ρ
such that

π((−∞, a)× (−∞, b)) = ρ(Λ̄(a), Γ̄(b)).

This concludes the proof of Lemma 7.7.

Continuing the proof of Corollary 4.2, define two Borel measurable functions A,B :
[0,∞)→ B(E) by

At = R2 \ ((a1
t ,∞)× (a2

t ,∞)), Bt = (−∞, a1
t ]× R.

Since a1 and a2 are bounded below 0, there exists ε > 0 such that At, Bt ⊂ B(ε)c for all t ≥ 0.
Define the processes P and Q as

Pt =

∫
[0,t]×E

I(z,As)X(ω, ds× dz), Qt =

∫
[0,t]×E

I(z,Bs)X(ω, ds× dz).

By Prop. 7.6, P and Q are non-stationary Poisson processes with intensity π(At) and π(Bt)
respectively. P counts the number of jumps of Y = (Y 1, Y 2) falling in At and Q counts the
number of jumps of Y falling into Bt.
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Without loss of generality, assume 0 ≤ t ≤ s. We have

[τ1 > s, τ2 > t] = [4Y 1
u 6∈ (−∞, a1

u] : u ≤ s,4Y 2
u 6∈ (−∞, a2

u] : u ≤ t]
= [(4Y 1

u ,4Y 2
u ) 6∈ Au : u ≤ t, (4Y 1

u ,4Y 2
u ) 6∈ Bu : t < u ≤ s]

= [Pt − P0 = 0, Qs −Qt = 0].

Furthermore, the increments Pt − P0 = 0 and Qs −Qt are independent by construction since
X is a tprm and the intervals [0, t] and [t, s] are disjoint. Then

P(τ1 > s, τ2 > t) = P(Pt − P0 = 0, Qs −Qt = 0)

= P(Pt − P0 = 0)P(Qs −Qt = 0)

= exp−
{∫ t

0
π(Au)du+

∫ s

t
π(Bu)du

}
.

Using Lemma 7.7,
π(Au) = Λ(a1

u) + Γ(a2
u)− ρ(Λ̄(a1

u), Γ̄(a2
u)),

and π(Bu) = λ(−∞, a1
u] = Λ(a1

u). Therefore

P(τ1 > s, τ2 > t) = exp−
{∫ t

0
Λ(a1

u) + Γ(a2
u)− ρ(Λ̄(a1

u), Γ̄(a2
u))du+

∫ s

t
Λ(a1

u)du

}
= exp−

{∫ s

0
Λ(a1

u) +

∫ t

0
Γ(a2

u)−
∫ t

0
ρ(Λ̄(a1

u), Γ̄(a2
u))du

}
.

The case where 0 ≤ s < t is symmetric and gives

P(τ1 > s, τ2 > t) = exp−
{∫ s

0
Λ(a1

u) +

∫ t

0
Γ(a2

u)−
∫ s

0
ρ(Λ̄(a1

u), Γ̄(a2
u))du

}
,

The extension of Corollary 4.2 proceeds as in the one-dimensional case. Because of the
independence assumption, conditioning on (a1, a2) doesn’t affect the distribution of Y , so the
arguments carry over via the tower property for each fixed path of the default levels.

7.6 Proposition 4.4

Proof: The proof is based on the little-o property for stationary processes. Define three
disjoint regions B1, B2, B12 ⊂ R2 of the plane as

B1 = (−∞, a1]× (a2, 0), B2 = (a1, 0)× (−∞, a2], B1,2 = (−∞, a1]× (−∞, a2]. (113)

Define the disjoint sets

E1 = (t, t+ h]×B1

E2 = (t, t+ h]×B2

E3 = (t, t+ h]×B1,2

E4 = [0, t]× (B1 ∪B2 ∪B1,2).

Then we have the following four independent events:

Fi = [X(Ei) > 0], i = 1, 2, 3, and F4 = [X(E4) = 0].
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From our definitions, F1 is the event that there exists s ∈ (t, t+h] such that (4Y 1
s ,4Y 2

s ) ∈
B1, F2 is the event that there exists u ∈ (t, t+h] such that (4Y 1

u ,4Y 2
u ) ∈ B2, F3 is the event

that there exists w ∈ (t, t + h] such that (4Y 1
w ,4Y 2

w) ∈ B1,2, and F4 is the event that there
are no jumps in B1,2 up to time t.

With this notation, the event that neither firm defaults by time t is

[τ1 ∧ τ2 > t] = F4,

and the event that both firms default between times t and t+ h is

[τ1 ∨ τ2 ≤ t+ h, τ1 ∧ τ2 > t] = ((F1 ∩ F2) ∪ F3) ∩ F4.

We can then compute the conditional probability in the statement of the Proposition:

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t) =
P(((F1 ∩ F2) ∪ F3) ∩ F4)

P(F4)
= P(((F1 ∩ F2) ∪ F3))

= P(X((t, t+ h]×B1) > 0)P(X((t, t+ h]×B2) > 0) + P(X((t, t+ h]×B1,2 > 0)

= P(X((t, t+ h]×B1) = 1)P(X((t, t+ h]×B2) = 1) + P(X((t, t+ h]×B1,2 = 1) + o(h)

= π(B1)π(B2)h2e−h(π(B1)+π(B2)) + π(B1,2)he−hπ(B1,2) + o(h).

Finally,

lim
h↓0

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t)

h
= π(B1,2) = Π(a1, a2), (114)

and we conclude with (108).
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les processus stables additifs de paul lévy, Comptes Rendus, 254 (1962), pp. 3968–3970.

July 2, 2016 33



A Structural Jump Threshold Framework

[19] A.W. Marshall and I. Olkin, A multivariate exponential distribution, Journal of the
American Statistical Association, 62 (1967), pp. 30–44.

[20] R.B. Nelsen, An introduction to copulas, Springer, 1999.

[21] L. C. G. Rogers, Evaluating first-passage probabilities for spectrally one-sided lévy
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