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Abstract. We prove an identity of Segre classes for zero-schemes of compatible sections
of two vector bundles. Applications include bounds on the number of equations needed
to cut out a scheme with the same Segre class as a given subscheme of (for example) a
projective variety, and a ‘Segre-Bertini’ theorem controlling the behavior of Segre classes
of singularity subschemes of hypersurfaces under general hyperplane sections.

These results interpolate between an observation of Samuel concerning multiplicities
along components of a subscheme and facts concerning the integral closure of corresponding
ideals. The Segre-Bertini theorem has applications to characteristic classes of singular
varieties. The main results are motivated by the problem of computing Segre classes
explicitly and applications of Segre classes to enumerative geometry.

1. Introduction

A result from P. Samuel’s thesis states that, under mild hypotheses, in computing the
multiplicity of a variety Y along a subscheme Z at an irreducible component V of Z we may
replace the ideal determined by Z in the local ring OV,Y by an ideal generated by codimV Y
elements (cf. [ZS60, Theorem 22]). In Fulton-MacPherson intersection theory, the same
multiplicity may be defined by means of Segre classes ([Ful84, §4.3]); it is then natural
to ask whether the number of equations needed to define a Segre class may be similarly
bounded. This is one of the questions we answer in this note. We work over an algebraically
closed field, and our schemes are embeddable in nonsingular varieties. We denote by Zred

the reduced scheme supported on Z, and by s(Z, Y ) the Segre class of Z in Y .

Theorem 1.1. Let Y be a pure-dimensional scheme, and let Z ⊆ Y be a closed subscheme.
Let Xi, i = 1, . . . be general elements of a linear system cutting out Z.

(a) Let Z ′ := X1 ∩ · · · ∩XdimY+1. Then Z ′red = Zred, and s(Z
′, Y ) = s(Z, Y ).

(b) Let Z ′′ := X1 ∩ · · · ∩XdimY . Then there exists an open neighborhood Y ◦ of Z in Y
such that (Z ′′ ∩ Y ◦)red = Zred, and s(Z

′′ ∩ Y ◦, Y ) = s(Z, Y ).

(The equality of supports allows us to identify the relevant Chow groups, as required in
order to compare the Segre classes, cf. Remark 2.2.)

Thus, the Segre class of Z in Y can be ‘cut out’ by dimY +1 hypersurfaces, and by dimY
hypersurfaces in a neighborhood of Z. This fact is reminiscent of a well-known result of
D. Eisenbud and G. Evans ([EE73]), stating that every subscheme Z of Pn may be cut out
set-theoretically by n hypersurfaces, and of an observation by W. Fulton ([Ful84, Example
9.1.3]) pointing out that n+ 1 hypersurfaces suffice to cut out Z scheme-theoretically if Z
is locally a complete intersection. As a particular case of Theorem 1.1, n+ 1 hypersurfaces
suffice to cut out a subscheme Z ′ ⊆ Pn with the same Segre class in Pn as Z, without any
requirement on Z. These hypersurfaces may be chosen to be general in a linear system
cutting out Z, and n hypersurfaces suffice in a neighborhood of Z.

Theorem 1.1 may be further refined, as follows. Denote by s(Z, Y )k the k-dimensional
component of the Segre class s(Z, Y ).

1
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Theorem 1.1. (continued)

(b′) More generally, let c ≥ 0 and let Z(c) := X1 ∩ · · · ∩ XdimY−c. Then there exists a
closed subscheme S of dimension ≤ c in Y such that dim(S∩Z) < c, (Z(c)rS)red =
(Z r S)red, s(Z(c) r S, Y r S)c = s(Z r S, Y r S)c, and s(Z(c), Y )k = s(Z, Y )k for
k > c.

For c = 0, part (b′) of Theorem 1.1 reduces to part (b): in this case S is a set of points
disjoint from Z, and we can take Y ◦ = Y r S. Part (a) may also formally be seen as a
particular case of (b′), by allowing c = −1 (and hence S = ∅).

If V is an irreducible component of Z, it follows from Theorem 1.1(b′) with c = dimV
that the coefficient of V in s(Z, Y ) equals the coefficient of V in s(Z(dimV ), Y ). As this
coefficient equals the multiplicity of Y along Z at V ([Ful84, Example 4.3.4]), this recovers
Samuel’s result.

Theorem 1.1 is motivated by effective computations of Segre classes and of contributions
of components to an intersection.

Example 1.2. Consider the scheme Z ⊆ P3 defined by the ideal

(z2, yz, xz, y2w − x2(x+ w)) .

(This is the flat limit of a family of twisted cubics, cf. [Har77, Example 9.8.4].) Note
that Z may be cut out by cubics. Standard techniques give s(Z,P3) = [Z] − 10[pt]. If
X1, X2, X3 are general cubic hypersurfaces containing Z, then by [Ful84, Proposition 9.1.1]
the contribution of Z to the intersection X1, X2, X3 is

(1)

∫
c(O(3H))3 ∩ s(Z−,P3)

where H denotes the hyperplane class and Z− is the component of X1∩X2∩X3 supported
on Z. (So Z− = Z ′′ ∩ Y ◦ with the notation of Theorem 1.1(b).) A Macaulay2 ([GS])
computation shows that the schemes Z and Z− have the same support but are not equal.
In fact, the scheme Z− depends on the choice of X1, X2, X3, so it seems a priori difficult
to perform the computation of (1), barring an exhaustive analysis of the specific choice of
these hypersurfaces. However, by Theorem 1.1(b) we must have

s(Z−,P3) = s(Z,P3) = [Z]− 10[pt] ,

and it follows that the contribution computed by (1) is
∫

(1 + 9H) ∩ ([Z] − 10[pt]) = 17.
Taking this off the Bézout number 27 for the intersection of three cubics, it follows that
X1, X2, X3 meet at 10 points outside of Z (if the ground field is algebraically closed of
characteristic 0). y

The point of this example is that even though the relevant component Z− of the in-
tersection of the hypersurfaces is not equal to Z, we may carry out the computation of
the corresponding contribution to the intersection as if it were. This is a common issue
in applications of Segre classes to enumerative geometry, where Z may have a compelling
scheme-theoretic description, but the scheme Z− corresponding to a choice of hypersurfaces
realizing general constraints may retain features due to the specific chosen hypersurfaces.
Example 1.2 illustrates the fact that the hypothesis that the expected number of divisors
in the linear system cut out the base scheme in a neighborhood (cf. [Ful84, Example 4.4.1])
may be weakened: in general this hypothesis should not be expected to be verified, but the
corresponding formulas remain true if the divisors are general. We should also point out
that, as a rule, judicious use of [Ful84, Proposition 4.4] suffices to address this issue; in fact,
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Theorem 1.1(b) is little more than a recasting of this result, presented here in an attempt
to streamline its utilization.

The same complication arises in some approaches to the algorithmic computation of
Segre classes. For example, the computation of the Segre class of a subscheme in Pn is
reduced in [EJP13] to residual intersection computations, and these are controlled by the
Segre class of an a priori different subscheme; again, Example 1.2 provides an example.
Theorem 3.2 in [EJP13] implicitly includes a proof of Theorem 1.1(b) in the particular case
Y = Pn, resolving this issue in this case for the numerical degrees of the classes (i.e., their
push-forward to projective space). Theorem 2 in [MQ13] does the same in the toric setting.
Theorem 1.1 has no restrictions on the ambient scheme Y , and gives the result in the Chow
group of Z rather than pushing-forward to Y . Also, Theorem 1.1(b′) can in principle lead
to an improvement in the speed of such algorithms when only terms of a fixed dimension
in the Segre class are needed.

We prove Theorem 1.1 in §3 as an application of a more general observation presented
in §2, to the effect that the Segre class of the zero-scheme of a section of a vector bundle E
is preserved in a range of dimensions by taking suitable quotients of E . See §2 for a precise
statement. For the ‘c = 0 case’, corresponding to part (b) of Theorem 1.1, the commutative
algebra counterpart of this observation is the statement that such quotients do not change
the integral closure of the ideal sheaf determined by the section. The argument given in §2
to prove the Segre class identity may be used to draw this conclusion (Remark 2.5); but our
proof of the Segre class identity bypasses the commutative algebra, and hence seems more
direct in the context of this paper.

In §4 we give a second application of the same tool, proving a ‘Bertini’ type statement
for Segre classes; here we require the characteristic of the field to be 0. Let Y ⊆ Pn now
be a nonsingular variety, and let X be a (possibly singular) hypersurface in Y . Let H be a
general hyperplane. By the Bertini theorem, the singular locus of H ∩X is set-theoretically
equal to the intersection of H with the singular locus of X:

(Sing(H ∩X))red = (H ∩ Sing(X))red

where Sing(−) denotes the singularity subscheme. While this equality is not true at the
level of schemes, we prove that it does lift to an equality of Segre classes.

Theorem 1.3. Let H be a general hyperplane, and let W be a pure-dimensional subscheme
of H ∩ Y . Then s(Sing(H ∩X) ∩W,W ) = s(H ∩ Sing(X) ∩W,W ).

Again this statement could be proven from commutative algebra considerations. The
argument given here follows easily from the tool presented in §2, and seems more direct.
Theorem 1.3 may be used to prove that certain characteristic classes associated with X
behave as expected with respect to general hyperplane sections. There are other approaches
to such questions; see for example [PP95, Lemma 1.2].

Acknowledgments. The author’s research was supported in part by the Simons foundation
and by NSA grants H98230-15-1-0027 and H98230-16-1-0016. The author is grateful to
Caltech for hospitality while this work was carried out. The author especially thanks
Prof. Matilde Marcolli for suggesting the title of this paper. The author also thanks Sam
Huckaba for insightful conversations on the commutative algebraic aspects of the questions
studied in this paper.

2. The main tool

In this note Y denotes a separated pure-dimensional scheme of finite type over an alge-
braically closed field, embeddable in a nonsingular scheme. We are interested in the Segre
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classes s(Z, Y ) of subschemes Z of Y . By [Ful84, Lemma 4.2] the Segre class of Z in Y is a
linear combination of the Segre classes in the irreducible components of Y ; so we may and
will assume that Y is a variety. Also, s(Y, Y ) = [Y ]; so we will assume the subschemes we
consider are properly contained in Y .

Every subscheme Z of Y may be realized as the zero-scheme of a section of a vector
bundle E on Y , and this yields an embedding of the blow-up B`ZY of Y along Z as a
subscheme of P(E ) ([Ful84, B.8.2]). We consider the following situation:

• E , F are vector bundles on Y ;
• sE , sF are sections of E , F , with zero-schemes Z, Z ′, respectively;
• We have an epimorphism p : E → F with kernel K = ker p, such that the diagram

E
p // F

Y

sE

__

sF

>>

is commutative;

Clearly Z ⊆ Z ′, in the sense that the ideal sheaf IZ,Y of Z in Y contains IZ′,Y .
As recalled above, the blow-up B`ZY may be embedded in the projectivization P(E ).

The image of this embedding is the variety Ỹ obtained as the closure of the image in P(E )

of the rational section Y 99K P(E ) induced by sE . We will denote by E ⊆ Ỹ the exceptional
divisor. We adopt the convention that the empty set has negative dimension.

Theorem 2.1. Let c = dim(P(K ) ∩ Ỹ ) and assume that no component of P(K ) ∩ Ỹ
is contained in E. Then there exists a subscheme S ⊆ Y of dimension ≤ c such that
dim(S ∩ Z) < c and

(i) (Z ′ r S)red = (Z r S)red;
(ii) s(Z ′ r S, Y r S)c = s(Z r S, Y r S)c;

(iii) s(Z ′, Y )k = s(Z, Y )k for k > c.

Remark 2.2. The equality of supports in (i) allows us to identify the Chow groups as needed
for (ii) and (iii). Indeed, if (i) holds, then Ac(Z

′rS) = Ac(ZrS) ([Ful84, Example 1.3.1]);
and recall ([Ful84, Proposition 1.8]) that for all k ≥ 0 there is an exact sequence

Ak(Z ∩ S) // Ak(Z) // Ak(Z r S) // 0 ;

if dim(S) ≤ c and (i) holds, then it follows that for k > c we have canonical isomorphisms

Ak(Z) ∼= Ak(Z r S) ∼= Ak((Z r S)red) ∼= Ak((Z ′ r S)red) ∼= Ak(Z ′ r S) ∼= Ak(Z ′) .

The claimed equality s(Z, Y )k = s(Z ′, Y )k holds in this group. y

Example 2.3. It is important to note that Z 6= Z ′ in general, even if P(K ) ∩ Ỹ = ∅. For
example, let Y = A2 with coordinates x, y, and let E = O⊕3, projecting to the first two
factors F = O⊕2. We have K ∼= O, identified with the third factor of E . Define sE by

(x, y) 7→ (x2, y2, xy) .

It is straightforward to verify that Ỹ is given by the ideal

(sy − ux, tx− uy, st− u2)
in P(E ) ∼= A2 × P2, where (s : t : u) are homogeneous components in the P2 factor. The

projectivization P(K ) consists of A2×{(0 : 0 : 1)}, hence it has empty intersection with Ỹ .
On the other hand, the ideals of Z, Z ′ are (x2, y2, xy), (x2, y2), respectively; so Z 6= Z ′. y
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Proof of Theorem 2.1. Identify Ỹ with B`ZY ; the blow-up map is the projection π : Ỹ → Y ,
and E = π−1(Z) is the exceptional divisor. Since Z ⊆ Z ′, we have E ⊆ π−1(Z ′). We will

verify that the residual scheme to E in π−1(Z ′) is supported on S′ := P(K )∩ Ỹ . We claim
that the statement of the theorem follows from this, by setting S = π(S′). Indeed, since
no component of S′ is contained in E, we have dim(Z ∩ S) < c. Since (set-theoretically)
Z ′ = π(π−1(Z ′)) = π(E ∪ S′) = Z ∪ S, the equality (i) of supports holds. Further, we will
have

s(Z ′, Y )k
(1)
= π∗s(π

−1(Z ′), Ỹ )k
(2)
= π∗s(E, Ỹ )k

(3)
= s(Z, Y )k

for k > c, where equalities (1) and (3) hold by the birational invariance of Segre classes
([Ful84, Proposition 4.2(a)]), and (2) follows from the residual formula for Segre classes

([Ful84, Proposition 9.2]). This implies (iii). The residual formula also shows that s(E, Ỹ )c
and s(π−1(Z), Ỹ )c differ by a class supported on S′. It follows that s(E r S′, Ỹ r S′)c =

s(π−1(Z)rS′, Ỹ rS′)c, and (ii) follows, again by the birational invariance of Segre classes.
Thus, in order to prove the theorem it suffices to show that the residual scheme to E in

π−1(Z ′) equals S′ := P(K ) ∩ Ỹ . To compute this residual scheme we may work locally,
hence assume that E , K and F are trivial and that p : E = O⊕N → F = O⊕M is the
projection onto the first M factors. Write the section sE in components as sE = (s1, . . . , sN );
the induced rational section Y 99K P(E ) = Y × PN−1 is (s1 : · · · : sN ), and this lifts to the
embedding

ρ : Ỹ → Y × PN−1 .

The exceptional divisor E is given by a section e of O(E). Locally, E is defined by the ideal
(e) = (π−1s1, . . . , π

−1sN ). We can factor

π−1(si) = ŝie

for i = 1, . . . , N ; then ŝ1, . . . , ŝN locally generate the unit ideal (1), and the embedding

ρ : Ỹ → Y × PN−1 is given by ỹ 7→ (ỹ, (ŝ1(ỹ) : · · · : ŝN (ỹ))).

With the above notation, the ideal for S′ = P(K ) ∩ Ỹ in Ỹ is I
S′,Ỹ = (ŝ1, . . . , ŝM ).

Now Z ′ is defined by the ideal (s1, . . . , sM ) in Y . Therefore π−1(Z ′) has ideal

(ŝ1e, . . . , ŝMe) = (ŝ1, . . . , ŝM ) · (e) = I
S′,Ỹ ·IE,Ỹ

.

This verifies that the residual scheme to E in Ỹ is S′ = P(K ) ∩ Ỹ and concludes the
proof. �

Remark 2.4. Suppose c = dimV , where V is an irreducible component of Z. By Theo-
rem 2.1(i), V is also an irreducible component of Z ′, and by Theorem 2.1(ii), V appears
with the same multiplicity in s(Z, Y ) and in s(Z ′, Y ). Thus the multiplicity of Y along Z
and along Z ′ at V coincide. This will recover the result by Samuel recalled at the beginning
of §1. y

Remark 2.5. If c = 0 in Theorem 2.1, then S′ = P(K ) ∩ Ỹ consists of a finite set disjoint

from E; replacing Y by the complement of S = π(S′), we may assume P(K )∩ Ỹ = ∅. The
resulting situation has a compelling interpretation in terms of commutative algebra. We
have a commutative diagram of rational maps

P(E )
p // P(F )

Y

sE

aa

sF

<<
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and the projection induces a birational morphism between the closures of the images of sE

and sF , i.e.,

p|Y : Ỹ = B`ZY // B`Z′Y .

If P(K )∩ Ỹ = ∅, this morphism is regular and finite, because Ỹ is disjoint from the center
of the projection. This implies that the ideal of Z ′ is a reduction of the ideal of Z at
every point of Z, cf. [Vas05, Proposition 1.44]. Therefore, we can conclude that if c = 0
in Theorem 2.1, then the ideals of Z and Z ′ have the same integral closure at every point
of Z. Theorem 2.1 may be seen as a Segre class version of this observation, extended to
all c ≥ 0. y

3. Proof of Theorem 1.1

As above, Y is a pure-dimensional scheme and Z ⊆ Y is a closed subscheme, and we can
in fact assume that Y is a variety and Z ( Y (cf. the beginning of §2).

Let A be a line bundle on Y , and let L ⊆ PH0(A , Y ) be a linear system of which Z
is the base scheme. For example, if Y ⊆ Pn, then L can be the restriction of the linear
system of degree-d hypersurfaces containing Z, provided d is large enough; in fact, the
maximum degree in a set of generators of any ideal defining Z scheme-theoretically in Pn

will do. If X1, . . . , XN are general elements of L and N � 0, then X1, . . . , XN generate L,
and Z = X1 ∩ · · · ∩ XN scheme-theoretically. Equivalently, Z may be realized as the
zero-scheme of the section sE of E := A ⊕N given by (s1, . . . , sN ), where si is a section

of A defining Xi. As in §2, we consider the closure Ỹ of the image of the rational section
(s1 : · · · : sN ) of P(E ) determined by sE . For c ≥ 0, we let M = dimY − c, and we let
Z(c) = X1 ∩ · · · ∩ XdimY−c be the zero-scheme of the section sF of F := A ⊕M given by
(s1, . . . , sM ).

We are then in the situation of §2. Let K be the kernel of the projection p : E → F .

By Theorem 2.1, in order to prove Theorem 1.1 it suffices to show that P(K )∩ Ỹ has pure
dimension c (if nonempty) and P(K ) ∩ E has dimension < c. We have

P(E ) = P(A ⊕N ) ∼= P(O⊕NY ) = Y × PN−1 ;

P(F ) ∼= Y × PM−1 under the same identification, and P(K ) is defined by the intersection

of M hypersurfaces Y ×H(1), . . . , Y ×H(M), where H(i) are general hyperplanes. Now the

linear system cut out on Ỹ by the hypersurfaces Y ×H, with H a hyperplane, is base-point

free. It follows that every component of P(K ) ∩ Ỹ has codimension M = dimY − c in Ỹ ,
hence dimension c. The dimension of every component of P(K ) ∩ E is c − 1 by the same
token, concluding the proof. �

If V is an irreducible component of Z, the c = dimV case of Theorem 1.1(b′) recovers
Samuel’s result on multiplicities, cf. Remark 2.4.

As a consequence of the considerations in Remark 2.5, we see that for c = 0 this argument
in fact proves that the local equations of dimY general elements of L generate a reduction
of the ideal IZ,Y of Z in Y at every point p ∈ Z. For example, if Y ⊆ Pn, dimY general
homogeneous polynomials of degree d containing Z (where d ≥ maximum degree of a
polynomial in any set of generators of any ideal for Z in Pn) generate a reduction of IZ,Y

at every point of Z. In the local case, it is known that a reduction may in fact be generated
by ` generators, where ` equals the analytic spread of the ideal ([HS06, Proposition 8.3.7]).
In our context, this equals 1 plus the dimension of the fiber of the exceptional divisor E at
the given point. Theorem 1.1(b) amounts to the consequence for Segre classes of a global
version of this result.
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4. A Segre-Bertini theorem

We now move on to the proof of Theorem 1.3. In this section we assume that the
characteristic of the ground field is 0.

We consider a nonsingular variety Y ⊆ Pn and let X ⊆ Y be a hypersurface. We denote
by Z = Sing(X) the singularity subscheme of X, i.e., the subscheme of Y locally defined
by an equation for X and by its partial derivatives. The Segre classes of Z in X and in Y
play an important role in the theory of characteristic classes for singular varieties: there are
formulas relating directly the class s(Z,X) with the Chern-Mather class of X and the class
s(Z, Y ) with the Chern-Schwartz-MacPherson class of X (see e.g., [AB03, Proposition 2.2]).

By the ordinary Bertini theorem Y := H ∩ Y is nonsingular for a general hyperplane H,
and the singularity subscheme of X := H ∩X is supported on Sing(X) := H ∩Z. It is clear

that Sing(X) ⊆ Sing(X), but these two subschemes may be different, even for general H.
According to Theorem 1.3, this difference does not affect their Segre classes: we will prove
that if W is any pure-dimensional subscheme of Y , then

(2) s(Sing(X) ∩W,W ) = s(Sing(X) ∩W,W ) .

For example, this holds for W = X and W = Y , the cases most relevant to characteristic
classes as mentioned above. Also, since Y is nonsingular, the same equality follows for any
nonsingular variety W ⊆ Pn containing Sing(X) (by [Ful84, Example 4.2.6(a)]).

The main value of identities such as (2) is that they yield tools for the effective compu-
tation of Segre classes. For example, for W = Y , (2) implies that

s(Sing(X), Y ) = H · s(Sing(X), Y )

by essentially the same argument used in the proof of [Alu12, Claim 3.2], and this implies an
‘adjunction formula’ for Chern-Schwartz-MacPherson classes (cf. [Alu13, Proposition 2.6]).

Like Theorem 1.1, Theorem 1.3 (i.e., (2)) follows from Theorem 2.1: it suffices to realize
the two schemes as zero-schemes of compatible sections of vector bundles under a projection
from a suitable center. The main technical point of the proof is the existence of such a center.

Proof. As in the proof of Theorem 1.1 we may assume that W is a variety. Let L = O(X);
so X is defined by a section F of L on Y . This section lifts to a section sF of the
bundle of principal parts P1

Y L , and the subscheme Sing(X) is the zero-scheme of this
section. Therefore, Sing(X) is the zero-scheme of the restriction of sF to Y , a section

of (P1
Y L )|Y . By the same token, Sing(X) is the zero-scheme of the section sF of P1

Y L

determined by the restriction F of F to Y (where for brevity we denote by L the restriction
L |Y ). These sections are compatible with the natural surjective morphism of vector bundles
(P1

Y L )|Y →P1
Y L : the diagram

(P1
Y L )|Y

p //P1
Y L

Y

(sF )|Y

dd

sF

==

is commutative. We are therefore in the situation studied in §2, and in order to complete
the proof we only need to verify that, for a general H, the projectivization of the kernel of p
is disjoint from the closure of the image of sF (W ) in P((P1

Y L )|W ). A fortiori, it suffices
to show that this is the case for W = Y . This will verify the hypothesis of Theorem 2.1
with c = −1, hence prove the equality of Segre class in all dimensions.
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Recall that, by [Gro67, 16.4.20], there is an exact sequence

0 // L ⊗ O(−1)|Y // (P1
Y L )|Y

p //P1
Y L // 0

extending the standard exact sequence of differentials from [Har77, Proposition II.8.12],

0 // O(−1)|Y // ΩY |Y // ΩY
// 0

tensored by L . (This sequence is exact on the left since Y and Y are nonsingular, [Har77,
Proposition II.8.17].) Therefore, the kernel K of p is the image of L ⊗ O(−1)|Y in
(P1

Y L )|Y , and p : P((P1
Y L )|Y ) 99K P(P1

Y L ) is the projection with center at the sec-

tion P(K ). By Theorem 2.1, in order to prove Theorem 1.3 it suffices to prove that, for a
general choice of H, sH = P(L ⊗ O(−1)|Y ) is disjoint from B`Sing(X)Y in P((P1

Y L )|Y ).

To study this question, it is helpful to work over a trivializing open set. (A local trivial-
ization for the bundle of principal parts is discussed in e.g., [Per95, §A.4].) Let U ⊆ Y be
a dense open set such that

(3) P(P1
UL ) ∼= U × Pm

with m = rkP(P1
UL ) = dimY . We may choose U so that the projection from a fixed

subspace P := Pn−m−1 is an isomorphism on each embedded tangent space to Y at y ∈ U ;
we then have a natural identification of the fiber Pm in (3) with the subspace of the dual
space Pn∨ consisting of hyperplanes containing P .

We will denote by (y,H) the point of P1
UL determined by the choice of a point y ∈ U

and a hyperplane H ⊇ P .
With this notation, (y,H) ∈ P(Ω1

U ⊗L ) ⊆ P(P1
UL ) if and only if y ∈ H. Further, each

H ⊇ P determines a section of P1(P1
UL ), given by y 7→ (y,H) for y ∈ U , and hence a

section of P((Ω1
U ⊗ L )|U ) for U = H ∩ U ⊆ Y . It is straightforward to verify that this

section agrees with the restriction to U of the section sH determined by H as explained
above.

We have to prove that, for a general hyperplane H, sH is disjoint from B`Sing(X)Y in

P((P1
Y L )|Y ). It suffices to prove that there is one such hyperplane. Arguing by contradic-

tion, assume that for all H there exists a point y ∈ Y such that sH and B`Sing(X)Y meet

over y. After a choice of U and P as above, we may represent points of P(P1
UL ) by pairs

(y,H) with y ∈ U and H ⊇ P . By our assumption, we would have that for a general H
containing P there exists y ∈ U such that

(4) (y,H) ∈ B`Sing(X)Y ⊆ B`Sing(X)Y .

The set of such (y,H) ∈ B`Sing(X)Y is m-dimensional, since it dominates the fiber Pm in
the trivialization (3). Since dimB`Sing(X)Y = m, it follows that every (y,H) ∈ B`Sing(X)Y

is of this type. But (y,H) ∈ P(Ω1
U ⊗L ) since y ∈ U ⊆ H. Thus, it would follow that

B`Sing(X)Y ⊆ P(Ω1
Y ⊗L ) .

However, this is clearly not the case: the fiber of B`Sing(X)Y over a point y 6∈ X equals

sF (y), which is not an element of the fiber of P(Ω1
Y ⊗L ) since F (y) 6= 0.

This contradiction concludes the proof of Theorem 1.3. �

As in Remark 2.5, we can also observe that this argument proves that for a general
hyperplane H there is a regular finite map

(5) B`Sing(X)Y → B`Sing(X)Y
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(restricting to a finite regular map B`Sing(X)∩WW → B`Sing(X)∩WW for all W ⊆ Y ). It

follows that the ideal of Sing(X) is integral over the ideal of Sing(X) for a general H. This

(re)proves a particular case of Teissier’s ‘idealistic Bertini theorem’, [Tei77, §2.8]. In fact,
the idealistic Bertini can conversely be used to prove Theorem 1.3.
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