
THE SEGRE ZETA FUNCTION OF AN IDEAL
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Abstract. We define a power series associated with a homogeneous ideal in a polynomial
ring, encoding information on the Segre classes defined by extensions of the ideal in projec-
tive spaces of arbitrarily high dimension. We prove that this power series is rational, with
poles corresponding to generators of the ideal, and with numerator of bounded degree and
with nonnegative coefficients. We also prove that this ‘Segre zeta function’ only depends
on the integral closure of the ideal.

The results follow from good functoriality properties of the ‘shadows’ of rational equiv-
alence classes of projective bundles. More precise results can be given if all homogeneous
generators have the same degree, and for monomial ideals.

In certain cases, the general description of the Segre zeta function given here leads to
substantial improvements in the speed of algorithms for the computation of Segre classes.
We also compute the projective ranks of a nonsingular variety in terms of the corresponding
zeta function, and we discuss the Segre zeta function of a local complete intersection of
low codimension in projective space.

Ad Alberto Collino, con stima e gratitudine

1. Introduction

Let k be a field, and let I ⊆ k[x0, . . . , xn] be a homogeneous ideal. In this paper we
consider a formal power series with integer coefficients determined by I,

(1) ζI(t) =
∑
i≥0

ait
i ,

which we call the Segre zeta function of I. This series is characterized by the fact that for
all N ≥ n, the class

(a0 + a1H + · · ·+ aNH
N ) ∩ [PN ] ,

where H denotes the hyperplane class, equals the push-forward to PN of the Segre class
s(ZN ,PN ) of the subscheme ZN defined by the extension of I to k[x0, . . . , xN ]. It is not
difficult to verify (Lemma 5.2) that this prescription does determine a unique power series
as in (1). The main result of the paper states that ζI(t) is rational and gives some a priori
information on its poles and its ‘numerator’.

Our main motivation comes from the theory of Segre classes. The Segre class of an
embedding of schemes is a basic ingredient in modern (Fulton-MacPherson) intersection
theory, with applications to, among others, enumerative geometry and the computation
of invariants of singularities. (See [Ful84] for a thorough treatment of Segre classes and
for many applications.) In practice, concrete computations of Segre classes are often very
challenging, even in comparatively simple situations. Interesting applications would follow
easily if one could compute the Segre class s(Z,Pn) of a scheme in Pn, but even in this
restricted context the range of known techniques to compute Segre classes is essentially
limited to their definition and to reverse-engineering enumerative consequences. Algorithms
for their computation have been developed along these lines and implemented ([Alu03],
[EJP13], [Hel16], [Har17]), but will only deal with small examples. To our knowledge,
the only class of ideals for which an alternative strategy has been developed is the case
of monomial schemes ([Alu13], [Alu16], and see §6.2 in this paper); but this case also has
limited applicability.
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The Segre zeta function (1) may be viewed as a ‘generating function’ for Segre classes.
Therefore, general properties of ζI(t) translate into properties of Segre classes, which could
lead to more tools for their computation and a better understanding of these invariants.
Our main result is the following (see Theorem 5.8 for a slightly extended version).

Theorem. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal, and let f0, . . . , fr be a set of
homogeneous generators of I. Then the Segre zeta function ζI(t) is rational, with poles at
−1/dj for a subset {dj}j∈J of {deg fi}i=1,...,r. More precisely,

ζI(t) =
P (t)

(1 + (deg f0)t) · · · (1 + (deg fr)t)
,

with P (t) ∈ Z[t] a polynomial with nonnegative coefficients, trailing term of degree codim I,
and leading term (

∏
i deg fi)t

r+1.

In general not all numbers −1/deg fi appear as poles of ζI(t), even for a minimal set
of generators of I. For example, if fr is integral over (f0, . . . , fr−1), then, with notation
as above, (1 + (deg fr)t) is a factor of P (t). Equivalently, ζI(t) = ζJ(t) if J is a reduction
of I. This observation leads to a sharper version of the main theorem (Proposition 5.12,
Corollary 5.13).

The main features of the statement may be extracted from basic considerations in Fulton-
MacPherson intersection theory; this is observed in §2. We base a full proof of the main
result on certain functoriality statements concerning the structure theorem for the Chow
group of a projective bundle. These are given in §3 without reference to ‘Segre zeta func-
tions’, and seem to us independently interesting. The connection with Segre classes is given
in §4, and the main theorem is proven in §5, together with some refinements. For example,
we observe (Corollary 5.14) that if −1/d is a pole of ζI(t), then d is an element of the degree
sequence of a minimal homogeneous reduction of I.

The theorem has applications to the effective computation of Segre classes. We illus-
trate this with examples, given in §5. Substantial progress in this direction will require
a more explicit description of the ‘numerator’ in ζI(t) corresponding to a degree sequence
(determining the denominator). For example, if the generators f0, . . . , fr form a regular se-
quence, then this numerator equals (

∏
i deg fi)t

r. Our hope is that ζI(t) may be described
more explicitly using tools from e.g., commutative algebra. We provide a rather explicit
description in two particular cases, in §§6.1 and 6.2, where the numerators are determined
by enumerative geometry considerations and by the volumes of certain polytopes.

It would be helpful to have precise results on the behavior of the zeta function under
standard operations on ideals. We observe (see §6) that ζI′+I′′(t) = ζI′(t)ζI′′(t) if I ′ and I ′′

satisfy a strong transversality condition. It would also be interesting to establish precise
formulas relating the Segre zeta function with other invariants of an ideal or of the corre-
sponding schemes. In §6.3 we show how to compute the projective ranks of a nonsingular
projective variety from the Segre zeta function of a defining ideal. The (well-known) fact
that the projective dual variety of a nonsingular complete intersection is a hypersurface is
an immediate consequence (Example 6.4). In §6.4 we prove that, under certain hypotheses,
the Segre zeta function of a local complete intersection in projective space equals the Segre
zeta function of a global complete intersection. The truth of Hartshorne’s conjecture would
imply that this is in fact the case for all nonsingular subvarieties of low codimension in
projective space.

Remark 1.1. The paper [Alu15] quotes a paper with the tentative title “Rationality of a
Segre zeta function” for results on Segre classes that are close in spirit to the results proven
in this paper. Those results may now be found in [Alu17b], which includes a discussion of
the Segre zeta functions of ideals generated by sections of a fixed line bundle. y
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NSA grant H98230-16-1-0016. The author is grateful to Caltech for hospitality while this
work was carried out.
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2. Shortcut to rationality

It is easy to convince oneself that ζI(t) should be rational, as a consequence of basic
properties of the intersection product defined in [Ful84, Chapter 6]. Given a homogeneous
ideal I ⊆ k[x0, . . . , xn], let {f0, . . . , fr} be any set of homogeneous generators for I, and let
di = deg fi. Assume n > r. Let Xi ⊆ Pn be the hypersurface defined by fi = 0 in Pn; thus
Z = X0 ∩ · · · ∩Xr is the subscheme of Pn defined by I. Consider the fiber diagram

Z //

δ
��

Pn

∆
��

X0 × · · · ×Xr
// Pn × · · · × Pn

where ∆ is the diagonal embedding. The intersection product X0 · · ·Xr in Pn may be
defined as

{c(δ∗NX0×···×XrPn × · · · × Pn) ∩ s(Z,Pn)}n−r−1 ,

the part of dimension n− r − 1 in the class within brackets. By [Ful84, Example 6.1.6],

{c(δ∗NX0×···×XrPn × · · · × Pn) ∩ s(Z,Pn)}i = 0

for i < n− r − 1. Denoting by H the hyperplane class, we have

c(δ∗NX0×···×XrPn × · · · × Pn) =
∏
i

(1 + diH) ;

therefore, letting ι : Z ↪→ Pn be the inclusion,

(2) ι∗s(Z,Pn) =

(∏
i(1 + diH) ∩ ι∗s(Z,Pn)

)∏
i(1 + diH)

expresses ι∗s(Z,Pn) as a ‘rational function’ with poles in the set {−1/di}i=0,...,r, and whose
numerator may only have nonzero terms in codimension ≤ (r + 1).

This observation captures the essential features of the rationality result of this note, mod-
ulo technical details such as the independence on the choices made here and the refinements
mentioned in the introduction. In the sections that follow we will provide a full proof of
the main theorem, based on functoriality considerations concerning ‘shadows’.

3. Functoriality of shadows

Let V be a variety, and let E be a vector bundle on V . According to the structure
theorem for the Chow group A∗P(E ) of the projective bundle E ([Ful84, Theorem 3.3(b)]),
every pure-dimensional class C ∈ AdP(E ), may be written uniquely as

C =
r∑
j=0

c1(O(1))j ∩ α∗(Cd−r+j)

where α : P(E ) → V is the structure morphism, r + 1 is the rank of E , and Ci−r+j ∈
Ai−r+jV .

Definition 3.1 ([Alu04]). The shadow of C is the class C := Cd−r + · · ·+ Cd. y

By definition, C ∈ AdP(E ) may be reconstructed from its shadow and from the infor-
mation of its dimension d. On the other hand, the shadow of C may be computed directly
from C:

(3) C = c(E ) ∩ α∗(c(O(−1))−1 ∩ C)

([Alu04, Lemma 4.2]).
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Not surprisingly, shadows satisfy simple compatibility properties with respect to proper
or flat morphisms. Let ϕ : W → V be a morphism. If E is a vector bundle on V , we have
an induced morphism ϕ̂ : P(ϕ∗E )→ P(E ) and the fiber square

P(ϕ∗E )

β
��

ϕ̂ // P(E )

α

��
W ϕ

// V

Lemma 3.2. Assume ϕ, ϕ̂ are proper, and let C ′ be a class in A∗P(ϕ∗E ). Then

ϕ∗(C
′) = ϕ̂∗(C

′) .

Proof. This is a formal consequence of (3):

ϕ∗(C
′) = ϕ∗

(
c(ϕ∗E ) ∩ β∗(c(O(−1))−1 ∩ C ′)

)
= c(E ) ∩ ϕ∗β∗(c(O(−1))−1 ∩ C ′)
= c(E ) ∩ α∗ϕ̂∗(c(O(−1))−1 ∩ C ′)
= c(E ) ∩ α∗(c(O(−1))−1 ∩ ϕ̂∗(C ′))
= ϕ̂∗(C

′)

as stated. �

Lemma 3.3. Assume ϕ, ϕ̂ are flat, and let C be a class in P(E ). Then

ϕ̂∗(C) = ϕ∗ (C) .

Proof. This is also formal, using (3):

ϕ̂∗(C) = c(ϕ∗E ) ∩ β∗
(
c(O(−1))−1 ∩ ϕ̂∗(C)

)
= c(ϕ∗E ) ∩ β∗ϕ̂∗

(
c(O(−1))−1 ∩ C

)
= c(ϕ∗E ) ∩ ϕ∗α∗

(
c(O(−1))−1 ∩ C

)
since the diagram is a fiber square

= ϕ∗
(
c(E ) ∩ α∗(c(O(−1))−1 ∩ C)

)
= ϕ∗(C)

as claimed. �

Both Lemma 3.2 and 3.3 are straightforward consequences of the basic properties of
push-forwards and pull-backs of regular morphisms. We are interested in a different type
of functoriality, involving rational morphisms, and which will require a little more work.

Let ρ : V 99KW be a dominant rational morphism of varieties, and let S be a subscheme

of V . We say that p is a projection with center at S if the blow-up π : Ṽ → V of V at S

resolves the indeterminacies of ρ and the lift ρ̃ : Ṽ →W is flat.

Ṽ

π

��

ρ̃

  
V

ρ // W

If ρ : V 99K W is a projection with center at S, and γ ∈ A∗W , we define the join of γ and
S to be the class

γ ∨ S := π∗ρ̃
∗(γ) ∈ A∗V .

If S = ∅, then ρ is a flat regular map, and the join operation is the ordinary pull-back. The
main result of this section is the extension of Lemma 3.3 to the case of projections.

We consider vector bundles EV , resp., EW of the same rank r + 1 on V , resp. W .
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Definition 3.4. We say that EV , EW are compatible if their pull-backs to V r S are
isomorphic:

EV |V rS ∼= ρ′
∗
EW

where ρ′ : V r S → W is the restriction of ρ. If EV and EW are compatible, we choose an
isomorphism P(EV |V rS) ∼= P(ρ′∗EW ) and use it to identify the corresponding Chow groups.
Choices of classes CV ∈ AdP(EV ), CW ∈ Ad−dimV+dimWEW are then compatible if they
agree after pull-back to the restrictions over V r S. y

Theorem 3.5. Let ρ : V 99K W be a projection with center at S, and let EV , resp.,
EW be compatible vector bundles of rank (r + 1) on V , resp., W . Let CV ∈ Ad(P(EV )),
CW ∈ Ad−dimV+dimW (P(EW )) be compatible classes, with d > r + dimS. Then

CV = CW ∨ S .

Proof. The notation we need may be found in the following diagram:

P(π∗EV )

��

π̂

||

P(ρ̃∗EW )

��

ρ̂

""
P(EV )

""

Ṽ

π

��

ρ̃

��

P(EW )

{{
V

ρ // W

The compatibility of EV , EW implies that the pull-backs of EV , EW to the complement V ◦

of the exceptional divisor E in Ṽ are isomorphic:

i∗π∗EV ∼= i∗ρ̃∗EW

where i : V ◦ ↪→ Ṽ is the open embedding. The compatibility of CV and CW implies that
the restrictions of π̂∗(CV ) and ρ̂∗(CW ) to V ◦ coincide. By Lemma 3.3, the corresponding
shadows coincide after restriction to V ◦:

i∗π̂∗(CV ) = i∗π̂∗(CV ) = i∗ρ̂∗(CW ) = i∗ρ̂∗(CW ) .

By the exact sequence of Chow groups for an open embedding ([Ful84, §1.8]), there exists
a class γ in A∗(E) such that

(4) π̂∗(CV ) = ρ̂∗(CW ) + j∗(γ)

in A∗(Ṽ ), where j : E ↪→ Ṽ is the inclusion. Note that nonzero components of j∗(γ)
necessarily have dimension ≥ d − r, since this is the case for the other classes appearing
in (4).

Since ρ̃ is flat, we have ρ̂∗(CW ) = ρ̃∗(CW ), also by Lemma 3.3. On the other hand,

π∗(π̂
∗(CV )) = CV by Lemma 3.2. Therefore, (4) implies

(5) CV = π∗ρ̃
∗(CW ) + π∗j∗(γ)

after pushing forward by π. By definition, π∗ρ̃
∗(CW ) = CW ∨ S. Finally, π∗j∗(γ) can only

have nonzero components in dimension ≥ d− r, but it is supported on S, whose dimension
is < d− r by hypothesis. Therefore π∗j∗(γ) = 0, the right-hand side of (5) equals CW ∨ S,
and the stated equality follows. �

If S = ∅, then the hypothesis d > r+ dimS is vacuous, ρ is flat, ρ∗(EW ) ∼= EV , CW ∨S =
ρ∗(CW ), and Theorem 3.5 reduces to Lemma 3.3. If S 6= ∅, then the hypothesis d > r+dimS
is necessary.

While we will not need this for our main result, it is occasionally useful to relate the
shadow of a class C ∈ P(E ) to the shadow of the class CL corresponding to C in P(E ⊗L ),
where L is a line bundle on V . The reader should have no difficulties proving the following
statement, which uses the notation introduced in [Alu94, §2].
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Lemma 3.6. Let C ∈ AdP(E ) ∼= AdP(E ⊗L ), and let C, CL be respectively the shadows
of C viewed as a class in P(E ) and as a class in P(E ⊗L ). Then

CL = c(L )rk E−1+dimV−d ∩ (C ⊗V L ) .

4. Shadows and Segre classes

As in §3, let V be a variety. Let Z ( V be a proper subscheme, realized as the zero-scheme
of a section σ of a vector bundle E on V . The blow-up of V along Z may be embedded in
the projectivization of E : σ induces a rational section σ : V 99K P(E ), and B`ZV may be
identified with the (closure of the) image of this section. We may then consider the shadow
B` of the class of B`ZV in PE ; this is a class in A∗V . There is a very straightforward
relation between B` and the push-forward to V of the Segre class s(Z, V ).

Lemma 4.1. Let ι : Z ↪→ V be the embedding. Then

ι∗s(Z, V ) = [V ]− s(E ) ∩B` .

Proof. Let α : P(E )→ V be the projection. Using (3),

[V ]− s(E ) ∩B` = [V ]− s(E )c(E )α∗(c(O(−1))−1 ∩ [B`ZV ])

= [V ]− α∗(c(O(−1))−1 ∩ [B`ZV ])

= α∗
(
[B`ZV ]− c(O(−1))−1 ∩ [B`ZV ]

)
.

The class c(O(−1)) restricts to 1+E on B`ZV , where E is the exceptional divisor. Therefore

[V ]− s(E ) ∩B` = α∗

((
1− 1

1 + E

)
∩ [B`ZV ]

)
= α∗

(
[E]

1 + E

)
.

The statement follows (by [Ful84, Corollary 4.2.2]). �

Remark 4.2. (i) We could restrict E to Z, and consider the shadow E of the exceptional
divisor E as a class in A∗Z. Then s(Z, V ) = s(E ) ∩ E, as the reader may verify.

(ii) If V is nonsingular, and Z is the zero-scheme of a section of the tangent bundle TV ,
then E equals the Chern-Fulton class cF(Z) of Z, defined in [Ful84, Example 4.2.6(a)] (in
particular, it is independent of V ).

(iii) In V , B`+E is a decomposition of the total Chern class c(E )∩ [V ] as a sum of two
classes. This decomposition generalizes the decomposition of c(L ) as 1 + D, where D is
the divisor determined by a section of a line bundle L . y

Example 4.3. Let V = Pn, and assume that the ideal of Z is generated by r + 1 forms of
degree d: that is, E = O(d)r+1. Applying Lemma 4.1 gives

ι∗s(Z,Pn) = [Pn]− (1 + dH)−r−1 ∩B`O(d)

where B`O(d) is the shadow of B`ZPn as a class in P(E ). On the other hand, tensoring E by

O(−d) realizes P(E ) as a trivial bundle Pn×Pr. According to Lemma 3.6, the corresponding
shadow changes as follows:

B`O(d) = (1 + dH)r ∩ (B`⊗ O(dH)) ,

where B` is the shadow with respect to the trivial bundle. Therefore,

ι∗s(Z,Pn) = [Pn]− (1 + dH)−r−1 ∩ ((1 + dH)r ∩ (B`⊗ O(dH)))

= [Pn]− (1 + dH)−1 ∩ (B`⊗ O(dH)) .

This reproduces Proposition 3.1 in [Alu03]. y

In view of Lemma 4.1, the functoriality properties proved in §3 imply analogous properties
for Segre classes, at least after push-forward to the ambient variety. Lemmas 3.2 and 3.3
simply specialize to the good behavior of Segre classes with respect to proper and to flat
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morphisms, [Ful84, Proposition 4.2]. Theorem 3.5 determines the behavior of Segre classes
under ‘projections’, as follows.

As in §3, we consider a projection ρ : V 99K W with center in S ⊆ V . We consider

proper subschemes Z ( W , Ẑ ( V such that ρ′−1(Z) agrees with Ẑ ∩ (V r S), where
ρ′ : V r S → W is the (regular) restriction of ρ. More precisely, we assume that we have
compatible vector bundles EV on V , EW on W , and sections sV of EV , sW of EW , such that
the outer diagram in

EV |V rS

""

∼
ρ′∗EW

}}
V r SsV |V rS

UU

ρ′∗sW

JJ

commutes; and we let Z, resp., Ẑ be the zero-schemes of sW , resp., sV . Loosely speaking,

Ẑ is the inverse image of Z under ρ (but of course an inverse image is not defined as ρ is
only assumed to be rational).

Theorem 4.4. Let Z
i
↪→ W , resp. Ẑ

ı̂
↪→ V be zero-schemes of matching sections of com-

patible vector bundles of rank r + 1, as above. Assume r < (dimV − dimS). Then

(6) ı̂∗s(Ẑ, V ) = [V ]− s(EV ) ∩ ((c(EW ) ∩ ([W ]− i∗s(Z,W ))) ∨ S) .

Proof. After projectivizing the bundles, we have the commutative diagram

P(EV |V rS)
∼ P(ρ′∗EW )

V r SsV |V rS

WW

ρ′∗sW

HH

where sV |V rS , ρ′∗sW are the rational sections induced by their regular namesakes. It follows
that

sV (V r S) = ρ′∗sW (V r S) ,

and this implies that
[
sV (V )

]
and

[
sW (W )

]
are compatible classes in the sense of Defi-

nition 3.4. These are the classes of the blow-ups [B`
Ẑ
V ] and [B`ZW ], respectively. Also,

the dimension d of these classes is dimV , and dimV > r + dimS by hypothesis. By
Theorem 3.5, we have an equality of shadows

[B`
Ẑ
V ] = [B`ZW ] ∨ S .

The stated formula is then a direct consequence of Lemma 4.1. �

Corollary 4.5. With the same notation, assume r + 1 < (dimV − dimS). Then

(7) ı̂∗s(Ẑ, V ) = s(EV ) ∩ ((c(EW ) ∩ i∗s(Z,W )) ∨ S) .

Proof. For all i, we have the exact sequence

AiS // AiV // Ai(V r S) // 0

([Ful84, Proposition 1.8]). It follows that AiV ∼= Ai(V rS) for i > dimS. The fact that the
bundles are compatible implies that c(EV )∩ [V ] and (c(EW )∩ [W ])∨S agree after restriction
to V r S. If r + 1 < (dimV − dimS), then the codimension of S exceeds the rank of these
bundles, hence we can deduce that c(EV ) ∩ [V ] = (c(EW ) ∩ [W ]) ∨ S in A∗V .

Therefore s(E ) ∩ ((c(EW ) ∩ [W ]) ∨ S) = [V ] if r + 1 < (dimV − dimS), and the stated
equality follows from Theorem 4.4. �

Remark 4.6. A refinement of the argument proving Theorem 4.4 shows that (7) holds as

an identity of classes on Ẑ if r+ 1 < (dimV − dimS). In our application in §5 we will only
need the equality after push-forward, as given in Corollary 4.5.
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Identity (6) cannot be stated in A∗Ẑ, so this strengthening is not available for Theo-
rem 4.4. However, the advantage of the weaker requirement on dimS in the hypotheses of
Theorem 4.4 may be important from the computational viewpoint. y

5. The Segre zeta function of a homogeneous ideal

In this section we define the ‘Segre zeta function’ of a homogeneous ideal in a polynomial
ring, and prove its rationality and other features. We will apply the results obtained in
the previous sections to the projection ρ : PN 99K Pn with center at a subspace Pm, m =
N −n−1; this is a projection in the sense used in the previous sections. The join operation
γ 7→ γ ∨ Pm acts as a ‘partial pull-back’ on the Chow ring:

AiPn → AiPN , γ 7→ γ ∨ Pm

is defined by sending the generator H i of AiPn to the generator H i ∈ AiPN ; here H denotes
the hyperplane class (in both Pn and PN ).

Notice that, geometrically, this is indeed a ‘join’ operation: H i is represented by a linearly
embedded Pn−i in Pn; the corresponding class in AN−iPN is the class of the join of Pn−i
and the center Pm of the projection.

Also note that this is not a ring homomorphism: Hn+1 = 0 in A∗Pn, while Hn+1 6= 0 in
A∗PN for N > n.

It will be convenient to adopt a ‘cohomological’ notation, and represent classes in pro-
jective space Pr as polynomials of degrees ≤ r in the hyperplane class, which will uniformly
be denoted H. With this convention, the join operation A∗Pn → A∗PN acts in the simplest
possible way:

γ 7→ γ ∨ Pm : P (H) 7→ P (H) .

However, care has to be taken to ensure that the polynomial at the source has degree ≤ n.
We will denote by [P (H)]≤n the truncation of the polynomial P (H) to Hn. This operation
may be extended to power series in H.

Example 5.1. With this notation,[
dH

1 + dH

]
4

= dH − d2H2 + d3H3 − d4H4

represents s(X,P4) ∈ A∗P4 for a degree-d hypersurface X in P4. It also represents the join
s(X,P4) ∨ Pm ∈ A∗Pm+5, for every m ≥ 0. y

Now let I ⊆ k[x0, . . . , xn] be a homogeneous ideal. For any N > n, we let IN ⊆
k[x0, . . . , xN ] be the extension of I, and we denote by ZN

ιN
↪→ PN the subscheme defined

by IN . As above, we will denote by H the hyperplane class (in any projective space).

Lemma 5.2. There exists a well-defined power series

ζI(t) =
∑
i≥0

ait
i ∈ Z[[t]]

such that for all N ≥ n,

ιN∗s(ZN ,PN ) =
N∑
i=0

aiH
i ∩ [PN ] .

Definition 5.3. The Segre zeta function of the ideal I is the power series ζI(t) obtained in
Lemma 5.2. y

Proof of Lemma 5.2. We have to show that if M > N and

ιN∗s(ZN ,PN ) =

N∑
i=0

ai[PN−i] , ιM∗s(ZM ,PM ) =

M∑
i=0

bi[PM−i] ,
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then bi = ai for i = 0, . . . , N .
In this situation we can view PN as embedded in PM as the linear subspace defined by

xN+1 = · · · = xM = 0. We have

IN = IM ∩ k[x0, . . . , xN ] ,

and correspondingly ZN = PN ∩ ZM . This intersection is transversal (in fact, splayed),
hence repeated application of [AF15, Lemma 4.1] gives

(8) s(ẐN ,PN ) = [PN ] · s(ẐM ,PM ) .

Therefore
N∑
i=0

ai[PN−i] = [PN ] ·
M∑
i=0

bi[PM−i]

with the stated consequence. �

Remark 5.4. By essentially the same argument, we see that if N < n, then
∑N

i=0 aiH
i∩ [PN ]

equals ιN∗s(ZN ,PN ), where now ZN is the intersection of Zn with a general N -dimensional
linear subspace of Pn. In particular, the first nonzero coefficient as in ζI(t) occurs for s =
the codimension of ZN in PN for N large enough; it follows that s = codim I. Also, as
equals the degree of the top-dimensional part of the cycle determined by [ZN ]. For example,
if I is prime, then

ζI(t) = (deg I) tcodim I + higher order terms ,

where deg I = degZN (for N � 0). y

Example 5.5. If I is a complete intersection, i.e., it is generated by a regular sequence
(F1, . . . , Fr), with degFi = di, then

ζI(t) =
d1 · · · dr tr

(1 + d1t) · · · (1 + drt)
.

Indeed, ZN is then regularly embedded in PN , hence its Segre class is given by s(ZN ,PN ) =
c(NZN

PN )−1 ∩ [ZN ] ([Ful84, Proposition 4.1]). The normal bundle of ZN has Chern class
(1 + d1H) · · · (1 + drH), and [Z] = d1 · · · drHr. y

Example 5.6. For I ⊆ k[x0, . . . , xn], ζI(t) is not determined by the scheme Z defined by I
in Pn. For example, consider I1 = (x0, . . . , xn) and I2 = (x2

0, x1, . . . , xn). These ideals both
define the empty set in Pn, while

ζI1(t) =
tn+1

(1 + t)n+1
, ζI2(t) =

2 tn+1

(1 + 2t)(1 + t)n

as seen in Example 5.5. We will prove that ζI(t) is determined by Z and by the degrees
of a set of generators for I, provided the number of generators does not exceed n + 1, see
Corollary 5.9; also see Corollary 5.15 for a somewhat stronger statement. y

Example 5.7. Let I = (x2
0 − x2

1, x0x
2
1 − x3

2, x
4
0 − x4

2). Using the Macaulay2 implementation
of the algorithm in [Alu03], we can compute the Segre class of the scheme cut out by the
generators of I in P9, and this determines the first several coefficients of ζI(t):

ζI(t) = 2t2 + 6t3 − 106t4 + 750t5 − 4138t6 + 20286t7 − 92986t8 + 408750t9 − · · ·
(this computation takes several minutes on a Macbook Pro). y

The natural question is whether general statements can be made concerning ζI(t). For
example, it is perhaps not completely obvious from the definition that the power series
ζI(t) has positive radius of convergence. Statements restricting the type of series ζI(t)
can be are potentially useful in computations of Segre classes, as we will illustrate below
(Example 5.11). The main result of this paper is the following theorem.
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Theorem 5.8. Let I ⊆ k[x0, . . . , xn] be a homogeneous ideal, and let ζI(t) be the power
series defined above. Also, let d0, . . . , dr be the degrees of the elements in any homogeneous
basis of I. Then

(1) ζI(t) is rational: there exist unique relatively prime polynomials PI(t), QI(t) ∈ Z[t],
with QI(0) = 1, such that

ζI(t) =
PI(t)

QI(t)
.

(2) The polynomial QI(t) divides (1+d0t) · · · (1+drt). Thus, the poles of ζI(t) can only
occur at −1/di, where di is a degree of an element in a minimal homogeneous basis
of I.

(3) With notation as above, ζI(t) =
N(t) + (

∏
i di)t

r+1∏
i(1 + dit)

for a degree r polynomial N(t)

with nonnegative coefficients and trailing term of degree codim I.

Part (3) has the following immediate consequence (cf. Example 5.6).

Corollary 5.9. The Segre zeta function ζI(t) of an ideal I generated by homogeneous
polynomials f0, . . . , fr ∈ k[x0, . . . , xn] is determined by the Segre class of the zero-scheme
Z = Zn of I in Pn and by the integers deg fi, provided n ≥ r.

Remark 5.10. More precisely, if n ≥ r, then the components s(Z,Pn)j with j ≥ n − r
(together with the integers deg fi) suffice to determine ζI(t), since they suffice to determine
the polynomial N(t) in Theorem 5.8 (3).

In fact, if n > r, then we can replace Z by the intersection of Z with a general Pr
and reduce to the case n = r. This follows from [AF15, Lemma 4.1], which shows that
this operation does not change the terms of codimension ≤ r in the Segre class, see (8).
(Cf. Remark 5.4.) y

Example 5.11. As an illustration of how Theorem 5.8 may be useful in computations, revisit
Example 5.7, taking Corollary 5.9 into account. Here n = r = 2, d0 = 2, d1 = 3, d2 = 4.
By Theorem 5.8 (3),

ζI(t) =
N(t) + 24t3

(1 + 2t)(1 + 3t)(1 + 4t)
,

with degN(t) ≤ 2. It follows that ζI(t) is determined by the coefficients of the terms of
degree ≤ 2, i.e., by the Segre class of the scheme cut out by the generators of I in P2. The
same implementation of the algorithm used in Example 5.7 computes this information,

ζI(t) ≡ 2t2 mod t3 ,

in less than half a second. It follows that

N(t) = [(2t2 + 6t3)(1 + 2t)(1 + 3t)(1 + 4t)]2 = 2t2

and therefore the same data obtained above,

ζI(t) =
2t2 + 24t3

(1 + 2t)(1 + 3t)(1 + 4t)

= 2t2 + 6t3 − 106t4 + 750t5 − 4138t6 + 20286t7 − 92986t8 + 408750t9 − · · · ,

is found with a roughly 1000-fold increase in speed with respect to the more direct compu-
tation. (And ζI(t) is now known to all orders.) y

Theorem 5.8 admits the following refinement, which also leads to a strengthening of
Corollary 5.9. Recall that the degree sequence of an ideal is the sequence d0 ≤ · · · ≤ dr of
degrees of elements of any homogeneous minimal basis for the ideal; this sequence does not
depend on the chosen minimal basis. We also recall that a reduction of an ideal I is an
ideal J ⊆ I with the same integral closure as I. We denote by I the integral closure of I.
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Proposition 5.12. ζI(t) = ζI(t).

Corollary 5.13. The results of parts (2) and (3) of Theorem 5.8 hold with d0 ≤ · · · ≤ dr
the degree sequence of any homogeneous reduction of I:

• QI(t) |
∏
i(1 + dit);

• ζI(t) =
N(t) + (

∏
i di)t

r+1∏
i(1 + dit)

for a degree r polynomial N(t) with nonnegative coeffi-

cients and trailing term of degree codim I.

Corollary 5.13 is an immediate consequence of Theorem 5.8 and Proposition 5.12. We
also highlight the following consequence.

Corollary 5.14. Every pole −1/di of the Segre zeta function of I is determined by an
element di of the degree sequence of a minimal homogeneous reduction of I.

Proof of Proposition 5.12. The integral closure of the extension of I in k[x0, . . . , xN ] equals
the extension of the integral closure, so it suffices to verify that if Z, resp., Z are the schemes
defined by I, resp. I in Pn, then s(Z,Pn) = s(Z,Pn). (Since Z, Z have the same support,
their Chow groups may be identified.) By [Vas05, Proposition 1.44], there is a natural
finite morphism of blow-ups B`ZP

n → B`ZPn. It follows that the inverse image of Z in
B`ZP

n equals the exceptional divisor of B`ZP
n, and the equality follows by the birational

invariance of Segre classes ([Ful84, Proposition 4.2]). �

Corollary 5.13 could also be helpful in the construction of algorithms computing Segre
classes: an ideal may be replaced with a minimal homogeneous reduction without affecting
the computation of the Segre zeta function, and in general this reduces the length of the
degree sequence used to construct a denominator for ζI(t). We formalize this observation
as follows.

Corollary 5.15. Let I ⊆ k[x0, . . . , xn] be an ideal, and let Z be the scheme defined by I
in Pn. Then the Segre zeta function ζI(t) is determined by the degree sequence d0 ≤ · · · ≤ dr
of a minimal reduction of I and by ι∗s(Z,Pn)i, i ≥ n− r, provided n ≥ r. y

The main ingredient in the proof of Theorem 5.8 will be the following statement, where
we use the notation introduced at the beginning of this section.

Proposition 5.16. Let I = (f0, . . . , fr) ⊆ k[x0, . . . , xn] be an ideal generated by homoge-

neous polynomials fi, i = 0, . . . , r, and let di = deg fi. For N ≥ n, let ZN
ιN
↪→ PN be the

subscheme defined by f0, . . . , fr in PN (as above).

(9) If n ≥ r + 1, then ιN∗s(ZN ,PN ) =

[
[
∏
i(1 + diH) · ιn∗s(Zn,Pn)]n∏

i(1 + diH)

]
N

.

Identity (9) should be compared with (2). As promised in §2, the rational function
expressed by (2) is independent of all choices.

Proof. We apply Corollary 4.5 with W = Pn, V = PN , ρ : PN 99K Pn the projection with
center at Pm, m = N − n − 1. We view I ⊆ k[x0, . . . , xn] with generators f0, . . . , fr in
degree d0, . . . , dr as the ideal of the zero-scheme Z = Zn of the section sW = (f0, . . . , fr)
of EW = OPn(d0) ⊕ · · · ⊕ OPn(dr). We take EV = OPN (d0) ⊕ · · · ⊕ OPN (dr); it is clear that
EW and EV are compatible in the sense of Definition 3.4. It is also clear that the section

sV = (f0, . . . , fr) of EV is compatible with sW , and Ẑ = ZN is its zero-scheme. We are
therefore in the situation of Corollary 4.5, and we can conclude that

ı̂∗s(Ẑ, V ) = s(EV ) ∩ ((c(EW ) ∩ i∗s(Z,W )) ∨ S) ,

if r + 1 < (dimV − dimS) = N −m = n+ 1, i.e., n ≥ r + 1. This gives (9) as needed. �
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Remark 5.17. The same argument, using Theorem 4.4, gives the statement:

If n ≥ r, then: ιN∗s(ZN ,PN ) =

[
1−

[(
∏
i(1 + diH)(1− ιn∗s(Zn,Pn)))]n∏

i(1 + diH)

]
N

.

This is stronger than (9), in the sense that the advantage of computing the ‘input’ Segre
class at numerator in Pr, i.e., with n = r, rather than Pr+1 may be substantial. (In our
illustrative Examples 5.7 and 5.11, the computation in P3 takes about twice as long as the
computation in P2.) This advantage is absorbed by the fact that the term of degree r + 1
in the numerator of (9) is in fact known a priori, as stated in Theorem 5.8 (3) and as we
will show in a moment. y

Since the numerator of (9) is independent of N , Proposition 5.16 implies the rationality
of ζI(t). This establishes Theorem 5.8, parts (1) and (2).

To prove part (3), let f0, . . . , fr be homogeneous generators of I, let di = deg fi, and
choose n ≥ r + 1. Then

ζI(H) =
[
∏
i(1 + diH) · ιn∗s(Zn,Pn)]n∏

i(1 + diH)

by (9). Let Xi ⊆ Pn be the hypersurface defined by the vanishing of fi, so that Zn =
X0 ∩ · · · ∩Xr. The numerator

(10)
∏
i

(1 + diH) · ιn∗s(Zn,Pn) ∈ A∗Pn

is the push-forward to Pn of the class used to define the intersection product X0 · · ·Xr in Pn,
as recalled in §2, by means of the diagram

Zn
ιn //

δ
��

Pn

∆
��

X0 × · · · ×Xr
// Pn × · · · × Pn

In particular, its term of degree r+ 1 in H is d0 · · · drHr+1, by Bézout’s theorem; therefore
the coefficient of tr+1 in (10) equals

∏
i di, as claimed in Theorem 5.8 (3). The trailing

term is discussed in Remark 5.4. Further, the class (10) may also be written as follows. Let
N = δ∗(NX0×···×XrPn × · · · × Pn). Then the normal cone C of Zn in Pn may be embedded
in N , and (10) equals

(11) ιn∗q∗ (c(ξ) ∩ [P(C ⊕ 1)])

where ξ is the universal quotient bundle on P(N ⊕ 1) and q is the projection from P(N ⊕ 1)
to Zn. (This follows from the projection formula and the definition of Segre class.) Since
dimP(C ⊕ 1) = n and rk ξ = r + 1, the components of this class of codimension > (r + 1)
in Pn necessarily vanish. This shows that (10) has degree (r + 1) as a polynomial in H.

The last remaining assertion in Theorem 5.8 (3) is that the numerator has nonnegative
coefficients, that is, that (10) is effective. But note that

N ∼= ι∗ (O(d0)⊕ · · · ⊕ O(dn))

with di > 0, hence it is generated by global section. As ξ is a quotient of q∗(N ⊕ 1), it
is also generated by global sections. It follows that (11) is nonnegative, by [Ful84, Exam-
ple 12.1.7(a)], and this concludes the proof of Theorem 5.8. �

For clarity, we present here the skeleton of an algorithm computing the Segre zeta func-
tion of an ideal, assuming that a basic algorithm computing Segre classes of subschemes in
projective space is available. As illustrated in Example 5.11, this can also act as a boot-
strap for current algorithms computing Segre classes, improving their performance quite
substantially in some cases. Assume I is an ideal in k[x0, . . . , xn], defined by homogeneous
generators fi.
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• Test each fi to see if it is in the integral closure of the other generators. If it
is, remove it from the list and replace I by the ideal generated by the remaining
elements. Repeat until no such element is left.
• Let r + 1 be the number of generators left. If n < r, extend I to ensure n = r. If
n > r, replace r − n variables xi with general linear combinations of the other r
variables, again to obtain r = n, and restrict I.

• Compute ι∗s(Z,Pr), where Z
ι
↪→ Pr is the subscheme defined by I. Write it as a

polynomial S(t) of degree ≤ r. Let N(t) = [S(t)
∏
i(1 + (deg fi)t)]r.

• The Segre zeta function of the given ideal is then ζI(t) =
N(t) + (

∏
i deg fi)t

r+1∏
i(1 + (deg fi)t)

.

(Some of these steps are optional: for example, testing for integral dependence may be
computationally demanding, and it can be omitted.) Once the Segre zeta function is known,
extracting the information of s(ZN ,PN ) is immediate for all N ≥ 0.

6. Challenges and examples

There are several natural problems raised by the description of the Segre zeta function
obtained in §5.

(1) Determine the poles of ζI(t).
Let d0 ≤ · · · ≤ dr be the degree sequence of a minimal homogeneous reduction of I. As

observed in Corollary 5.14,

(12) −1/d is a pole of ζI(t) =⇒ d is a number in this sequence.

However, examples show that QI(t) does not necessarily equal
∏
i(1 + dit) (see §6.2). It

would be interesting to examine the extent to which a converse of (12) may hold.

(2) Describe a numerator of ζI(t) explicitly.
By our main result, if di, i = 0, . . . , r are the degrees of any choice of generators for I (or

even of a reduction of I), then (
∏
i(1+dit)) ζI(t) is a polynomial with nonnegative coefficients

and leading term d0 · · · dr tr+1. The fact that the coefficients are nonnegative suggests that
these may be expressed as dimensions of vector spaces associated with I (maybe ranks of
suitable cohomology modules?), or perhaps as volumes of polytopes determined by I.

(3) Study the behavior of ζI(t) with respect to standard ideal operations.
For example, assume I ′, I ′′ ⊆ k[x0, . . . , xn] are splayed; for instance, we could assume

that generators for I ′ and I ′′ are polynomials in different sets of variables. Then

ζI′+I′′(t) = ζI′(t) · ζI′′(t) .

Indeed, it suffices to verify that in this case, for N � 0

s(Z ′N ∩ Z ′′N ,PN ) = s(Z ′N ,PN ) · s(Z ′′N ,PN )

where Z ′N , Z ′′N are the schemes defined by extensions of I ′, I ′′. Since the extensions are also
splayed, this holds by [AF15, Lemma 3.1].

(4) Compute projective invariants of a subvariety Z ⊆ PN in terms of the Segre zeta
function of an ideal defining Z.

Concerning (2), we can describe a numerator for ζI(t) more explicitly in two situations,
presented in §6.1 and §6.2. We will illustrate (4) in §6.3 by computing the ranks of a
nonsingular subvariety Z ⊆ Pn in terms of its Segre zeta function, and we show how
this implies the well-known fact that the dual of a nonsingular complete intersection is a
hypersurface. In §6.4 we prove that, under certain hypotheses, the Segre zeta function of
a local complete intersection in projective space equals the Segre zeta function of a global
complete intersection.
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6.1. Linear systems. Assume Z is cut out by hypersurfaces from a fixed linear system,
i.e., the homogeneous generators fi of I ⊆ k[x0, . . . , xn] have the same degree d. A reduction
of I is then generated by ≤ n + 1 general linear combinations of the polynomials fi. (In
fact, n suffice in a neighborhood of Z, [Alu17a, §3]; and the (n+ 1)-st guarantees that the
linear combinations do not vanish elsewhere.) By Corollary 5.13,

ζI(t) =
A(t)

(1 + dt)n+1

for some polynomial A(t) with nonnegative coefficients. This argument recovers [Alu17b,
Theorem 4.3]. Assuming that k is algebraically closed, of characteristic 0, we obtained
in [Alu17b, (15)] the following description of A(t):

A(t) = a0(1 + dH)n + a1H(1 + dH)n−1 + · · ·+ anH
n + dn+1tn+1 ,

where ai = di −Ni, Ni = the number of points of intersection of i general hypersurfaces in
the linear system and n− i general hyperplanes ([Alu17b, Theorem 1.2]).

This observation can form the basis of an algorithm computing the Segre zeta function in
this case. However, the saturation needed to compute the numbers Ni is computationally
expensive; and it may be argued that one of the main reasons to compute Segre classes is
precisely in order to solve problems such as determining the numbers Ni, so this approach
swims against the stream. On the other hand, we do not know of any such concrete
interpretation for the numerator of a Segre zeta function in general.

6.2. Monomial ideals. Rather than giving the most comprehensive statement, we illus-
trate this case with an example. Let

I = (x7, x5y, x4y2, x3y4, x2y5, xy7) ⊆ k[x, y] ,

an ideal generated by monomials. The exponent vectors

(7, 0) , (5, 1) , (4, 2) , (3, 4) , (2, 5) , (1, 7)

determine a region in the plane, namely the complement in the positive quadrant of the
convex hull of the corresponding translates of the positive quadrant.

This region can be split as a union of triangles, including one ‘infinite’ triangle, as shown in
the picture. With each triangle T with vertices (0, 0), (a1, a2), (b1, b2) we associate a rational
function:

Vol(T ) t2

(1 + (a1 + a2)t)(1 + (b1 + b2)t)

where Vol(T ) = |a1b2 − a2b1| is the normalized volume of the triangle. With an infinite
triangle with vertices at (0, 0), (a1, a2), and the y direction, we associate the rational function

Vol(T ) t

(1 + (a1 + a2)t)

where now Vol(T ) = a1 is the normalized volume of the projection of the triangle to the
x-axis. Adding these contributions in the example shown above, we get

t

1 + 8t
+

9t2

(1 + 7t)(1 + 8t)
+

16t2

(1 + 6t)(1 + 7t)
+

6t2

(1 + 6t)2
+

7t2

(1 + 6t)(1 + 7t)
=
t+ 57t2 + 640t3 + 2016t4

(1 + 6t)2(1 + 7t)(1 + 8t)
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Claim 6.1.

ζI(t) =
t+ 57t2 + 640t3 + 2016t4

(1 + 6t)2(1 + 7t)(1 + 8t)
= t+ 30 t2 − 442 t3 + 4578 t4 − · · ·

This follows from [Alu16, Theorem 1.1] (see §2.2 in the same reference for a discussion
of the role of triangulations). The result of [Alu16] shows that the same strategy may
be used to compute the Segre zeta function of any ideal in k[x0, . . . , xn] that is monomial
with respect to a sequence of homogeneous polynomials satisfying a weak transversality
condition. We refer the reader to [Alu16] for more details.

This example illustrate several interesting points.

• The monomial x3y4 does not affect the computation, since the corresponding vertex
(3, 4) is in the convex hull of the quadrant translates determined by the other exponent
vectors. Thus it is clear from this computation that ζI(t) = ζI′(t), where

I ′ = (x7, x5y, x4y2, x2y5, xy7)

is obtained by omitting the generator x3y4. This is a manifestation of Proposition 5.12:
indeed, x3y4 is integral over I ′.

• In fact, I = I
′

[HS06, Proposition 1.4.6]; I ′ is a minimal reduction of I, and its degree
sequence is 6 ≤ 6 ≤ 7 ≤ 7 ≤ 8. The degree 7 appears twice in this sequence, yet −1/7 is
a simple pole of ζI(t). So this is an example in which QI(t) does not equal the polynomial
corresponding to the degree sequence of a homogeneous minimal reduction.

• The numerator t + 57t2 + 640t3 + 2016t4 has nonnegative coefficients as prescribed in
general by Theorem 5.8 (3). In this case, the nonnegativity is further explained by the fact
that this polynomial is a combination of factors of the denominator, which are products of
terms (1 + dit), with coefficients given by volumes of certain simplices.

It is tempting to guess that numerators of Segre zeta functions may always be expressed
in terms of volumes of certain polytopes in Euclidean space, in analogy with what we have
just verified in the monomial case.

6.3. Ranks of a nonsingular projective variety. Let ι : Z ( Pn be a nonsingular
projective variety. The projective conormal variety P(N∨ZPn) determines a class of dimension
n− 1 in Pn × Pn∨:

[P(N∨ZPn)] = δ0(Z)Hnh+ δ1(Z)Hn−1h2 + · · ·+ δm(Z)Hn−mhm+1

where H, resp., h are the pull-backs of the hyperplane classes from Pn, resp., Pn∨, and
m = dimZ. (It is easy to see that the other terms in the decomposition of [P(N∨ZPn)]
vanish.) The integers δi(Z) are the classical ranks, or polar degrees of Z, and have compelling
geometric interpretations. For example, δm(Z) is the degree of Z, while (in characteristic 0)
the first nonvanishing δi(Z) is the degree of the dual variety Z∨ of Z, and the dimension
of the dual is n − 1 − i for the corresponding index i. (See e.g., [Hol79, p. 152], [Hol01,
Theorem 1.1].) It follows that Z∨ is a hypersurface if and only if δ0(Z) 6= 0.

Proposition 6.2. Let Z ( Pn be a nonsingular subvariety of dimension m, and let I be a
homogeneous ideal defining Z in Pn. Then, with notation as above,

(13) ζI

(
− t

1 + t

)
= (−1)n−m

(
δm(Z)tn−m + · · ·+ δ0(Z)tn + higher order terms

)
.

Proof. The definition of ranks implies that

δi(Z) =

∫
H i · s(N∨ZPn(H)) ,
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see e.g., [Hol01, (1.4)] (but note the different convention for Segre classes used in this
reference). Therefore,

ι∗(s(N
∨
ZPn(H)) ∩ [Z]) =

(
δm(Z)Hn−m + · · ·+ δ0(Z)Hn

)
∩ [Pn]

On the other hand, since Z is nonsingular,

ι∗(s(NZPn) ∩ [Z]) = ι∗s(Z,Pn) = ζI(H) ∩ [Pn]

in A∗Pn. Taking a dual amounts to changing the sign of terms of every other codimension
in the corresponding Segre class, hence

ι∗(s(N
∨
ZPn) ∩ [Z]) = (−1)n−mζI(−H) ∩ [Pn] .

By [Alu94, Proposition 1],

ι∗(s(N
∨
ZPn ⊗ O(H)) ∩ [Z]) = ι∗(s(N

∨
ZPn) ∩ [Z])⊗Pn O(H) ,

and hence

ι∗(s(N
∨
ZPn) ∩ [Z])⊗Pn O(H) = (−1)n−mζI

(
− H

1 +H

)
∩ [Pn]

since the effect of the operation −⊗Pn O(H) on a class in Pn is to replace H by H/(1 +H).
The statement follows. �

Example 6.3. The twisted cubic C in P3 has degree 3 and admits an ideal I generated by
three quadrics. By Theorem 5.8 (3) (and Remark 5.4), this is the only information needed
to compute its Segre zeta function:

ζI(t) =
3t2 + 8t3

(1 + 2t)3
.

By Proposition 6.2, since

(−1)2ζI

(
− t

1 + t

)
=

3t2 − 5t3

(1− t)3
= 3t2 + 4t3 + 3t4 − 5t6 − · · ·

we see δ1 = 3, δ0 = 4, and we conclude that the dual of C is a quartic surface. y

Example 6.4. If Z is a complete intersection of hypersurfaces of degrees d1, . . . , dr, then

ζI(t) =
d1 · · · dr tr

(1 + d1t) · · · (1 + drt)

where I is the homogeneous ideal of Z (Example 5.5). By Proposition 6.2, if Z is nonsin-
gular, then the ranks of Z are given by the first several coefficients in

(−1)rζI

(
− t

1 + t

)
=

r∏
i=1

di
ti

1+ti

1− dit
1+ti

=

r∏
i=1

diti
1− (di − 1)t

=

r∏
i=1

di
∑
j≥0

(di − 1)jtj+1 .

If Z is not a linear subspace, i.e., some di is greater than 1, then all coefficients of ti, i ≥ r
in this series are positive. In particular, δ0 > 0. This verifies the well-known fact that the
dual of a nonsingular complete intersection is necessarily a hypersurface. y

The terms of higher order in ζI(t) or in the series at (13) depend on the specific ideal
chosen to cut out the subvariety, and reflect the scheme structure deposited on the vertices
of the corresponding cones in higher dimension. Since these cones are singular, the inter-
pretation of these higher-order coefficients as ‘ranks’ is no longer valid. However, ranks
may be defined for singular varieties, and are determined by the Chern-Mather class of
the variety (see [Pie78, Pie88, Alu]). It is therefore natural to expect that these higher
order terms record some ‘Chern-Mather’ information, and it would be interesting to obtain
precise results of this type.
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6.4. Local complete intersections of small codimension in projective space. The
Segre zeta function yields a transparent way to verify that, under suitable hypotheses, local
complete intersections in projective space are actually global complete intersections. Such
results are motivated by Hartshorne’s influential conjecture: If Z is a nonsingular subvariety
of codimension r of Pn, and if r < 1

3n, then Z is a complete intersection, [Har74]. To date,
Hartshorne’s conjecture is still open even for subvarieties of codimension 2 in Pn.

Proposition 6.5. Let ι : Z ↪→ Pn be a local complete intersection of codimension r, and
assume that the Chern class of the normal bundle of Z is the pull-back of a class from the
ambient projective space Pn. Assume Z is defined scheme theoretically by a homogeneous
ideal I generated by m ≤ dimZ + 1 forms. Then the Segre zeta function of Z is the Segre
zeta function of a complete intersection.

We will in fact prove that if Z = X1 ∩ · · · ∩ Xm, with Xi hypersurfaces and m ≤
dimZ+1, then (under the other hypotheses in the statement of the proposition) c(NZPn) =
ι∗
∏r
i=1 c(NXiPn) after a reordering of the hypersurfaces.

Proof. Let I = (F1, . . . , Fm), with Fi homogeneous, and let di = degFi. We let NZPn be
the normal bundle of Z in Pn; this is a bundle of rank r = codimZ Pn. If r = m, then Z
is a complete intersection; so we may assume r < m ≤ n − r + 1, and hence r ≤ n

2 . By
hypothesis,

c(NZPn) = ι∗(1 + c1H + · · ·+ crH
r)

for some integers c1, . . . , cr, where H is the hyperplane class in Pn. Since cr(NZPn)∩ [Z] =
Z · Z = ι∗((degZ)Hr), we have cr = degZ. The Segre class of Z in Pn is given by

s(Z,Pn) = c(NZPn)−1 ∩ [Z] ,

hence by the projection formula it pushes forward in Pn to

ι∗s(Z,Pn) = ι∗(ι
∗(1+c1H+· · ·+crHr)−1∩[Z]) = (1+c1H+· · ·+crHr)−1∩(degZ)Hr∩[Pn] .

On the other hand,
ι∗s(Z,Pn) = ζI(H) ∩ [Pn] ,

where ζI(H) is the Segre zeta function determined by I. By the main theorem,

ζI(H) =
P (H)

(1 + d1H) · · · (1 + dmH)

where P (H) = (degZ)Hr + · · ·+ d1 · · · dmHm. (The coefficient of Hr equals degZ because
Z is a local complete intersection.) Therefore, we have the equality of rational equivalence
classes in Pn:

(1 + c1H + · · ·+ crH
r)−1 ∩ (degZ)Hr ∩ [Pn] =

P (H)

(1 + d1H) · · · (1 + dmH)
∩ [Pn] ,

and hence

(degZ)(1 + d1H) · · · (1 + dmH)Hr ∩ [Pn]

= (1 + c1H + · · ·+ crH
r)((degZ)Hr + · · ·+ d1 · · · dmHm) ∩ [Pn]

in A∗Pn ∼= Z[H]/(Hn+1). The coefficients of H i, i ≤ n in these expressions must then agree,
and since n = r + dimZ ≥ r +m− 1 by hypothesis, it follows that

(degZ)(1 +d1H) · · · (1 +dmH)Hr = (1 + c1H+ · · ·+ crH
r)((degZ)Hr + · · ·+d1 · · · dmHm)

in Z[H]. (The coefficients of Hr+m agree since cr = degZ.) By unique factorization, we
can conclude that

(1 + c1H + · · ·+ crH
r) = (1 + d1H) · · · (1 + drH)

and
(degZ)Hr + · · ·+ d1 · · · dmHm = (degZ)(1 + dr+1H) · · · (1 + dmH)He



18 PAOLO ALUFFI

after reordering the factors (1+diH). Therefore, degZ = d1 · · · dr and the Chern class of the
normal bundle NZPn agrees with the Chern class of a complete intersection of hypersurfaces
of degrees d1, . . . , dr. The result follows. �

By what we verified in Example 6.4 we can draw the following consequence.

Corollary 6.6. Let Z ⊆ Pn be a nonsingular subvariety satisfying the hypotheses of Propo-
sition 6.5. Then the dual of Z is a hypersurface.

The hypothesis on the number of hypersurfaces cutting out Z forces the codimension
of Z to be ‘small’, since if Z is cut out by ≤ dimZ + 1 hypersurfaces, then necessarily
dimZ ≥ n− dimZ − 1, i.e., codimZ Pn ≤ 1

2(n+ 1). Thus Corollary 6.6 lends some support
to the ‘Duality defect conjecture’, stating that the dual of a nonsingular subvariety of low
codimension in projective space should be a hypersurface.

The hypothesis that the Chern class of the normal bundle of Z is a restriction from
the ambient space holds automatically if Z is nonsingular of codimension 2, by [Har74,
Theorem 2.2, Proposition 6.1]. Analogous results for smooth varieties in higher codimension,
subject to delicate inequalities, may be found in [Net88].

Under more stringent hypotheses, one can conclude that Z is actually a global complete
intersection. For example, consider the following condition on a scheme Z of codimension r,
cut out by m hypersurfaces:

(*) There exist hypersurfaces Xi, i = 1, . . . ,m, such that Z = X1∩ · · · ∩Xm

and that Z is a component of the intersection Xi1 ∩ · · · ∩Xir for all r-tuples
of distinct hypersurfaces Xi1 , . . . , Xir .

Proposition 6.7. Let Z ⊆ Pn be an irreducible and reduced local complete intersection
satisfying the hypotheses of Proposition 6.5 and condition (*) (for the same m). Then Z is
a complete intersection.

This follows from Proposition 6.5 and the refined Bézout theorem ([Ful84, Theorem 12.3]).
Condition (*) is verified if codimZ Pn = 2, or if the m hypersurfaces all have the same degree,
as can be verified easily.

Requirements such as condition (*) may be bypassed, again subject to certain inequalities
involving r,m, n (see [Fal81], [Net88]).
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[Fal81] Gerd Faltings. Ein Kriterium für vollständige Durchschnitte. Invent. Math., 62(3):393–401, 1981.
[Ful84] William Fulton. Intersection theory. Springer-Verlag, Berlin, 1984.
[Har74] Robin Hartshorne. Varieties of small codimension in projective space. Bull. Amer. Math. Soc.,

80:1017–1032, 1974.



THE SEGRE ZETA FUNCTION OF AN IDEAL 19

[Har17] Corey Harris. Computing Segre classes in arbitrary projective varieties. Journal of Symbolic Com-
putation, 82:26 – 37, 2017.

[Hel16] Martin Helmer. Algorithms to compute the topological Euler characteristic, Chern-Schwartz-
MacPherson class and Segre class of projective varieties. J. Symbolic Comput., 73:120–138, 2016.

[Hol79] Audun Holme. On the dual of a smooth variety. In Algebraic geometry (Proc. Summer Meeting,
Univ. Copenhagen, Copenhagen, 1978), volume 732 of Lecture Notes in Math., pages 144–156.
Springer, Berlin, 1979.

[Hol01] Audun Holme. A combinatorial proof of the duality defect conjecture in codimension 2. Discrete
Math., 241(1-3):363–378, 2001.

[HS06] Craig Huneke and Irena Swanson. Integral closure of ideals, rings, and modules, volume 336 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006.

[Net88] Nikita Netsvetaev. Projective varieties defined by small number of equations are complete intersec-
tions. In Topology and geometry—Rohlin Seminar, volume 1346 of Lecture Notes in Math., pages
433–453. Springer, Berlin, 1988.

[Pie78] Ragni Piene. Polar classes of singular varieties. Ann. Sci. École Norm. Sup. (4), 11(2):247–276,
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