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Abstract

We propose a novel second order in time, decoupled and uncondi-

tionally stable numerical scheme for solving the Cahn-Hilliard-Darcy

(CHD) system which models two-phase flow in porous medium or in

a Hele-Shaw cell. The scheme is based on the ideas of second order

convex-splitting for the Cahn-Hilliard equation and pressure-correction

for the Darcy equation. We show that the scheme is uniquely solvable,

unconditionally energy stable and mass-conservative. Ample numeri-

cal results are presented to gauge the efficiency and robustness of our

scheme.
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1 Introduction

For two-phase incompressible flows in porous medium or in a Hele-Shaw

cell, a popular diffuse interface model is the Cahn-Hilliard-Darcy system, see

for instance [27, 28, 42]. In this contribution, we consider solving numerically
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a slightly different version of the Cahn-Hilliard-Darcy (CHD) system

ReDa

χ

∂u

∂t
+ α(φ)u = −∇p− ε−1

We∗
φ∇µ, in Ω, (1)

∇ · u = 0, in Ω, (2)

χ
∂φ

∂t
+∇ · (φu) =

1

Pe
∇ · (m(φ)∇µ), in Ω, (3)

µ = φ3 − φ− ε2∆φ, in Ω, (4)

u|t=0 = u0, φ|t=0 = φ0, in Ω, (5)

u · n = 0, ∂nφ = 0, ∂nµ = 0, on ∂Ω. (6)

Here Ω is a domain in R2 or R3 with Lipschitz continuous boundary ∂Ω. n is

the unit outer normal of the boundary ∂Ω, and ∂n is the normal derivative.

In the system, Eqs. (1) and (2) are the Darcy system with time deriva-

tive retained for flow in porous medium [4, 33]. u is the nondimension-

alized seepage velocity and p is the non-dimensionalized modified pressure

[27]. The Eqs. (3) and (4) are the Cahn-Hilliard equations with φ being

the non-dimensionalized order parameter/phase field variable (such as the

concentration difference) and µ the dimensionless chemical potential. We

remark that the dimensionless form of the equations would be different in

the Hele-Shaw setting, cf. [27, 28] for details.

The parameters in the CHD system are given as follows. Re is the usual

Reynold’s number. Da is the Darcy number, a measure of the permeability

relative to the area of the domain. χ is the porosity. We∗ is the ratio of the

modified capillary number and Darcy number (equal to the modified Weber

number divided by Reynolds number and Darcy number). ε is the Cahn

number (a measure of the non-dimensionalized thickness of the transition

layer between the two phases). We note that the order parameter φ takes

values 1 and −1 in the bulk of each pure fluid and varies continuously across

the transition layer of thickness ε. Pe is the diffusional Peclet number mea-

suring the importance of advection over diffusion. m(φ) is the dimensionless

mobility. Finally, α(φ) is the reciprocal of the dimensionless hydraulic con-

ductivity α(φ) = η(φ)
Π with η(φ) the dimensionless viscosity coefficient and

Π the dimensionless permeability. In the CHD system (1)–(6), the densities

of the two fluids are assumed to be matched. In this manuscript, we also

treat the case where the densities of the binary fluids differ slightly so that

the Boussinesq approximation can be applied (cf. [28, 26]). Throughout, we

assume α(φ) and m(φ) are bounded below and above, i.e.,

0 < α1 ≤ α(φ) ≤ α2, 0 < m1 ≤ m(φ) ≤ m2. (7)
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Note that the Reynolds numberRe and Darcy numberDa are typically small

for flow in porous medium. Formally setting Da = 0 in Eq. (1), one would

recover the standard Cahn-Hilliard-Hele-Shaw/Darcy system that has been

studied by many authors [27, 28, 42, 10, 41, 40, 29, 23, 17]. The current

version of the CHD model is heuristically more accurate as the transient

effect of the flow has been taken into account, cf. [18, 5].

An important feature of the CHD system is that it satisfies an energy

law. Introduce the total energy

E = ReDa

∫
Ω

1

2χ
|u|2 dx+

1

We∗

∫
Ω
χ
[1
ε
F (φ) +

ε

2
|∇φ|2

]
dx. (8)

where the first integral represents the total kinetic energy, and the second

one is the total free energy of the system with a double-well potential F (φ) =
1
4(φ2 − 1)2. It is clear that the CHD system is energy dissipative

dE

dt
= − ε−1

We∗Pe

∫
Ω
m(φ)|∇µ|2 dx−

∫
Ω
α(φ)|u|2 dx ≤ 0. (9)

The aim of this work is to design an efficient, high order accurate nu-

merical algorithm for solving the CHD system which satisfies a modified

discrete energy law mimicking (9). We note that the CHD system is a high

order, strongly coupled, nonlinear system that describes physical phenom-

ena of steep spatial variation within a small transition region [2, 30, 31]. It

is essential for the numerical scheme to be unconditionally stable so that the

numerical stiffness can be handled with ease. There are many coupled, first

order accurate numerical schemes which satisfy discrete analogues of the

energy law (thus unconditionally stable) for solving diffuse interface models

such as the CHD system. See for instance, [42, 10, 15] for Cahn-Hilliard-

Darcy case, [6] for Cahn-Hilliard-Stokes case, and [9, 24, 36, 34, 11, 16] for

Cahn-Hilliard-Navier-Stokes system. In these schemes, typically a nonlinear

unconditionally stable solver (such as convex-splitting schemes [8]) is ap-

plied in solving the Cahn-Hilliard Eqs. (3) and (4). To ensure the overall

energy-law preservation, they all treat the velocity in the Eq. (3) implicitly.

Hence a large nonlinear coupled system has to be solved at every time step.

In recent years, decoupled first order accurate unconditionally stable

numerical algorithms have been proposed for solving various types of Cahn-

Hilliard fluid models. Notably are the ones proposed in [32, 37, 38] for solving

Cahn-Hilliard-Navier-Stokes phase field models. These numerical schemes

employ the idea of fractional step method in the update of velocity, in which

an intermediate velocity is defined only through the Korteweg forcing term
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ε−1

We∗φ∇µ. Thus upon substitution of the intermediate velocity in the Cahn-

Hilliard equation, the computation of the Cahn-Hilliard equation is then

decoupled from that of fluid equation. In general, nonlinear solvers are only

needed for solving the Cahn-Hilliard equation in these schemes. Therefore

these decoupled schemes are much more efficient than those coupled ones

while maintaining the energy stability. Based on the fractional step method

and pressure stabilization technique [14], a decoupled unconditionally stable

numerical scheme is recently proposed for solving the standard CHD system

[17]. However, the fractional stepping approach in these first order schemes

does not seem to have a direct generalization to higher order unconditionally

stable schemes, as the splitting error in these methods is only of first order

accuracy.

In this paper, we contribute a second order in time, decoupled, uncon-

ditionally stable numerical scheme for solving the CHD system (1)-(6). A

second order convex splitting method is utilized in the discretization of the

nonlinear Cahn-Hilliard equation. Similar convex splitting schemes have

been proposed for solving nonlinear equations with gradient flow structure,

cf. [22, 3, 35, 19]. Moreover, a second order pressure correction scheme is

applied for the time stepping of the Darcy Eqs. (1) and (2). The key point

here is that the intermediate velocity is defined through the entire Darcy

equation with explicit pressure which is simply an algebraic equation. Thus

one not only accomplishes decoupling once substituting the intermediate ve-

locity into Cahn-Hilliard equation but also maintains second order accuracy.

As in the case of Cahn-Hilliard-Navier-Stokes system [19], we show that our

scheme is uniquely solvable, mass-conservative and satisfies a modified en-

ergy law which implies its unconditional stability. We verify the second order

accuracy of our scheme via numerical experiments. Finally, we demonstrate

the superior performance of our numerical scheme in capturing interfacial

topological changes such as interface pinchoff, cf. [28]. The numerical re-

sults indicate that our scheme can accurately capture not only the pinchoff

of the initial interface but also the subsequent pinchoff of satellite drops,

which were produced earlier in [28] using explicit high order methods with

very small time-step size. To the best of our knowledge, our scheme is the

first decoupled (in order parameter and velocity), second order accurate,

unconditionally stable numerical algorithm for solving Cahn-Hilliard fluid

models.

There are very few second order schemes for solving phase field fluid

models. In [25], a strongly coupled, second-order accurate fully implicit

time discretization is proposed for solving the Cahn-Hilliard-Navier-Stokes
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system. In the scheme, a non-linear stabilization term is introduced in the

Navier-Stokes solver to ensure stability. We recently derived a second order

accurate unconditionally stable uniquely solvable numerical scheme for the

same Cahn-Hilliard-Navier-Stokes system [19]. However, we only achieved

the decoupling of velocity and pressure via pressure correction method. Aim-

ing for a complete decoupling of the system, a linear second order time

stepping scheme is designed in [7] for the numerical simulation of the Cahn-

Hilliard-Navier-Stokes system with variable density. The scheme is efficient

since it involves only constant matrices for all flow variables in the compu-

tation. But the scheme seems to be only conditionally stable. Recently, a

careful numerical study on the stability of various linearization techniques

for decoupling has been carried out in [1].

The rest of the paper is organized as follows. In section 2, we first give

the definition of weak formulation for the CHD system. We then motivate

our decoupling strategy via a first order scheme. Then we present the second

order in time numerical scheme and prove its unconditional stability. Some

numerical results are reported in section 3, in which we demonstrate the

second order convergence, stability and conservation of mass of our scheme.

Finally, the results of a numerical simulation on interface pinchoff are pre-

sented and compared with existing work. We conclude the paper with several

remarks in

2 The numerical scheme

2.1 The weak formulation

We formulate the CHD system (1)-(6) in a weak form. We introduce the

following Hilbert spaces

X = L2(Ω), M = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω
q = 0}, (10)

H = {v ∈ L2(Ω),∇ · v = 0,v · n|∂Ω = 0}, (11)

Y = H1(Ω). (12)

A weak formulation and solutions to the initial-boundary value problem

(1)–(6) can be defined similarly as in [10].

Definition 2.1. Let φ0 ∈ Y,u0 ∈ H. A quadruple {u, p, φ, µ} is called a
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weak solution of problem (1)-(6) if it satisfies

u ∈ L∞(0, T ; H), ut ∈ L
4
3 (0, T ; H′) (13)

φ ∈ L∞(0, T ;Y ) ∩ L4(0, T ;L∞(Ω)), ∂tφ ∈ L2(0, T ;Y ′), (14)

µ ∈ L2(0, T ;Y ), p ∈ L
4
3 (0, T ;M), (15)

and there hold, ∀{v, q, v, ϕ} ∈ X×M × Y × Y and t ∈ (0, T ) a.e.

ReDa

χ
〈∂tu,v〉+ (α(φ)u,v)− (p,∇ · v) +

ε−1

We∗
(φ∇µ,v) + (∇ · u, q) = 0,

(16)

χ〈∂tφ, v〉 −
(
φu,∇v

)
+

1

Pe
(M(φ)∇µ,∇v) = 0, (17)

(µ, ϕ)− (φ3 − φ, ϕ)− ε2(∇φ,∇ϕ) = 0, (18)

with initial condition u|t=0 = u0, φ|t=0 = φ0.

The regularity requirements in (13)–(15) are suggested by the energy law

Eq. (9). The existence of such a weak solution can be established similarly

as [10] (see also [41, 20, 29]).

2.2 Motivation of the decoupling approach

Let N be a positive integer and 0 = t0 < t1 < · · · < tN = T be a

uniform partition of [0, T ]. Denote by k := tn − tn−1, n = 1, 2 . . . N , the

time step-size.

We motivate the design of our second order decoupled scheme through a

first order decoupled scheme. The first order decoupled scheme itself is also

a new numerical method. Similar to the scheme in [42], a first order in time,

coupled and unconditionally stable numerical method for the CHD system

is given as follows

ReDa

χ

un+1 − un

k
+ α(φn)un+1 +∇pn+1 +

ε−1

We∗
φn∇µn+1 = 0, (19)

∇ · un+1 = 0, (20)

χ
φn+1 − φn

k
+∇ · (φnun+1)− 1

Pe
∇ ·
(
m(φn)∇µn+1

)
= 0, (21)

(φn+1)3 − φnh + ε2∆φn+1 − µn+1 = 0, (22)

with the boundary conditions

∂nφ
n+1|∂Ω = 0, ∂nµ

n+1|∂Ω = 0, un+1 · n|∂Ω = 0.
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We see that the Darcy equations (Eqs. (19) (20)) are coupled with the

Cahn-Hilliard system (Eqs. (21) (22)) via the advection velocity un+1 in

Eq. (21). Thanks to the simple structure of the Darcy equation, the velocity

un+1 can be expressed explicitly as a function of ∇pn+1 and µn+1. Thus

the coupling is essentially through the implicit discretization of the pressure

gradient. In order to decouple the computation of the Darcy system and

Cahn-Hilliard system, it is necessary to treat the pressure gradient explicitly

and define an intermediate velocity un+1. An extra correction step is then

needed to compensate the explicit treatment of the pressure gradient and

the resulting loss of divergence-free condition. This is the idea of pressure-

correction scheme commonly used for solving the incompressible Navier-

Stokes system, cf. [12] and references therein. In this spirit, a first order

accurate, decoupled and unconditionally stable numerical scheme is

ReDa

χ

un+1 − un

k
+ α(φn)un+1 +∇pn +

ε−1

We∗
φn∇µn+1 = 0, (23)

χ
φn+1 − φn

k
+∇ · (φnun+1)− 1

Pe
∇ ·
(
m(φn)∇µn+1

)
= 0, (24)

(φn+1)3 − φn + ε2∆φn+1 − µn+1 = 0, (25)

ReDa

χ

un+1 − un+1

k
+∇(pn+1 − pn) = 0, ∇ · un+1 = 0, (26)

with boundary conditions

∂nφ
n+1|∂Ω = 0, ∂nµ

n+1|∂Ω = 0, un+1 · n|∂Ω = 0. (27)

We remark how the boundary condition is imposed for the intermediate

velocity un+1 in the scheme (19)-(27). Notice that the boundary conditions

in Eq. (6) imply ∂np = 0 on the boundary ∂Ω. One can solve for the initial

pressure p0 via a pressure Poisson equation with the homogeneous Neumann

boundary condition. Eq. (23) together with the boundary conditions (27)

then imply un+1 · n|∂Ω = 0. Eq. (26) now yields ∇(pn+1 − pn) · n|∂Ω = 0

which gives ∇pn+1 ·n = 0. We note also that the intermediate velocity un+1

never appears in actual computation, as it can be simply solved for from

Eq. (23). To achieve second order temporal accuracy, one needs to apply a

second order pressure correction scheme for the Darcy equation. Following

[19], this leads to a second order decoupled unconditionally stable numerical

algorithm for solving the CHD system.

2.3 The second order scheme

Here we present our second order in time numerical scheme for solving

the CHD system. For convenience, the following notations will be assumed
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throughout the paper,

φn+ 1
2 =

1

2
(φn+1 + φn), φ̃n+ 1

2 =
3φn − φn−1

2
, (28a)

un+ 1
2 =

un+1 + un

2
, µn+ 1

2 =
1

2
(µn+1 + µn). (28b)

The semi-discrete (discrete in time, continuous in space) numerical scheme

takes the form

ReDa

χ

un+1 − un

k
+ α(φ̃n+ 1

2 )un+ 1
2 +∇pn +

ε−1

We∗
φ̃n+ 1

2∇µn+ 1
2 = 0, (29)

χ
φn+1 − φn

k
+∇ · (φ̃n+ 1

2 un+ 1
2 )− 1

Pe
∇ ·
(
m(φ̃n+ 1

2 )∇µn+ 1
2
)

= 0, (30)

1

2

(
(φn+1)2 + (φn)2

)
φn+ 1

2 − φ̃n+ 1
2 + ε2∆φn+ 1

2 − µn+ 1
2 = 0, (31)

ReDa

χ

un+1 − un+1

k
+

1

2
∇(pn+1 − pn) = 0, ∇ · un+1 = 0, (32)

with boundary conditions

∂nφ
n+1|∂Ω = 0, ∂nµ

n+1|∂Ω = 0, un+1 · n|∂Ω = 0. (33)

Overall, the scheme can be viewed as a second order Crank-Nicolson time

discretization combined with the second order Adams-Bashforth extrapola-

tion. A similar scheme has been proposed to solve the Cahn-Hilliard-Navier-

Stokes system [19]. As motivated in the previous subsection, Eqs. (29) and

(32) are derived from a second order pressure correction scheme due to van

Kan [39] applied to the Darcy system. The splitting error is formally of

second order, as Eq. (32) can be interpreted as

un+1 = un+1 − k χ

2ReDa
∇(pn+1 − pn) ≈ un+1 − k2 χ

2ReDa
∇pt|t=t

n+1
2

.

Adding Eqs. (29) and (32) together gives

ReDa

χ

un+1 − un

k
+ α(φ̃n+ 1

2 )un+ 1
2 +∇p

n+1 + pn

2
+

ε−1

We∗
φ̃n+ 1

2∇µn+ 1
2 = 0,

∇ · un+1 = 0,

which is a second order approximation of the Darcy system.

The first two terms in Eq. (31), i.e. 1
2

(
(φn+1)2 + (φn)2

)
φn+ 1

2 − φ̃n+ 1
2 ,

comprise a second order approximation of φ3−φ. They are derived according

to the idea of convex-splitting of the corresponding energy density function
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F (φ) = 1
4(φ2− 1)2. Note that φ3−φ = F ′(φ). We write F (φ) as the sum of

a convex function and a concave function

F (φ) = Fv(φ) + Fc(φ) :=
1

4
φ4 +

(
− 1

2
φ2 +

1

4

)
,

and accordingly F ′(φ) = F ′v(φ) + F ′c(φ). We then treat the convex part

implicitly (i.e., F ′v(φ
k+ 1

2 )) and the concave part explicitly (i.e. F ′c(φ̃
n+ 1

2 )).

We approximate F ′v(φ
k+ 1

2 ) further by the Crank-Nicolson scheme

F ′v(φ
k+ 1

2 ) ≈ fv(φ
k+1)− fv(φk)
φk+1 − φk

=
1

2
[(φk+1)2 + (φk)2]φk+ 1

2 .

First order convex-splitting schemes are well known for solving equations

with gradient flow structure, cf. [8, 42] and references therein. Recently,

second order convex-splitting schemes have been proposed in various con-

texts [22, 3, 35, 19].

Finally, we comment on how to implement the scheme (29)-(33). We

notice that un+ 1
2 or the equivalent un+1 can be found explicitly from Eq.

(29). After substitution into Eqs. (30) and (32), we see that the intermediate

velocity never appears in the real computation. Indeed, the system (29)-(33)

can be effectively written as

χ
φn+1 − φn

k
+∇ ·

(
φ̃n+ 1

2 [β1(φ̃n+ 1
2 )un − β2(φ̃n+ 1

2 )∇pn]
)
−∇ ·

(
m(φ̃n+ 1

2 )∇µn+ 1
2
)

= 0,

(34)

1

2

(
(φn+1)2 + (φn)2

)
φn+ 1

2 − φ̃n+ 1
2 + ε2∆φn+ 1

2 − µn+ 1
2 = 0, (35)

ReDa

χk

[
un+1 −

(
β1(φ̃n+ 1

2 )− α(φ̃n+ 1
2 )β2(φ̃n+ 1

2 )
)
un + 2β2(φ̃n+ 1

2 )
(
∇pn +

ε−1

We∗
φ̃n+ 1

2∇µn+ 1
2
)]

(36)

+
1

2
∇(pn+1 − pn) = 0,

∇ · un+1 = 0, (37)

with boundary conditions

∂nφ
n+1|∂Ω = 0, ∂nµ

n+1|∂Ω = 0, un+1 · n|∂Ω = 0. (38)

Here the functions β1, β2 and m are defined as follows

β1(φ̃n+ 1
2 ) =

2ReDa

2ReDa+ α(φ̃n+ 1
2 )kχ

,

β2(φ̃n+ 1
2 ) =

kχ

2ReDa+ α(φ̃n+ 1
2 )kχ

,

m(φ̃n+ 1
2 ) =

m(φ̃n+ 1
2 )

Pe
+ β2

ε−1

We∗
(φ̃n+ 1

2 )2.
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Hence the Cahn-Hilliard system is completely decoupled from the Darcy

system, which yields a very efficient solver for the CHD equations. We note

that the Eq. (36) can be written as, after some lengthy algebra

ReDa

χ

un+1 − un

k
+ α(φ̃n+ 1

2 )
un+1 + un

2
+

1

2
∇(pn+1 + pn) (39)

+
ε−1

We∗
φ̃n+ 1

2∇µn+ 1
2 +

α(φ̃n+ 1
2 )χ

4ReDa
k∇(pn+1 − pn) = 0.

It is clear that Eq. (39) is a second order in time approximation of the PDE

(1). In the next subsection, we show that the scheme is unconditionally

stable.

2.4 Stability of the second order scheme

Following [19], we show that the second order scheme (29)-(33) satisfies

a modified energy law and is unconditionally stable. We define a discrete

energy functional at time level tn as

En := ReDa

∫
Ω

1

2χ
|un|2 dx+

1

We∗

∫
Ω
χ
[1
ε
F (φn) +

ε

2
|∇φn|2

]
dx.

For the scheme (29)-(33), the following theorem is valid.

Theorem 2.1. Given φn,un, pn such that

∂nφ
n|∂Ω = 0, ∂np

n|∂Ω = 0, un · n|∂Ω = 0, (40)

there exists a unique solution {φn+1, µn+ 1
2 ,un+1, pn+1} to the scheme (29)–

(33) at each time step. In addition, the scheme is mass-conservative in the

sense ∫
Ω
φn+1 =

∫
Ω
φn, n = 0, 1, · · · , N − 1. (41)

Moreover, the solution satisfies a modified energy law{
En+1 +

ε−1

4We∗
||φn+1 − φn||2L2 +

χ

ReDa

k2

8
||∇pn+1||2L2

}
(42)

−
{
En +

ε−1

4We∗
||φn − φn−1||2L2 +

χ

ReDa

k2

8
||∇pn||2L2

}
≤ −k ε−1

PeWe∗
||
√
m∇µn+ 1

2 ||2L2 − k||
√
αun+ 1

2 ||2L2 −
χε−1

4We∗
||φn+1 − 2φn + φn−1||2L2 .

Thus, the scheme is unconditionally energy stable.
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Proof. The unique solvability of Eqs. (29)–(33) (or equivalent (34)–(38))

can be established easily thanks to the decoupling and the convex-splitting

treatment of the chemical potential equation. Here we omit the details of

the proof but point to the appropriate references. Given φ̃n+ 1
2 ,un and pn,

Eqs. (34) and (35) amount to a second-order convex-splitting discretization

of the Cahn-Hilliard equation with known source terms. Thus the unique

solvability of the Cahn-Hilliard part follows from a variational argument

by exploiting the convexity in the design and the gradient flow structure

of the system, cf. [34] for a similar argument for the Allen-Cahn case (see

also [24, 42]). Once µn+ 1
2 is known, Eqs. (36)–(37) are the linear Darcy

system with forcing terms. We note that the unique solvability can also be

established via a monotonicity argument, cf. [19, 20] for details.

For the mass-conservation (41), one simply integrates Eq. (34), performs

integration by parts and utilizes the boundary conditions (38) and (40).

We now show that the scheme is unconditionally stable. Notice that the

boundary conditions (38) and (40) imply un+ 1
2 · n

∣∣
∂Ω

= 0. One first takes

the L2 inner product of Eq. (29) with kµk+ 1
2 to obtain

χ
(
φn+1 − φn, µn+ 1

2
)

= − k

Pe
||
√
m∇µn+ 1

2 ||2L2 + k
(
φ̃n+ 1

2 un+ 1
2 ,∇µn+ 1

2
)
.

(43)

Next, multiplying Eq. (30) by (φn+1−φn), performing integration by parts

and using the the following identity(
φ̃n+ 1

2 , φn+1 − φn
)

=
1

2

(
3φn − φn−1, φn+1 − φn

)
=

1

2

(
φn+1 + φn, φn+1 − φn

)
− 1

2

(
φn+1 − 2φn + φn−1, φn+1 − φn

)
=

1

2

(
||φn+1||2L2 − ||φn||2L2

)
− 1

4
{||φn+1 − φn||2L2 − ||φn − φn−1||2L2

+||φn+1 − 2φn + φn−1||2L2},

one deduces

−
(
φn+1 − φn, µn+ 1

2
)

+
(
F (φn+1)− F (φn), 1

)
+
ε2

2
(||∇φn+1||2L2 − ||∇φn||2L2)

+
1

4
{||φn+1 − φn||2L2 − ||φn − φn−1||2L2 + ||φn+1 − 2φn + φn−1||2L2} = 0,

(44)

where one has utilized the definition of F (φ) = 1
4(φ2−1)2. Multiplying (44)

11



with χ and adding the result to Eq. (43) gives

χ
{(
F (φn+1)− F (φn), 1

)
+
ε2

2
(||∇φn+1||2L2 − ||∇φn||2L2) +

1

4
(||φn+1 − φn||2L2 − ||φn − φn−1||2L2)

}
(45)

= −χ
4
||φn+1 − 2φn + φn−1||2L2 −

k

Pe
||
√
m∇µn+ 1

2 ||2L2 + k
(
φ̃n+ 1

2 un+ 1
2 ,∇µn+ 1

2
)
.

Next, taking the L2 inner product of Eq. (29) with kun+ 1
2 , one obtains

ReDa

2χ
(||un+1||2L2 − ||un||2L2) + k||

√
αun+ 1

2 ||2L2 = −k
(
∇pn,un+ 1

2
)
− k ε

−1

We∗
(
φ̃n+ 1

2∇µn+ 1
2 ,un+ 1

2
)
.

(46)

Testing the first equation in (32) by un+1k and performing integration by

parts yield

ReDa

2χ
(||un+1||2L2 − ||un+1||2L2 + ||un+1 − un+1||2L2) = 0, (47)

where one has utilized explicitly the divergence-free condition(
∇(pn+1 − pn),un+1

)
= −

(
(pn+1 − pn),∇ · un+1

)
= 0.

Next, we rewrite the projection step Eq. (32) as

ReDa

χ

un+1 + un − 2un+ 1
2

k
+

1

2
∇(pn+1 − pn) = 0.

Testing the above equation with k2

2 ∇p
n, one arrives at

k2

8

{
||∇pn+1||2L2 − ||∇pn||2L2 − ||∇(pn+1 − pn)||2L2

}
= k

ReDa

χ

(
∇pn,un+ 1

2
)
.

(48)

On the other hand, one obtains, by testing Eq. (32) with ∇(pn+1− pn) and

applying the Cauchy-Schwarz inequality,

k2

8
||∇(pn+1 − pn)||2L2 ≤

(ReDa
χ

)2 1

2
||un+1 − un+1||2L2 .

Eq. (48) then becomes

χ

ReDa

k2

8

{
||∇pn+1||2L2 − ||∇pn||2L2

}
− ReDa

2χ
||un+1 − un+1||2L2 ≤ k

(
∇pn,un+ 1

2
)
.

(49)

12



Now summing up Eqs. (46), (47) and (49), one obtains

ReDa

2χ
(||un+1||2L2 − ||un||2L2) +

χ

ReDa

k2

8

{
||∇pn+1||2L2 − ||∇pn||2L2

}
(50)

≤ −k||
√
αun+ 1

2 ||2L2 − k
ε−1

We∗
(
φ̃n+ 1

2∇µn+ 1
2 ,un+ 1

2
)
.

The energy law (42) then follows from summing up the multiple of Eq.

(45) by ε−1

We∗ and Eq. (50).

The scheme (29)–(33) (or equivalent (34)–(38)) can be further discretized

in space by common spatial discretization methods such as spectral meth-

ods, finite element or finite difference methods. The unconditional stability

of the fully discrete numerical schemes are expected to hold as well. In

the appendix, we give a fully discrete formulation based on the finite ele-

ment method which inherits the same unconditional stability from the semi-

discrete scheme, as long as one chooses appropriate finite element spaces

for velocity and pressure. We defer the error analysis of such fully discrete

schemes to a future work.

3 Numerical Experiments

In this section, we report some numerical results to show the accuracy

and efficiency of the numerical scheme (29)-(33). The scheme is further

discretized in space by finite element method. We solve the nonlinear equa-

tions (34)-(35) by the classical Newton’s method. All the numerical tests

are performed using the free software FreeFem++ [21].

3.1 Convergence, stability and conservation of mass

As a first numerical test, we verify that the scheme (29)-(33) is second

order accurate in time. For simplicity, all the parameters in the CHD system

(1)–(4) are assumed to be unity and the domain is the unit square Ω =

[0, 1]×[0, 1]. We proceed by the method of manufactured solutions, assuming

forcing terms are present in Eqns. (1), (3) and (4) such that the exact

13



solutions of the system are

u =
(
− sin2(πx) sin(2πy) cos(t), sin2(πy) sin(2πx) cos(t)

)
,

p = cos(t)(xy − 1

4
),

φ = cos(t) cos(πx) cos(πy),

µ = sin(t)cos(πx) cos(πy).

We use P2–P2 finite elements for φn+1
h and µn+1

h , and Taylor-Hood P2–

P1 pair for un+1
h and pn+1

h . A linear relation between the spatial resolution

and temporal resolution is assumed such that the temporal error is dominant

in the following calculation. We successively decrease the time step-size k

and compute the error measured in L2 norm at a final time T = 0.5. An

error estimate of the form O(k2) is anticipated for all the variables, i.e.,

u, φ, µ and p. The log-log plot of the errors is shown in Fig.1, which clearly

demonstrates the second order convergence in time for all variables.

Figure 1: Log-Log plot of the error in L2 norm for u, p, φ and µ as a function

of time step k. The solid green line is the reference line e = 0.01k2. The

final time is T = 0.5. h = 1.4k. P2–P2 is used for φ and µ, P2–P1 is used

for u and p. The other parameters are set to be unity.

Next, we demonstrate the unconditional stability of the scheme (29)-(33)

via the numerical simulation of the spinodal decomposition of a binary fluid.
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The set-up of the test is as follows: a well-mixed binary fluid is initially at

rest, i.e. u0 = 0 and φ0 = φ̄+r(x, y) with an average composition φ̄ = −0.05

and random r ∈ [−0.05, 0.05]; As the average composition of the phase

field variable falls into the so-called unstable spinodal region, the different

fluid components quickly separate from each other; Afterwards, the slow

process of coarsening dominates. The whole process is energy-dissipative.

The stability of the numerical scheme can be examined through the evolution

of the discrete energy.

The parameters are ε = 0.01, We∗ = 100, Pe = 100, M(φ) =
√

(1− φ2)2 + ε2,

χ = 0.5, ReDa
χ = 0.1, α(φ) = 2. We take k = 0.1 and h =

√
2

100 . The discrete

energy functional at time level tn is defined as

En := ReDa

∫
Ω

1

2χ
|unh|2 dx+

1

We∗

∫
Ω
χ
[1
ε
F (φnh) +

ε

2
|∇φnh|2

]
dx.

The evolution of this energy functional is shown in Fig. 2.

Figure 2: Evolution of the discrete energy in the test of spinodal decompo-

sition. k = 0.1 and h =
√

2
100 .

In addition, we show the time evolution of the discrete mass
∫

Ω φ
n
hdx

associated with numerical simulation of spinodal decomposition in Fig. 3.

Note that
∫

Ω φ0dx = −0.05. After projection into the finite element space

P1, we have
∫

Ω φ
0
hdx = −0.0499. Fig. 3 shows that the exact value is

preserved throughout the numerical simulation.
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Figure 3: Time evolution of the discrete mass
∫

Ω φ
n
hdx in the test of spinodal

decomposition. k = 0.1 and h =
√

2
100 .

3.2 Interface pinchoff

One of the main advantages of the diffuse interface models in compari-

son to the sharp interface models is that they allow for topological changes

of the diffuse interface such as interface pinchoff or reconnection. In this

numerical experiment, we consider a situation where a light fluid layer is

sandwiched by two heavy fluid layers, cf. the diagram 4. Due to boyancy,

the lighter fluids rise and the heavier fluid layer on the top eventually pene-

trates the lighter fluid layer, causing the pinchoff of the fluid interface. This

numerical example is first considered by Lee, Lowengrub and Goodman [28]

in a Hele-Shaw setting. They investigate carefully the pinchoff event and

effects of different parameter values. To obtain accurate approximations,

they employ a third order accurate, equilibrium preserving version of a lin-

ear propagator in time, and the Fourier pseudospectral methods in space by

assuming periodic boundary conditions. See [28] for details. Here we show

that the numerical results generated by our numerical algorithm agree well

with those reported in [28].

We consider a square domain Ω = [0, 2π]× [0, 2π]. The density difference

is assumed to be small so that the Boussinesq approximation can be applied

(so-called BHSCH system in [28]). More precisely, the background density is

chosen as unity and the influence of the density difference is only appreciable

in a buoyancy term −λ(φ−φ̄)ŷ on the right-hand side of the Darcy equation

(1). Here ŷ is the unit vector pointing upwards (ŷ = (0, 1)), φ̄ is the spatially

16



Figure 4: The initial configuration of the binary fluids in the experiment

of interface pinchoff. ε = 0.05. The dash lines are the zero contour of the

interfaces.

averaged order parameter (a constant), and λ is a dimensionless parameter

defined as λ = G(ρ1−ρ2)
2

Π0
η0U0

with G the gravitational constant, Π0 the scale

of permeability, η0 the scale of viscosity, U0 the scale of velocity (cf. Eq.

(2.16) [26]). We recall the definition of the Bond number B and the Atwood

number A, cf. [28],

B =
G(ρ1 − ρ2)

τ
, A =

η1 − η2

η1 + η2
, (51)

where τ is the surface tension parameter. The initial condition for the phase

field variable is defined as

φ0 = tanh
(y − y1(x)√

2ε

)
tanh

(y − y2(x)√
2ε

)
,

with

y1(x) = π − (0.5 + 0.1 cos(x)), y2(x) = π + (0.5 + 0.1 cos(x)).

See Fig. 4 for an illustration of the initial order parameter. In our sim-

ulation, boundary conditions (6) are imposed. We remark that periodic

boundary conditions are used in [28] by superimposing more fluid layers.

In the simulation, we take ε = 0.05, Pe = 20, We∗ = 4, m(φ) = 1.0, ,

χ = 0.5 and ReDa
χ = 0.01. We will vary λ and α(φ) in different situations,

which will give different values for the Bond number B and Atwood number

A defined in (51) [28]. The temporal resolution is fixed at k = 0.01. We

note that smaller time stepsize k = 10−3 has been used in [28] and [17]. In
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space, P2–P1 finite elements are used for u and p, and P2–P2 finite elements

are used for φ and µ. To resolve the smallness of the diffuse interface,

adaptive mesh refinement is carried out every a few time steps according to

the Hessian of the order parameter such that approximately 10 grid cells are

located across the diffuse interface, cf. [21].

In Fig. 5, we show the evolution of the zero contours of the order param-

eter φ = 0.0 under different values of λ (giving different Bond numbers B

in [28]). The left-most column shows the evolution sequence with λ = 1.18

(|B| ≈ 10), the middle column is for λ = 1.89 (|B| ≈ 16), and the right-most

column corresponds to λ = 2.36 (|B| ≈ 20). The viscosity of the two fluids

is assumed to be matched α(φ) = 1.5. All other parameters are the same for

three simulations. As observed, increasing λ (the buoyancy strength) speeds

up the evolution and increases the number of satellite drops after pinchoff.

Only one drop is produced when λ = 1.18 in the first column, while two and

three satellite drops are produced via a secondary interface pinchoff when

λ = 1.89 and λ = 2.36 respectively. Our results are consistent with those

reported in [28] (Fig. 16) which were produced using explicit high order

numerical methods with very small time-step size. We also remark that

the satellite drops after initial pinchoff are not captured by those first order

schemes, see for instance [17].

We also consider the cases where the viscosities of the two fluids are

different. The mismatched viscosity can introduce an extra instability with

the more viscous fluid displaced by less viscous fluid. For simplicity, we

choose a linear viscosity function α(φ) = η1
1+φ

2 + η2
1−φ

2 such that the fluid

in the middle layer has viscosity η2 and the rest of the fluid has viscosity η1.

Fig. 6 shows the evolution of the zero contour of the order parameter where

the viscosity configuration may (right column) or may not (left column)

induce the extra instability. In the left column, η1 = 1.5, η2 = 6.0. Thus

there is no instability due to viscosity variation for the upper interface. One

observes that there is only one pinchoff event with no satellite drops. In the

right column, η1 = 6.0, η2 = 1.5 which induces an extra instability in the

upper fluid interface. One sees that there is a subsequent pinchoff with two

satellite drops produced. This phenomenon is also observed in Fig. 18 of

[28].

4 Conclusion

In this paper, we propose a second order in time, fully decoupled, un-

conditionally stable and mass-conservative numerical scheme for solving the
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Figure 5: Zero contour plots of the order parameter with matched viscosity.

Left-most column, λ = 1.18; Center column, λ = 1.89; Right-most column

λ = 2.36. ε = 0.05, α(φ) = 1.5, k = 0.01.

Cahn-Hilliard-Darcy system modelling two-phase incompressible flows in

porous medium or a Hele-Shaw cell. The Cahn-Hilliard equation are solved

by a second order convex splitting scheme. A second order pressure correc-

tion type method is applied to solve the Darcy equation, which allows for the

decoupling of the Cahn-Hilliard solver and the update of the Darcy equa-

tion upon substitution of the intermediate velocity, thanks to the algebraic

simplicity of the Darcy equation. The scheme is shown to satisfy a modi-

fied energy law and is unconditionally energy stable. We show numerically

the second order convergence as well as the unconditional stability of the
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scheme. Finally, we demonstrate the superior performance of our numerical

scheme on the simulation of interface pinchoff. The numerical results show

that our scheme can accurately capture not only the pinchoff of the initial

interface but also the subsequent pinchoff of satellite drops, which agree well

with those in [28] created by explicit high order methods with very small

time-step size.

High order, unconditionally stable, decoupled numerical schemes are

very desirable for solving diffuse interface models. The key to achieve the

decoupling in our scheme is that the intermediate velocity employed in the

Cahn-Hilliard equation is governed by a simple algebraic equation. We

remark that this simple structure is not present in the scheme for Cahn-

Hilliard-Navier-Stokes case, cf. [19]. The generalization of our methodology

to other phase field models such as Cahn-Hilliard-Navier-Stokes equation of

matched or mismatched densities requires further investigation.
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Appendix

In this appendix, we give a finite element formulation of the scheme

(29)–(33), equivalently, (34)–(38), and prove its unconditional stability. Let

Th be a regular, quasi-uniform triangulation of the domain Ω in 2D with

mesh size h. We introduce a continuous finite element approximation Yh of

the Hilbert space H1(Ω) based on Th. For instance, Yh can be

Yh = {vh ∈ C(Ω̄)
∣∣vh|K ∈ Pr(K),∀K ∈ Th},

where Pr(K) is the space of polynomials of degree less than or equal to r

on the triangle K. We define another space Mh := Yh ∩ L2
0(Ω) where L2

0

is a subspace of L2 whose elements have zero mean. Finally, we introduce

a vector finite element space Xh which is an approximation of the space

X = L2(Ω). We assume that the spaces Mh and Xh are compatible in the

sense that ∇Yh ⊂ Xh. For instance, if the space Yh consists of piece-wise

continuous polynomials of order less than or equal to r, the vector space Xh
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can be chosen as the space of piece-wise polynomials of order less than or

equal to r − 1 (discontinuous).

Then a finite element formulation of the scheme (34)–(38) reads: find

φn+1
h ∈ Yh, µ

n+ 1
2

h ∈ Yh, pn+1
h ∈Mh and un+1

h ∈ Xh such that ∀(vh, ϕh, qh,vh) ∈
Yh × Yh × Yh ×Xh there hold

χ
(φn+1

h − φnh
k

, vh

)
−
(
φ̃
n+ 1

2
h [β1(φ̃

n+ 1
2

h )unh − β2(φ̃
n+ 1

2
h )∇pnh],∇vh

)
+
(
m(φ̃

n+ 1
2

h )∇µn+ 1
2

h ,∇vh
)

= 0,

(52)

1

2

([
(φn+1
h )2 + (φnh)2

]
φ
n+ 1

2
h , ϕh)−

(
φ̃
n+ 1

2
h + µ

n+ 1
2

h , ϕh

)
− ε2

(
∇φn+ 1

2
h ,∇ϕh

)
= 0,

(53)(1

2
∇(pn+1

h − pnh),∇qh
)

=
ReDa

χk

((
β1(φ̃

n+ 1
2

h )− α(φ̃
n+ 1

2
h )β2(φ̃

n+ 1
2

h )
)
unh (54)

− 2β2(φ̃
n+ 1

2
h )

(
∇pnh +

ε−1

We∗
φ̃
n+ 1

2
h ∇µn+ 1

2
h

)
,∇qh

)
,(ReDa

χk
un+1
h +

1

2
∇(pn+1

h − pnh),vh

)
=
ReDa

χk

((
β1(φ̃

n+ 1
2

h )− α(φ̃
n+ 1

2
h )β2(φ̃

n+ 1
2

h )
)
unh

(55)

− 2β2(φ̃
n+ 1

2
h )

(
∇pnh +

ε−1

We∗
φ̃
n+ 1

2
h ∇µn+ 1

2
h

)
,vh

)
.

Here one may recall the definitions of β1, β2 and m

β1(φ̃
n+ 1

2
h ) =

2ReDa

2ReDa+ α(φ̃
n+ 1

2
h )kχ

,

β2(φ̃
n+ 1

2
h ) =

kχ

2ReDa+ α(φ̃
n+ 1

2
h )kχ

,

m(φ̃
n+ 1

2
h ) =

m(φ̃
n+ 1

2
h )

Pe
+ β2(φ̃

n+ 1
2

h )
ε−1

We∗
(φ̃
n+ 1

2
h )2.

Eqs. (54) and (55) amount to solving the Darcy equation (36)-(37) using

pressure as the primary variable. This formulation is natural for flow in

porous media as boundary conditions are usually only available for pressure

(hydraulic head) in these applications. One can certainly solve the Darcy

equation in the primitive velocity-pressure formulation. These methods have

been studied intensively in the context of the classical pressure-correction

algorithm for Navier-Stokes equations, cf. [13] and references therein.

One can establish the following proposition.
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Proposition 4.1. The fully discrete scheme (52)-(55) is unconditionally

stable and satisfies a modified energy law{
En+1
h +

ε−1

4We∗
||φn+1

h − φnh||2L2 +
χ

ReDa

k2

8
||∇pn+1

h ||2L2

}
(56)

−
{
Enh +

ε−1

4We∗
||φnh − φn−1

h ||2L2 +
χ

ReDa

k2

8
||∇pnh||2L2

}
≤ −k ε−1

PeWe∗
||
√
m∇µn+ 1

2
h ||2L2 − k||

√
αu

n+ 1
2

h ||2L2 −
χε−1

4We∗
||φn+1

h − 2φnh + φn−1
h ||2L2 ,

where u
n+ 1

2
h is an auxiliary L2 function defined as

u
n+ 1

2
h := β1(φ̃

n+ 1
2

h )unh − β2(φ̃
n+ 1

2
h )∇pnh − β2(φ̃

n+ 1
2

h )
ε−1

We∗
φ̃
n+ 1

2
h ∇µn+ 1

2
h . (57)

Proof. We define another auxiliary L2 function un+1
h as

un+1
h := 2u

n+ 1
2

h − unh.

It follows from the definition of β1, β2 and u
n+ 1

2
h that

un+1
h =

(
β1(φ̃

n+ 1
2

h )− α(φ̃
n+ 1

2
h )β2(φ̃

n+ 1
2

h )
)
unh − 2β2(φ̃

n+ 1
2

h )
(
∇pnh +

ε−1

We∗
φ̃
n+ 1

2
h ∇µn+ 1

2
h

)
.

(58)

Moreover, one has that

ReDa

χ

un+1 − unh
k

+ α(φ̃
n+ 1

2
h )u

n+ 1
2

h +∇pnh +
ε−1

We∗
φ̃
n+ 1

2
h ∇µn+ 1

2
h = 0. (59)

Now by using the auxiliary functions un+1
h ,u

n+ 1
2

h , one can equivalently

express the Eqs. (52)-(55) as

χ
(φn+1

h − φnh
k

, vh

)
−
(
φ̃
n+ 1

2
h u

n+ 1
2

h ,∇vh
)

+
1

Pe

(
m(φ̃

n+ 1
2

h )∇µn+ 1
2

h ,∇vh
)

= 0,

(60)

1

2

([
(φn+1
h )2 + (φnh)2

]
φ
n+ 1

2
h , ϕh)−

(
φ̃
n+ 1

2
h + µ

n+ 1
2

h , ϕh

)
− ε2

(
∇φn+ 1

2
h ,∇ϕh

)
= 0,

(61)(1

2
∇(pn+1

h − pnh)− ReDa

χk
un+1
h ,∇qh

)
= 0, (62)(ReDa

χ

un+1
h − un+1

h

k
+

1

2
∇(pn+1

h − pnh),vh

)
= 0. (63)
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Now one recognizes that the Eqs. (59)-(60) are the finite element formu-

lation for the semi-discrete scheme (29)-(32). By assumption ∇Yh ⊂ Xh, it

follows from Eqs. (62) and (63) that(
un+1
h ,∇qh

)
= 0, ∀qh ∈ Yh. (64)

In addition, we are allowed to take the test function vh = k2

2 ∇p
n
h in Eq.

(63), thanks to the compatibility condition ∇Yh ⊂ Xh. Hence the proof of

the modified energy law (56) is exactly the same as the proof of the energy

law (42) in Theorem 2.1.
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η1 = 1.5, η2 = 6 η1 = 6, η2 = 1.5

Figure 6: Zero contour plots of the order parameter with mismatched vis-

cosity. The viscosity in the middle layer is η2, and the viscosity of the rest

fluid is η1. Left column, η1 = 1.5, η2 = 6; Right column, η1 = 6, η2 = 1.5.

The other parameters are the same as before.
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