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Abstract

This paper tackles the problem of computing the Karcher mean of a collection of symmetric
positive-definite matrices. We present a concrete limited-memory Riemannian BFGS method
to handle this computational task. We also provide methods to produce efficient numerical rep-
resentations of geometric objects on the manifold of symmetric positive-definite matrices that
are required for Riemannian optimization algorithms. Through empirical results and computa-
tional complexity analysis, we demonstrate the robust behavior of the limited-memory Rieman-
nian BFGS method and the efficiency of our implementation when comparing to state-of-the-art
algorithms.

1 Introduction

Symmetric positive-definite (SPD) matrices have become fundamental objects in various domains.
For example, a 3D diffusion tensor, i.e., a 3×3 SPD matrix, is commonly used to model the diffusion
behavior of the media in diffusion tensor magnetic resonance imaging (DT-MRI) [9, 10, 30]. In
addition, representing images and videos with SPD matrices has shown promise for segmentation
and recognition in several works, such as [26, 33, 4, 34, 19]. In these and similar applications,
it is often of interest to average SPD matrices. Averaging is required, e.g., to aggregate several
noisy measurements of the same object. It also appears as subtasks in interpolation methods [1],
segmentation [29, 5], and clustering [21]. An efficient implementation of averaging methods is crucial
for applications where the mean computation is needed to be done many times. For example, in
K-means clustering, one needs to compute the means of each cluster in each iteration.

A natural way to average over a collection of SPD matrices, {A1, . . . , AK}, is to take their
arithmetic mean, i.e., G(A1, . . . , AK) = (A1 + · · ·+AK)/K. However, it is not adequate in applica-
tions where the invariance under inversion is required, i.e., G(A1, . . . , AK)−1 = G(A−11 , . . . , A−1K ).
In addition, the arithmetic mean may cause a “swelling effect” that should be avoided in diffusion
tensor imaging. Swelling is defined as an increase in the matrix determinant after averaging, see [10]
for example. Another approach is to generalize the definition of geometric mean from scalars to
matrices, which yields G(A1, . . . , AK) = (A1 . . . AK)1/K . However, this generalized geometric mean
is not invariant under permutation since matrices are not commutative in general. Therefore there
is a need of defining an appropriate geometric mean for SPD matrices. Ando et al. [3] introduced
a list of fundamental properties, denoted by ALM list, that a matrix “geometric” mean should
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possess, such as invariance under permutation, monotonicity, congruence invariance, and invari-
ance under inversion, to name a few. These properties are known to be important in numerous
applications, e.g. [6, 25, 27]. However, they do not uniquely define a mean for K ≥ 3. There can
be many different definitions of means that satisfy all the properties. The Karcher mean proposed
in [24] has been recognized as one of the most suitable means for SPD matrices in the sense that
it satisfies all properties in the ALM list, which has recently been shown in [6].

1.1 Karcher mean

Let Sn++ be the manifold of n× n SPD matrices. Since Sn++ is an open submanifold of the vector
space of n × n symmetric matrices, its tangent space at point X—denoted by TX Sn++—can be
identified as the set of n×n symmetric matrices. The manifold Sn++ becomes a Riemannian manifold
when endowed with the affine-invariant metric, see [29], given by

gX(ξX , ηX) = trace(ξXX
−1ηXX

−1). (1.1)

The Karcher mean of {A1, . . . , AK}—also termed as the Riemannian center of mass—is the
minimizer of the sum of squared distance

µ = arg min
X∈Sn++

F (X), with F : Sn++ → R, X 7→ 1

2K

K∑
i=1

δ2(X,Ai), (1.2)

where δ(p, q) = ‖ log(p−1/2qp−1/2)‖F is the geodesic distance associated with Riemannian metric
(1.1). It is proved in [24] that function F has a unique minimizer. Hence a point µ ∈ Sn++ is
a Karcher mean if it is a stationary point of F , i.e., gradF (µ) = 0, where gradF denotes the
Riemannian gradient of F under metric (1.1). However, a closed-form solution for problem (1.2)
is unknown in general, and for this reason, the Karcher mean is usually computed by iterative
methods.

1.2 Related work

Various methods have been employed to compute the Karcher mean of SPD matrices. Most of
them resort to the framework of Riemannian optimization (see, e.g., [2]), since problem (1.2)
requires optimizing a function on a manifold. In particular, [23] presents a survey of several
optimization algorithms, including Riemannian versions of steepest descent, conjugate gradient,
BFGS, and trust-region Newton’s methods. The authors conclude that the first order methods,
steepest descent and conjugate gradient, are the preferred choices for problem (1.2) in terms of
time efficiency. The benefit of fast convergence of Newton’s method and BFGS is nullified by their
high computational costs per iteration, which is especially as the size of the matrices increases.
Our previous work [35] explains the good performance of the first order methods, which is because
that the condition number of the Hessian of cost function F in (1.2) admits an upper bound that
behaves like the logarithm of the largest condition number of data points. More specifically, the
bounds for the Hessian of cost function (1.2) at X, see [32], is given by

1 ≤ HessF (X)[∆X,∆X]

‖∆X‖2
≤ 1

K

K∑
i=1

log κi
2

coth(
log κi

2
) (1.3)

≤ 1 +
log(maxi κi)

2
, (1.4)
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where κi denotes the condition number of matrix X−1/2AiX
−1/2 (or equivalently L−1x AiL

−T
x with

X = LxL
T
x ). Inequality (1.4) implies that we cannot expect a very ill-conditioned Hessian in practice

because of the logarithm. We also exploit a limited-memory Riemannian BFGS (LRBFGS) method
to tackle the SPD Karcher mean computation task in [35]. A Riemannian version of the Barzilai-
Borwein method (RBB) has been considered in [20]. Several stepsize selection rules have been
investigated for the Riemannian steepest descent (RSD) method. A constant stepsize strategy is
proposed in [32] and a convergence analysis is given by imposing a condition on the stepsize. An
adaptive stepsize selection rule based on the explicit expression of the Hessian of cost function F
is studied in [31], which is actually the optimal stepsize for strongly convex function in Euclidean
space, see [28, Theorem 2.1.14]. That is, the stepsize is chosen as αk = 2/(Mk + Lk), where Mk

and Lk are the lower and upper bound on the Hessian of F , respectively, given by (1.3). [31] also
provides a Newton’s method for the mean computation. A Richardson-like iteration is derived and
evaluated empirically in [7], and is available in the Matrix Means Toolbox1. We will see later in
Section 2.2 that the Richardson-like iteration is a steepest descent method combined with stepsize
αk = 1/Lk.

1.3 Contributions

This paper builds on our earlier work [35], and provides a detailed description of a limited-memory
Riemannian BFGS (LRBFGS) method for the SPD Karcher mean computation. Riemannian opti-
mization methods such as LRBFGS involve manipulation of geometric objects on manifolds, such
as tangent vector, retraction, vector transport and evaluation of Riemannian metric. We present
detailed methods to produce efficient numerical representations of those objects on the Sn++ man-
ifold. In fact, there are several alternatives to choose from for the geometric objects on Sn++.
We offer theoretical and empirical suggestions on how to choose between those alternatives for
LRBFGS based on computational complexity analysis and numerical experiments. We also show
that LRBFGS and RBB are closely related to one another.

Another contribution of our work is to provide a C++ toolbox for the SPD Karcher mean
computation, which includes LRBFGS, RBFGS, RBB, and RSD methods. The toolbox, available
at http://www.math.fsu.edu/~whuang2/papers/RMKMSPDM.htm, relies on ROPTLIB, an object-
oriented C++ library for optimization on Riemannian manifolds [17]. To the best of our knowledge,
there are no other publicly available C++ toolbox for the SPD Karcher mean computation. Our
previous work [35] provides a MATLAB implementation2 for this problem. The Matrix Means
Toolbox1 developed by Bini et al. in [7] is also written in MATLAB. As an interpreted language,
MATLAB’s execution efficiency is lower than compiled languages, such as C++. In addition, the
timing measurements in MATLAB can be skewed by MATLAB’s overhead, especially for small-size
problems. As a result, we resort to C++ for efficiency and reliable timing.

Finally, we test the performance of LRBFGS on problems of various sizes and conditioning, and
compare with state-of-the-art methods mentioned above. The size of a problem is characterized by
the number of matrices as well as the dimension of each one, and the conditioning of the problem
is characterized by the condition number of matrices. It is shown empirically that LRBFGS is
appropriate for large-size problems or ill-conditioned problems. Especially when one has little
knowledge of the conditioning of a problem, LRBFGS becomes the method of choice since it is

1http://bezout.dm.unipi.it/software/mmtoolbox/
2http://www.math.fsu.edu/~whuang2/papers/ARLBACMGM.htm
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robust to problem conditioning and parameter setting. The numerical results also illustrate the
speedup of using C++ vs. MATLAB. Especially for small-size problems, C++ implementation is
faster than MATLAB by a factor of 100 or more. The factor gradually reduces as the size of the
problem gets larger.

The remaining of the paper is organized as follows. Section 2 presents the implementation
techniques for the Sn++ manifold and computational complexity analysis. Detailed descriptions
of the considered SPD Karcher mean computation methods (namely RL, RSD-QR, RBB, and
LRBFGS) are given in Section 3. Numerical experiments are reported in Section 4. Conclusions
are drawn in Section 5.

2 Implementation for the Sn
++ manifold

This section is devoted to the implementation details of the required objects for Riemannian op-
timization methods on the SPD Karcher mean computation problem. Manifold-related objects
include tangent vector, Riemannian metric, isometric vector transport, and retraction. Problem-
related objects include cost function and Riemannian gradient evaluation. As an extension of our
previous work [35], we also provide a flop3 count for most operations.

2.1 Representations of a tangent vector and the Riemannian metric

The Sn++ manifold can be viewed as a submanifold of Rn×n, and its tangent space at X is the
set of symmetric matrices, i.e., TX Sn++ = {S ∈ Rn×n|S = ST }. The dimension of manifold
Sn++ is d = n(n + 1)/2. Thus, a tangent vector ηX in TX Sn++ can be represented either by an
n2-dimensional vector in Euclidean space E , or a d-dimensional vector of coordinates in a given
basis BX of TX Sn++. The n2-dimensional representation is called the extrinsic approach, and the
d-dimensional one is called the intrinsic approach. For simplicity, we use w to denote the dimension
of the embedding space, i.e., w = n2.

The computational benefits of using intrinsic representation are addressed in [15, 14]: (i) Work-
ing in d-dimension reduces the computational complexity of linear operations on the tangent space.
(ii) There exists an isometric vector transport, called vector transport by parallelization, whose
intrinsic implementation is simply the identity. (iii) The Riemannian metric can be reduced to the
Euclidean metric. However, the intrinsic representation requires a basis of tangent space, and in
order to obtain the computational benefits mentioned above, it must be orthonormal. Hence, if a
manifold admits a smooth field of orthonormal tangent space bases with acceptable computation-
ally complexity, the intrinsic representation often leads to a very efficient implementation. This
property holds for manifold Sn++ as shown next.

The orthonormal basis BX of TX Sn++ that we select is given by

{LeieTi LT : i = 1, . . . , n}
⋃
{ 1√

2
L(eie

T
j + eje

T
i )LT , i < j, i = 1, . . . , n, j = 1, . . . , n}, (2.1)

where X = LLT denotes the Cholesky decomposition, and {e1, . . . , en} is the standard basis of
n-dimensional Euclidean space. Another choice is to use the matrix square root X1/2 instead of
Cholesky decomposition of X, which however costs more [13]. It is easy to verify the orthonormality
of BX under Riemannian metric (1.1), i.e., B[

XBX = Id×d for all X. (The notation a[ denotes the

3A flop is a floating point operation [12, Section 1.2.4].
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function a[ : TXM→ R : v 7→ gX(a, v), where g stands for the affine-invariant metric (1.1).) We
assume throughout the paper that BX stands for our selected orthonormal basis of TX Sn++ defined
in (2.1).

Let ηX be a tangent vector in TX Sn++ and vX be its intrinsic representation. We define function
E2DX : ηX 7→ vX = B[

XηX that maps the extrinsic representation to the intrinsic representation.
Using the orthonormal basis defined in (2.1), the intrinsic representation of ηX is obtained by taking
the diagonal elements of L−1ηXL

−T , and its upper triangular elements row-wise and multiplied by√
2. A detailed description of function E2D is given in Algorithm 1. The number of flops for each

step is given on the right of the algorithm.
Since BX forms an orthonormal basis of TX Sn++, then the Riemannian metric (1.1) reduces to

the Euclidean metric under the intrinsic representation, i.e.,

g̃X(vX , uX) := gX(ηX , ξX) = gX(BXvX , BXuX) = vTXuX , (2.2)

where ηX = BXvX and ξX = BXuX ∈ TX Sn++. The evaluation of (2.2) requires 2d flops, which is
cheaper than the evaluation of (1.1).

For the intrinsic approach, retractions (see Section 2.2) require mapping the intrinsic rep-
resentation back to the extrinsic representation, which may require extra work. Let function
D2EX : vX 7→ ηX = BXvX denote this mapping. In practice, the function D2EX using basis (2.1)
is described in Algorithm 2.

Algorithm 1 Compute E2DX(ηX)

Input: X = LLT ∈ Sn++, ηx ∈ TX Sn++.
1: Compute Y = L−1ηX by solving linear system LY = ηX ; . # n3

2: Y ← Y T (i.e., Y = ηXL
−T ) ;

3: Compute Z = L−1ηXL
−T by solving linear system LZ = Y ; . # n3

4: return vX = (z11, z22, . . . , znn,
√

2z12, . . . ,
√

2z1n,
√

2z23, . . . ,
√

2z2n, . . . ,
√

2z(n−1)n)T ; . # d

Algorithm 2 Compute D2EX(vX)

Input: X = LLT ∈ Sn++, vx ∈ Rn(n+1)/2.
1: for i = 1, . . . , n do . # n
2: ηii = vX(i);
3: end for
4: k = n+ 1;
5: for i = 1, . . . , n do . # n2 − n(n+ 1)/2
6: for j = i+ 1, . . . , n do
7: ηij = vX(k) and ηji = vX(k);
8: k = k + 1;
9: end for

10: end for
11: return LηLT ; . # 2n3
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2.2 Retraction and vector transport

The concepts of retraction and vector transport can be found in [2]. A retraction is a smooth
mapping R from the tangent bundle TM onto M such that (i) R(0x) = x for all x ∈ M (where
0x denotes the origin of TxM) and (ii) d

dtR(tξx)|t=0 = ξx for all ξx ∈ TxM. A vector transport
T : TM⊕ TM → TM, (ηx, ξx) 7→ Tηxξx with associated retraction R is a smooth mapping
such that, for all (x, ηx) in the domain of R and all ξx, ζx ∈ TxM, it holds that (i) Tηxξx ∈
TR(ηx)M, (ii) T0xξx = ξx, (iii) Tηx is a linear map. Some methods, such as RBFGS method in [18,
Algorithm 1] and LRBFGS requires the vector transport, denoted by TS , to be isometric, i.e.,
gR(ηx)(TSηx ξx, TSηx ζx) = gx(ξx, ζx). Throughout the paper, we use the notation TS for isometric
vector transport.

The choice of retraction and vector transport is a key step in the design of efficient Riemannian
optimization algorithms. The exponential mapping is a natural choice for retraction. When Sn++

is endowed with the affine-invariant Riemannian metric (1.1), the exponential mapping is given by,
see [11],

ExpX(ηX) = X1/2 exp(X−1/2ηXX
−1/2)X1/2, (2.3)

for all X ∈ Sn++ and ηX ∈ TX Sn++. In practice, the exponential mapping (2.3) is expensive to
compute. The exponential of matrix M is computed as exp(M) = U exp(Σ)UT , with M = UΣUT

being the eigenvalue decomposition. Obtaining Σ and U by Golub-Reinsch algorithm requires 12n3

flops, see [12, Figure 8.6.1]. Hence the evaluation of exp(M) requires 16n3 flops in total. More
importantly, when computing the matrix exponential exp(M), eigenvalues of large magnitude can
lead to numerical difficulties, such as overflow. Jeuris et al. [23] proposed a retraction

RX(ηX) = X + ηX +
1

2
ηXX

−1ηX , (2.4)

which is a second order approximation to exponential mapping (2.3). Retraction (2.4) is cheaper
to compute and requires 3n3 + o(n3) flops. Retraction (2.4) also tends to avoid numerical overflow.
An important property of retraction (2.4) is stated in Proposition 2.1. Another retraction that can
be computed efficiently is the first order approximation to (2.3), i.e.,

RX(ηX) = X + ηX . (2.5)

In fact, retraction (2.5) is the exponential mapping when Sn++ is endowed with the Euclidean
metric. However, the result of retraction (2.5) is not guaranteed to be positive definite. Therefore
one has to be careful when using this Euclidean retraction. One remedy is to reduce the stepsize
when necessary. Richardson-like iteration in [7] is a steepest descent method using Euclidean
retraction (2.5).

Proposition 2.1. Retraction RX(η) defined in (2.4) remains symmetric positive-definite for all
X ∈ Sn++ and η ∈ TX Sn++.

Proof. For all X ∈ Sn++ and η ∈ TX Sn++, we have

X + η +
1

2
ηX−1ξ =

1

2
(X + 2η + ηX−1η) +

1

2
X

=
1

2
(X1/2 + ηX−1/2)(X1/2 + ηX−1/2)T +

1

2
X

(2.6)
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Then, for any v 6= 0,

vTRX(η)v =
1

2
vT (X1/2 + ηX−1/2)(X1/2 + ηX−1/2)T v +

1

2
vTXv

=
1

2
{(X1/2 + ηX−1/2)T v}T {(X1/2 + ηX−1/2)T v}+

1

2
vTXv

> 0

(2.7)

Parallel translation is a particular instance of vector transport. The parallel translation on Sn++

is given by, see [11],

TpξX (ηX) = X1/2 exp(
X−1/2ξXX

−1/2

2
)X−1/2ηXX

−1/2 exp(
X−1/2ξXX

−1/2

2
)X1/2. (2.8)

The computation of parallel translation involves matrix exponential, which is computationally
expensive. We want to point out that if parallel translation is used together with exponential map-
ping (2.3), the most expensive exponential computation can be shared by rewriting (2.8) and (2.3)
as shown in Algorithm 4. Even so, the matrix exponential computation is still required. We will
thus resort to another vector transport.

Recently, Huang et al. [14, Section 2.3.1] proposed a novel way to construct an isometric vector
transport, called vector transport by parallelization. It is defined by

TS = BYB
[
X , (2.9)

where BX and BY are orthonormal bases of TX Sn++ and TY Sn++ defined in (2.1) respectively. Let
vX = B[

XηX be the intrinsic representation of ηX . Then, the intrinsic approach of (2.9), denoted
by T dS , is given by

T dS vX = B[
Y TSηX

= B[
YBYB

[
XBXvX

= vX

(2.10)

That is, the intrinsic representation of vector transport by parallelization is simply the identity,
which is the cheapest vector transport one can expect.

Another possible choice for the vector transport is the identity mapping: TidξX (ηX) = ηX .
However, vector transport Tid is not applicable to the LRBFGS method since it is not isometric
under Riemannian metric (1.1).

Specifying a retraction, Huang et al. [18, Section 2] provides a method to construct an isometric
vector transport such that the pair satisfies the locking condition4, denoted by TL, which is given
by

TLξX ηX = BY (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX , (2.11)

4see [18, Section 2 Equation (2.8)] for the definition of locking condition
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where v1 = B[
XξX −w, v2 = w− βB[

Y TRξX ξX , β = ‖ξX‖/‖TRξX ξX‖, and TR denotes the differenti-

ated retraction. w can be any vector satisfying ‖w‖ = ‖B[
1ξX‖ = ‖βB[

2TRξX ξX‖. w = −B[
1ξX and

w = −βB[
2ξX are natural choices. The intrinsic representation of (2.11) is given by

T dL vX = B[
YBY (I − 2v2v

T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)B[

1ηX (2.12)

= (I − 2v2v
T
2

vT2 v2
)(I − 2v1v

T
1

vT1 v1
)vX . (2.13)

The evaluation of intrinsic vector transport (2.13) requires 12d flops, i.e., 6n2.

2.3 Riemannian gradient of the sum of squared distances function

The cost function (1.2) can be rewritten as

f(X) =
1

2K

K∑
i=1

‖ log(A
−1/2
i XA

−1/2
i )‖2F (2.14)

=
1

2K

K∑
i=1

‖ log(L−1AiXL
−T
Ai

)‖2F (2.15)

where Ai = LAiL
T
Ai

. We use Cholesky factorization rather than the matrix square root due to
computational efficiency. The matrix logarithm is computed in a similar way as exponential, i.e.,
log(M) = U log(Σ)UT with M = UΣUT being the eigenvalue decomposition. Hence the number
of flops required by function evaluation (2.15) is 18Kn3.

The Riemannian gradient of cost function F in (1.2) is given by, see [24],

gradF (X) = − 1

K

K∑
i=1

Exp−1X (Ai), (2.16)

where Exp−1X (Y ) is the log-mapping, i.e., the inverse exponential mapping. On Sn++, the log-
mapping is computed as

Exp−1X (Y ) = X1/2 log(X−1/2Y X−1/2)X1/2 = log(Y X−1)X. (2.17)

Note that the computational complexity of the Riemannian gradient is less than that conveyed in
formula (2.17) since the most expensive logarithm computation is already available from the eval-
uation of the cost function at X. Specifically, each term in (2.16) is computed as −Exp−1X (Ai) =
− log(AiX

−1)X = log(XA−1i )X = LAi log(L−1AiXL
−T
Ai

)L−1AiX, and the term log(L−1AiXL
−T
Ai

) is avail-
able from the evaluation of the cost function F (X) in (2.15). Hence the computation of gradient
requires extra 5Kn3 flops if log(L−1AiXL

−T
Ai

) is given.

3 Description of the SPD Karcher mean computation methods

In this section, we present detailed descriptions of the considered algorithms for SPD Karcher
mean computation, including a limited-memory Riemannian RBFGS (LRBFGS) [18], Riemannian
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Barzilai-Borwein (RBB) [20], Riemannian steepest descent with adaptive stepsize selection rule
proposed by Quentin Rentmeesters (RSD-QR) [31], and Richardson-like iteration (RL) [7]. All
of these algorithms are retraction-based methods, namely, the iterate xk on the manifold M is
updated by

xk+1 = Rxk(αkηk), (3.1)

where R is a retraction onM, ηk ∈ TxkM is the search direction and αk ∈ R denotes the stepsize.
For the steepest descent method, the search direction in (3.1) is taken as the negative gradient,

i.e., ηk = − grad f(xk). RSD for the SPD Karcher mean computation is summarized in Algorithm 3
based on [31, Algorithm 2]. The difference between RSD-QR and RL is the choice of stepsize
strategy in Step 11 and retraction in Step 13 in Algorithm 3. For RL, the stepsize is taken as
αRL = 1/∆, where ∆ is the upper bound on the Hessian of the cost function as computed in
Step 10, and the Euclidean retraction (2.5) is used. The number of flops required per iteration is
22Kn3 + o(Kn3). For RSD-QR, the chosen stepsize is αQR = 2/(U + ∆), where U = 1 is the lower
bound on the Hessian of the cost function. It is easy to verify that 1/∆ ≤ 2/(1 + ∆), and the equal
sign holds when ∆ = 1. Since the eigenvalues of the Hessian of the cost function is bounded by U
and ∆, then ∆ = 1 implies that all the eigenvalues of the Hessian are exactly 1. So αRL = αQR if and
only if the Hessian of the cost function is the identity matrix, and we have αRL < αQR in general.
The exponential mapping (2.3) is used by RSD-QR in [31]. In practice, we use retraction (2.4),
since the exponential mapping contains matrix exponential evaluation, and it turns out to be a
problem if the eigenvalues of matrices in some intermediate iterations become too large, resulting
in numerical overflow. Then each iteration in RSD-QR needs 22Kn3 + 4/3n3 + o(Kn3) flops. Even
though RSD-QR is slightly more expensive per iteration than RL, it requires fewer iterations to
achieve the desired tolerance. We will see later in our experiments that RSD-QR performs very well
on small-size problems in terms of time efficiency, and it consistently outperforms RL in various
situations.

Algorithm 3 RSD for the SPD Karcher mean computation

Input: Ai = LAiL
T
Ai

; tolerance for stopping criteria ε; initial iterate x0 ∈ Sn++;
1: k = 0;
2: while ‖ grad f(xk)‖ > ε do
3: for i = 1, . . . ,K do
4: Compute Mi = L−1Ai xkL

−T
Ai

; . # 2n3

5: Compute Mi = UΣU−1 and set λ = diag(Σ); . # 12n3

6: Compute the condition number ci = max(λ)/min(λ); . # 1
7: Compute Ki = U log(Σ)U−1; . # 4n3

8: Compute Gi = LAiKiL
−1
Ai
xk; . # 4n3

9: end for

10: Compute the upper bound on the Hessian ∆ = 1
K

K∑
j=1

log cj
2 coth(

log cj
2 ); . # 5K

11: Compute stepsize αk = α(∆);

12: Compute grad f(xk) = 1
K

K∑
i=1

Gi; . # (K + 1)n2

13: Compute xk+1 = Rxk(−αk grad f(xk));
14: k = k + 1;
15: end while
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The RBB also belongs to the class of steepest descent methods, combined with a stepsize that
makes implicit use of second order information of the cost function, see [20] for details. The BB
stepsize is taken as

αBBk+1 =
g(sk, sk)

g(sk, yk)
, (3.2)

where sk = Tαkηk(αkηk), yk = grad f(xk+1) − Tαkηk(grad f(xk)), and g(sk, yk) > 0. Another form
of the BB stepsize is

αBBk+1 =
g(sk, yk)

g(yk, yk)
. (3.3)

In [20], the RBB method has been applied to the SPD Karcher mean computation. We summarize
their implementation in Algorithm 4, where they use extrinsic representation of a tangent vector,
exponential mapping (2.3) and parallel translation (2.8). Algorithm 5 states our implementation
of RBB using the intrinsic representation technique, retraction (2.4) and vector transport by par-
allelization (2.10). We present the number of flops for each step on the right-hand side of the
algorithms, except problem-related operations, i.e., function, gradient evaluations and line search
procedure. Note that Step 7 and Step 11 in Algorithm 4 share the common term exp(αkx

−1
k ηk),

which dominates the computational time and needs to be computed only once. Having w = n2

and d = n(n+ 1)/2, the known number of flops per iteration for Algorithm 4 and Algorithm 5 are
103n3/3 + o(n3) and 22n3/3 + o(n3) respectively. The number of flops required by Algorithm 5 is
smaller than that of Algorithm 4, and the computational efficiency mainly comes from the choice of
retraction and the fact that Riemannian metric reduces to the Euclidean metric using the intrinsic
representation of tangent vector.

Our previous work [35] tailors the LRBFGS method in [18, Algorithm 2] to the SPD Karcher
mean computation problem. The limited-memory BFGS method is based on the BFGS method
which stores and transports the inverse Hessian approximation as a dense matrix. Specifically, the
search direction in RBFGS is ηk = −B−1k grad f(xk), where Bk is a linear operator that approximates
the action of the Hessian on TxkM. Bk requires a rank-two update at each iteration, see [18,
Algorithm 1] for the update formula. Unlike BFGS, the limited-memory version of BFGS stores
only some number of vectors that represent the approximation implicitly. Therefore LRBFGS
is appropriate for large-size problems, due to its benefit in reducing storage requirements and
computation time per iteration.

As a continuation of our work in [35], we provide concrete LRBFGS methods for the SPD
Karcher mean computation in Algorithm 6 and 7, so that readers are able to implement the meth-
ods conveniently. In fact, those two algorithms are ready to solve any optimization problems on
the manifold of SPD matrices as long as the readers provide a cost function and its Riemannian
gradient. Algorithm 6 uses the extrinsic representation, and Algorithm 7 uses the intrinsic rep-
resentation. The number of flops for each step is given on the right-hand side of the algorithms.
For simplicity of notation, we use λm, λr, and λt to denote the flops in metric, retraction, and
vector transport evaluation respectively, and use superscript—w and d—to denote the extrinsic
and intrinsic representations respectively. By summing them up, the number of flops per iteration
for Algorithm 6 is

#w = 2(l + 2)λwm + 4lw + λwr + 4w + 2(l + 1)λwt , (3.8)

and the number of flops for Algorithm 7 is

#d = 2(l + 2)λdm + 4ld+ λdr + 4d+ (13n3/3 + 2d) (3.9)
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Algorithm 4 RBB for the SPD Karcher mean computation using extrinsic representation [20]

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); tolerance for stopping
criteria ε; accuracy at which the linesearch procedure is skipped; maximum stepsize αmax,
minimum stepsize αmin; initial iterate x0 ∈ Sn++; the first stepsize αBB0 ;

1: k = 0;
2: Compute f(xk), grad f(xk);
3: while ‖ grad f(xk)‖ > ε do
4: Set stepsize αk = αBBk ;
5: Set ηk = − grad f(xk); . # w
6: If

‖ grad grad f(xk)‖/‖ grad f(x0)‖ < accuracy (3.4)

then set xk+1 = xk exp(αkx
−1
k ηk) and go to Step 10;

7: Compute x̃k = xk exp(αkx
−1
k ηk); . # 61n3/3

8: If
f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk), (3.5)

then set xk+1 = x̃k and go to Step 10;
9: Set αk = %αk and go to Step 7;

10: Compute grad f(xk+1);
11: Compute sk = αkηk exp(αkx

−1
k ηk), yk = grad f(xk+1) + ηk exp(αkx

−1
k ηk); . # 2n3 + n2

12: Compute αBBk+1 = g(sk, sk)/g(sk, yk); . # 12n3

13: If g(sk, yk) > 0, set αBBk+1 = min{αmax,max{ε, αBBk+1}}; otherwise, set αBBk+1 = αmax;
14: k = k + 1;
15: end while
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Algorithm 5 RBB for the SPD Karcher mean computation using intrinsic representation and
vector transport by parallelization

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); tolerance for stopping
criteria ε; accuracy at which the linesearch procedure is skipped; maximum stepsize αmax,
minimum stepsize αmin; initial iterate x0 ∈M; the first stepsize αBB0 ;

1: k = 0;
2: Compute grad f(xk);
3: Compute xk = LkL

T
k , which is the required input of Algorithm 1 in the next step; . #n3/3

4: Compute the intrinsic representation gfdk of grad f(xk) by Algorithm 1; . #2n3 + d
5: while ‖gfdk‖ > ε do
6: Set stepsize αk = αBBk ;
7: Set ηk = −gfdk; . #d
8: Compute ηwk = D2Exk(ηk) by Algorithm 2; . #2n3 + n(n+ 1)/2
9: If

‖ grad gfdk‖/‖gfd0‖ < accuracy (3.6)

then set xk+1 = Rxk(αkη
w
k ) using (2.4) and go to Step 13;

10: Compute x̃k = Rxk(αkη
w
k ) using (2.4) ; . # 3n3 + 3n2

11: If
f(x̃k) ≤ f(xk) + δαkη

T
k gfdk, (3.7)

then set xk+1 = x̃k and go to Step 13;
12: Set αk = %αk and go to Step 10;
13: Compute grad f(xk+1);
14: Compute xk+1 = Lk+1L

T
k+1, which is the input of Algorithm 1 in the next step; . #n3/3

15: Compute the intrinsic representation gfdk+1 of grad f(xk+1) by Algorithm 1; . #2n3 + d

16: Compute sk = αkηk, yk = gfdk+1 − gfdk; . #2d
17: Compute αBBk+1 = sTk sk/s

T
k yk; . # 4d

18: If sTk yk > 0, set αBBk+1 = min{αmax,max{ε, αBBk+1}}; otherwise, set αBBk+1 = αmax;
19: k = k + 1;
20: end while
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Notice that there is no λdt term in equation (3.9) since the vector transport by parallelization is
used, which has identity implementation. The last term (13n3/3 + 2d) in (3.9) comes from the
evaluation of functions E2D and D2E given in Algorithm 1 and 2. For the metric evaluation
using different representations, we have λwi = 6n3 + o(n3) and λdi = n2 + o(n2). Simplifying and
rearranging (3.8) and (3.9), we have

#w = 12ln3 + 24n3 + λwr + 2(l + 1)λwt + o(ln3) + o(n3), (3.10)

and
#d = 4ln2 + 13n3/3 + λdr + o(ln2) + o(n3). (3.11)

From (3.10) and (3.11), the computational benefit of the intrinsic representation is substantial. The
limited-memory size l imposes much heavier burden on Algorithm 6 where the extrinsic representa-
tion is used. In our implementation of Algorithm 7, we suggest retraction (2.4), which needs 3n3 +
o(n3) flops. Hence the overall flops required by Algorithm 7 is #d = 4ln2 +22n3/3+o(ln2)+o(n3).
Notice that if the locking condition is imposed on Algorithm 7, extra 12(l+ 1)n2 flops are needed.
For Algorithm 6, any choice of retraction and vector transport would yield a larger flop compared
with Algorithm 7. Notice that the identity vector transport using extrinsic representation is not
applicable since it is not isometric under metric (1.1).

However, our complexity analysis above focuses on manifold- and algorithm-related operations,
the problem-related operations—function, gradient evaluations and line search—are not considered.
From the discussion in Section 2.3, the evaluation of cost function requires 18Kn3 flops, and the
computation of gradient requires extra 5Kn3 flops based on function evaluation. The line search
procedure may take a few steps to terminate, and each step requires one cost function evaluation.
In the ideal case where the initial stepsize satisfies the Armijo condition in Step 21 in Algorithm 7,
i.e., the cost function is evaluated only once, the flops required by problem-related operations is
23Kn3. As n gets larger, the proportion of computational time spent on function and gradient
evaluations is

23Kn3

23Kn3 + 4ln2 + 22n3/3
≈ 23K

23K + 22/3
(3.12)

≥ 23 · 3
23 · 3 + 22/3

≈ 90.39% (3.13)

Inequality (3.13) comes from the fact that K ≥ 3 and (3.12) is an increasing function in terms of K.
It is shown that the problem-related operations dominate the computation time for high dimensional
matrix, which is consistent with our empirical observations in experiments that 70%− 90% timing
comes from function and gradient evaluations. If the line search procedure requires more steps
to terminate, then the problem-related operations would result in a larger proportion of total
computational time. Therefore, it is crucial to have a good initial stepsize.

We end this section by a simple remark. The LRBFGS with zero memory size, i.e., m = 0,
is equivalent with the RBB using stepsize (3.3). This is easy to verify by setting m = 0 in
Algorithm 6 and 7. Our numerical experiments on the SPD Karcher mean computation show that
the two versions of the BB stepsize, (3.2) and (3.3), lead to similar results.

5If the locking condition are imposed, then y
(k+1)
k = grad f(xk+1)/βk − Tαkηk grad f(xk), where βk =

‖αkηk‖/‖TRαkηkαkηk‖.
6If retraction (2.4) and isometric vector transport (2.13) that satisfy the locking condition are used, sk and yk
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Algorithm 6 LRBFGS for problems on Sn++ manifold using extrinsic representation and general
vector transport

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); tolerance for stopping
criteria ε; accuracy at which the linesearch procedure is skipped;3 maximum stepsize αmax,
minimum stepsize αmin; initial iterate x0 ∈M; an integer m > 0; the first stepsize γ0;

1: k = 0, l = 0.
2: Compute grad f(xk);
3: while ‖ grad f(xk)‖ > ε do
4: H0

k = γk id. Obtain ηk ∈ TxkM by the following algorithm, Step 5 to Step 15:
5: q ← grad f(xk)
6: for i = k − 1, k − 2, . . . , k − l do . # l(λwm + 2w)

7: ξi ← ρig(s
(k)
i , q);

8: q ← q − ξiy(k)i ;
9: end for

10: r ← H0
kq; . # w

11: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λwm + 2w)

12: ω ← ρig(y
(k)
i , r);

13: r ← r + s
(k)
i (ξi − ω);

14: end for
15: Set ηk = −r, αk = 1; . # w
16: If

‖ grad f(xk)‖/‖ grad f(x0)‖ < accuracy (3.14)

then set xk+1 = Rxk(αkηk) and go to Step 20; . # λwr
17: Compute x̃k = Rxk(αkηk); . # λwr
18: If

f(x̃k) ≤ f(xk) + δαkg(grad f(xk), ηk),

then set xk+1 = x̃k and go to Step 20;
19: Set αk = %αk and go to Step 17;
20: Compute grad f(xk+1);

21: Define s
(k+1)
k = Tαkηkαkηk and y

(k+1)
k = grad f(xk+1)− Tαkηk grad f(xk);

5 . # 2λwt + 2w

22: Compute a = g(y
(k+1)
k , s

(k+1)
k ) and b = ‖s(k+1)

k ‖2; . # 2λwm
23: if a

b ≥ 10−4‖ grad f(xk)‖ then . # λwm

24: Compute c = ‖y(k+1)
k ‖2 and define ρk = 1/a and γk+1 = a/c; . # λwm

25: Add s
(k+1)
k , y

(k+1)
k and ρk into storage and if l ≥ m, then discard vector pair

{s(k)k−l, y
(k)
k−l} and scalar ρk−l from storage, else l ← l + 1; Transport s

(k)
k−l+1, s

(k)
k−l+2, . . . , s

(k)
k−1

and y
(k)
k−l+1, y

(k)
k−l+2, . . . , y

(k)
k−1 from TxkM to Txk+1

M by T , then get s
(k+1)
k−l+1, s

(k+1)
k−l+2, . . . , s

(k+1)
k−1

and y
(k+1)
k−l+1, y

(k+1)
k−l+2, . . . , y

(k+1)
k−1 ; . # 2(l − 1)λwt

26: else
27: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {s

(k+1)
k , . . . , s

(k+1)
k−l+1} ←

{Tαkηks
(k)
k−1, . . . , Tαkηks

(k)
k−l} and {y(k+1)

k , . . . , y
(k+1)
k−l+1} ← {Tαkηky

(k)
k−1, . . . , Tαkηky

(k)
k−l}; . # 2lλwt

28: end if
29: k = k + 1;
30: end while
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Algorithm 7 LRBFGS for problems on Sn++ manifold using intrinsic representation and vector
transport by parallelization

Input: backtracking reduction factor % ∈ (0, 1); Armijo parameter δ ∈ (0, 1); tolerance for stopping
criteria ε; accuracy at which the linesearch procedure is skipped; maximum stepsize αmax,
minimum stepsize αmin; initial iterate x0 ∈M; an integer m > 0; the first stepsize γ0;

1: k = 0, l = 0.
2: Compute grad f(xk);
3: Compute xk = LkL

T
k , which is the input of Algorithm 1 in the next step; . #n3/3

4: Compute the intrinsic representation gfdk of grad f(xk) by Algorithm 1; . # 2n3 + d
5: while ‖gfdk‖ > ε do
6: Obtain ηk ∈ Rd, intrinsic representation of a tangent vector ηw ∈ TxkM, by the following

algorithm, Step 7 to Step 17:
7: q ← gfdk;
8: for i = k − 1, k − 2, . . . , k − l do . # l(λdm + 2d)
9: ξi ← ρiq

T si;
10: q ← q − ξiyi;
11: end for
12: r ← γkq; . # d
13: for i = k − l, k − l + 1, . . . , k − 1 do . # l(λdm + 2d)
14: ω ← ρir

T yi;
15: r ← r + si(ξi − ω);
16: end for
17: set ηk = −r, αk = 1; . # d
18: Compute ηwk = D2Exk(ηk) by Algorithm 2; . # 2n3 + n(n+ 1)/2
19: If

‖ grad gfdk‖/‖gfd0‖ < accuracy (3.15)

then set xk+1 = Rxk(αkη
w
k ) and go to Step 23; . # λdr

20: Compute x̃k = Rxk(αkη
w
k ); . # λdr

21: If
f(x̃k) ≤ f(xk) + δαkη

T
k gfdk,

then set xk+1 = x̃k and go to Step 23;
22: Set αk = %αk and go to Step 20;
23: Compute grad f(xk+1);
24: Compute xk+1 = Lk+1L

T
k+1, which is the input of Algorithm 1 in the next step; . #n3/3

25: Compute the intrinsic representation gfdk+1 of grad f(xk+1) by Algorithm 1; . # 2n3 + d

26: Define sk = αkηk and yk = gfdk+1 − gfdk;
6 . # 2d

27: Compute a = yTk sk and b = ‖sk‖22; . # 2λdm
28: if a

b ≥ 10−4‖gfdk‖2 then . # λdm

29: Compute c = ‖y(k+1)
k ‖22 and define ρk = 1/a and γk+1 = a/c; . # λdm

30: Add sk, yk and ρk into storage and if l ≥ m, then discard vector pair {sk−l, yk−l} and
scalar ρk−l from storage, else l← l + 1;

31: else
32: Set γk+1 ← γk, {ρk, . . . , ρk−l+1} ← {ρk−1, . . . , ρk−l}, {sk, . . . , sk−l+1} ←
{sk−1, . . . , sk−l} and {yk, . . . , yk−l+1} ← {yk−1, . . . , yk−l}

33: end if
34: k = k + 1.
35: end while
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4 Experiments

In this section, we compare the performance of the LRBFGS method described in Algorithm 7
and existing state-of-the-art methods, including the Riemannian Barzilai-Borwein method (RBB)
provided in [20] (using implementation in Algorithm 5), the Riemannian steepest descent method
with stepsize selection rule proposed by Rentmeesters et al. (RSD-QR) in [31, Section 3.6], the
Richardson-like iteration (RL) of [7], and the Riemannian BFGS method (RBFGS) presented in [16,
18].

All the experiments are performed on the Florida State University HPC system using Quad-Core
AMD Opteron(tm) Processor 2356 2.3GHz. Experiments in Section 4.2 are carried out using C++,
compiled with gcc-4.7.x. Section 4.3 presents a comparison of computation time between MATLAB
and C++ implementations. All the MATLAB experiments are performed using MATLAB R2015b
(8.6.0.267246) 64-bit (glnxa64). In particular, we use the MATLAB implementation of the RL
iteration in Bini et al.’s Matrix Means Toolbox1.

Regarding the parameter setting, we set Armijo parameter δ = 10−4, backtracking reduction
factor % = 0.5 for well-conditioned data sets and % = 0.25 for ill-conditioned ones, maximum
stepsize αmax = 100, and minimum stepsize αmin is the machine epsilon. The initial stepsize in the
first iteration is chosen as the strategy in [31], i.e., α0 = 2/(1 + L), where L is the upper bound
at the initial iterate defined in inequality (1.3). For LRBFGS, we use different memory sizes m
as specified in the legends of figures, and impose the locking condition for ill-conditioned matrices.
Specifically, we impose the locking condition on LRBFGS in the bottom plots of Figure 1, 2, 3, 4, and
Figure 5. As we have shown in Section 3, imposing the locking condition requires extra complexity.
For well-conditioned data sets, the problem is easy to handle, and the locking condition is not
necessary. While in the ill-conditioned case, imposing the locking condition can reduce the number
of iterations. The extra time caused by the locking condition is much smaller than the time saved
by a reduction in the number of function and gradient evaluations. The benefit of the locking
condition is also demonstrated in [16]. In order to achieve sufficient accuracy, we skip the line
search procedure when the iterate is close enough to the minimizer by setting accuracy = 10−5 in
Algorithm 5 and 7. Unless otherwise specified, our choice of the initial iterate is the Arithmetic-
Harmonic mean [22] of data points. We run the algorithms until they reach their highest accuracy.

For simplicity of notation, throughout this section we denote the number, dimension, and
condition number of the matrices by K, n, and κ respectively. For each choice of (K,n) and
the range of conditioning desired, a single experiment comprises generating 5 different sets of K
random n× n matrices with appropriate condition numbers, and running all 5 algorithms on each
set with identical parameters. The result of the experiment is the distance to the true Karcher
mean averaged over the 5 sets as a function of iteration and time. To obtain sufficiently stable
timing results, an average time is taken of several runs for a total runtime of at least 1 minute.

4.1 Experiment design

The experiments are generated in the same way as our previous work [35]. When defining each set
of experiments, we choose a desired (true) Karcher mean µ, and construct data matrices Ai’s such
that their Karcher mean is exactly µ, i.e.,

∑K
i=1 Exp−1µ (Ai) = 0 holds. The benefits of this scheme

are computed as following: compute zw = TRαkηwk (αkη
w
k ), where TRξη = η + (ηX−1ξ + ξX−1η)/2; obtain the

intrinsic representation z of zw by Algorithm 1; compute β = α2
kη
T
k ηk/z

T z, v1 = 2αkηk, v2 = −αkηk − βz; Define
sk = (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)(αkηk), yk = gfdk+1/β − (I − 2v2v

T
2 /v

T
2 v2)(I − 2v1v

T
1 /v

T
1 v1)gfdk.
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are: (i) We can control the conditioning of µ and Ai’s, and observe the influence of the conditioning
on the performance of algorithms. (ii) Since the true Karcher mean µ is known, we can monitor
the distance δ between µ and the iterates produced by various algorithms, thereby removing the
need to consider the effects of termination criteria.

Given a Karcher mean µ, the Ai’s are constructed as follows: (i) Generate Wi in Matlab, with
n the size of matrix, f the order of magnitude of the condition number, and p some number less
than n,

[O, ˜ ] = qr (randn(n ) ) ;
D = diag ( [ rand (1 , p)+1 , (rand (1 , n−p)+1)∗10ˆ(− f ) ] ) ;
W = O ∗ D ∗ O’ ; W = W/norm(W, 2 ) ;

(ii) Compute ηi = Exp−1µ (Wi). (iii) Enforce the condition
∑K

i=1 ηi = 0 on ηi’s. Specifically, we test
on data sets with K = 3, 30, 100. In the case of K = 3, we enforce η3 = −η1 − η2. When K = 30
or K = 100, let ki = 5(k − 1) + i for 1 ≤ k ≤ K/5 and 1 ≤ i ≤ 5. We enforce ηk4 = −ηk1 − 0.5ηk3
and ηk5 = −ηk2 − 0.5ηk3 , which gives

∑5
i=1 ηki = 0, and thus

∑K/5
k=1

∑5
i=1 ηki = 0. (iv) Compute

Ai = Expµ(ηi).
Note that instead of producing ηi directly, we produce Wi first and obtain ηi from the log-

mapping, since this procedure gives us greater control over the conditioning of data points. As
discussed in [35, Section 2], we can take the Karcher mean µ as the identity matrix in numerical
experiments, so we “translate” the data set {µ,A1, . . . , AK} to {I, L−1A1L

−T , . . . , L−1AKL
−T }

using an isometry, where µ = LLT as the final step.

4.2 Comparison of performance between different algorithms using C++

We now compare the performances of all 5 algorithms on various data sets by examining perfor-
mance results from representative experiments for different choices of (K,n, κ).

Figure 1 displays the performance results of different algorithms running on small-size problems,
taking K = 3 and n = 3. Both well-conditioned (1 ≤ κ(Ai) ≤ 20) and ill-conditioned (105 ≤
κ(Ai) ≤ 1010) data sets are tested. For LRBFGS, we take m = 2 and m = 4. In the well-
conditioned case, it is seen that all 5 algorithms are comparable in terms of time efficiency even
though they require different numbers of iterations. For ill-conditioned matrices, RL iteration
and RSD-QR require significantly more iterations, but they are still efficient in terms of timing
due to the cheap cost per iteration. RBB and LRBFGS require similar number of iterations, but
LRBFGS with m > 0 takes longer time. We discussed in Section 3 that the overall complexities for
Algorithm 7 without and with locking condition are 23Kn3 + 22n3/3 + 4ln2 + o(ln2) + o(n3) and
23Kn3 + 22n3/3 + 16ln2 + o(ln2) + o(n3) respectively. Therefore when the size of the problem is
small, and the locking condition is imposed, the impact of memory size l is visible. But this is not
the case when the size of the problem gets larger, as shown in Figure 2 and Figure 3. Note that m
is the upper limit of the limited-memory size l.

Figure 2 and Figure 3 report the results of tests conducted on data sets with large K (K =
100, n = 3) and large n (K = 30, n = 100) respectively. Note that when n = 100, the dimension
of manifold Sn++ is d = n(n+ 1)/2 = 5050. In each case, both well-conditioned and ill-conditioned
data sets are tested. For well-conditioned matrices, we observe that LRBFGS and RBB perform
similarly, with a slightly advantage for LRBFGS. The advantage of LRBFGS becomes larger as
the matrices become ill-conditioned. We want to point out that RBFGS is inefficient for large n as
shown in Figure 3.
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As the last test in this section, we compare the performances of considered algorithms using two
different initial iterates: the Arithmetic-Harmonic mean and the Cheap mean [8]. The Cheap mean
is known to be a good approximation of the Karcher mean, which is however not cheap to compute.
We resort to Bini et al.’s Matrix Means Toolbox1 for the computation of Cheap mean. We consider
30 30× 30 badly conditioned matrices (106 ≤ κ(Ai) ≤ 1010). The results are presented in Figure 4.
Notice that we include the time required to compute the initial iterate. The x-axis of the middle-
right plot did not start from 0, which shows that the Cheap mean is expensive to compute. We
observe that the choice of initial iterate is crucial to RBFGS, and it impacts the other algorithms in
the early steps. When the initial iterate is close enough to the true solution, as shown in the second
row in Figure 4, we observe a faster convergence in the first a few steps. In both cases, LRBFGS
outperforms the other algorithms in terms of computation time and number of iterations per unit of
accuracy required. We also investigate the robustness of LRBFGS and RBB to parameter setting,
say the back tracking reduction factor %. The plots in Figure 5 displays the results for varying
%. For LRBFGS, we take memory size m = 8. It is shown that the performance of LRBFGS is
consistent for different values of %, while RBB is sensitive to the choice of %. We therefore conclude
that LRBFGS appears to be the method of choice for computing the SPD Karcher mean, especially
when working with ill-conditioned matrices.

4.3 Comparison between C++ and MATLAB implementations

In the end, we compare the time efficiency of the considered algorithms on the SPD Karcher mean
computation using C++ and MATLAB. The results are reported in Figure 6. The first column
indicates that C++ and MATLAB implementations are identical in terms of iterations. The second
column displays the log-log plots of computation time vs. averaged distance between each iterate
and the exact Karcher mean, from which we could tell the order of magnitude of computational
time easily. For small-size problem, C++ implementation is faster than MATLAB by a factor of 100
or more. Especially for LRBFGS and RBB, which are implemented as a user friendly library. The
MATLAB library machinery dominates the computation time, which is slower than C++ library
by a factor of 1000. The factor gradually reduces as n or K gets larger. This phenomenon can
be explained by the fact that when n and K are small, the difference of efficiency between C++
and Matlab is mainly due to the difference between compiled languages and interpreted languages.
When n or K gets larger, the BLAS and LAPACK calls start to dominate the computation time,
which leads to d decrease in the factor. In addition, we could also observe that the overhead of
MATLAB library machinery becomes invisible for large-size problems.

5 Conclusion

In this paper, we present a concrete LRBFGS method for the SPD Karcher mean computation,
and provide efficient implementation techniques. There are several alternatives to choose from for
the representation of the tangent vector, retraction and vector transport. We provide theoretical
suggestions on how to choose between the alternatives by complexity analysis.

Our numerical experiments provide empirical guideline to choose between various methods. We
observe that RSD-QR and RL perform very well on small-size and well-conditioned problems, and
RSD-QR is systematically faster than RL. LRBFGS is the winner on large-size or ill-conditioned
problems in terms of number of iterations and time efficiency. It exhibits a robust behavior with
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Figure 1: Evolution of averaged distance between current iterate and the exact Karcher mean with
respect to time and iterations with K = 3, n = 3. Top: 1 ≤ κ(Ai) ≤ 20; Bottom: 105 ≤ κ(Ai) ≤
1010

respect to the conditioning of the problem and parameter setting. We also present empirical
illustration of the speedup of C++ implementation compared with MATLAB implementation.
Notice that it is demonstrated theoretically and empirically that for the large-size problems, the
dominate computation time (70% - 90%) is on the problem-related operations, i.e., function and
gradient evaluations. We believe that our implementations of manifold- and algorithm-related
objects have reached the limit of efficiency.

A ALM list of properties for SPD matrix geometric means

P1 Consistency with scalars. If A1, . . . , AK commute then G(A1, . . . , AK) = (A1 · · ·AK)1/K .

P2 Joint homogeneity. G(α1A1, . . . , αKAK) = (α1 · · ·αK)1/KG(A1, . . . , AK).

P3 Permutation invariance. For any permutation π(A1, . . . , AK) of (A1, . . . , AK), G(A1, . . . , AK) =
G(π(A1, . . . , AK)).
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Figure 2: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 100 and n = 3; Top: 1 ≤ κ(Ai) ≤ 200; Bottom:
103 ≤ κ(Ai) ≤ 107

P4 Monotonicity. If Ai ≥ Bi for all i, then G(A1, . . . , AK) ≥ G(B1, . . . , BK) in the positive
semidefinite ordering.

P5 Continuity from above. If {A(n)
1 }, . . . , {A

(n)
K } are monotonic decreasing sequences (in the

positive semidefinite ordering) converging to A1, . . . , AK , respectively, then G(A
(n)
1 , . . . , A

(n)
K )

converges to G(A1, . . . , AK).

P6 Congruence invariance. G(STA1S, . . . , S
TAKS) = STG(A1, . . . , AK)S for any invertible S.

P7 Joint concavity. G(λA1 + (1 − λ)B1, . . . , λAK + (1 − λ)AK) ≥ λG(A1, . . . , AK) + (1 −
λ)G(B1, . . . , BK).

P8 Invariance under inversion. G(A1, . . . , AK)−1 = G(A−11 , . . . , A−1K ).

P9 Determinant identity. detG(A1, . . . , AK) = (detA1 · · · detAK)1/K .
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Figure 3: Evolution of averaged distance between current iterate and the exact Karcher mean
with respect to time and iterations with K = 30 and n = 100; Top: 1 ≤ κ(Ai) ≤ 20; Bottom:
104 ≤ κ(Ai) ≤ 107
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Figure 6: Comparison between C++ and MATLAB implementations with different choices of
(K,n, κ). Top row: K = 3, n = 3, and 1 ≤ κ(Ai) ≤ 20; Middle row: K = 100, n = 3, and
1 ≤ κ(Ai) ≤ 20; Bottom: K = 30, n = 100, and 1 ≤ κ(Ai) ≤ 20.
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