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Abstract

2-stratifolds are a generalization of 2-manifolds in that there are
disjoint simple closed branch curves. We obtain a list of all closed
3-manifolds that have a 2-stratifold as a spine. 1 2

1 Introduction

2-stratifolds form a special class of 2-dimensional stratified spaces. A (closed
with empty 0-stratum) 2-stratifold is a compact connected 2-dimensional
cell complex X that contains a 1-dimensional subcomplex X(1), consisting
of branch curves, such that X − X(1) is a (not necessarily connected) 2-
manifold. The exact definition is given in section 2. X can be constructed
from a disjoint unionX(1) of circles and compact 2-manifoldsW 2 by attaching
each component of ∂W 2 to X(1) via a covering map ψ : ∂W 2 → X(1), with
ψ−1(x) > 2 for x ∈ X(1). A slightly more general class of 2-dimensional
stratified spaces, called multibranched surfaces and which have been defined
and studied in [11], is obtained by allowing boundary curves, i.e. considering
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a covering map ψ : ∂W ′ → X(1), where ∂W ′ is a sub collection of the
components of ∂W 2.

2-stratifolds arise as the nerve of certain decompositions of 3-manifolds
into pieces where they determine whether the G-category of the 3-manifold
is 2 or 3 ([4]). They are related to foams, which include special spines of
3-dimensional manifolds and which have been studied by Khovanov [8] and
Carter [3]. Simple 2-dimensional stratified spaces arise in Topological Data
Analysis [2], [9].

Matsuzaki and Ozawa [11] show that 2-stratifolds can be embedded in
R4. Furthermore they show that they can be embedded into some orientable
closed 3-manifold if and only if their branch curves satisfy a certain regularity
condition. However, the embeddings are not π1-injective, i.e. the induced
homomorphism of fundamental groups is not injective. In fact, there are
many 2-stratifolds whose fundamental group is not isomorphic to a subgroup
of a 3-manifold group; for example there are infinitely many 2-stratifolds
with (Baumslag-Solitar) non-Hopfian fundamental groups. These can not
be embedded as π1-injective subcomplexes into 3-manifolds since 3-manifold
groups are residually finite. On the other hand, every 2-manifold embeds
π1-injectively in some (Haken) 3-manifold. Since subgroups of 3-manifold
groups are 3-manifold groups, the following question arises:

Question 1. Which 3-manifolds M have fundamental groups isomorphic
to the fundamental group of a 2-stratifold?

The fundamental group of a closed 2-manifold S is isomorphic to the
fundamental group of a closed 3-manifold M if and only if S is the 2-sphere
or projective plane and M is S3 or P 3, respectively. Since S2 is not a spine of
S3, the only closed 3-manifold with a (closed) 2-manifold spine is P 3. This
motivates the next question:

Question 2. Which closed 3-manifoldsM have spines that are 2-stratifolds?
The main results of this paper are Theorem 1 which answers question 1

for closed 3-manifolds and Theorem 2, which answers question 2 by showing
that a closed 3-manifold M has a 2-stratifold spine if and only if M is a
connected sum of lens spaces, S2-bundles over S1, and P 2×S1’s.

2 2-stratifolds and their graphs.

In this section we review the definitions of a 2-stratifold X and its associated
graph GX given in [5].
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A (closed) 2-stratifold is a compact 2-dimensional cell complex X that
contains a 1-dimensional subcomplex X(1), such that X−X(1) is a 2-manifold
(X(1) and X − X(1) need not be connected). A component C ≈ S1 of
X1 has a regular neighborhood N(C) = Nπ(C) that is homeomorphic to
(Y×[0, 1])/(y, 1) ∼ (h(y), 0), where Y is the closed cone on the discrete
space {1, 2, ..., d} (for d ≥ 3) and h : Y → Y is a homeomorphism whose
restriction to {1, 2, ..., d} is the permutation π : {1, 2, ..., d} → {1, 2, ..., d}.
The space Nπ(C) depends only on the conjugacy class of π ∈ Sd and therefore
is determined by a partition of d. A component of ∂Nπ(C) corresponds then
to a summand of the partition determined by π. Here the neighborhoods
N(C) are chosen sufficiently small so that for disjoint components C and C ′

of X1, N(C) is disjoint from N(C ′).
Note that X may also be described as a quotient space W ∪ψX(1), where

ψ : ∂W → X(1) is a covering map (and |ψ−1(x)| > 2 for every x ∈ X(1)).
We construct an associated bicolored graphG = GX ofX = XG by letting

the white vertices w of GX be the components W of M := X − ∪jN(Cj)
where Cj runs over the components of X1; the black vertices bj are the Cj’s.
An edge e is a component S of ∂M ; it joins a white vertex w corresponding
to W with a black vertex b corresponding to Cj if S = W ∩ N(Cj). The
number of boundary components of W is the number of adjacent edges of
W .

GX embeds naturally as a retract into XG.
We label the white vertices w with the genus g of W ; here we use Neu-

mann’s [14] convention of assining negative genus g to nonorientable surfaces;
for example the genus g of the projective plane or the Moebius band is −1,
the genus of the Klein bottle is −2. We orient all components Cj and S of
X(1) and ∂W , resp., and assign a label m to an edge e, where |m| is the
summand of the partition π corresponding to the component S ⊂ ∂Nπ(C);
the sign of m is determined by the orientation of Cj and S. In terms of
attaching maps, m is the degree of the covering map ψ : S → Cj for the
corresponding components of ∂W and X(1).

(Note that the partition π of a black vertex is determined by the labels
of its adjacent edges).
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3 Structure of π1(XG)

In this section we obtain a natural presentation for the fundamental group
of a 2-stratifold XG with associated bicolored graph G = GX and describe
π1(XG) as the fundamental group of a graph of groups G with the same un-
derlying graph G.

For a given white vertex w, the compact 2-manifold W has conveniently ori-
ented boundary curves s1, . . . , sp such that

(*) π1(W ) = 〈s1, . . . , sp, y1, . . . , yn : s1 · · · sp · q = 1〉

where q = [y1, y2] . . . [y2g−1, y2g], if W is orientable of genus g and n = 2g,
q = y21 . . . y

2
n, if W is non-orientable of genus −n.

Let B be the set of black vertices, W the set of white vertices and choose a
fixed maximal tree T of G. Choose orientations of the black vertices and of
all boundary components of M such that all labels of edges in T are positive.

Then π1(XG) has a natural presentation with

generators: {b}b∈B
{s1, . . . , sp, y1, . . . , yn}, one set for each w ∈ W , as in (∗)
{ti}, one ti for each edge ci ∈ G− T between w and b

and relations: s1 · · · sp · q = 1, one for each w ∈ W , as in (∗)
bm = si, for each edge si ∈ T between w and b with label m ≥ 1
t−1i siti = bmi , for each edge si ∈ G− T between w and b with label mi ∈ Z.

As an example we show in Figure 1 (the graph of) a 2-stratifold XG with
π1(XG) = F , an F -group as in Proposition (III)5.3 of [10], with presentation

(F) F = 〈c1, . . . , cp, y1, . . . , yn : cm1
1 , . . . , c

mp
p , c1 · · · cp · q = 1〉

where p, n ≥ 0, all mi > 1 and q = [y1, y2] . . . [y2g−1, y2g] or q = y21 . . . y
2
n.

Here we have denoted the generators corresponding to the black vertices
by ci, rather than bi, to indicate that the finite order elements correspond to
attaching disks along the boundary curves of W .
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Figure 1: F-group

The fundamental group of XG is best described as the fundamental group
of a graph of groups [6].

If π1(XG) has no elements of finite order, then π1(XG) is the fundamental
group of a graph of groups G, with underlying graph G, the groups of white
vertices are the fundamental groups of the W ′s, the groups of the black
vertices and edges are (infinite) cyclic.

Elements of finite order occur when a generator b of a black vertex has
finite order o(b) ≥ 1. In this case we attach 2-cells db and de to Cb, the circle
corresponding to b, as follows: db is attached by a map of degree o(b). If e is an
edge joining b to w with label m, attach de with degree o(c) = o(b)/(o(b),m).
Letting X̂b = N(Cb) ∪ db ∪ (∪de), where e runs over the edges having b as
an endpoint, X̂w = W ∪ (∪de), where e runs over the edges incident to w,
and X̂e = (X̂b ∩ X̂w), for an edge e joining b to w, we obtain a graph of CW-
complexes that determines a graph of groups G with the same underlying
graph as GX .

The vertex groups are Gb = π1(X̂b) and Gw = π1(X̂w), the edge groups
are Ge = π1(X̂e), the monomorphisms δ : Ge → Gb (resp. Ge → Gw are
induced by inclusion. Then (see for example [15],[16]) π1G ∼= π1(X̂).

Note that the groups Gb of the black vertices and the groups Ge of the
edges are cyclic. For a white vertex w with edges e1, . . . ep labelled m1, . . .mp

with associated vertex space Xw = W ∪ri=1 dei we obtain
Gw = 〈c1, . . . , cp, y1, . . . , yn : c1 · · · cp · q = 1 , ck11 = · · · = ckr1 = 1〉
where q is as in (F), 1 ≤ r ≤ p and ki ≥ 1.

If all ki ≥ 2 and r = p then Gw is an F -group ([10] p. 126-127), otherwise
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it is a free product of cyclic groups.

4 Necessary Conditions

In this section we show that a 2-stratifold group that is a closed 3-manifold
group is a free product of cyclic or Z×Z2 groups.

First consider an F -group F as in (F).

Proposition 1. ([10] Proposition (III)7.4) Let H be a subgroup of an F -
group. If H has finite index then H is an F -group. If H has infinite index
then H is a free product of cyclic groups.

Proposition 2. ([10] p.132) (a) F is finite non-cyclic if and only if n =
0, p = 3 and (m1,m2,m3) = (2, 2,m) (m ≥ 2) (the dihedral group of order
2m) or (m1,m2,m3) = (2, 3, k) for k = 3, 4 or 5 (the tetrahedral, octahedral,
dodecahedral groups). In each case, c1 is a non-central element of order 2.

(b) F is finite cyclic if and only if n = 0, p ≤ 2 (the 2-sphere orbifold
with at most two cone points) or n = 1, p ≤ 1 (the projective plane orbifold
with at most one cone point).

Lemma 1. F is not a non-trivial free product.

Proof. If F = A ∗B with A,B non-trivial, then A and B have infinite index
and so, by Proposition 1, A,B and F are free products of cyclic groups.
However, F is not such a group since it contains a subgroup isomorphic to
the fundamental group of an orientable closed surface of genus ≥ 1 (see the
remark after Proposition (III)7.12 in [10]).

The following remark is easy to see.

Remark 1. If F 6= Z2 then F has no elements of finite order if and only if
F is a surface group.

Lemma 2. If M is an orientable (not necessarily closed or compact) 3-
manifold with π1(M) ∼= F then π1(M) is cyclic or a surface group.

Proof. We may assume that ∂M contains no 2-spheres. By Scott’s Core
Theorem we may assume that M is compact and by Lemma 1 that M is
irreducible.
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If π1(M) is infinite then M is aspherical (see e.g. [1]). It follows that
π1(M) is torsion-free and from Remark 1 that π1(M) is a surface group.

If π1(M) is finite then M is closed. If π1(M) is also non-cyclic then by
Proposition 2, π1(M) contains a non-central element of order 2. This can
not happen by Milnor [13].

We now consider a 2-stratifold XG with π1(XG) = π(G) as in section 3.

Up to conjugacy, the only elements of finite order of π1(XG) are con-
tained in the vertex groups; they correspond to black vertices of finite order
and elements of white vertices w whose corresponding group in G is finite.
The latter are described in Proposition 2. It is also shown in [10] (proof of
Proposition (III)7.12) that in an infinite F-group the only elements of finite
order are the obvious ones, namely conjugates of powers of c1, . . . , cp.

For a group H, denote by QH be the quotient group of H modulo the
smallest subgroup of H containing all elements of finite order of H.

Let w be a white vertex in GX . We say that w is a white hole, if w has
label −1, all of its (black) neighbors have finite order and at most one of its
neighbors has order > 1.

If GX has more than one vertex, note that Qπ1(XG) is obtained from
π1(XG) by killing the open stars of all the black vertices representing elements
of finite order ≥ 1 of π1(XG) and deleting the white holes. In the example
of Figure 1, when genus g = −1 (and so n = 1), Qπ1(XG) = Z2. (Note that
the white vertex of genus −1 is not a white hole if p ≥ 2,mi > 1).

Proposition 3. If Q(π1(XG)) has no elements of order 2, then H3(Qπ1(XG)) =
0.

Proof. Let G′ be the labelled subgraph of GX obtained by deleting the open
stars of all black vertices representing elements of finite order of π1(XG) and
all white holes. (π1(X∅) = 1 by definition). Let C be a component of G′.
Then Qπ(XG) = L ∗ (∗C(π(XC)), the free product of a free group L with the
free product of the π(XC) where C runs over the components of G′.

If C consists of only one (white) vertex, then XC is a closed 2-manifold,
different from P 2, since by assumption Q(π1(XG)) has no elements of order
2. We may ignore the C’s consisting of spheres, since they do not contribute
to Qπ(XG). (A nonseparating 2-sphere only changes the rank of L). In
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all other cases XC is the total space of a bicolored graph of spaces with
white vertex spaces 2-manifolds with boundary, edge spaces circles, and black
vertex spaces homotopy equivalent to circles.

Thus every vertex and edge space of XC is aspherical (with free fun-
damental group) of dimension ≤ 2. By Proposition 3.6 (ii) of [15], XC is
aspherical. It follows that Qπ1(XG) has (co)homological dimension ≤ 2 and
so H3(Qπ1(XG)) = 0.

The assumption that Q(π1(XG)) has no elements of finite order is satisfied
if π1(XG) is a 3-manifold group: We claim that Qπ1(M) is torsion free if M
is a closed orientable 3-manifold.

For let M = M1# . . .#Mk be its prime decomposition. If Mi is irre-
ducible with infinite fundamental group, then Mi is aspherical and so π1(Mi)
is torsion free; if Mi has finite fundamental group, then Qπ1(M1) = 1. Now
the claim follows since Qπ1(M) = Qπ1(M1) ∗ · · · ∗Qπ1(Mk).

Lemma 3. Let M be a closed orientable 3-manifold with prime decomposition
M = M1# . . .#Mk. If π1(M) ∼= π1(XG), then each π1(Mi) is infinite cyclic
or finite.

Proof. If there is some Mi with π1(Mi) 6= Z, then Mi is irreducible. If π1(Mi)
is infinite then Mi is aspherical and hence H3(Qπ1(Mi)) = H3(π1(Mi)) =
H3(Mi) 6= 0. Since Qπ1(M) = Qπ1(M1) ∗ · · · ∗ Qπ1(Mk) it follows that
H3(Qπ1(M)) 6= 0, which contradicts Proposition 3.

Lemma 4. Let M be a closed 3-manifold and suppose π1(M) = π1(XG).
Then any finite subgroup H of π1(M) is cyclic.

Proof. π1(XG) ∼= π1(G) where G is a graph of groups in which the groups of
black vertices are cyclic and the groups of white vertices are F -groups or free
products of finitely many cyclic groups. The finite group H is non-splittable
(i.e. not a non-trivial HHN extension or free product with amalgamation).
By Corollary 3.8 and the Remark after Theorem 3.7 of [15], H is a cyclic
group or isomorphic to a subgroup of an F -group. If H is not cyclic, then
(since H is not a non-trivial free product of cyclic groups), H is itself an
F -group by Proposition 1. Since H is a 3-manifold group it follows from
Lemma 2 that this case can not occur.

Corollary 1. Let M be a closed orientable 3-manifold. If π1(M) ∼= π1(XG),
then π1(M) is a free product of cyclic groups.
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Proof. This follows from Lemmas 3 and 4.

Theorem 1. Let M be a closed 3-manifold. If π1(M) ∼= π1(XG), then π1(M)
is a free product of groups, where each factor is cyclic or Z×Z2.

Proof. If M is orientable this is Corollary 1 (with each factor cyclic). Thus
assume M is non-orientable and let p : M̃ → M be the 2-fold orientable
cover of M . Then π1(M̃) = π1(XG̃) for the 2-stratifold XG̃, which is the 2-
fold cover of XG corresponding to the orientation subgroup of π1(M). Hence
π1(M̃) is a free product of cyclic groups.

Let M = M̂1# . . .#M̂k be a prime decomposition of M = M1∪ · · · ∪Mk.
If Mi is orientable, then Mi lifts to two homeomorphic copies M̃i1, M̃i2 of

Mi, with each ˆ̃M ij a factor of the prime decomposition of M̃ and it follows
that π1(Mi) is cyclic.

If M̂i is non-orientable and P 2-irreducible, then Mi lifts to M̃i, where ˆ̃M i

is irreducible. Then π1(
ˆ̃M i), being a factor of the free product decomposition

of π1(M̃), is finite cyclic, which can not occur since π1(Mi) is infinite.
If M̂i is non-orientable irreducible, contains P 2’s, but is not P 2×S1, then

by Proposition (2.2) of [17], Mi splits along two-sided P 2’s into 3-manifolds
N1, . . . , Nm such that the fundamental group of the lifts Ñi is indecompos-
able, torsion free and not isomorphic to Z. Since π1(Ñi) is a factor of the
free product decomposition of π1(M̃), this can not happen.

Therefore each non-orientable Mi is either the S2-bundle over S1 or
P 2×S1, which proves the Theorem.

5 Realizations of spines.

Recall that a subpolyhedron P of a 3-manifold M is a spine of M , if M −
Int(B3) collapses to P , where B3 is a 3-ball in M .

An equivalent definition is that M−P is homeomorphic to an open 3-ball
(Theorem 1.1.7 of [12]).

We first construct 2-stratifold spines of lens spaces (different from S3),
the non-orientable S2-bundle over S1, and P 2×S1.

Example 1. Lens space L(0, 1) = S3.
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S3 does not have a 2-stratifold spine. Otherwise such a spine X would
be a deformation retract of the 3-ball and therefore contractible. However
there are no contractible 2-stratifolds [5].

Example 2. Lens spaces L(p, q) with q 6= 0, 1.
Let r be the rotation of the disk D2 about its center c with angle 2πp/q,

let 1 ∈ S1 ⊂ D2 and let xi = ri−1(1), i = 1, . . . , q. Let Y ⊂ D2 be the
cone of {x1, . . . , xq} with cone point c. Embed Y×I/(xi, 0) ∼ (xi+1, 1) into
the solid torus V = D2×I/(x, 0) ∼ (r(x), 1). The punctured lens space
L(p, q) is obtained from V by attaching a 2-handle D×I with ∂D attached
to the boundary curve of (Y×I)/∼. Then L(p, q) deformation retracts to
(Y×I)/∼∪D, which is the 2-stratifold with one white vertex of genus 0, one
black vertex, and one edge with label q.

Example 3. Lens space L(1, 0) = S2×S1 and non-orientable S2-bundle over
S1.

Consider S2×̃S1, the non-orientable S2-bundle over S1, as as the quotient
space q(S2×I) under the quotient map q : S2×I → S2×S1 that identifies
(x, 0) with (x, 1), x ∈ S2.

Let D0 ⊂ S2×{0} be a disk and B1 be the 3-ball D0×I ⊂ S2×I, let D1

be the disk B1 ∩ S2×{1}, let A be the annulus ∂B1 − (Int(D0) ∪ Int(D1)),
and let B2 be the ball S2×I − Int(B1), see Figure 2.

Figure 2: S2×̃S1 − Int(B2)↘ S1×̃S1 ∪D2

Then S2×I − Int(B2) = S2×{0}∪B1 ∪S2×{1} and S2×̃S1− Int(B2) =
q(S2×I − Int(B2)) = S2 ∪ q(B1), where S2 = q(S2×{0}) = q(S2×{1}). Col-
lapsing the ball q(B1) across the free face q(D1) onto q(A)∪ q(D0) we obtain
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a collapse of S2×̃S1 − Int(B2) onto (S2 − Int(q(D1))) ∪ q(A), which is a
Kleinbottle with a disk attached. This is a 2-stratifold XG with graph GX

in Figure 3(a). (The white vertices have genus 0).

A similar construction, considering S2×S1 as the obvious quotient space
of q : S2×I → S2×S1 and first isotoping the ball B1 such that D0 ∩D1 = ∅,
we obtain a collapse of S2×S1 − Int(B2) onto a torus with a disk attached.
This is a 2-stratifold XG with graph GX in Figure 3(b).

Figure 3: 2-stratifold spines of punctured S2×̃S1 and P 2×S1

Example 4. P 2×S1.
For a one-sided simple closed curve c in P 2 and a point t0 in S1 let

X = P 2×{t0} ∪ c×S1 ⊂ P 2×S1. Observe that the boundary of a regular
neighborhood N of X in P 2×S1 is a 2-sphere. Since P 2×S1 is irreducible,
∂N bounds a 3-ball B3 and therefore P 2×S1−Int(B3) = N , which collapses
onto X = XG, a 2-stratifold with graph in Figure 3(c).

Proposition 4. If the closed 3-manifold Mi (i = 1, 2) has a 2-stratifold spine
and M is a connected sum of M1 and M2, then M has a 2-stratifold spine.

Proof. Let Ki be a 2-stratifold spine of Mi. Let K1 ∨ K2 be obtained by
identifying, in the disjoint union of K1 and K2 a nonsingular point of K1

with a nonsingular point of K2. By Lemma 1 of [7], K1∨K2 is a spine of M .
Though K1 ∨K2 is not a 2-stratifold, by performing the operation explained
below (replacing the wedge point by a disk) we will change K1 ∨ K2 to a
2-stratifold spine K1∆K2.

A 3-ball neighborhood B3 of the wedge point of K1∨K2 intersects K1∨K2

in the double cone shown in Fig.4. Replace, in K1 ∨ K2, K1 ∨ K2 ∩ B3 by
A∪D, as shown in Fig. 2, whereA = S1×[0, 1] is an horizontal cylinder, ∂A =

11



(K1 ∨K2) ∩ ∂B3, D is a vertical 2-disk with A ∩D = ∂D = S1×(1/2). The
result is a 2-stratifold K1∆K2. There is a homeomorphism from B3−(A∪D)
onto B3 −K1 ∨K2 which is the identity on the boundary (roughly collapse
D to a point) and so M −K1∆K2 is homeomorphic to M −K1 ∨K2 which
is homeomorphic to R3.

Therefore K1 ∨K2 is a 2-stratifold spine of M .

Figure 4: K1∆K2

Now Theorem 1 together with the examples and Proposition 4 yields our
main Theorem. Here we do not consider S3 to be a lens space.

Theorem 2. A closed 3-manifold M has a 2-stratifold as a spine if and only
if M is a connected sum of lens spaces, S2-bundles over S1, and P 2×S1’s.
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and the TDA project from CIMAT for financial support and IST Austria for
their hospitality.

References

[1] M. Aschenbrenner, S. Friedel, H. Wilson, Decision Problems for 3-
manifolds and their fundamental groups, arXiv:1405.6274v2 [math.GT],
(2015).

[2] P. Bendich, E. Gasparovicy, C.J. Traliez, J. Harer, Scaffoldings
and Spines: Organizing High-Dimensional Data Using Cover Trees,
Local Principal Component Analysis, and Persistent Homology,
arXiv:1602.06245v2 [cs.CG] 27 Feb 2016.

12



[3] J.S. Carter, Reidemeister/Roseman-type moves to embedded foams in
4-dimensional space. arXiv:1210.3608v1 [math.GT]
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