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Abstract. A generalized cusp C is diffeomorphic to [0,∞) times a closed Euclidean manifold.

Geometrically C is the quotient of a properly convex domain by a lattice, Γ, in one of a family of
affine groups G(ψ), parameterized by a point ψ in the (dual closed) Weyl chamber for SL(n+1,R),

and Γ determines the cusp up to equivalence. These affine groups correspond to certain fibered

geometries, each of which is a bundle over an open simplex with fiber a horoball in hyperbolic
space, and the lattices are classified by certain Bieberbach groups plus some auxiliary data. The

cusp has finite Busemann measure if and only if G(ψ) contains unipotent elements. There is a

natural underlying Euclidean structure on C unrelated to the Hilbert metric.

A generalized cusp is a properly convex projective manifold C = Ω/Γ where Ω ⊂ RPn is a
properly convex set and Γ ⊂ PGL(n+ 1,R) is a virtually abelian discrete group that preserves Ω.
We also require that ∂C is compact and strictly convex (contains no line segment) and that there
is a diffeomorphism h : [0,∞)× ∂C −→ C.

An example is a cusp in a hyperbolic manifold that is the quotient of a horoball. Another
generalized cusp C ′ = Ω′/Γ′ is equivalent to C if there is a generalized cusp C ′′ and projective
embeddings, that are also homotopy equivalences, of C ′′ into both C and C ′, and they are all
diffeomorphic. It follows from the classification theorem that generalized cusps are equivalent if
and only if Γ and Γ′ are conjugate subgroups of PGL(n+ 1,R).

It follows from [10] that every generalized cusp in a strictly convex manifold of finite volume
is equivalent to a standard cusp, i.e. a cusp in a hyperbolic manifold. A generalized cusp is
homogeneous if PGL(Ω) (the group of projective transformations that preserves Ω) acts transitively
on ∂Ω. It was shown in [11] that every generalized cusp is equivalent to a homogeneous one and,
that if the holonomy of a generalized cusp contains no hyperbolic elements, then it is equivalent
to a standard cusp. Furthermore, by [11] it follows that generalized cusps often occur as ends of
properly convex manifolds obtained by deforming finite volume hyperbolic manifolds.

The holonomy of a generalized cusp is conjugate to a lattice in one of a family of Lie subgroups
G(ψ) ⊂ PGL(n + 1,R), parameterized by ψ ∈ Hom(Rn,R) with ψ(e1) ≥ ψ(e2) ≥ · · ·ψ(en) ≥ 0.
Elements of the unipotent subgroup P (ψ) ⊂ G(ψ) are called parabolic. The type t = tψ, is the
number of i with ψ(ei) 6= 0, and the unipotent rank is u(ψ) = dimP (ψ) = max(n− t− 1, 0).

The group G(ψ) is called a cusp Lie group and preserves a properly-convex domain, Ω(ψ),
together with a convex function hψ : Ω(ψ) → R. The level sets Ht = h−1

ψ (t) are G(ψ)-orbits, and

are convex hypersurfaces called horospheres. The horospheres with t ≤ 0 foliate Ω(ψ). There is
a transverse G(ψ)-foliation by a pencil of lines, and a one parameter subgroup of PGL(n + 1,R),
called the radial flow, that preserves each line, normalizes G(ψ), and permutes the horospheres.

The interior of Ω(0) is a model of hyperbolic space, Hn, and ∂Ω(0) = Sn−1
∞ − z where z is

some point in Sn−1
∞ . Moreover G(0) ⊂ Isom(Hn) is the group generated by parabolics and elliptics

that fix z. At the other extreme, when t = n, then G(ψ) contains a finite index subgroup that is
diagonalizable. Moreover, G(ψ) = PGL(Ω(ψ)) if ψ 6= 0. When t < n, the geometry (Ω(ψ), G(ψ))
is fibered over a simplex ∆t with fiber a horoball in Hu+1, see (1.32).

If Γ ⊂ G(ψ) is a lattice then C = Ω(ψ)/Γ is called a ψ-cusp. This is a projective manifold if Γ
is torsion free, and in general is a projective orbifold. In this paper we have chosen to discuss only
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2 SAMUEL A. BALLAS, DARYL COOPER, AND ARIELLE LEITNER

manifolds, though everything works (suitably modified) for orbifolds. The image of a horosphere
in C is called a horomanifold and these foliate C.

Theorem 0.1 (uniformization). Every generalized cusp is equivalent to a ψ-cusp.

The next goal is to classify cusps up to equivalence. For this it is useful to introduce marked
cusps and marked lattices (see Section 3 for the definition and more discussion). A rank-2 cusp in
a hyperbolic 3-manifold is determined by a cusp shape, which is a Euclidean torus defined up to
similarity. This shape is usually described by a complex number x + iy with y > 0, that uniquely
determines a marked cusp. Unmarked cusps are described by the modular surface H2/PSL(2,Z).

More generally, a maximal-rank cusp in a hyperbolic n-manifold is determined by a lattice in
Isom(En−1) up to conjugacy and rescaling. We extend this result by showing when ψ 6= 0 that
a generalized cusp of dimension n with holonomy in G(ψ) is determined by a pair ([Γ], A · O(ψ))
consisting of the conjugacy class of a lattice Γ ⊂ Isom(En−1), and an anisotropy parameter which
we now describe.

The second fundamental form on ∂Ω is a Euclidean metric that is preserved by the action of
G(ψ). This identifies G(ψ) with a subgroup of Isom(En−1), and G(ψ) = T (ψ)oO(ψ) is the semi-
direct product of the translation subgroup, T (ψ) ∼= Rn−1, and a closed subgroup O(ψ) ⊂ O(n− 1)
that fixes some point p in ∂Ω, see (1.22). The Euclidean structure identifies Γ with a lattice in
Isom(En−1). This lattice is unique up to conjugation by an element of O(ψ). The anisotropy
parameter is a left coset A · O(ψ) in O(n) that determines the O(ψ)-conjugacy class. The group
O(ψ) is computed in (1.21).

Given a Lie group G, the set of G-conjugacy classes of marked lattices in G is denoted T (G).
Define T (Isom(En−1), ψ) ⊂ T (Isom(En−1)) to be the subset of conjugacy classes of marked Eu-
clidean lattices with rotational part of the holonomy (up to conjugacy) in O(ψ). The classification
of generalized cusps (up to equivalence) is completed by:

Theorem 0.2 (classification).

(1) If Γ and Γ′ are lattices in G(ψ) TFAE
(a) Ω(ψ)/Γ and Ω(ψ)/Γ′ are equivalent generalized cusps
(b) Γ and Γ′ are conjugate in PGL(n+ 1,R)
(c) Γ and Γ′ are conjugate in PGL(Ω(ψ))

(2) A lattice in G(ψ) is conjugate in PGL(n+ 1,R) into G(ψ′) iff G(ψ) is conjugate to G(ψ′).
(3) G(ψ) is conjugate in PGL(n+ 1,R) to G(ψ′) iff ψ′ = t · ψ for some t > 0.
(4) PGL(Ω(ψ)) = G(ψ) when ψ 6= 0
(5) When ψ 6= 0 the map Θ : T (Isom(En−1), ψ) × (O(n − 1)/O(ψ)) −→ T (G(ψ)) defined in

(29) is a bijection.

One might view (2) in the context of super-rigidity : an embedding of a lattice determines an
embedding of the Lie group that contains it. Throughout this paper we repeatedly stumble over
two exceptional cases. A generalized cusp with ψ = 0 is projectively equivalent to a cusp in a
hyperbolic manifold. This is the only case when PGL(Ω(ψ)) is strictly larger than G(ψ), and
is caused by elements of PGL(Ω(0)) ⊂ Isom(Hn) that permute horospheres. These elements are
hyperbolic isometries of Hn that fix z. This accounts for the fact that the equivalence class of a
cusp in a hyperbolic manifold is determined by the similarity class (PGL(Ω(ψ))-conjugacy class) of
the lattice, rather than the G(ψ)-conjugacy class, as in every other case. The other exceptional case
is the diagonalizable case t = n, and in this case the radial flow is hyperbolic instead of parabolic.
Fortunately both these exceptional cases are easy to understand, but tend to require proofs that
consider various cases.

Let Cn denote the set of equivalence classes of generalized cusps of dimension n. Let Modn

denote the (disjoint) union over all ψ with ψ(e1) = 1 of conjugacy classes of (unmarked) lattice
in G(ψ), union lattices in G(0) ∼= Isom(En−1) up to conjugacy and scaling. It follows from the
above that every non-standard generalized cusp is equivalent to one given by a lattice in G(ψ) with
ψ(e1) = 1, that is unique up to conjugacy in G(ψ) giving:
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Corollary 0.3 (cusps classified by lattices). There is a bijection F : Modn −→ Cn defined for
[Γ] ∈Modn by F ([Γ]) = [Ω(ψ)/Γ] when Γ is a lattice in G(ψ).

If α is an isometry of a metric space (X, d) the displacement of α is δ(α) = inf{d(x, αx)|x ∈ X}.

Corollary 0.4 (standard parabolics). Suppose M = Ω/Γ is a properly convex n-manifold such that
every end of M is a generalized cusp. If [A] ∈ Γ, and if δ([A]) = 0 for the Hilbert metric on Ω, then
[A] is the holonomy of an element of π1C for some generalized cusp C ⊂ M , and [A] is conjugate
in PGL(n+ 1,R) into PO(n, 1).

Generalized cusps are modelled on the geometries (G(ψ),Ω(ψ)), and these are all isomorphic to
subgeometries of Euclidean geometry, see (1.33). In fact there is a natural Euclidean metric:

Theorem 0.5 (underlying Euclidean structure). There is a Euclidean metric β on Ω = Ω(ψ) that
is preserved by G(ψ), and (Ω, β) is isometric to Rn−1× [0,∞) with the usual Euclidean metric. The
restriction of β to ∂Ω ⊂ Rn is the second fundamental form.

This implies a generalized cusp has an underlying Euclidean structure, and also an underlying
hyperbolic structure, see (2.12). It is a well known that, if C is a maximal rank cusp in a hyperbolic
manifold M , then C has finite hyperbolic volume.

Theorem 0.6 (parabolic ⇔ finite vol). Suppose C = Ω/Γ is a generalized cusp in the interior a
properly convex manifold M and Γ is conjugate into G(ψ). Then C has finite volume in M (with
respect to the Hausdorff measure induced by the Hilbert metric on M) iff u(ψ) > 0.

The original definition [11] of generalized cusp differs from the one in the introduction by replacing
the word abelian by nilpotent. The reason nilpotent was used originally is the connection between
cusps and the Margulis lemma. A consequence of the analysis in this paper is that these definitions
are equivalent:

Theorem 0.7 (nilpotent ⇒ abelian). Suppose C = Ω/Γ is a properly convex manifold and C ∼=
∂C × [0,∞) and ∂C is compact and strictly convex, and π1C is virtually nilpotent. Then C is a
generalized cusp and π1C is virtually abelian.

Another aspect of the definition of generalized cusp is that ∂C is compact. In the theory of
Kleinian groups, rank-1 cusps are important. These are diffeomorphic to A × [0,∞) where A is a
(non-compact) annulus. For hyperbolic manifolds of higher dimensions there are more possibilities,
however the fundamental group of such a cusp is always virtually abelian. This is not the case for
properly convex manifolds. In [8] there is an example of a strictly convex manifold with unipotent
(parabolic) holonomy, and with fundamental group the integer Heisenberg group. There might to
be a nice theory of properly convex manifolds C ∼= ∂C × [0,∞) with π1C virtually nilpotent and
∂C strictly convex, but without requiring ∂C to be compact.

The definition of the term generalized cusp was the end result of a lot of experimentation with
definitions, and was modified as more was discovered about their nature. In retrospect it turns
out they are all deformations of cusps in hyperbolic manifolds. This theme will be developed in a
subsequent paper.

There is a discussion of surfaces in Section 6, and of 3-manifolds in Section 7. The latter is new
while the former is well known. The general theory is quite involved, and the reader might wish
to skim these sections before the rest of the paper. Choi [6] has studied certain kinds of ends of
projective manifolds, and there is some overlap with his work.

Work partially supported by U.S. National Science Foundation grants DMS 1107452, 1107263,
1107367 RNMS: GEometric structures And Representation varieties (the GEAR Network). Ballas
was partially supported by NSF grant DMS 1709097. Cooper was partially supported by NSF
grants DMS 1065939, 1207068 and 1045292, and thanks Technische Universität Berlin for hospitality
during completion of this work. Leitner was partially supported by the ISF-UGC joint research
program framework grant No. 1469/14 and No. 577/15.
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1. The Geometry of ψ-Cusps

We recall some definitions, see [21] for more background. A subset Ω ⊂ RPn is properly convex if
the intersection with every projective line is connected, and omits at least 2 points. The boundary
is used in the sense of manifolds: ∂Ω = Ω \ int(Ω) ⊂ Ω and is usually distinct from the frontier
which is Fr(Ω) := ∂(cl Ω) = cl Ω \Ω. A properly convex domain has strictly convex boundary if ∂Ω
contains no line segment. An affine patch is the complement of a projective hyperplane. If there is
a unique supporting hyperplane to Ω at p ∈ Fr(Ω) then p is a C1 point.

A geometry is a pair (X,G) where G is a subgroup of the group of homeomorphisms of X onto
itself. In this section we describe a family of geometries parameterized by points in the (closed
dual) Weyl chamber

(1) A = {ψ ∈ Hom(Rn,R) : ψi := ψ(ei) ψ1 ≥ ψ2 ≥ · · · ≥ ψn ≥ 0}
For each ψ ∈ A, there is a closed convex subset Ω(ψ) ⊂ Rn and a Lie subgroup G(ψ) of Aff(Rn),
described by (1.22), that preserves Ω(ψ) and acts transitively on ∂Ω. The pair (Ω(ψ), G(ψ)) is
called ψ-geometry. It is isomorphic to a subgeometry of Euclidean geometry (1.33).

Given ψ ∈ A the type t = tψ is the largest integer 0 ≤ i ≤ n with ψ(ei) > 0, and

V = Vψ = Rt
+ × Rn−t

The ψ-horofunction hψ : Vψ → R is defined by

(2) hψ(x1, · · · , xn) =

{
−xt+1 −

∑t
i=1 ψi log xi + 1

2

∑n
i=t+2 x

2
i if t < n

− (
∑n
i=1 ψi)

−1∑n
i=1 ψi log xi if t = n

The ψ-domain Ω = Ω(ψ) = h−1
ψ ((−∞, 0]) ⊂ Rn has boundary ∂Ω = h−1

ψ (0).
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Theorem 0.5 (nilpotent ⇒ abelian). Suppose C = Ω/Γ is a properly convex manifold and C ∼=
∂C × [0, ∞) and ∂C is compact and strictly convex, and π1C is virtually nilpotent. Then C is a
generalized cusp and π1C is virtually abelian.

Another aspect of the definition of generalized cusp is that ∂C is compact. In the theory of
Kleinian groups, rank-1 cusps are important. These are diffeomorphic to A × [0, ∞) where A is a
(non-compact) annulus. For hyperbolic manifolds of higher dimensions there are more possibilites,
however the fundamental group of such a cusp is always virtually abelian. This is not the case for
properly convex manifolds. In [6] there is an example of a strictly convex manifold with unipotent
(parabolic) holonomy and with fundamental group the integer Heisenberg group. There might to
be a nice theory of properly convex manifolds C ∼= ∂C × [0, ∞) with π1C virtually nilpotent and
∂C strictly convex, but without requiring ∂C to be compact.

The definition of the term generalized cusp was the end result of a lot of experimentation with
definitions, and was modified as more was discovered about their nature. In retrospect it turns
out they are all deformations of cusps in hyperbolic manifolds. This theme will be developed in a
subsequent paper.

1. The Geometry of ψ-Cusps

A geometry is a pair (G, X) where G is a subgroup of the group of homeomorphisms of X onto
itself. In this section we describe a family of geometries parameterized by points in the (closed
dual) Weyl chamber

(1) A = {ψ ∈ Hom(Rn, R) : ψi = ψ(ei) ψ1 ≥ ψ2 ≥ · · · ≥ ψn ≥ 0}
For each ψ ∈ A, there is a closed convex subset Ω(ψ) ⊂ Rn and a Lie subgroup G(ψ) of Aff(Rn)
that preserves Ω(ψ) and acts transitively on ∂Ω. The pair (Ω(ψ), G(ψ)) is called ψ-geometry. It is
isomorphic to a subgeometry of Euclidean geometry (1.22).

Given ψ ∈ A the semisimple rank r = rψ is defined by ψ(ei) > 0 ⇔ i ≤ r, and the unipotent (or
parabolic) rank is p = pλ = n − r. Define

V = Vψ = Rr
+ × Rp

The ψ-horofunction hψ : Vψ → R is defined by

(2) hψ(x1, · · · , xn) =

{ −xr+1 −∑r
i=1 ψi log xi + 1

2

∑n
i=r+2 x2

i if r < n

− (
∑n

i=1 ψi)
−1∑n

i=1 ψi log xi if r = n

The ψ-domain Ω = Ω(ψ) = h−1
ψ ((−∞, 0]) ⊂ Rn has boundary ∂Ω = h−1

ψ (0).

Ω(1, 1) Ω(1, 0) Ω(0, 0)

∂∞Ω ∂∞Ω ∂∞Ω

y = 1/x y = − log x y = x2∂Ω

Figure 1. A projective view of 2 dimensional generalized cusp domains

The domains pictured in Figure 1 are projective, and the affine equations for ∂Ω are obtained
by dehomogenizing with respect to a good choice of coordinates (made explicit later).

We denote the derivative by D.

Figure 1. A projective view of some 2 dimensional ψ-domains

Proposition 1.1. Ω(ψ) is a closed subset of Rn and ∂Ω(ψ) is a strictly convex hypersurface.
Moreover Ω(ψ) is a properly-convex subset of RPn.

Proof. Ω is closed because h is continuous, and it is a smooth manifold with boundary because h
is a submersion. Thus ∂Ω is a smooth hypersurface. The second derivative of x2, and of − log(x),
are both positive on Vψ, so the second derivative D2hψ is positive semi-definite on Vψ. For t < n
it has nullity 1, given by the xt+1 direction. When t = n it is positive definite.

Suppose ` is a line segment with endpoints a, b ∈ Ω. Set f = h|` then f ′′ ≥ 0 so f attains its
maximum at an endpoint. Thus f ≤ max(f(a), f(b)) and f(a), f(b) ≤ 0 since a, b ∈ Ω. Thus f ≤ 0
so ` ⊂ Ω and Ω is convex.

If ` were contained in ∂Ω then h = 0 everywhere on `. But D2h > 0 along ` unless t < n and
` is parallel to et+1, in which case the derivative Dh 6= 0 along `. In every case h is not constant
along ` so ∂Ω is strictly convex.

Suppose ` is a complete affine line contained in Ω. Then ` is contained in Rt
+ × Rn−t, so xi is

constant along ` for i ≤ t. Thus t < n and hψ|` = C1 − t + C2t
2, where t is an affine coordinate

on `. But ` ⊂ Ω implies this function is nowhere positive, a contradiction. Hence Ω contains no
complete affine line, and is thus properly convex. �



GENERALIZED CUSPS 5

Remark 1.2. Notice all ψi must have the same sign, or else hψ is not convex. Equivalently, if
|ψ1| ≥ |ψ2| ≥ · · · ≥ |ψn| ≥ 0 and if Ω(ψ) is convex, then either ψ or −ψ is positive.

For t < n it is convenient to introduce ψt : Rt → R given by

(3) ψt(x) = ψ(x, 0, · · · , 0)

Definition 1.3. For each t ∈ R the hypersurface Ht = h−1
ψ (t) ⊂ Vψ is called a horosphere.

Since hψ is a submersion, these horospheres form a smooth codimension-1 foliation of Vψ. It
follows from 1.10 and the discussion in Section 3 of [10] that these are horospheres in the sense of
Busemann, and from (8) that they are also algebraic horospheres as defined in [10].

Definition 1.4. The ψ cusp Lie group is the group, G = G(ψ) ⊂ Aff(Rn), of all affine maps that
preserves each horosphere.

This condition is equivalent to G preserving the horofunction. In particular G preserves Ω.

Definition 1.5. A ψ-cusp is C = Ω(ψ)/Γ where Γ ⊂ G(ψ) is a torsion-free lattice.

It follows that a ψ-cusp is an affine manifold and also a properly-convex manifold. If Γ is a
lattice in G(ψ) that contains torsion then C is an orbifold.

1.1. The Radial Flow. The parabolic rank is u = max(n− 1− t, 0) and the rank r is defined by
r + u = n − 1. Then r = min(t, n − 1). A more conceptual interpretation of r and u is given by
(20). It is convenient to use coordinates on Vψ given by

(4) (x, z, y) ∈ Vψ =

{
Rr

+ × R× Ru if t < n
Rr

+ × R+ × Ru if t = n

When t = 0 the x-coordinate is empty; and when t ≥ n−1 then u = 0 so the y-coordinate is empty.
The z-coordinate is called the vertical direction. This terminology is motivated by regarding the
horospheres as graphs of functions, see Equation (10).

Definition 1.6. The basepoint of Ω(ψ) is b = bψ = e1 + · · ·+ et ∈ Rn.

Thus for t = 0 the basepoint is b = 0 ∈ Rn. The basepoint satisfies hψ(b) = 0 so b ∈ ∂Ω. When
t < n then b = (x0, z0, y0) where x0 = (1, · · · , 1) ∈ Rr

+ and the remaining coordinates are 0. When
t = n then b = (1, · · · , 1). In projective coordinates the basepoint is [bψ + en+1] ∈ RPn. Define

U = Uψ = Rr
+ × Ru

Radial projection is the map π = πψ : Vψ → Uψ given by

(5) π(x, z, y) =

{
(x, y) if t < n
(x/z, y/z) if t = n

Definition 1.7. The radial flow Φ = Φψ : Vψ × R→ Vψ is defined by

(6) Φt(x, z, y) := Φ((x, z, y), t) =

{
(x, z − t, y) if t < n
e−t(x, z, y) if t = n

In the first case the radial flow is called parabolic and in the second case it is hyperbolic. This
terminology agrees with that of [11]. The orbit of a point is called a flowline. Each flowline maps
to one point under radial projection. When t < n flowlines are vertical lines, and when t = n they
are open rays that limit on 0 ∈ Rn.

The radial flow is the restriction to Vψ of a 1-parameter subgroup Φ ⊂ PGL(n+ 1,R), see (22).
The reason for the name radial flow is that this group acts on RPn and there is a point α ∈ RPn

called the center of the radial flow with the property that, if a point β ∈ RPn is not fixed by the
flow, then the orbit of β is contained in the projective line containing α and β. Moreover Φt(β)→ α
as t → ∞. When t = n then α = 0 ∈ Rn and when t < n then α is the point at infinity [et+1],
corresponding to the z-axis.
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Observe that the radial flow has the following equivariance property:

(7) hψ(Φt(x)) = hψ(x) + t

This equation would need to be modified without the first factor in the definition of hψ (equation
2) when t = n. It follows that the radial flow permutes the level sets of the horofunction and hence
permutes the horospheres and

(8) Ht = Φ−t(∂Ω)

Definition 1.8. A product structure on a manifold M is a pair of transverse foliations on M
determined by a diffeomorphism P × Q → M . There is a diffeomorphism f : ∂Ω(ψ) × [0,∞) →
Ω(ψ) given by f(x, t) = Φ−t(x). This defines a product structure on Ω(ψ), with a foliation by
hypersurfaces called horomanifolds, and a transverse foliation by (half-)flowlines.

If C = Ω(ψ)/Γ is a ψ-cusp, then Γ preserves this product structure, so it covers a product
structure on C. The set Ω is backwards invariant which means that Φt(Ω) ⊂ Ω for all t ≤ 0 and Ω
is the backwards orbit of ∂Ω

Ω =
⋃

t≤0

Φt(∂Ω)

Define `og : R→ R by

(9) `og(x) =

{
0 if x ≤ 0
log(x) if x > 0

and extend this to a map `og : Rr → Rr by applying `og componentwise. Then define f = fψ :
U → R by

(10) fψ(x, y) =

{ −ψt ◦ `og(x) + ‖y‖2/2 if t < n∏n−1
i=1 x

−ψi/ψn

i if t = n

The map F = Fψ : U → ∂Ω given by

F (x, y) = (x, f(x, y), y)

is the inverse of the restriction of vertical projection π| : ∂Ω → U , so ∂Ω is the graph z = f(x, y)
of f and Ω = {(x, z, y) : z ≥ f(x, y)} is the supergraph of f . For t < n the horofunction is then
expressed more compactly as

(11) hψ(x, z, y) = −z + fψ(x, y)

When t = n the vertical coordinate z is not the horofunction, so we do not obtain another expression
for the horofunction in this case.

1.2. The Ideal Boundary ∂∞Ω. In what follows ψ is dropped from the notation. We describe
the closure Ω in RPn. Identify affine space Rn with an affine patch in projective space RPn by
identifying (x, z, y) in Rn with [x : z : y : 1] in RPn. Then

(12) Ω = {[x : z : y : 1] | z ≥ f(x, y), x ∈ Rr
+} ⊂ RPn

Observe that Ω ∩ Rn = Ω. The points at infinity are RPn−1
∞ = RPn \Rn and

(13) Ω = Ω t ∂∞Ω with ∂∞Ω := Ω \ Ω ⊂ RPn−1
∞

The set ∂∞Ω is called the ideal boundary or the boundary at infinity of Ω. See [13] definition 1.17.
The non-ideal boundary or just boundary of Ω is ∂Ω = Rn ∩ ∂Ω. Thus

∂Ω = ∂Ω t ∂∞Ω.

Lemma 1.9. ∂∞Ω(ψ) is the simplex of dimension r

∂∞Ω(ψ) = {[x1 : · · · : xr+1 : · · · : 0] | xi ≥ 0} ∼= ∆r
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Proof. From (12) ∂∞Ω consists of all the points that are the limit of a sequence of points [x : z : y : 1]
with ‖(x, z, y)‖ → ∞ for which z ≥ f(x, y).

First assume t < n, and so t = r. We claim that y/‖(x, z, y)‖ → 0 along the sequence. If
eventually ψ `og(x) < ‖y‖2/4 then by (10) it follows that z > ‖y‖2/4 and, since y/‖y‖2 → 0 as
‖y‖ → ∞, it follows that y/z → 0. Otherwise we may take a subsequence so ψ `og(x) ≥ ‖y‖2/4→
+∞. Since ψj > 0 for all j ≤ r, this means for some i ≤ r the coordinate xi of x is positive
and larger than some fixed multiple of exp ‖y‖, hence y/xi → 0. This proves the claim. Hence
∂∞Ω ⊂ ∆r.

From (10) we see that f(etx, 0) < 0 for large t. Then by (12)

∂∞Ω ⊃ { lim
t→∞

[etx : etz : 0 : 1] | z ≥ 0, x ∈ Rr+} = ∆r

which proves the result for t < n.
When t = n then r = n− 1 and ∂∞Ω ⊂ ∂∞Vψ = ∆n−1. On the other hand if v ∈ int ∆n−1 then

v = limt→∞[tx : tz : 1], where x ∈ Rn−1
+ and z ∈ R+. From the definition of f(x) (see (10)), it is

easy to check, when t is large, that tz > f(tx), hence (tx, tz) ∈ Ω, and so int ∆n−1 ⊂ ∂∞Ω. Since
∂∞Ω is closed it follows that ∆n−1 = ∂∞Ω. �

Lemma 1.10. There is q ∈ ∂∞Ω that is a C1-point. Thus RPn−1
∞ is the unique projective hyper-

plane in RPn that contains ∂∞Ω and is disjoint from Ω. Hence PGL(Ω) ⊂ Aff(Rn).

Proof. This is clear for r = n−1 since ∂∞Ω is an (n−1)-simplex. Thus we may suppose that u ≥ 1
and r = t. We use coordinates (x, z, y, w) ∈ Rr⊕R⊕Ru⊕R ≡ Rn+1, so the affine patch used above
is [x : z : y : 1], and RPn−1

∞ is [x : z : y : 0]. The idea is to produce a smooth path in ∂Ω through a
certain point q ∈ int ∂∞Ω and tangent there in an arbitrary direction in the y-coordinates.

Define a = (1, · · · , 1) ∈ Rr. Given y ∈ Ru with ‖y‖ =
√

2 define a path γ = γy : [1,∞)→ ∂Ω ⊂
RPn by

γ(t) = [t2a : fψ(t2a, ty) : ty : 1]

Observe that `og(t2a) = (2 log t)a so fψ(t2a, ty) = t2 − α log(t) where α := 2ψt(a) = 2
∑t
i=1 ψi, so

γ(t) = [a : 1− αt−2 log(t) : t−1y : t−2]

Thus

q = lim
t→∞

γ(t) = [a : 1 : 0 : 0] ∈ int ∂∞Ω

Set s = 1/t, then γ(1/s) extends to a path η = ηy : [0, 1)→ ∂Ω defined by

η(0) = q and η(s) = [a : 1− αs2 log(s−1) : sy : s2] for s > 0

We now work in the affine patch given by

Rr ⊕ Ru ⊕ R→ RPn (x, y, w) 7→ [a+ x : 1 : y : w]

In these affine coordinates observe that q = η(0) = 0 and for s > 0

η(s) = [1− αs2 log(s−1)]−1 · (0, sy, s2)

is differentiable at s = 0 and

η′(0) = (0, y, 0)

Suppose H is an affine hyperplane in this affine patch that contains ∂∞Ω and is disjoint from Ω.
Since q ∈ int ∂∞Ω it follows that H contains Rr ⊕ 0⊕ 0. We can combine the paths ηy and η−y to
obtain a smooth path through p with tangent vector η′(0) at q. Thus H contains η′(0). Hence H
contains the subspace 0⊕ Ru ⊕ 0 ⊂ Rr ⊕ Ru ⊕ R. So H contains the subspace Rr ⊕ Ru ⊕ 0. This
has codimension 1 so H = Rr⊕Ru⊕ 0. This hyperplane is in RPn−1

∞ , which proves q is a C1 point.
Hence PGL(Ω) must preserve RPn−1

∞ and is therefore a subgroup of Aff(Rn). �
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It is easy to check that G(ψ) acts transitively on the interior of ∂∞Ω, so that every point in the
interior of ∂∞Ω is also a C1 point.

There is a projectively invariant characterization of the center of the radial flow Φψ that depends
only on Ω = Ω(ψ). When 0 < t < n the center of the radial flow, c = [et+1] ∈ RPn, is a vertex of
the simplex ∂∞Ω = (cl Ω \ Ω) ∼= ∆r. In the case n = 2 and t = 1 there are two vertices, as shown
in Figure 1, and c is the one at which ∂(cl Ω) is not C1. In general, ∂(cl Ω) is not C1 at any vertex
of ∂∞Ω, however there is one vertex of ∂∞Ω that is distinguished by being less C1 than the others
in the following sense. Recall (1.6) that bψ is the basepoint of Ω. A point c ∈ RPn has property
∆(c) for Ω if:

• c is a vertex of ∆r = ∂∞Ω
• ∀ p 6= c if p is a vertex of ∆r, and H ∼= RP2 contains the points c, p and bψ, then c is not a
C1 point of H ∩ Ω(ψ).

Thus c has property ∆(c) if it is not a C1 point in certain two dimensional slices of Ω that look like
the middle domain of Figure 1.

Lemma 1.11. Let c ∈ RPn be the center of the radial flow Φψ and Ω = Ω(ψ), and t = tψ. When
0 < t < n then c is the unique point such that ∆(c) is satisfied. When t = 0 then {c} = ∂∞Ω.
When t = n there is a unique n-simplex ∆ ⊂ RPn that contains Ω, and is not properly contained
in any other such simplex; and c is the unique vertex of ∆ that is not in ∂∞Ω.

Proof. When t < n the center of Φψ is the point c = [x : z : y] = [0 : 1 : 0] = [et+1] ∈ RPn−1
∞ .

When t = 0 the result now follows.
Given s ≤ t let H ∼= RP2 be the projective plane that contains the vertices [et+1] and [es] of ∆r,

and the basepoint [bψ + en+1]. The intersection of H with the affine patch Rn is the affine subspace
V = 〈es, et+1〉+ bψ. The restriction of h = hψ to V is

h(Xes + Y et+1 + bψ) = −Y − ψs log(X + 1)

The affine (hence projective) change of coordinates (X,Y ) = (x − 1, ψsy) maps the curve V ∩ ∂Ω
to y = − log x. It follows that, on the curve H ∩ ∂Ω, the point [es] is C1 and [er+1] is not C1 (see
the middle domain in Figure 1). Since 1 ≤ s ≤ t was arbitrary it follows that ∆([et+1]) is satisfied,
and that ∆([es]) is not satisfied.

When tψ = n then c = [en+1] ∈ RPn. Let ∆ ⊂ RPn be the closure of Rn+ ⊂ Rn. Then
∆ = c ∗ ∂∞Ω. It is easy to see that ∂Ω is tangent to Rn ∩ ∂∆ along ∂(∂∞Ω) thus any simplex that
contains Ω also contains ∆. �

It follows that the product structure defined by 1.8 depends only on the projective equivalence
class of Ω(ψ).

Corollary 1.12. If A ∈ PGL(Ω(ψ)) then A−1 · Φ · A = Φ and hψ ◦ A = c · hψ for some c > 0.
Hence A preserves the product structure on Ω(ψ).

Proof. If A ∈ PGL(Ω(ψ)) then A ∈ Aff(Rn) by 1.10 so A preserves RPn−1
∞ which is the stationary

hyperplane of Φψ. By 1.11 A also preserves the center of the radial flow. It follows that A normalizes
Φ and, by (7), it follows that hψ ◦ A = c · hψ for some c = c(A) 6= 0. Moreover c > 0 since A also
preserves Ω. Since A preserves ∂Ω, and the foliation by horospheres is the Φ-orbit of ∂Ω, it follows
that A preserves this foliation. Similarly A preserves the Φ-orbits of points, which are the flowlines.
Thus A preserves the product structure. �

1.3. The Translation Subgroup. Recall the standard identification of the affine group Aff(Rn)
with the subgroup

{(
A v
0 1

)
: A ∈ GL(n,R), v ∈ Rn

}
⊂ GL(n+ 1,R)

The affine action on Rn is realized by the embedding Rn → Rn+1 given by a 7→ (a, 1).



GENERALIZED CUSPS 9

Our next task is to define a subgroup of G(ψ), called the translation subgroup T (ψ) ∼= Rn−1,
that acts simply transitively on ∂Ω(ψ). We first define the enlarged translation group Tt ∼= Rn that
acts simply transitively on Vψ = Rt

+ × Rn−t. Then T (ψ) = kerψ∗ for a certain homomorphism
ψ∗ : Tt → R derived from ψ. The enlarged translation group is the direct sum of the translation
group and the radial flow: Tt = T (ψ)⊕ Φψ.

The enlarged translation group Tt has Lie algebra tt that is the image of the map Ψt : Rn →
gl(n+ 1,R) given by

(14) Ψt(X,Z, Y ) :=




Diag(X) 0

0




0 Y t Z
0 0 Y
0 0 0







Here X ∈ Rr and Z ∈ R and Y ∈ Ru, except when u = 0 there is no Y , and when t = n there is
no Z and the bottom right block is (0). It is easy to check that all Lie brackets in tt are 0 and so
tt is an abelian Lie subalgebra, and Tt ∼= Rn as a Lie group. Define mt(X,Z, Y ) = exp Ψt(X,Z, Y )
then Tt consists of all matrices

(15) mt(X,Z, Y ) =




exp Diag(X) 0

0




1 Y t Z + ‖Y ‖2/2
0 Iu Y
0 0 1







Definition 1.13. The translation group T := T (ψ) is the kernel of the homomorphism ψ∗ : Tt → R
defined for t < n by ψ∗(mt(X,Z, Y )) = ψt(X)+Z, and for t = n by ψ∗(mn(X)) = (

∑
ψi)
−1ψ(X).

For t < n, the translation group T (ψ) consists of the matrices mt(X,Y, Z) given by (15) for
which Z = −ψt(X). It will occasionally be convenient write the translation group as the image of
a linear map, instead of as the kernel of a linear map. For t < n the translation group T (ψ) is the
image of m∗t : Rr × Ru → GL(n+ 1,R) given by

(16) m∗t(X,Y ) =




exp Diag(X) 0

0




1 Y t ‖Y ‖2/2− ψt(X)
0 Iu Y
0 0 1







and for t = n the translation group T (ψ) is the image of m∗t : kerψ → GL(n+ 1,R) by

(17) m∗t(X) =

(
exp Diag(X) 0

0 1

)

It is worth pointing out that with this formalism the case t = n− 1 means u = 0 and gives

(18) m∗t(X,Y ) =




exp Diag(X) 0

0

(
1 −ψt(X)
0 1

)



Lemma 1.14. Tt acts simply transitively on Vψ = Rt
+ × Rn−t and

(A) hψ ◦mt = hψ − ψ∗ ◦mt

(B) T (ψ) is the the subgroup of Tt that preserves hψ
(C) T (ψ) preserves the foliation of Vψ by horospheres
(D) T (ψ) preserves the transverse foliation by flowlines.

Proof. It is clear the action is simply transitive, and that (A) implies both (B) and (C), and that
(D) holds. We first prove (A) in the case t < n. From (11)

−hψ(x, z, y) = z + ψt(`og x)− ‖y‖2/2
and

mt(X,Z, Y )(x, z, y)t

= (exp(X1)x1, · · · , exp(Xr)xr, z + Y · y + Z + ‖Y ‖2/2, Y1 + y1, · · · , Yu + yu)t



10 SAMUEL A. BALLAS, DARYL COOPER, AND ARIELLE LEITNER

so
−hψ(mt(X,Z, Y )(x, z, y)t)
= z + Y · y + Z + ‖Y ‖2/2 + ψt `og(exp(X1)x1, · · · , exp(Xr)xr)− ‖Y + y‖2/2
= z + Z + ψt(X + `og x)− ‖y‖2/2
= (Z + ψt(X)) +

(
z + ψt(`og x)− ‖y‖2/2

)

= ψ∗(mt(X,Z, Y ))− hψ(x, z, y)

A similar but simpler argument applies when t = n, by omitting the Y and Z coordinates. �

Definition 1.15. The parabolic subgroup is the subgroup P (ψ) ⊂ T (ψ) consisting of all unipotent
elements, also called parabolics.

It follows from the above that

P (ψ) = {m∗t(0, Y ) : Y ∈ Ru}
Let T1, T2 ⊂ T be respectively the subgroup of diagonalizable elements, and the subgroup of ele-
ments for which every Jordan block has size at most 2. This description is invariant under conjugacy,
and

(19)
T1 = {m∗t(X, 0) : X ∈ kerψr}
T2 = {m∗t(X, 0) : X ∈ Rr}

Then T (ψ) = P (ψ) ⊕ T2, and T1 ⊂ T2 and has codimension 1 if t > 0. Elements of T2 are called
hyperbolics. Observe that

(20) u = dimP (ψ) r = dimT2 n− 1 = dimT (ψ) = u + r

If t = n and s > 0 then T (ψ) = T (s · ψ), and if t < n then T (ψ) is conjugate to T (s2 · ψ), by the
diagonal matrix

(21) Diag(Ir, s, Iu, s
−1)

This is the only time such groups are conjugate:

Proposition 1.16. If ψ,ψ′ ∈ A then T (ψ) is conjugate to T (ψ′) in GL(n+ 1,R) iff ψ′ = s · ψ for
some s > 0.

Proof. Suppose T ⊂ GL(n+ 1,R) is conjugate to at least one group in the set G = {T (ψ) : ψ ∈ A}.
We will construct a codimension-1 subspace K ⊂ Rn such that if T is conjugate to T (ψ) then there
is a linear map L ∈ Isom(Rn), that permutes the coordinates, and L(K) = kerψ. Observe that L
permutes the coordinates of ψ. The result then follows.

Let {Wi ⊂ Rn+1 : 0 ≤ i ≤ τ} be the set of 1-dimensional subspaces that are preserved by T . For
each Wi there is a homomorphism (weight) λi : T → R such that T (g)(w) = λi(g)w for all g ∈ T
and w ∈ Wi. Since T ∈ G, after reordering the weights, λ0 ≡ 1. Moreover, if T is conjugate to
T (ψ), then t(ψ) = τ .

Let T1 ⊂ T to be the subgroup of diagonalizable elements. Define a linear map θ : T1 → Rτ by
θ(g) = `og(λ1(g), · · · , λτ (g)) and set K = θ(T1) ⊕ Rn−τ . Using (19) it is easy to check K has the
required property. �

Proposition 1.17. The surfaces ∂Ω(ψ) and ∂Ω(ψ′) are projectively equivalent if and only if T (ψ)
is conjugate to T (ψ′).

Proof. Set T = T (ψ), T ′ = T (ψ′), Ω = Ω(ψ) and Ω′ = Ω(ψ′). If T ′ is conjugate to T then ψ′ = s ·ψ
by 1.16, and by (21) there is a diagonal matrix g with T ′ = g · T · g−1. Moreover g fixes Rt and so
fixes the basepoint b = bψ. Now ∂Ω = T · b, and b is also the basepoint for Ω′, so ∂Ω′ = T ′ · b, and
it follows that g(∂Ω) = ∂Ω′.

Conversely, suppose that ∂Ω′ = g(∂Ω) for some projective map g. Then g conjugates PGL(Ω(ψ))
to PGL(Ω(ψ′)). If ψ 6= 0 then PGL(Ω(ψ)) = G(ψ) by (2.7). Since T (ψ) is the subgroup of PGL(ψ)
with positive eigenvalues, if ψ 6= 0 6= ψ′ it follows that g conjugates T (ψ) to T (ψ′). If ψ = 0 then
Ω(ψ) is an ellipsoid, hence so is Ω(ψ′), and the result follows. �
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From (6) the radial flow Φ : R→ GL(n+ 1,R) is given by

(22)

t < n t = n

Φ(s) = exp




0t×t 0 0
0 0 −s
0 0n−t×n−t 0


 , exp




0n−1 0 0
0 −s 0
0 0 0




Observe that the one-parameter group Φ is a subgroup of Tt and Tt = T ⊕ Φ. In particular T
commutes with the radial flow, so T sends radial flows lines to radial flow lines. Thus T induces
an action on the space of flowlines in Vψ, and radial projection identifies this space with Uψ. The
action of T on Uψ is affine, and given by omitting row and column t + 1 to give




exp Diag(X) 0 0
0 Iu Y
0 0 1


 Y ∈ Ru

with both Y and Iu interpreted as empty for u = 0. This happens when r = n − 1. In the case
t < n then X ∈ Rr and when t = n then X ∈ kerψt. From this it follows that:

Lemma 1.18. Under radial projection π : Vψ → Uψ the action of T (ψ) on Vψ is semi-conjugate to
a simply transitive affine action of T on Uψ. This action of T (ψ) on U is topologically conjugate
to the action of Rn−1 on itself by translation.

Proof. The second conclusion follows by conjugating with the map Rr
+ × Ru → Rn−1 given by

(x, y) 7→ (`og x, y). �

Lemma 1.19. T (ψ) ⊂ G(ψ) and T (ψ) acts simply transitively on ∂Ω(ψ).

Proof. By (16) and (15) T (ψ) is the subgroup of Tt given by Z = −ψt(X). It follows from
(1.14)(B) that T (ψ) is the subgroup of Tt that preserves the horofunction, hence T (ψ) ⊂ G(ψ).
Simple transitivity on ∂Ω(ψ) also follows from (1.14). �

1.4. The Orthogonal Subgroup O(ψ).

Definition 1.20. O(ψ) is the subgroup of G(ψ) that fixes the basepoint bψ.

When ψ = 0 (the case of a cusp in Hn) then O(ψ) ∼= O(n−1) is the subgroup of O(n) ⊂ Aff(Rn)
that fixes e1. At the other extreme, when t = n and all the coordinates of ψ are distinct, then
O(ψ) is trivial. The general case is:

Proposition 1.21. Suppose ψ ∈ A has type t = t(ψ). Let e1, · · · , en+1 be the standard basis of
Rn+1 and S(ψ) ⊂ GL(t,R) be the subgroup that permutes {e1, · · · , et} and preserves the vector∑t
i=1 ψiei. Then O(ψ) is equal to the subgroup O′(ψ) ⊂ Aff(Rn) ⊂ GL(n+ 1,R) given by

t < n− 1 t = n− 1 t = n

O′(ψ) =




S(ψ) 0 0 0
0 1 0 0
0 0 O(u) 0
0 0 0 1






S(ψ) 0 0

0 1 0
0 0 1




(
S(ψ) 0

0 1

)

Proof. It is easy to check that O′(ψ) fixes the basepoint and preserves the horofunction h = hψ so
O′(ψ) ⊂ O(ψ). For the converse, PGL(Ω) ⊂ Aff(Rn) so O(ψ) ⊂ Aff(Rn). It is easy to check the
result when t = n, so assume t < n. From (2) the horofunction h : Rt

+ × Rn−t → R is

h(x, z, y) = −ψt(`og(x))−z+‖y‖2/2
If τ ∈ O(ψ) then h = h ◦ τ . Given a unit vector u = (x, z, y) ∈ Rr × R× Ru there is an affine line
`u in Rn containing the basepoint that is the image of the map γu(t) = b+ t · u. The horofunction
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is only defined on the subset of this line in Vψ. This gives a function f = fu : Iu → R defined on
some maximal interval Iu ⊂ R by

fu(t) := h ◦ γu(t) = −tz+t2‖y‖2/2−
t∑

i=1

ψi log(1 + txi)

here x = (x1, · · · , xt). We distinguish two classes of line `u according to the behaviour of f .
The function f is defined on Iu = R iff x = 0, and it is defined on [0,∞) ⊂ Iu and grows
logarithmically as t → ∞ iff z = y = 0 and each coordinate of x is non-negative. Since τ is affine,
it preserves the smallest affine subspace that contains all the lines of a given type. Since τ fixes the
basepoint b, and preserves the type of lines, τ preserves the affine subspaces P = b + 〈e1, · · · , et〉
and Q = b+ 〈et+1, · · · , en〉. Notice that P = 〈e1, · · · , et〉.

The ideal boundary ∂∞Ω is a simplex that is preserved by τ , so τ permutes the vertices {[ei] :
1 ≤ i ≤ t+1} of this simplex. On P we have h(x1e1 + · · ·xtet) = −∑ψi log xi. Since τ |P preserves
h, it follows that must τ preserve ψ|P . Thus the first t columns of τ are as shown in O′(ψ).

The only u for which fu is linear is when u = ±et+1. Since τ fixes the basepoint and preserves
h it follows that τ maps the line `et+1

to itself by the identity. This gives column (t + 1) in O′(ψ).
Finally fu is a quadratic polynomial with a minimum of 0 at the basepoint exactly when x = 0 and
z = 0 so u ∈ 〈et+2, · · · , en〉. On this subspace h(y1et+2 + · · ·+ yuen) = ‖y‖2/2. Since τ preserves
this function, the columns t + 2 to n of τ in O′(ψ) (those that contain O(u)) are as shown. Since τ
is affine and fixes the basepoint the last column is as shown in O(ψ′). The result now follows. �

Corollary 1.22. Given ψ ∈ A then G(ψ) = T (ψ)oO(ψ) is the internal semidirect product of the
subgroup O(ψ) defined in (1.21), and the subgroup T (ψ) that is the image of m∗t defined in (16)
and (17).

Corollary 1.23. Every parabolic in G(ψ) ⊂ GL(n+ 1,R) is conjugate into O(n, 1).

Proof. An element A ∈ G(ψ) is parabolic if all eigenvalues of A have modulus 1 and A /∈ O(n+ 1).
Now A = B · C with B ∈ T (ψ) and C ∈ O(ψ). Thus B ∈ P (ψ) is parabolic. It is then easily
checked that A ∈ O(n, 1). �

1.5. Domains preserved by T (ψ). In general Ω(ψ) is not the only properly convex domain
preserved by T (ψ). However, as we will see, when t < n then any other open T (ψ)-invariant
properly convex domain is affinely equivalent to the interior of Ω(ψ). In the diagonalizable case,
t = n, there are additional extended domains, described in more detail below. Although the same
group T (ψ) preserves different properly convex sets, every generalized cusp covered by an extended
domain is equivalent to a ψ-cusp, see (1.29).

Since the radial flow Φ centralizes G(ψ) it follows that G(ψ) preserves the properly convex set
Ωt(ψ) := Φt(Ω(ψ)). As we have seen, these sets are nested, with Ωt(ψ) ⊂ Ωs(ψ) if and only if t ≤ s.
However there is another way to produce invariant sets.

Definition 1.24. E(t) ⊂ GL(n+ 1,R) is the the group of all diagonal matrices ε with εi,i = ±1 for
i ≤ t = t(ψ) and εi,i = 1 for i > t.

Lemma 1.25. The subgroup E(t, ψ) ⊂ E(t) that normalizes G(ψ) consists of all ε such that εi,i =
εj,j whenever ψi = ψj. Furthermore, E(t, ψ) also centralizes G(ψ).

Proof. In this proof, with reference to 1.21, we regard S(ψ) and O(u) as subgroups of Aff(Rn) ⊂
GL(n + 1,R) acting on Rn. It is easy to check that E(t) centralizes, T (ψ) and O(u). An element
A ∈ S(ψ) permutes the xi coordinates for 1 ≤ i ≤ t, and ε ∈ E(t) assigns a sign to each of these
coordinates so that

(23) (εAε)j,k = εj,jεk,kAj,k

is a signed permutation. Thus ε ∈ E(t, ψ) if and only if εi,i = εj,j whenever ψi = ψj . �
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For 1 ≤ i ≤ t let Hi ⊂ Rn be the hyperplane xi = 0. For ε ∈ E(t) define V εψ = ε(Vψ). The 2t

sets V εψ ⊂ Rn are pairwise disjoint, and are the components of X := RPn \(RPn−1
∞ ∪iHi). It is easy

to check that:

Lemma 1.26. E(t) acts transitively on the components of X and Tt⊕E(t) acts transitively on X.

It follows that the only projective hyperplanes that are preserved by T (ψ) are RPn−1
∞ and the

hyperplanes Hi for 1 ≤ i ≤ t.
Since ε centralizes T (ψ) it follows that V εψ is preserved by T (ψ) and that Ωε(ψ) := ε(Ω(ψ)) is

preserved by T (ψ). Thus ε is an affine map that conjugates the action of T (ψ) on Ω(ψ) to the
action of T (ψ) on Ωε(ψ).

Define a : Rn → Rn by a(x1, · · · , an) = (|a1|, · · · , |an|). The extended horofunction is heψ :=

hψ ◦ a : X → R, and agrees with hψ on Vψ, and is preserved by G(ψ). The level sets of heψ|V εψ are
called generalized horospheres and are the images under ε of the horospheres in Vψ.

A properly convex set U that is preserved by the action of T (ψ) is called reducible if there is
a projective hyperplane H that is preserved by T (ψ) and H ∩ U 6= ∅, otherwise U is irreducible.
If such H exists then H separates U into two properly convex sets that are preserved by T (ψ).
It follows from the above that, if U is irreducible, then U ⊂ V εψ for some ε ∈ E(t). A standard

ψ-domain is a subset g(Ω(ψ)) ⊂ RPn where g ∈ E(t)⊕Φψ. Since g centralizes T (ψ), every standard
ψ-domain is preserved by T (ψ).

Lemma 1.27. If U ⊂ RPn is an irreducible properly convex set that is preserved by T (ψ), and
U ∼= ∂U × [0,∞), then U is a standard ψ-domain. Moreover there is a unique g ∈ E(t)⊕ Φψ such
that U = g(Ω(ψ)).

Proof. There is unique ε such that U ⊂ V εψ. If x ∈ ∂U then there is h ∈ Tt such that h◦ε(x) ∈ ∂Ω(ψ).

Since T (ψ) acts simply transitively on ∂Ω, and is the subgroup of Tt ⊕ Φψ that preserves ∂Ω, it
follows there is a unique h ∈ Φψ with this property, and g = h ◦ ε. �

Given a subset Y ⊂ Rn recall that the ideal boundary of Y is ∂∞Y = cl(Y ) ∩ RPn−1
∞ where the

closure is taken in RPn. When t = t(ψ) = n the element −I ∈ E(t) is defined to be the affine map
of Rn given by x 7→ −x. In the above notation −Ii,i = −1 for all 1 ≤ i ≤ n. In what follows,
let Ω be an irreducible open properly convex set that is preserved by T (ψ), as determined by 1.27.
Observe that when t = n that

∆n−1 ∼= ∂∞Ω = ∂∞(ΦtΩ) = ∂∞(τ(Ω))

Set gt = −I ◦Φt then gtΩ is an irreducible T (ψ)-invariant domain disjoint from Ω with ∂∞(gtΩ) =
∂∞(Ω). As t → −∞ the domain gtΩ converges (in the Hausdorff topology) to an open simplex
disjoint from Ω with one face equal to ∂∞(Ω). This simplex will be referred to as g−∞Ω. Let

Ut := Ω t ∂∞Ω t gtΩ
then for t ∈ R ∪ {−∞}, Ut is a connected domain in RPn. It is convex, since it is the union of two
convex sets which intersect in ∆n−1. Since Φψ ⊕ E(t) commutes with G(ψ) it follows that Ut is
preserved by G(ψ). The domain, Ut, as well as its image under any element of Φψ ⊕ E(t), is called
an extended domain.

Proposition 1.28. If U ⊂ RPn is an open properly convex set that is preserved by T (ψ), and
U ∼= ∂U × [0,∞), then either U is a standard ψ-domain, or else t = n and U is an extended
domain.

Proof. Since T (ψ) preserves Rn it preserves each component of U ∩ Rn. These components are
properly convex so by 1.27 each of these components is g(Ω(ψ)) for some g ∈ E(t)⊕Φψ. It suffices
to show that if there is more than one component, then t = n and there are exactly two components.

If there is more than one component, then since the union is connected, the closure in RPn of
two distinct components must intersect. By applying an element of E(t)⊕Φψ we may assume one
component is Ω := Ω(ψ) and the other is gΩ for some g = ε ◦ Φt ∈ E(t) ⊕ Φψ. This intersection
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is contained ∂∞Ω = ∆r. Since the union is open and convex it follows that the intersection has
dimension n− 1 so r = n− 1 and t = n− 1 or t = n.

We claim that if t = n − 1 then the extended domain is not convex. This is because the
intersection of Ω(ψ) with the 2 dimensional affine subspace given by xi = 1 for i < t and xi = 0
for i ≥ t + 2 is xt+1 = −ψt log xt which looks like y = − log x shown in Figure 1. In this case it is
clear that an extended domain is not convex at the right hand fixed point. If t = n then g must
preserve ∂∞Ω which implies ε = −I completing the proof. �

Corollary 1.29. If C is a generalized cusp with holonomy Γ ⊂ G(ψ) then C is equivalent to a
ψ-cusp.

Proof. We have C = U ′/Γ for some U ∼= ∂U × [0,∞) that is preserved by Γ. By (4.3) there is a
G(ψ)-invariant subset U ⊂ U ′ and U/Γ is equivalent to C, so U ∼= ∂U × [0,∞). By (1.28) either
U is a standard ψ-domain or else an extended domain. If U is standard, then C is projectively
equivalent to a ψ-cusp. Otherwise, if U is extended, then U contains a standard domain, Ω, that is
G(ψ) invariant, and C is equivalent to the ψ-cusp Ω/Γ. �

If C ′ is a generalized cusp that properly contains another generalized cusp C, and they have
the same boundary, then t = n and the holonomy is diagonalizable. Equivalent cusps are not
always projectively equivalent after removing suitable collars of the boundary. If t = n − 1, then
∂∞Ω(ψ) ∼= ∆n−1, but there is no larger G(ψ)-invariant domain that contains ∂∞Ω(ψ) in its interior.

1.6. Hex geometry. In this section ∆ denotes the interior of a simplex. Let v0, · · · , vr ∈ Rr+1

be a basis, then [vi] are the vertices of an r-simplex ∆. The identity component Dr ⊂ PGL(∆)
is the projectivization of the positive diagonal subgroup, and PGL(∆) = Dr o Sr+1 is an internal
semidirect product, where Sr+1 is the group of coordinate permutations.

Definition 1.30. The r-dimensional Hex geometry is Hexr = (PGL(∆),∆) where ∆ ⊂ RPr is the
interior of an r-simplex.

Let {ui : 0 ≤ i ≤ r} ⊂ Rr+1 be a spanning set of unit vectors with
∑
ui = 0. The map

[
∑
xivi] 7→

∑
(log |xi|)ui is an isometry taking (∆, d∆) to a certain normed vector space (Rr, ‖ · ‖).

The name Hex geometry comes from the fact that when r = 2, the unit ball is a regular hexagon.
It follows that (Isom(∆),∆) is isomorphic to a subgeometry of Euclidean geometry. Moreover
PGL(∆) is an index-2 subgroup of Isom(∆, d∆). This is all due to de la Harpe [16].

Recall that ψ1 ≥ ψ2 ≥ · · · ≥ ψr > 0 and ψi = 0 for all r < i ≤ n. Recall (see Proposition
1.21) that S(ψ) ⊂ PGL(∆r) is the group of coordinate permutations that preserve the basepoint
bψ. It is clear that S(ψ) is isomorphic to a product of symmetric groups

∏
Skj . There is one factor

isomorphic to the symmetric group Sk for each maximal consecutive sequence ψi = ψi+i = · · · =
ψi+k−1 of non-zero coordinates in ψ.

A morphisms between two geometries (G,X) and (H,Y ) is a homomorphism ρ : G → H, and
an immersion f : X → Y , such that

∀g ∈ G, x ∈ X f(g · x) = ρ(g) · (fx)

If f and ρ are both inclusions we say (G,X) is a subgeometry of (H,Y ).

Definition 1.31. The subgeometry (Dr o S(ψ),∆r) of Hexr is called Hexr(ψ)

When X is a metric space we use the term X geometry for (Isom(X), X)-geometry. For example
Hn is hyperbolic geometry in dimension n. The product geometry of (G,X) and (H,Y ) is (G ×
H,X × Y ) with the product action. Given a space X the trivial geometry on X is 1(X) = (G,X)
with |G| = 1. Horoball geometry is the subgeometry Horou+1 = (B, G) of Hu+1 where B ⊂ Hp+1

is a horoball, and G ⊂ Isom(Hu+1) is the subgroup that preserves B. In the following theorem
interpret both Hex0(ψ), E0 as the trivial geometry on one point, and Horo0 as the trivial geometry
on [0,∞).
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Theorem 1.32. (G(ψ),Ω(ψ)) is isomorphic to the product geometry Hexr(ψ)×Horou+1 and also
to Hexr(ψ)× Eu × 1([0,∞)).

Proof. In what follows most functions and sets should be decorated with ψ. This is often omitted
for clarity. First assume t < n. Define θ : Vψ → Vψ by

θ(x, z, y) = (x, z + ψt(`og x), y)

Since ∂Ω is the graph z = f(x, y) it follows that θ(∂Ω) is the graph of z = f(x, y)+ψt(`og x). Using
(10) this simplifies to z = ‖y‖2/2 when u > 0 and to z = 0 when u = 0. In each case θ(Ω) = ∆×B
where

∆ := Rr
+, B := {(z, y) ∈ R× Ru : z ≥ ‖y‖2/2 }

and Gθ := θ◦G◦θ−1 acts on this set. This gives an isomorphism of geometries (G,Ω)→ (Gθ,∆×B).
The subgroup T θ := θ ◦ T (ψ) ◦ θ−1 of Gθ acts on θ(Ω) by the affine transformations of Rn

T θ =




exp Diag(X) 0

0




1 Y t ‖Y ‖2/2
0 Iu Y
0 0 1





 X ∈ Rr, Y ∈ Ru

The subgroup (O(ψ))θ ⊂ Gθ acts affinely on Rn+1 as before in 1.21. By (2.8) G(ψ) = T (ψ)oO(ψ)
and it follows that the action of Gθ = G∆ × GB is affine and splits into the direct sum of actions
on Rr ⊕ Ru+1 given by

G∆ = Dr o S(ψ), GB :=




1 Y t ‖Y ‖2/2
0 O(u) Y
0 0 1




Then (B,GB) ∼= Horou+1, which is obviously isomorphic to Eu × 1([0,∞)).
For t = n the set Ω(ψ) has a product structure coming from the horospheres, and the radial

flow. The group G(ψ) acts trivially on the radial flow factor, and projection along the radial flow
gives a G(ψ)-equivariant diffeomorphism from each horosphere to ∂∞Ω(ψ) ∼= ∆n−1. �

Corollary 1.33. (G(ψ),Ω(ψ)) is isomorphic to a subgeometry of Euclidean geometry.

Proof. Each of the factors in (1.32) is isomorphic to a subgeometry of Euclidean geometry. �

The next section gives a particular isomorphism. It follows from this lemma that T (ψ) can be
characterized more abstractly as the subset of all elements in G(ψ) such that all the eigenvalues are
positive. As a result T (ψ) is a characteristic subgroup of G(ψ). In the terminology of [10], T (ψ) is
an e-group, see (4.7).

2. Euclidean Structure

This section is devoted to showing a generalized cusp has an underlying Euclidean structure with
flat (totally geodesic) boundary. In fact there is a 1-parameter family of such metrics. This is used
to provide a natural map from a generalized cusp to a standard cusp, modelled on Hn. A metric
is first defined on Vψ ⊂ Rn in terms of a horofunction, and may be viewed as a kind of modified
Hessian metric [22].

Theorem 2.1. Suppose ψ ∈ A as in (1), let h = hψ be the horofunction on V = Vψ. Given q ∈ V
let H be the horosphere containing q and π : V → H be projection along the radial flow. Then there
is a quadratic form β = (D2 h ◦Dπ) + (Dh)2 on TqV that defines a Riemannian metric on V and:

(a) There is an isometry F : (V, β)→ (Rn, ‖ · ‖2) where ‖ · ‖2 is the standard Euclidean metric.
(b) F (Ω(ψ)) = Rn−1 × (−∞, 0].
(c) The horofunction is the n’th coordinate of F i.e. h(p) = Fn(p).
(d) The action of G(ψ) on V is by isometries of this metric.
(e) The radial flow Φt on V is conjugated by F to x 7→ x+t · en
(f) The radial flow acts on V by isometries.



16 SAMUEL A. BALLAS, DARYL COOPER, AND ARIELLE LEITNER

(g) Radial flow lines are orthogonal to horospheres.
(h) The action of T (ψ) on ∂Ω(ψ) is conjugated by F to the group of translations of xn = 0.

Proof. Cleary β is symmetric and we first verify that it is also positive definite. Given q ∈ V let
H ⊂ V be the horosphere containing q. The radial flow line through q is f : R → V , given by
f(t) = Φt(q), and is transverse to H. Thus TqV = TqH ⊕ R.v where v = f ′(0) is tangent to the
radial flow at q. If w ∈ TqV then w = a+ t · v for some a ∈ TqH and Dπ(w) = a.

Observe that TqH = ker Dq h. From (7) Dhq(v) = 1 so (Dh)2(a+ t · v) = t2. Thus

β(w) = (D2 h)(a) + t2

and it suffices to check that D2 h is positive definite on ker Dh.
When r = n

(24) D2 h =

(
n∑

i=1

ψi

)−1 n∑

i=1

ψix
−2
i dx2

i

and since all ψi > 0, and xi > 0 on V , it follows that D2 h is positive definite on TqV , and so is
positive definite on ker Dh.

When r < n

(25) Dh = −dxr+1 −
r∑

i=1

ψix
−1
i dxi +

n∑

i=r+2

xidxi

(26) D2 h =

r∑

i=1

ψix
−2
i dx2

i +

n∑

i=r+2

dx2
i

In this case, by (6), the radial flow is vertical translation and v = −∂/∂xr+1. Thus D2 h is
positive semi-definite and vanishes only in the v-direction, hence it is positive definite on ker Dh.

Thus β is a Riemannian metric on V . Since G(ψ) preserves hψ, it acts by isometries of β proving
(d). The radial flow preserves h up to adding a constant, and so preserves Dh and D2h, and
is therefore also an isometry of β proving (f). Hence the extended translation group Tr acts by
isometries of β. Since this action is simply transitive we may identify Tr with V . Since Tr ∼= Rn as a
Lie group, it follows it follows that this metric is flat, so there is an isometry F : (V, β)→ (Rn, ‖·‖2),
proving (a). We use (u1, · · · , un) as the coordinates of a point in the codomain Rn.

Each horosphere in V is the orbit of a point under the subgroup Rn−1 ∼= T (ψ) ⊂ Tr therefore
the horospheres are identified with parallel hyperplanes in Rn. We can choose the isometry F so
that the horosphere ∂Ω is sent to the subspace un = 0, and so that Ω is identified with the half
space un ≤ 0.

Observe that TqV = TqH⊕R ·v, and β is the sum of two quadratic forms, each of which vanishes
on one summand and is positive definite on the other. It follows the two summands are orthogonal
with respect to β, which proves (g).

From (g) it follows that flow lines are lines parallel to the un direction. Along a flow line β is
(Dh)2 so the distance between x and Φt(x) is |h(Φt(x)) − h(x)| = |t| by (7). Moroever since Ω is
un ≤ 0 the radial flow Φt is conjugated by F to u 7→ u+ t · en. This proves (b), (c), (e) and (h). �

The metric defined on Ω(ψ) in 2.1 depends on the horofunction h. There is a projective trans-
formation Ω(ψ) → Ω(c · ψ) for c > 0 (see (21) and the preceding discussion). This map is not an
isometry between the corresponding metrics. Thus the metric on Ω(ψ) is not an invariant of the
projective class of Ω(ψ). The horofunction on Ω(c · ψ) pullsback to a new horofunction c · hψ on

Ω(ψ). This results in replacing β = (D2 h| ker Dh) + (Dh)2 by

(27) βc = (D2(c · h)| ker D c · h) + (D c · h)2 = c(D2 h| ker Dh) + c2(Dh)2 c > 0

Definition 2.2. βc is called a horofunction metric on Vψ. The restriction of βc to Ω(ψ) is called
a horofunction metric on Ω(ψ)
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Definition 2.3. Suppose (A, dsA) is a Euclidean manifold and (R, dt) is a complete Riemannian
metric on R. The metric ds2 = ds2

A + dt2 on A×R is called a product Euclidean structure. Given
c > 0 there is another product Euclidean metric on A × R given by c.ds2

A + c2dt2 which we call a
horoscaling of the original metric.

The point of the next result is that Euclidean metric on Ω(ψ) is unique up to horoscaling.

Lemma 2.4. Given U ⊂ RPn, let S be the set of Riemannian metrics ds2 on U such that there
is a projective transformation that is an isometry (U, ds2) → (Ω(ψ), β) where β is a horofunction
metric. If S 6= ∅ then S consists of all horoscalings of some (any) element of S.

Proof. Suppose ds2
1, ds

2
2 ∈ S. Then there are P1, P2 ∈ PGL(n+1,R), and ψ1, ψ2 ∈ A, and Pi : U →

Ωi such that ds2
i is the pullback, using Pi, of βi on Ωi := Ω(ψi). Then P = P2 ◦ P−1

1 : Ω1 → Ω2.
Hence ψ2 = s ·ψ1 for some s > 0. It then follows the pullback of β1 to Ω2 is a horoscaling of β1. �

Remark 2.5. A horofunction metric is never the same as a Hilbert metric.

If C = Ω(ψ)/Γ is a generalized cusp then a horofunction metric on Ω(ψ) covers a Riemannian
metric on C which is called a horofunction metric on C.

Corollary 2.6. A generalized cusp C with a horofunction metric is isometric to the Euclidian
manifold ∂C × [0,∞) with the product metric, and ∂C is a compact Euclidean manifold.

Proposition 2.7. PGL(Ω(ψ)) normalizes T (ψ). Suppose β is a horofunction metric on Ω(ψ) and
t = t(ψ). If t > 0 then PGL(Ω(ψ)) acts by isometries of β, and PGL(Ω(ψ)) = G(ψ). If t = 0 then
PGL(Ω(ψ)) acts by horoscalings of β.

Proof. By 2.1(h) the group T (ψ) acts on ∂Ω(ψ) as the group of all translations of the Euclidean
metric β|. Suppose A ∈ PGL(Ω(ψ)). By 1.12 A normalizes the radial flow. It follows from the
above that A is a horoscaling of β. Thus A.T (ψ).A−1 also acts by translations on ∂Ω(ψ). If
B ∈ PGL(Ω(ψ)) acts trivially on ∂Ω(ψ) then B = id because it is a horoscaling. Hence T (ψ) =
A.T (ψ).A−1.

If A is not an isometry of β, after replacing A by A−1 if needed, we may assume A is a contraction.
Hence there is a point x ∈ ∂Ω(ψ) fixed by A. This gives an identification T (ψ) ≡ ∂Ω(ψ) via t 7→ t(x).
Under this identification x is identified with the id ∈ T (ψ).

Let U ⊂ ∂Ω(ψ) be the ball of β radius 1 center x. Then A(U) ⊂ U is a ball of some radius r < 1.
Under the identification, U gives a neighborhood V ⊂ T of the identity in T , and A.V.A−1 ⊂ V
is a strictly smaller neighborhood. This implies T is unipotent, so r = 0. Thus if r 6= 0 then A
preserves β. A horosphere in Ω(ψ) is the characterized as the set of points some fixed distance from
∂Ω(ψ). Therefore A preserves each horosphere. Hence A ∈ G(ψ). �

Corollary 2.8. G(ψ) = T (ψ)oO(ψ) is the internal semi-direct product of T (ψ) and O(ψ).

Proof. By 2.1 the geometry (G(ψ), ∂Ω(ψ)) is isomorphic to a subgeometry of (Isom(En−1),En−1)
and Isom(En−1) = Rn−1 o O(n − 1), and moreover that under this isomorphism G(ψ) contains
Rn−1. �

2.1. Normalizing the metric. Given that Ω(ψ) comes equipped with a family of Euclidean (flat)
metrics, it is natural to ask if there is any intrinsic way of distinguishing different metrics. When
ψ = 0 then the interior of Ω(0) can be identified with Hn and for each c > 0 there is a (hyperbolic)
element γ ∈ PGL(Ω) ⊂ Isom(Hn) that rescales the horofunction: h0 ◦ γ = c · h0. As a result,
there is no projectively invariant way to assign a distinguished metric to Ω(0). This corresponds
to the familiar fact that the complement of a point in the sphere at infinity for Hn only has an
invariant Euclidean similarity structure rather than a Euclidean metric. But when ψ 6= 0 the story
is different.

If (X, d) is a metric space and f : X → X is an isometry the displacement distance of f is
δ(f) = inf{d(x, fx) : x ∈ X}. When X is Euclidean space this infimum is also called the translation
length of f .
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If ψ 6= 0 define the subset J(ψ) ⊂ T2(ψ) to consists of all A ∈ T2(ψ) such that the largest
eigenvalue of A is e. This set is non-empty and compact. A horofunction metric, βN , on Ω(ψ) is
normalized if sup{δ(A) : A ∈ J(ψ)} = 1. This metric is Euclidean by 2.1. If C = Ω(ψ)/Γ is a
generalized cusp the normalized horofunction metric on C is the metric covered by βN .

Corollary 2.9. If ψ 6= 0 then there is a unique normalized horofunction metric on Ω(ψ). If
P ∈ PGL(n+1,R) and P (Ω(ψ)) = Ω(ψ′) then P is an isometry between the normalized horofunction
metrics.

There is a unique normalized horofunction metric on a ψ-cusp C = Ω(ψ)/Γ. If C and C ′ are
generalized cusps, and P : C → C ′ is a projective diffeomorphism, then P is an isometry between
these metrics.

2.2. The Second Fundamental Form.

Definition 2.10. Suppose S ⊂ Rn is a transversally oriented, smooth hypersurface. The second
fundamental form II on S is the quadratic form defined on each tangent space IIq : TqS → R by

IIq(γ
′(0)) = 〈γ′′(0), nq〉

where γ : (−ε, ε)→ S is a smooth curve in S with γ(0) = q and nq is a unit normal vector to S at
q in the direction given by the transverse orientation.

It is routine to verify this is well defined. The sign of II depends on a choice of normal orientation.
If S is a convex hypersurface and nq points to the convex side then IIq is positive definite and defines
a Riemannian metric on S see [24]. Suppose v = γ′(0) ∈ TqH. Then (Dπ)v = v and v ∈ ker Dh so

β(v) = D2 h(v) = IIq(v), thus

(28) β|TqH = IIq

Thus the restriction of the horometric to T∗H depends only on the hypersurface H ⊂ RPn, and not
on the horofunction.

Given q ∈ S let nq be a unit normal to S at q oriented towards the convex direction of S, then
there is a cotangent vector ηq ∈ T ∗q Rn defined by ηq(v) = 〈v, np〉 and

IIq(γ
′(0)) = ηq(γ

′′(0))

Observe that ker ηq = TqS ⊂ TqRn. We refer to ηq as the inward unit cotangent vector for S at
q. The following elementary fact does not seem to be well known. It gives another proof of the
invariance of the similarity structure on horospheres

Proposition 2.11. Suppose S ⊂ Rn is a smooth strictly convex hypersurface and τ : Rn → Rn is
an affine isomorphism and τ(S) = S′. Then τ : (S, II)→ (S′, II′) is a conformal map.

Suppose ηp and η′q are the inward unit cotangent vectors to S at p, and to S′ at q = τ(p)

respectively. Then τ∗η′q = α · ηp for some α = α(p) > 0 and τ∗p II′q = α · IIp.

Proof. Given p ∈ S set q = τ(p). We must show that τ∗(II′q) = α(p) IIp for some α(p) > 0. Let
H ⊂ Rn be the hyperplane tangent to S at p. Translate H infinitesimally so that it intersects S in
an infinitesimal ellipsoid centered on p. This gives a foliation of an infinitesimal neighborhood of p
in S by ellipsoids which we may identify with the levels sets of IIp in Tp. Since affine maps send
parallel hyperplanes to parallel hyperplanes, the foliation near p is sent to the foliation near q. If
two quadratic forms have the same level sets then one is a scalar multiple of the other.

More formally, suppose γ : (−ε, ε)→ S is smooth with γ(0) = p. Then

(τ∗(IIq))(γ
′(0)) = IIq((τ ◦ γ)′(0)) = ηq((τ ◦ γ)′′(0))

Since τ is an affine map
(τ ◦ γ)′′(0) = (dτ)(γ′′(0))

Since dτ(TpS) = TqS it follows that ηq ◦ dτ = α · ηp for some α = α(p). Thus

ηq(dτ(γ′′(0))) = α · ηp(γ′′(0)) = α · IIp(γ′(0))

�
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Proof of 0.5. The metric β with the required properties is given by Theorem (2.1), and the restric-
tion to the boundary is the second fundamental form, see (28). �

Theorem 2.12 (underlying hyperbolic structure). Every generalized cusp C, with boundary a
horomanifold, has a hyperbolic metric κ(C) such that ∂C is the quotient of a horosphere in Hn. If
C ′ is another such cusp, and if P : C → C ′ is a projective diffeomorphism, then P is an isometry
from κ(C) to κ(C ′).

Proof. Suppose C is a generalized cusp of dimension n bounded by a horomanifold. Then C =
Ω(ψ)/Γ is a ψ-cusp. There is a unique horofunction metric, βC , on C such that the Euclidean
volume of ∂C is 1. This metric is κ(C). If C = Ω/Γ and C ′ = Ω′/Γ′ are generalized cusps, and
P : C → C ′ is a projective diffeomorphism, then P is covered by a projective isomorphism Ω→ Ω′,
which is an isometry between horofunction metrics. Thus P is an isometry.

There is a unique hyperbolic cuspH bounded by a horomanifold, with ∂H isometric to (∂C, κ(C)).
The restriction of the hyperbolic metric to ∂H equals the restriction of κ(H) to ∂H. Thus there is
an isometry (C, κ(C))→ (H,κ(H)), that identifies C with a hyperbolic cusp. �

This raises several questions. For example, using this, one can assign a cusp shape, z ∈ C, to a
generalized cusp in a 3-manifold. If a hyperbolic 3-manifold with a cusp can be deformed to have
generalized cusps, can this shape change?

3. Classification of ψ cusps

This section is devoted to the proof of 0.2 and 0.3. But first we need:

Lemma 3.1. If C = Ω/Γ and C ′ = Ω′/Γ′ are equivalent generalized cusps of dimension n, then Γ
and Γ′ are conjugate subgroups of PGL(n+ 1,R).

Proof. The definition of equivalent cusps given in the introduction is not transitive, though it will
follow from the classification that it is transitive. In this proof we use the equivalence relation
generated by the relation on pairs of cusps: Given C and C ′ there is a cusp C ′′, diffeomorphic
to both of them, and projective embeddings, that are also homotopy equivalences, into both C and
C ′. Thus it suffices to prove the lemma when there is a projective embedding of C into C ′ that is
also a homotopy equivalence. We may assume C ⊂ C ′ and Ω ⊂ Ω′ (this amounts to performing a
conjugacy). Since the embeddings are homotopy equivalences it follows that Γ = Γ′. �

Theorem 0.2 (classification).

(1) If Γ and Γ′ are lattices in G(ψ) TFAE
(a) Ω(ψ)/Γ and Ω(ψ)/Γ′ are equivalent generalized cusps
(b) Γ and Γ′ are conjugate in PGL(n+ 1,R)
(c) Γ and Γ′ are conjugate in PGL(Ω(ψ))

(2) A lattice in G(ψ) is conjugate in PGL(n+ 1,R) into G(ψ′) iff G(ψ) is conjugate to G(ψ′).
(3) G(ψ) is conjugate in PGL(n+ 1,R) to G(ψ′) iff ψ′ = t · ψ for some t > 0.
(4) PGL(Ω(ψ)) = G(ψ) when ψ 6= 0
(5) When ψ 6= 0 the map Θ : T (Isom(En−1), ψ) × (O(n − 1)/O(ψ)) −→ T (G(ψ)) defined in

(29) is a bijection.

Proof. (1) It is clear that c⇒ a. Also a⇒ b follows from 3.1.
For (1) b ⇒ c and (2). Suppose Γ ⊂ G(ψ) and Γ′ ⊂ G(ψ′) are lattices and P ∈ PGL(n + 1,R)

with P ·Γ ·P−1 = Γ′. By (4.7) T (ψ) is the unique virtual e-hull of Γ(ψ), thus P ·T (ψ) ·P−1 = T (ψ′).
Hence U = P−1(Ω(ψ′)) is a properly convex set that is preserved by T (ψ). Moreover U is

irreducible, since this property is preserved by projective maps. By 1.27 there is g ∈ E(ψ) ⊕ Φψ

such that g(U) = Ω(ψ). Since g centralizes T (ψ) we may replace P by g ◦ P and assume that
P (Ω(ψ′)) = Ω(ψ). It follows that P ·G(ψ) ·P−1 = G(ψ′) proving one direction of (2). The converse
of (2) is obvious. If G(ψ) = G(ψ′) then P preserves Ω(ψ) which proves (1) b⇒ c.
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(3) By 2.8 T (ψ) is a characteristic subgroup of G(ψ): it is the subgroup of elements all of whose
eigenvalues are positive. Thus if P conjugates G(ψ) to G(ψ′) then it conjugates T (ψ) to T (ψ′). By
1.16 this happens if and only if ψ = t · ψ for some t > 0.

(4) follows from 2.7. (5) is done below. �

Corollary 0.3 (cusps classified by lattices). There is a bijection F : Modn −→ Cn defined for
[Γ] ∈Modn by F ([Γ]) = [Ω(ψ)/Γ] when Γ is a lattice in G(ψ).

Proof of 0.3. To show F is surjective, suppose C is a generalized cusp of dimension n. By theorem
0.1 there is an equivalent cusp Ω(ψ)/Γ ∈ [C] for some lattice Γ ⊂ G(ψ). By Theorem 0.2 (1)(c) we
may assume ψ(e1) = 1. Then F ([Γ]) = [C] therefore F :Modn → Cn is surjective.

To show F is injective, suppose F ([Γ1]) = F ([Γ2]) for lattices Γi ⊂ G(ψi). By (3.1) Γ1 and
Γ2 are conjugate subgroups of PGL(n + 1,R). Then by 0.2(2) G(ψ1) and G(ψ2) are conjugate in
PGL(n + 1,R), and by 0.2(3) this implies ψ1 = t · ψ2 for some t > 0. Since ψ1(e1) = ψ2(e1) then
ψ1 = ψ2. By theorem 0.2 (1)(c) it follows that Γ1 and Γ2 are conjugate subgroups of G(ψ1) so
[Γ1] = [Γ2] and F is injective. �

Corollary 0.3 reduces the classification of equivalence classes of generalized cusps to the classifi-
cation of conjugacy classes of lattices in each of the groups G(ψ). This classification corresponds
to moduli space. There is a finer classification using the notion of marking that results in an analog
of Teichmuller space. We will show that a marked generalized cusp is parameterized by a marked
Euclidean cusp, together with a left coset A·O(ψ) ∈ O(n−1)/O(ψ) called the anisotropy parameter.
The classification of unmarked cusps is more complicated to state.

One complication is that in general there are finitely many distinct isomorphism types of lattice
in G(ψ). To make these subtleties clear requires several definitions.

A discrete subgroup H of a Lie group G is a lattice if G/H is compact. The set of lattices in G is
denoted Lat(G). The quotient of this set by the action of G by conjugacy gives the set of conjugacy
classes of lattices in G denoted Mod(G) = Lat(G)/G. Given a lattice H in G, an H-lattice is a
lattice H ′ in G with H ∼= H ′; and the set of H-lattices is the subset Lat(G,H) ⊂ Lat(G). The set
of conjugacy classes of H-lattice is Mod(G,H) = Lat(G,H)/G and is a subset of Mod(G).

A marking of an H-lattice H ′ in G is an isomorphism θ : H → H ′, and θ is also called a marked
H-lattice. The set of all marked H-lattices in G is denoted by Latm(G,H). Thus a lattice is a
group, but a marked lattice is a homomorphism, and Latm(G,H) is the subset of the representation
variety Hom(H,PGL(n+ 1,R)) consisting of those injective homomorphisms with image a lattice.
Let H be a set of lattices in G that contains one lattice in each isomorphism class. The set of
marked lattices in G is Latm(G) = ∪Latm(G,H) where the union is over H ∈ H.

Two marked H-lattices θ1, θ2 : H → G are conjugate if there is g ∈ G with θ2 = g−1 · θ1 · g,
and the set of conjugacy classes of marked H-lattices is T (G,H) = Latm(G,H)/G. The set of
conjugacy classes of marked lattices in G is T (G) = Latm(G)/G.

As an example, a lattice in G = Isom(E2) is a 2-dimensional Bieberbach group (wallpaper
group), and there are 17 isomorphism types for H. These are also the isomorphism classes of
compact Euclidean 2-orbifolds. There is a natural bijection between T (Isom(E2),Z2) and marked
Euclidean structures on a torus T 2. It is well known that a marked Euclidean torus of area 1 is
parameterized by a point in the upper half plane H2. Moreover

T (Isom(E2),Z2) ∼= R+ × {x+ iy ∈ C : y > 0} ≡ R+ ×H2

Mod(Isom(E2),Z2) ∼= R+ ×H2/PSL(2,Z)

the R+ factor records the area of the torus that is the quotient of E2 by the action of the lattice.
Before proceeding to the proof of 0.2(5) we give an example for 3-manifolds. For a generic

diagonalizable generalized cusp Lie group, such as ψ = (3, 2, 1), then G(ψ) ∼= R2 and O(ψ) is trivial.
A Z2-lattice in G(ψ) is a subgroup H = Zu ⊕ Zv ⊂ R2 given by a pair of linearly independent
vectors u, v ∈ R2. Using the Z2-marking given by (1, 0) 7→ u and (0, 1) 7→ v shows that the 2 × 2
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matrix M = (ut, vt) determines a unique marked lattice, so

T (G(ψ),Z2) ∼= GL(2,R)

There is a natural map T (G(ψ),Z2) → T (Isom(E2),Z2) and two lattices M,M ′ ∈ GL(2,R) have
the same image if and only if there is A ∈ O(2) with AM = M ′. It follows that

T (G(ψ),Z2) ∼= O(2)× T (Isom(E2),Z2)

This illustrates 0.2(5): a marked lattice in G(ψ) is parameterized by a marked Euclidean lattice
and a left coset of O(ψ). In this case O(ψ) is trivial, so the left coset is just an element of O(2).

Now consider unmarked lattices. A change of marking is a change of basis in Z2, and this changes
the lattice M to A.M where A ∈ GL(2,Z). Thus

Mod(G(ψ),Z2) ∼= GL(2,Z)\GL(2,R)

The left action of GL(2,Z) on GL(2,R) is free. However the action of GL(2,Z) on T (Isom(E2),Z2)
is not free: a π/2 rotation fixes an unmarked square torus. Thus

Mod(G(ψ),Z2) � O(2)×Mod(Isom(E2),Z2)

which means unmarked lattices in G(ψ) are not parametrized by an unmarked lattices in Isom(E2)
together with an anisotropy parameter.

Proof of 0.2(5). For this proof we will identify G(ψ) with the subgroup Rn−1oO(ψ) of Isom(En−1).
Since Isom(En−1)/G(ψ) ∼= O(n − 1)/O(ψ) is compact, every lattice in G(ψ) is also a lattice in
Isom(En−1). Let T (Isom(En−1), ψ) ⊂ T (Isom(En−1)) be the subset of conjugacy classes of lattice
with rotational part in O(ψ). The map π : Latm(G(ψ))→ T (Isom(En−1), ψ) is surjective. Choose
a left inverse

σ : T (Isom(En−1), ψ)→ Latm(G(ψ))

so π ◦ σ = id, and define Θ : T (Isom(En−1), ψ)× (O(n− 1)/O(ψ))→ T (G(ψ)) by

(29) Θ([θ], g.O(ψ)) = [g−1 · σ([θ]) · g].

Then 0.2(5) is the assertion that Θ is a bijection. Set L = Im(σ) then L is a set of marked lattices
in G(ψ) that contains one representative of each Isom(En−1)-conjugacy class. There is a map

Θ̃ : L × Isom(En−1)→ T (G(ψ))

given by Θ̃(θ, g) = [g−1 ◦ θ ◦ g] which is obviously surjective. Observe that Θ̃(θ1, g1) = Θ̃(θ2, g2) if
and only if

g−1
1 ◦ θ1 ◦ g1 = k−1 ◦ (g−1

2 ◦ θ2 ◦ g2) ◦ k
for some k ∈ G(ψ). This is equivalent to

θ1 = g ◦ θ2 ◦ g−1 with g = g2 ◦ k ◦ g−1
1

Thus θ1, θ2 are conjugate. This implies the domain of θ1 and of θ2 is the same lattice H ∈ H. Since
θ1, θ2 ∈ L it follows that θ1 = θ2 = θ and

(30) θ = g ◦ θ ◦ g−1

Therefore g centralizes the lattice Γ = θ(H). It follows that Θ̃(θ1, g1) = Θ̃(θ1, g2) if and only if
there is θ ∈ L and k ∈ G(ψ) such that θ1 = θ2 = θ and g = g2 ◦ k ◦ g−1

1 centralizes Γ. Observe
that if marked lattices are replaced by (unmarked) lattices we can only conclude at this point that
g normalizes Γ.

We can express g ∈ Isom(En−1) uniquely as a pair g = (A, v) ∈ O(n− 1)× Rn−1 where g(x) =
Ax+ v, and A is called the rotational part of g. Indeed, if g1(x) = A1x+ v1 and g2(x) = A2x+ v2

and k(x) = Bx+ v with B ∈ O(ψ) then

(31) g(x) = g2 ◦ k ◦ g−1
1 (x) = A2BA

−1
1 x+ (v2 −A2BA

−1
1 v1 +A2v)

By Bieberbach’s first theorem, [5], the subset of the lattice Γ consisting of pure translations is a
finite index subgroup, Γt ⊂ Γ that is also a lattice in Rn−1. Thus Γt is centralized by g. This means
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the rotational part of g preserves an ordered basis of Rn−1. An element of O(n− 1) that preserves
an ordered basis of Rn−1 is trivial, hence the rotational part of g is trivial, so A2BA

−1
1 = I, and

(32) g(x) = x+ (v2 − v1 +A2v)

It follows that Θ̃(θ, g1) = Θ̃(θ, g2) if and only if g1 = (A1, v1) and g2 = (A1B
−1, v2) and there

is v ∈ Rn such that g = (I, v2 − v1 + A2v) centralizes θ. If we choose v = A−1
2 (v1 − v2) then

g = (I, 0) centralizes θ. It follows that Θ̃(θ1, (A1, v1)) = Θ̃(θ2, (A2, v2)) if and only if θ1 = θ2 and

A2 ∈ A1O(ψ). In other words, Θ̃(θ1, g1) = Θ̃(θ2, g2) if and only if θ1 = θ2 and g1G(ψ) = g2G(ψ).

As a result Θ̃ induces a bijection

Θ′ : L × Isom(En−1)/G(ψ)→ T (G(ψ))

Observe that Isom(En−1)/G(ψ) ∼= O(n− 1)/O(ψ). By definition of L, there is a bijection

(π|L) : L → T (Isom(En−1), ψ)

given by θ 7→ [θ]. Thus Θ′ factors through the bijection Θ in (29) completing the proof. �

4. Generalized Cusps are ψ-cusps

As mentioned in the introduction, the idea of a cusp in a projective manifold has evolved in
a series of papers. Recall that if Ω is properly convex then [A] ∈ PGL(Ω) is parabolic if all the
eigenvalues of A have the same modulus and there is no fixed point in int(Ω). A definition of the
term cusp in a properly convex manifold was first given in 5.2 of [10]. There, the holonomy of a cusp
C consists of parabolics. The definition used there was dictated by the requirement to establish a
thick-thin decomposition for strictly convex manifolds, of possibly infinite volume. In that paper
the rank of C is defined, and maximal rank is equivalent to ∂C being compact. In this paper we
only consider cusps of maximal rank, so we have omitted the term maximal rank from statements.

A definition of the term generalized cusp was first given in [11] definition (6.1). It differs from
the definition in the introduction, by using the term nilpotent in place of abelian. Theorem 0.7 at
the end of this section shows that these definitions are equivalent.

Definition 4.1. A g-cusp (called a generalized cusp in [11]) is a properly convex manifold C = Ω/Γ
homeomorphic to ∂C× [0,∞) with ∂C a connected closed manifold and π1C virtually nilpotent such
that ∂Ω contains no line segment. The group Γ is called a g-cusp group. In addition:

• If PGL(Ω) acts transitively on ∂Ω, then C is homogeneous.
• If π1C is virtually abelian, then C is a generalized cusp.
• A cusp is a generalized cusp with parabolic holonomy.
• A standard cusp is a cusp that is projectively equivalent to a cusp in a hyperbolic manifold.

Theorem 4.2 (0.5 in [10]). Every maximal rank cusp in a properly convex real projective manifold
is standard.

Observe that a finite cover of a g-cusp is also a g-cusp. In this section we use the following results
from of section 6 of [11].

Theorem 4.3 (6.6 in [11]). Every g-cusp is equivalent to a homogeneous g-cusp.

Definition 4.4. UT(n) ⊂ GL(n,R) is the subgroup of upper-triangular matrices with positive
diagonal entries.

Definition 4.5. An e-group is a subgroup G ⊂ GL(n,R) such that every eigenvalue of every
element of G is positive. If Γ ⊂ GL(n,R) is discrete, a virtual e-hull for Γ is a connected e-group
G ⊂ GL(n,R) such that |Γ : G ∩ Γ| <∞ and (G ∩ Γ)\G is compact.

Observe that UT (n) is an e-group. 6.1, 6.10 and 6.12 in [11] imply

Proposition 4.6. Suppose P = Ω/Γ is a g-cusp of dimension n. Then Γ contains a finite index
subgroup, Γ1, that is a lattice in the connected nilpotent group T (Γ) = exp〈log(Γ1)〉. Moreover T (Γ)
is conjugate in GL(n+ 1,R) into UT(n+ 1).
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In [11] Γ1 = core(Γ, n). The Zariski closure of Γ generally has larger dimension than T (Γ).

Theorem 4.7 (6.18 [11]). If Ω/Γ is a generalized cusp then T (Γ) is the unique virtual e-hull of Γ.

Definition 4.8 (cf. 6.17 in [11]). A translation group is a connected nilpotent subgroup T ⊂
GL(n+ 1,R) that is the virtual e-hull of a g-cusp.

Definition 4.9 (page 189 [10]). Given a 1-dimensional subspace U ⊂ V set p = P(U) and define
Dp : P(V ) \ {p} → P(V/U) by Dp([x]) = [x+U ]. The space of directions of the subset Ω ⊂ P(V ) at
p is Dp(Ω \ p).
Theorem 4.10. If G ⊂ GL(n+ 1,R) is a translation group then ∃ ψ ∈ A such that G is conjugate
in GL(n+ 1,R) to T (ψ).

Proof. By the above, we may assume G is upper-triangular. By (6.23) and (6.24) in [11] G preserves
a properly convex domain Ω ⊂ Rn with S = ∂Ω strictly convex. Moreover G acts simply transitively
on S. By scaling we may assume G ⊂ Aff(Rn), so always has 1 is the bottom right entry.

Let {ei | 1 ≤ i ≤ n + 1} be the standard basis of Rn+1. Since G is nilpotent, we may further
assume there is a decomposition V := Rn+1 = V1⊕ · · · ⊕Vr+1 into G-invariant subspaces such that
Vi has ordered basis Bi = {ek | mi−1 < k ≤ mi} where ni := dimVi = mi −mi−1. By reordering
the standard basis we may assume dimVr+1 is the maximum of dimVi for i ≤ r + 1.

Let UT1(Vi) be the group of unipotent, upper-triangular matrices of size ni. Then there are
distinct weights λi : G→ R+ and homomorphisms ρi : G→ UT1(Vi) so that G is the image of the
inclusion map ρ : G→ GL(V ) given by

(33) ρ =




λ1ρ1 0 · · · 0
0 λ2ρ2 0 · · · 0
...

...
. . .

... 0
0 0 · · · λr+1ρr+1




Since G is affine, it follows that λr+1 ≡ 1. Let wi = emi be the last vector in Bi, and Ui = 〈Bi\{wi}〉.
Then Vi = Ui ⊕R ·wi. The subspace U =

⊕
Ui is preserved by G, and there is a linear projection

π : V → V/U . Define a subspace W = 〈w1, · · · , wr+1〉 ⊂ Rn+1, so W = {w1, · · · , wr+1} is an
ordered basis of W . There is projection π : V → V/U and an isomorphism V/U → W defined by
wi+U 7→ wi. We use the same symbol to denote the induced projection π : P(V )\P(U) −→ P(V/U).

Since G preserves U , it acts on V/U , and thus on W . We denote this action by ρW : G→ GL(W ).
Using the basis W, this action is diagonal and, recalling that λr+1 ≡ 1, the action is

(34) ρW =




λ1 0 · · · 0
0 λ2 0 · · · 0
...

...
. . .

...
0 · · · λr 0
0 0 · · · 1




There are r + 1 projective hyperplanes Pi in P(W ) ∼= RPr each of which contains all but one of
the points [wi]. The complement of these hyperplanes consists of 2r open simplices.

Since G acts transitively on S it also acts (via ρW ) transitively on π(S) ⊂ P(W ). Choose
q = [x] ∈ S, then πq is in one of these open simplices: ∆. Otherwise, since S is preserved by G it
follows that πS is contained in some hyperplane Pi ⊂ P(W ). But this implies S ⊂ π−1(Pi) which
is a hyperplane in P(V ). This contradicts that S is a strictly convex hypersurface in V .

Claim 1 Either G is diagonal, or else H := ρW (G) acts transitively on ∆.
The fiber π−1(πq) ⊂ P(V ) that contains q is the affine subspace Uq := [x+U ]. If S is transverse

to Uq then πS contains an open subset of ∆, so dimH = dim ∆. But πS is the H-orbit of a point,
and H is the projectivization of a diagonal subgroup, so H acts transitively on ∆.

Thus we may assume S is not transverse to Uq. If a strictly convex hypersurface is not transverse
to a hyperplane, then it is to tangent to it at one point, so Uq ∩S = q. Since G acts transitively on
S this condition holds at every q ∈ S. This implies π|S is injective so dim ∆ ≥ dimS thus r ≥ n−1.
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If r = n then G is diagonal as claimed. Otherwise r = n − 1. Since π|S is injective, and
dimS = n − 1 = dim ∆, it follows that π(S) contains an open subset of ∆. As before this implies
H acts transitively, which proves claim 1.

In the case G is diagonal since dimG = dimS = n − 1 it follows that G is the kernel of some
homomorphism ψ : D → R+ where D is the diagonal subgroup of UT (n+ 1) ∩Aff(Rn). It follows
from 1.2 that ψ or −ψ is positive. This proves the theorem when r = n.

Henceforth we assume r < n so H acts simply transitively on ∆. Thus dimH = r and from (34)
it follows that H ⊂ GL(r + 1,R) consists of all positive diagonal matrices with 1 in the bottom
right corner.

The projection, π, restricts to a G-equivariant surjection πΩ : Ω −→ ∆ and K = ker(ρW ) ⊂ G
acts trivially on ∆, and is unipotent. Each fiber Ωq := Uq ∩ Ω = π−1

Ω (q) is a properly convex set
which is preserved by K. Since G acts simply transitively on ∂Ω, it follows that K acts simply
transitively on ∂Ωq = Uq ∩ ∂Ω for every q. Simple transitivity implies that the action of K on Uq
is faithful.

The action of K on ∆ is trivial, so [k(x) + U ] = [x + U ] for all k ∈ K. Since K is unipotent
k(x) ∈ x + U for all k ∈ K. The subspace U+ = U ⊕ R · x is preserved by K and Uq = [U + x] ⊂
P(U+) ⊂ P(V ). The action of K on U+ is the restriction of the action on V , and is therefore
unipotent. Moreover U+ =

⊕
Ui ⊕ R · x so the action K on U+ is given by K ′ = ρ′(K) where

(35) ρ′ := ρ|U+ =




ρ1|U1 0 · · · ∗
0 ρ2|U2 0 · · · 0 ∗
...

...
. . .

... 0 ∗
0 0 · · · ρr+1|Ur+1 ∗
0 0 · · · 1




The properly convex set Ωq = Ω ∩ Uq ⊂ P(U+) is preserved by K ′. Moreover K ′ is unipotent,
nilpotent, upper-triangular, and acts simply transitively on ∂Ωq. The hyperplane P(U) ⊂ P(U+)
is preserved by K ′, and the point s = [e1] ∈ ∂∞Ωq = cl(Ωq) ∩ P(U) is fixed by K ′. Also DsΩq =
Ds(∂Ωq), hence (DsΩq)/K ′ = (∂Ωq)/K

′ is a single point, and thus compact. It now follows from
Theorem 5.7 in [10] that s is a round point of Ωq. Hence cl(Ωq) = Ωq t {s}.

It follows from Theorem 9.1 in [10] that Ωq is an ellipsoid, and K ′ is conjugate to the parabolic
subgroup

(36) P = exp




0 y1 · · · yu 0
0 · · · y1

0 · · ·
...

0 · · · yu
0 · · · 0



⊂ GL(u+ 2,R)

Here, u + 2 = dimVr+1. If u = 0 this is the identity matrix, and K is the trivial group. When
u > 0 the group P does not preserve any non-trivial direct sum decomposition. If follows that
U+ is contained in some Vj , and for i 6= j that dimVi = 1. By assumption Vr+1 has maximum
dimension, so U+ = Vr+1, and dimVi = 1 for all i ≤ r, and

(37) K =

(
Ir 0
0 P

)
⊂ GL(n+ 1,R)

This formula also holds when u = 0 since K is then trivial. We thus have a short exact sequence

(38) 1 K G H 1incl ρW

σ
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Since H ∼= Rr there is a splitting σ : H → G. From the form of ρ in (33) it follows that

(39) σ =







λ1 0 · · ·
0 λ2 0 · · ·
...

...
. . .

...
0 · · · λr


 0

0 ψ




where ψ : H → UT1(Vr+1). Since K is a normal subgroup of G it follows that ψ(H) is a subgroup
of the normalizer, N , of P in UT1(Vr+1). Let Φ = expR · a ⊂ UT1(Vr+1) be the one-parameter
group where a is the elementary matrix with 1 in the top right corner. Then Φ centralizes P .

Claim 2: N = 〈P,Φ〉, so n = p⊕ R · a.
The closures of the orbits of P in P(Vr+1) consists of a fixed point p, a hyperplane H containing

p, and a one-parameter family of horospheres, each tangent to H at p. Since N normalizes P it
permutes P -orbits. Thus N preserves the fixed set and center of the radial flow, and so normalizes
the radial flow. Since N is unipotent, N centralizes the radial flow. The radial flow acts transitively
on horospheres, so if n ∈ N there is t ∈ R such that φ(t)◦n preserves one horosphere. But, since N
centralizes Φ, this implies that n preserves every horosphere. Thus n is an isometry of Hk ⊂ P(Vr+1)
where k = dimVr+1. Since n is unipotent it follows that n is parabolic, thus n ∈ P . So n ∈ Φt · P ,
which proves the claim 2.

Taking derivatives Dσ : h → g. If f : h → p is a homomorphism then exponentiating f + Dσ,
gives a new section of (38), and so without loss of generality assume that Dψ has image in R · a,
thus ψ(H) ⊂ Φ. It follows that k is the Lie algebra of P (ψ) and σ(h) is the Lie algebra of T2(ψ).
As a result g = k⊕ σ(h) is the Lie algebra of T (ψ).

The strictly convex hypersurface ∂Ω is a G-orbit. It follows from Remark 1.2 that ψ or −ψ is
positive. Without loss we may assume ψ is positive, so ψ ∈ A and G is conjugate to T (ψ). �

Proof of 0.1 and 0.7. Suppose C ′ is a g-cusp. By 4.3 C ′ is equivalent to a homogeneous g-cusp
C = Ω/Γ. Then by 4.6 Γ contains a finite index subgroup Γ1 that is conjugate to a subgroup of
a T -group T . By 4.10, after a conjugacy, T = T (ψ) for some ψ. The interior of Ω is a domain
that is preserved by T (ψ). We may assume it is irreducible, then by 1.27 Ω = g(Ω(ψ)) for some
g ∈ E(ψ) ⊕ Φψ. Thus a conjugate of Γ preserves Ω(ψ), so after conjugacy we may assume Γ ⊂
PGL(Ω(ψ)). If ψ 6= 0 then PGL(Ω(ψ)) = G(ψ) and by 2.7, therefore C is ψ-cusp. If ψ = 0 then
Γ1 ⊂ T (0) so Γ1 ⊂ G(0). Since Γ/Γ1 is finite and PGL(Ω(0))/G(0) ∼= R it follows that Γ1 ⊂ G(0)
and again C is a ψ-cusp. This proves 0.1. It follows Γ is virtually abelian, which proves 0.7. �

Proof of 0.4. We identify π1M ≡ Γ. Since δ([A]) = 0, for every ε > 0 there is a loop γ in M that
has length less than ε and [γ] is conjugate in π1M to [A]. It follows that if X ⊂ M is compact
then [A] is represented by a loop in M \X. Thus [A] is represented by a loop in an end of M , and
therefore in a generalized cusp C ⊂M with C = Ω(ψ)/ΓC . Since δ([A]) = 0, then we can conjugate
so detA = ±1, and then A ∈ G(ψ). The result now follows (1.23). �

5. Hilbert Metric in a generalized cusp

In this section we describe how the Hilbert metric of a horomanifold changes as one moves
out into the cusp using the radial flow. The horomanifolds shrink, although not uniformly in all
directions. Parabolic directions (which only exist when u > 0) shrink exponentially with distance
out into the cusp, but hyperbolic directions shrink towards a limiting positive value. Hence the
volume of the cusp cross-section (horomanifold) goes to zero exponentially fast when u > 0, and
the cusp has finite volume. When u = 0 the cusp cross-section converges geometrically to compact
(n − 1)-manifold, and in this case the cusp has infinite volume. In this discussion volume means
Hausdorff measure.

If Ω is an open properly-convex set in RPn the Hilbert metric on Ω is defined as follows. Suppose
p, q ∈ Ω lie on the line γ : [a, b] → RPn given by γ(t) = [(t − a)~u + (b − t)~v] with endpoints
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[~u], [~v] ∈ ∂Ω and interior in Ω. If p = [γ(x)] and q = [γ(y)] then

dΩ(p, q) =
1

2
log

( |b− x| |y − a|
|b− y| |x− a|

)

Since cross ratios are preserved by projective transformations this is independent of the choice of
γ. This is a Finsler metric. For vectors tangent to this line, the Finsler norm is the pullback of the
Riemannian metric on (a, b) given by

(40)
1

2

(
1

x− a +
1

b− x

)
|dx|

When Ω is projectively equivalent to an ellipsoid then (Ω, dΩ) is isometric to hyperbolic space
Hn. Otherwise the metric is not Riemannian.

Lemma 5.1. There is a decreasing function κ : R+ → (1,∞) such that limx→∞ κ(x) = 1 with the
following property. Suppose Ω′ ⊂ Ω ⊂ RPn are both open and properly-convex. Let ‖ · ‖′ and ‖ · ‖ be
the Hilbert norms on Ω′ and Ω. Suppose p ∈ Ω′ and dΩ(p,Ω\Ω−) > x then ‖·‖p ≤ ‖·‖′p ≤ κ(x)‖·‖p.

Proof. Since the definition of the Hilbert metric only involves a line segment, it suffices to prove
the result in dimension n = 1 with Ω = (−1, 1) and Ω′ = (−u, u) and 0 < u < 1. It is easy to do
this. �

Given a metric space (M,d) the k-dimensional Hausdorff measure is defined as follows. If
B(x; r,M) is the ball of radius r in M center x then ν(B(x, r)) = ckr

k where ck is the volume
of the ball of radius 1 in Rk. If S is a set of balls in M then ν(S) =

∑
B∈S ν(B). Given a subset

X ⊂M and ε > 0 define νε(X) = infimum ν(S) where the infimum is over all sets, S, of balls with
radius at most ε that cover X. Then define an outer measure by ν(X) = limε→0 νε(X). This gives
a measure on M in the usual way, called k-dimensional Hausdorff measure, denoted volk.

If α is an arc in M then vol1(α) is the length of the arc. We will use voln−1 to measure the size
of a horomanifold in a generalized cusp.

If M is an n-dimensional manifold with a Finsler metric then the measure voln is given by a
integrating a certain n-form called the volume form. Suppose p ∈ M and B ⊂ TpM is the unit
ball in the given norm. The volume form on TpM is normalized so that the volume of B is the
Euclidean volume, cn, of the unit n-dimensional Euclidean unit ball. Thus if ω 6= 0 is an n-form on
TpM then the volume form dvol on TpM is

dvol = cn

(∫

B

ω

)−1

ω

This defines a Borel measure volM on M given by

volM (X) =

∫

X

dvol

For a Riemannian metric this is the usual volume form. For X ⊂ M we refer to voln(X) as its
volume written voln(X;M) = vol(X). For a properly convex projective n-dimensional manifold
voln is also called Busemann measure.

Lemma 5.2. Suppose M and M ′ are Finsler manifolds of dimension n and f : M → M ′ is a
diffeomorphism. If f is 1-Lipschitz then vol(f(X);M ′) ≤ vol(X;M)

Proof. Since f is 1-Lipschitz f(B(x; r,M)) ⊂ B(f(x); r,M ′) which easily implies the result. �

Corollary 5.3. Suppose M is a Finsler n-manifold and U ⊂ Rn is convex, and f : U → M is
smooth. Suppose f is 1-Lipschitz, and along lines in the e1 direction that f is K-Lipschitz. Then
vol(f(U);M)) ≤ K · λ(U) where λ is Lebesgue measure on Rn.

Proof. Let W = {(Kx1, x2, · · · , xn) : (x1, · · · , xn) ∈ U} then g : W →M given by g(x1, · · · , xn) =
f(K−1x1, x2 · · · , xn) is 1-Lipschitz. The result now follows from (5.2). �



GENERALIZED CUSPS 27

Corollary 5.4. With the hypotheses of (5.1) then

vol(A; Ω) ≤ vol(A; Ω′) ≤ (κ(x))n vol(A; Ω)

5.1. The Radial Flow and the Hilbert metric. Suppose (Ω, G) is a ψ-geometry. If p 6= q are
two points in Ω(ψ) then q − p ∈ Rn is called a parabolic direction at p if there is A ∈ P (ψ) with
A(p) = q. The infinitesimal version of this is that a parabolic tangent vector is a vector v ∈ TpΩ
that is tangent to the orbit of point p under the action of a 1-parameter subgroup of P (ψ). If
u = 0 there are no parabolic directions, and if t = 0 then every vector tangent to a horosphere is a
parabolic direction. In general the parabolic directions correspond to the y-coordinates in (x, z, y)
coordinates.

Lemma 5.5. Let Ψ be the radial flow on Ω = Ω(ψ) and Ht = Φt(∂Ω) the t-horosphere. Suppose
p 6= q ∈ H−1 ⊂ Rn and define q(t) = Φ−t(q) and p(t) = Φ−t(p) and f(t) = dΩ(p(t), q(t)). Then

(1) f(t) is decreasing function of t
(2) limt→0 f(t) = 0 iff and only if q − p is a parabolic direction at p
(3) If q − p is parabolic then log f(t) ≈ −O(dΩ(p, p(t))).

Proof. (1) follows from [23]. First assume t < n so the radial flow is Φt(x, z, y) = (x, z − t, y) and
moves points in the z-direction called vertical. Let I(t) ⊂ Rn be the intersection with Vψ of the line
containing p(t) and q(t), then I(t) = Φ−t(I(0)).

Observe that I = I(0) is a complete affine line if and only if q−p = (0, z, y) in (x, z, y) coordinates,
which is equivalent to q− p is a parabolic direction. Also I contains the maximal line segment J in
Ω that contains p and q. Thus if I is not a complete line, then dΩ(p, q) = dJ(p, q) ≥ dI(p, q) > 0.
The above implies f(t) ≥ dI(p, q). Hence if q − p is not parabolic then f(t) is bounded below.

Now suppose q − p is parabolic. The radial flow commutes with the translation group, so it
suffices to prove the lemma for p = Φ−1(bψ). Then p(t) = bψ + (t+ 1)er+1 and q(t) = p(t) + q − p.
Let P ⊂ Rn be the affine 2-plane containing the two flow lines p(t) and q(t). Since q − p = (0, z, y)
it follows that xi is constant on P for i ≤ r. Then (2) implies hψ|P is quadratic, so P ∩ Ω is a
convex set bounded by a parabola.

The rays p(t) and q(t) are parallel in P ∩ Ω. Let U = {(x, y) : y > x2}. Then dU ((1, t), (2, t)) =
O(t−2) for large t, and dU ((1, 1), (1, t)) = log t. These computations differ from those for p(t) and
q(t) by bounded amounts. Hence f(t) = O(t−2) so − log f(t) = O(t) and dΩ(p, p(t)) ≈ log t.

When t = n there are no parabolic directions. In this case p(t) and q(t) are rays in Rn contained
in lines through 0. The closure of Rn+ in RPn is an n-simplex ∆ that contains Ω, so dΩ ≥ d∆ and
f(t) ≥ d∆(p(t), q(t)). The rays p(t) and q(t) limit on distinct points p∞, q∞ in the interior of ∂∞∆,
and d∆(p(t), q(t)) is bounded below by the Hilbert distance in ∂∞∆ between p∞ and q∞. �

The next result describes how the volume of a subset of a generalized cusp shrinks as it flows
out into the end of the cusp using the radial flow. The asymptotic behavior depends only on the
parabolic rank u of the cusp. If u > 0 the volume of the region shrinks exponentially with distance
as it flows out, but if u = 0 the volume stays bounded away from 0.

Proposition 5.6. Suppose C = Ω/Γ is a generalized cusp of dimension n and unipotent rank u.
For t ≤ 0 let Φt : C → C be the restriction of the radial flow and X ⊂ ∂C and Xt = Φt(X) then
there exists constants γ and δ such that
if u = 0 then voln−1(Xt;C) > δ · voln−1(X;C)
if u > 0 then voln−1(Xt;C) < γ exp(−dX(X,Xt)) · voln−1(X;C).

Proof. This follows from 5.5. When u > 0 there are parabolic directions, and it follows from
Lemma 5.5 that the map Φt : X → Xt is a 1-Lipschitz map that exponentially contracts distance
in parabolic directions, so the estimate in this case follows from Corollary 5.3.

When u = 0 there are no parabolic directions, and part (2) of Lemma 5.5 implies Φ−1
t : Xt → X

is a K-Lipschitz map (with K is independent of t). Again, the estimate follows immediately for
δ = K−n. �
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Theorem 5.7. Suppose C is a generalized cusp that is contained in the interior of a properly-convex
manifold M . Then volM (C) <∞ if and only if the parabolic rank u of C satisfies u > 0.

Proof. This follows easily from the estimates in Proposition 5.6. �

Proof of Theorem 0.6. Let C = Ω/Γ be a generalized cusp in a properly convex manifold M such
that Γ is conjugate into G(ψ). From the construction and description of G(ψ) it is easy to see that
G(ψ) contains a parabolic element if and only u > 0. Furthermore from Theorem 5.7 it follows
that C has finite volume in M if and only if u > 0. �

6. Dimension 2

In this section we describe 2-dimensional generalized cusps in a way that illuminates the higher
dimensional cases, and can be read before the rest of the paper.

A generalized cusp, C, in a properly-convex surface, M , is a convex submanifold C ∼= S1× [0,∞)
of M with M \C connected and ∂C is a strictly convex curve in the interior of M . Thus C = Ω/Γ,
where Γ is an infinite cyclic group generated by some element [A] ∈ PGL(3,R), and Ω is properly-
convex, and homeomorphic to a closed disc with one point deleted from the boundary, and ∂Ω :=
Ω \ int(Ω) is a strictly convex curve that covers ∂C. The proof of the following is routine.

Theorem 6.1. A generalized cusp has holonomy conjugate to a group generated by [A] where either
A is diagonal with three distinct positive eigenvalues, or else is one of



ea 0 0
0 1 1
0 0 1







1 1 0
0 1 1
0 0 1


 a 6= 0

We regard Aff(R2) as a subgroup of PGL(3,R). For each ψ = (ψ1, ψ2) ∈ R2 with ψ1 ≥ ψ2 ≥ 0
there is a one-dimensional subgroup T (ψ) ⊂ Aff(R2)

T (ψ) =

ψ1 ≥ ψ2 > 0 ψ1 > ψ2 = 0 ψ1 = ψ2 = 0

ex 0 0
0 e−x.ψ2/ψ1 0
0 0 1






ex 0 0
0 1 −ψ1x
0 0 1







1 x x2/2
0 1 x
0 0 1


 x ∈ R

The holonomy of a generalized cusp is conjugate in PGL(3,R) into one of these groups. The orbit
of the basepoint (1.6) under each of these Lie groups is a convex curve γ in R2 and the convex hull
of γ is a properly-convex closed set Ω = Ω(ψ) ⊂ R2 as shown in Figure (2), that is preserved by
the group.

The closure of Ω in RP2 is Ω = Ωt∂∞Ω where ∂∞Ω ⊂ RP∞1 , and ∂∞ = [e1] for T (0, 0), and it is
the closed line segment {[te1 + (1− t)e2] : 0 ≤ t ≤ 1} with endpoints [e1] and [e2] in the remaining
cases as shown in Figure (2).

〈e1〉〈e3〉

〈e2〉

T (ψ1, ψ2)

Line at infinity

Line at infinityhe2i he1i

T ( 1, 0)

Point at infinity

T (0, 0)

〈e1〉

Figure 2. Generalized Cusps: Projective View
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Goldman classified convex projective structures on closed surfaces [15], and Marquis [20], [19]
shows that if S is a finite type surface without boundary, then a properly-convex projective structure
on S has finite area if and only if the holonomy of each end of S is unipotent: conjugate into T (0, 0).

Each domain Ω(ψ) has two foliations that are preserved by T (ψ). A horocycle is the orbit of a
point under T (ψ). The radial flow is a one parameter subgroup Φψ ⊂ PGL(3,R) that only depends
on t = t(ψ), which is the number of non-zero coordinates of ψ.

t = 2 t = 1 t = 0

Φψ(t) =




1 0 0
0 1 0
0 0 et







1 0 0
0 1 t
0 0 1







1 0 t
0 1 0
0 0 1




center = [e3] [e2] [e1]

This group centralizes T (ψ). The Φ-orbit of a (non-stationary) point is called a radial flow line and
is contained in a projective line. All these lines meet at a single point called the center of the radial
flow. The foliation of Ω by (subarcs of) radial flow lines is transverse to the horocycle foliation.
The domain Ω is backwards invariant under the radial flow: Φt(Ω) ⊂ Ω for t ≤ 0.

The group T (t) := T (ψ)⊕ Φψ is called the enlarged translation group (14) is

T (t) =

t = 2 t = 1 t = 0

ex 0 0
0 ey 0
0 0 1






ex 0 0
0 1 y
0 0 1







1 x y
0 1 x
0 0 1


 x, y ∈ R

and T (ψ) is the kernel of a homomorphism T (t)→ R derived from ψ.
A fundamental domain for a generalized cusp is obtained by taking an interval J ⊂ ∂Ω that is

a fundamental domain for the action there, and taking the backward orbit ∪t≤0Φt(J) under the
radial flow. We now describe these foliations, see Figures 2 and 3.

For T0, the domain Ω = {(x1, x2) : x1 ≥ x2
2/2}, and the horocycles are x1 = C + x2

2/2, and
the radial flowlines are x2 = C. There is an identification of Ω with a horoball B ⊂ H2. The
action of T0 on Ω is then conjugated to the action of those parabolic isometries that preserve B.
Horocycles in Ω map to horocycles in B and radial flow lines in Ω map to hyperbolic geodesics that
are orthogonal to the horocycles. In RP2 the horocycles for Ω are ellipses of unbounded eccentricity,
all tangent at [e1].

The group T2(ψ1, ψ2) preserves the positive quadrant ∆ = {(x1, x2) : x1, x2 > 0}. The domain

Ω is the subset of ∆ with xψ2

1 xψ1

2 ≥ 1, and is foliated by the horocycles xψ2

1 xψ1

2 = C. Each

horocycle limits on the points [e1], [e2] ∈ RP1
∞ that are the attracting and repelling fixed points of

the holonomy. The radial flow lines in R2 are straight lines through the origin, which is the neutral
fixed point of the holonomy.

For T1(ψ1) the domain Ω = {(x1, x2) : x2 ≥ −ψ1 log x1, x1 > 0}. The horocycles are
x2 = −ψ1 log x1 + C. At [e2] ∈ ∂∞Ω the horocycles are transverse to ∂∞Ω, but at [e1] they are
tangent to ∂∞Ω. The radial flow lines are the straight lines x1 = C.

The subgroup O(ψ) ⊂ PGL(Ω(ψ)) is the stabilizer of a point. This group is trivial unless ψ1 = ψ2

in which case O(ψ) ∼= Z2. The action of O(ψ) is easily described in homogeneous coordinates on
RP2. When λ = (0, 0) it is generated by the reflection [x1 : x2 : x3] 7→ [x1 : −x2 : x3] and
otherwise by [x1 : x2 : x3] 7→ [x2 : x1 : x3]. In each case this preserves Ω(ψ). If ψ1 6= ψ2 then
PGL(Ω(ψ)) = T (ψ) and acts freely on Ω(ψ).

In all dimensions, a generalized cusp is determined by a lattice in a generalized cusp Lie group.
For a surface, a lattice is infinite cyclic, and is determined by a nontrivial element of some T (ψ) up
to replacing the element by its inverse. A marked lattice is a lattice with a choice of basis. Thus
conjugacy classes of lattices correspond to moduli space and conjugacy classes of marked lattices
to Teichmuller space.

There is an equivalence relation on marked generalized cusps generated by projectively embedding
one in another. Let T be the (Teichmuller) space of equivalence classes of marked generalized cusps
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T (ψ1, ψ2)

xψ2

1 xψ1

2 ≥ 1

T (ψ1, 0)

x2 ≥ − log x1

T (0, 0)

x1 ≥ x2
2

Figure 3. Generalized Cusps: Affine View

for surfaces. There is an identification of T with a subspace of SL(3,R) modulo conjugacy that sends
a marked generalized cusp to the conjugacy class, [A], of the holonomy of the chosen generator.
The eigenvalues {exp(x1), exp(x2), exp(x3)} of A determine [A] and satisfy x1 + x2 + x3 = 0. Thus
a generalized cusp is determined by {x1, x2, x2} up to permutations.

Let X be the 2-orbifold R2/S3 (closed Weyl chamber) where we identify R2 with the plane
x1+x2+x3 = 0 in R3, and the quotient is by the action of the symmetric group S3 on the coordinates.
Then X can be identified with the fundamental domain for this action: X = {(x1, x2, x3) : x1 +x2 +
x3 = 0, x1 ≥ x2 ≥ x3}; which can be identified with Y = {(y1, y2) : y2 ≥ y1 ≥ 0} via y2 = x1 − x3

and y1 = x2 − x3.

y1

y2




1 1 1
0 1 1
0 0 1




α > 1



α2 1 1
0 α−1 1
0 0 α−1


 


α 1 1
0 α 1
0 0 α−2




Figure 4. Y ≡ Parameter space of 2 dimensional cusps

Proposition 6.2. There is a homeomorphism f : Y → T given by

f(y1, y2) =






exp((2y2 − y1)/3) 1 1
0 exp((2y1 − y2)/3) 1
0 0 exp((−y1 − y2)/3)






Proof. By Theorem 6.1 the matrix shown determines a generalized cusp. Clearly f is continuous.
It is easy to check that f is surjective. Consideration of eigenvalues shows f is injective.

Suppose A ∈ SL(3,R) and [A] ∈ T , then A has real positive eigenvalues. Let λ1, λ2, λ3 be the
eigenvalues of A in decreasing order and define g([A]) = (log λ1, log λ2, log λ3). Since the eigenvalues
of a matrix are continuous functions of the matrix, g is continuous. But g is the inverse of f , so f
is a homeomorphism. �

The groups T (ψ) and T (ψ′) are conjugate in PGL(3,R) if and only if ψ = tψ′ for some t > 0.
It follows that the space of conjugacy classes of translation subgroup is the non-Hausdorff space
obtained by taking the quotient of X by this equivalence relation. This is the union of a compact
Euclidean interval [0, 1] and one extra point which only has one neighborhood.
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7. Dimension 3

Let C = Ω/Γ be an orientable 3-dimensional generalized cusp, then C is diffeomorphic to T 2 ×
[0,∞). Given ψ = (ψ1, ψ2, ψ3) with ψ1 ≥ ψ2 ≥ ψ3 ≥ 0 there is a Lie subgroup G(ψ) = T (ψ)oO(ψ)
of PGL(4,R), where T (ψ) ∼= R2 is called the translation group, and O(ψ) is compact. Then Γ is
conjugate to a lattice in some T (ψ), and ψ is unique up to multiplication by a positive scalar.

The Lie groups T (ψ) fall into 4 families, depending on the type t = tψ, which is the number of
non-zero components of ψ.

t = 0 t = 1


1 y1 y2
1
2 (y2

1 + y2
2)

0 1 0 y1

0 0 1 y2

0 0 0 1







ex1 0 0 0
0 1 y1

1
2y

2
1 − ψ1x1

0 0 1 y1

0 0 0 1




t = 2 t = 3


ex1 0 0 0
0 ex2 0 0
0 0 1 −ψ1x1 − ψ2x2

0 0 0 1







ex1 0 0 0
0 ex2 0 0
0 0 e(−ψ1x1−ψ2x2)/ψ3 0
0 0 0 1




The group T (ψ) preserves a properly convex domain Ω(ψ) ⊂ R3 that is the convex hull of the
T (ψ)-orbit of the basepoint, see (1.6). It has a foliation by convex surfaces called horospheres, that
are T (ψ)-orbits. Moreover Ω(ψ) is the epigraph of a convex function, see (10), and is shown in
Figure 5.

Figure 5. 3-dimensional generalized cusp domains and their foliation by horo-
spheres in projective space. From left to right, top to bottom the domains are
Ω(0, 0, 0), Ω(1, 0, 0), Ω(1, 1, 0), finally Ω(1, 1, 1) is shown inside a simplex
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The radial flow (6) is a one-parameter affine group Φψ that centralizes T (ψ), and Φψ-orbits give
a foliation by a pencil of lines transverse to the horospheres. The enlarged translation group (14) is
Tt = T (ψ)⊕Φψ ∼= R3. It is obtained by replacing the most complicated term in the matrix for T (ψ)
by z. There are 4 such groups, depending only on t. Then Tψ is the kernel of a homomorphism
Tt → R obtained from ψ. The group T (t) acts simply transitively on Rr

+ × R3−r, and the latter
contains Ω(ψ).

The group, O(ψ), is the subgroup of G(ψ) that fixes the basepoint (see (1.6)). It is computed in
(1.21), and O(0, 0, 0) ∼= O(2), and O(ψ1, 0, 0) ∼= O(1) when ψ1 6= 0. For the remaining cases, O(ψ)
is the group of coordinate permutations of R3 that preserve ψ. In particular O(ψ) is finite unless
ψ = 0.

There is a 6 parameter family of marked, 3-dimensional generalized cusps. As described in 0.2
they are parameterized by a triple (ψ,Γ, A · O(ψ)) with ψ as above, and Γ is a marked lattice of
co-area 1 in R2, and A ·O(ψ) ∈ O(2)/O(ψ) is a left coset.

In [18], the third author showed that in dimension 3, every translation group, as defined in 4.8, is
conjugate into one of these 4 families. This, together with [1], provided the impetus for the present
paper.

We now describe some geometric properties of these domains and discuss relevant examples from
the literature. The interior of Ω(0, 0, 0) is projectively equivalent to H3. If C ∼= Ω(0, 0, 0)/Γ then
Γ is conjugate into PO(3, 1). Cusps of finite volume hyperbolic 3-manifolds give rise to generalized
cusps of this type. The ideal boundary, see (13), of Ω(0, 0, 0) consists of a single point which is
stabilized by G(ψ), and C admits a compactification by a singular projective manifold obtained by
adjoining this ideal boundary point.

For a generalized cusp C = Ω/ΓC modelled on Ω = Ω(1, 0, 0) the ideal boundary, ∂∞Ω is a
projective line segment J . The action of ΓC on I = int(J) is discrete iff Γ contains a parabolic. In
this case C has a compactification C = (Ω ∪ I)/ΓC that is a projective manifold that is singular
along the circle S1 = I/ΓC .

In [1], the first author found, for t ∈ [0,∞), a continuous family of properly convex manifolds
projectively equivalent to Mt = Ωt/Λt, and diffeomorphic to the figure-8 knot complement, X =
S3 \ K, and M0 is the complete hyperbolic structure. Moreover the end of Mt is projectively
equivalent to Ω(t, 0, 0)/Γt, where Γt ⊂ T (t, 0, 0) is a lattice containing parabolics. As a result, for
t > 0, there is a compactification M(t) = Ω+

t /Λt that is a projective structure on S3 that is singular
along K, and Mt = M(t)\K is a properly convex structure on X. Here Ω+

t ⊃ Ωt and also contains
the Γt-orbit of an open segment in ∂∞Ω(t, 0, 0). The cusp of the hyperbolic manifold M0 deforms
to a generalized cusp of a different type. As the deformation proceeds, an ideal boundary point
of H3 opens up into an ideal boundary segment. This is an example of a geometric transition; the
hyperbolic cusp Ω(0, 0, 0)/Γ0 geometrically transitions to the non-hyperbolic cusp Ω(t, 0, 0)/Γt as
t moves away from zero, cf. [12] and [9]. Higher dimensional examples of hyperbolic manifolds
deforming to properly convex manifolds with type 1 cusps can be found in [3]. Furthermore, in
subsequent work, the authors will show that every generalized cusp arises as a deformation of a
hyperbolic cusp in this way.

The domains of the form Ω(ψ1, ψ2, 0) have ideal boundary a 2-simplex, ∆. The interior of one
of the edges of ∆ consists of C1 points, and the remainder of the 1-skeleton of ∆ consists of non-
C1 points. In particular, the fixed point of the radial flow is the intersection of the two edges of
non-C1 points of ∆, see (1.11). Any lattice in T (ψ1, ψ2, 0) acts properly discontinuously on ∆.
Thus C = Ω(ψ1, ψ2, 0)/Γ has a manifold compactification by adjoining ∆/Γ. There are currently
no known examples where the hyperbolic structure on a finite volume 3-manifold deforms to a
manifold of this type. However, Gye-Seon Lee [17] has produced some numerical deformations of
the complete hyperbolic structure on both the figure-eight knot complement and the figure-eight
knot sister that appear to have ends of this type.

Finally, the domains of the form Ω(ψ1, ψ2, ψ3) also have ideal boundary consisting of a 2-simplex
∆. However, in this case each point of the 1-skeleton of ∆ is a non-C1 point. As in the previous
case, if Γ is a lattice in T (ψ1, ψ2, ψ3) then Γ acts properly discontinuously on ∆ and there is a
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compactification of C by adjoining ∆/Γ. There are examples of properly convex deformations of
the complete hyperbolic structure on finite volume hyperbolic 3-manifolds whose topological ends
are of the form Ω(ψ1, ψ2, ψ3)/Γ, where Γ ≤ T (ψ1, ψ2, ψ3). The first such examples were constructed
for the figure-eight knot complement and the figure-eight sister by Gye-Seon Lee [17]. His examples
are constructed by gluing together two projective ideal tetrahedra using the combinatorial pattern
that produces the figures-eight knot complement (see Chapter 3 of [25] for details). Subsequent
work of the first author, J. Danciger and G-S. Lee showed that any finite volume hyperbolic 3-
manifold that satisfies a mild cohomological condition (that is known to be satisfied by infinitely
many hyperbolic 3-manifolds) also admits deformations all of whose ends are projectively equivalent
to Ω(1, 1, 1)/Γ, where Γ ≤ T (1, 1, 1), thus producing many additional examples.

Furthermore, as explained in (1.5), the lack of C1 points in the 1-skeleton of the ideal boundary
allows properly convex manifolds with ends projectively equivalent to quotients of Ω(ψ1, ψ2, ψ3) to
sometimes be glued together to produce new properly convex manifold. This idea is explored in
detail in [2] and using these techniques it is possible to find properly convex projective structures
on non-hyperbolic 3-manifolds. This was first done by Benoist [4] using Coxeter orbifolds.
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