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Abstract. We use a variant of the technique in [Lac17a] to give sparse Lp(log(L))4

bounds for a class of model singular and maximal Radon transforms.

1. Introduction

Suppose µ and σ are finite signed and positive measures respectively, supported on the
unit ball B(1) ⊂ Rn with dµ = ρ dσ for some bounded density ρ, µ(Rn) = 0, and (using ˆ
to denote the Fourier transform)

(1) max(|σ̂(ξ)|, |µ̂(ξ)|) . |ξ|−α

for some α > 0 (Our main examples of interest are when σ is surface measure on a compact
piece of a finite-type submanifold of Rn and ρ is a smooth function on Rn with σ-mean
zero). Define µj by ∫

f dµj =

∫
f(2jx) dµ(x).

Given a collection of coefficients {εj}j∈Z with |εj | ≤ 1 we may consider the singular Radon
transform

T [f ] :=
∑
j

εjµj ∗ f

and the maximal averaging operator

T ∗[f ](x) := sup
j
σj ∗ |f |(x).

It is well known that condition (1) implies that T and T ∗ are bounded on Lp for 1 < p <∞.
The following “sparse bound” for T ∗ was recently proven in [Lac17a] (see also related

work [CO])
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Theorem 1 (Lacey). Suppose σ is surface measure on the unit sphere in Rn and 1 < p <
q < ∞ are exponents such that convolution with σ is a bounded operator from Lp to Lq.
For 0 < θ < 1 let

1

pθ
:=

1− θ
p

+
θ

2
and

1

qθ
:=

1− θ
q

+
θ

2
.

There is a finite Cθ such that for every pair of compactly supported f1, f2 there is a sparse
collection of cubes Q such that

(2) | 〈T ∗[f1], f2〉 | ≤ Cθ
∑
Q∈Q
|Q| 〈|f1|〉Q,pθ 〈|f2|〉Q,q′θ

where

〈|f |〉Q,p :=

(
1

|Q|

∫
Q
|f |p dx

)1/p

.

Above, we use |Q| to denote the Lebesgue measure of Q, and the collection Q is said to
be sparse if there is a collection of pairwise disjoint sets {FQ}Q∈Q with |FQ| ≥ 1

2 |Q| and
FQ ⊂ Q. Bounds such as (2) (as well as those which give pointwise or norm domination
by sparse operators) have been of much recent interest. See for example [Ler10], [LN15],
[Ler16], [DDU16], [BBL16], [BFP16], [CKL16], [CDO16], [Lac17b], [KL17], [NPTV17].

Theorem 1 is nontrivial (given that T ∗ is known to be bounded on Lp) since q′θ < p′θ.
Furthermore, the range of exponents is sharp up to the small θ-loss in interpolation (Since
there is positive distance between the center of the sphere and the support of the measure,
a sparse bound as above implies that convolution with σ is bounded from Lpθ to Lqθ).
Lacey’s argument does not appear to depend on the geometry of the sphere, and likely
extends without modification to compactly supported positive measures satisfying (1).

Our purpose here is to explore the relationship between the method of [Lac17a] and
more traditional approaches (which use a regularization of the single scale operator) for
bounding T ∗. This will allow us to push a little closer to the natural endpoint exponents
(p, q). We have also organized our argument1 to facilitate bounds for the singular integral
T .

Given a cube Q, define

(3) f0Q := f ·1{x∈Q:|f(x)|≤〈|f |〉Q,p} and fmQ := f ·1{x∈Q:2m−1〈|f |〉Q,p<|f(x)|≤2m〈|f |〉Q,p}, m > 0.

Our bounds will be in terms of the following “restricted-type Lp log(L)4” averages:

(4) 〈|f |〉Q,p+ :=
∑
m≥0

(m+ 1)4
〈
|fmQ |

〉
Q,p

.

It is straightforward to check that for each p̃ > p ≥ 1

〈|f |〉Q,p ≤ 〈|f |〉Q,p+ ≤ Cp̃ 〈|f |〉Q,p̃ .

1Specifically, we use a Calderón-Zygmund decomposition of both functions, as was done in the original
version of [Lac17a]. Later versions feature a streamlined argument which relies instead on the orthogonality
of the linearizing functions and does not seem to immediately bound T .
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Theorem 2. Suppose µ, σ are finite signed and positive measures respectively supported
on the unit ball with µ(Rn) = 0. If µ and σ satisfy (1) and 1 < p < q < ∞ are exponents
such that convolution with µ is a bounded operator from Lp to Lq then there is a finite C
such that for every pair of compactly supported functions f1, f2 there is a sparse collection
of cubes Q such that

(5) | 〈T [f1], f2〉 | ≤ C
∑
Q∈Q
|Q| 〈|f1|〉Q,p+ 〈|f2|〉3Q,q′+ .

Essentially the same proof (simply replace the coefficients εj by linearizing functions
εj(x)) can be used to bound the maximal operator.

Theorem 3. Suppose σ is a finite measure supported on the unit ball satisfying (1), and
that 1 < p < q <∞ are exponents such that convolution with σ is a bounded operator from
Lp to Lq. There is a finite C such that for every pair of compactly supported f1, f2 there is
a sparse collection of cubes Q such that

(6) | 〈T ∗[f1], f2〉 | ≤ C
∑
Q∈Q
|Q| 〈|f1|〉Q,p+ 〈|f2|〉3Q,q′+ .

It was pointed out to us by Jim Wright that our argument also controls the maximally
truncated singular integral. Defining

T ∗∗[f ](x) = sup
j
|
∑
j′≥j

µj′ ∗ f(x)|

Duoandikoetxea and Rubio de Francia [DRdF86] showed that T ∗∗ is bounded on Lp, 1 <
p <∞. Using their estimate and a linearization as in Theorem 3 gives

Theorem 4. Suppose µ, σ are finite signed and positive measures respectively supported
on the unit ball with µ(Rn) = 0. If µ and σ satisfy (1) and 1 < p < q < ∞ are exponents
such that convolution with µ is a bounded operator from Lp to Lq then there is a finite C
such that for every pair of compactly supported functions f1, f2 there is a sparse collection
of cubes Q such that

(7) | 〈T ∗∗[f1], f2〉 | ≤ C
∑
Q∈Q
|Q| 〈|f1|〉Q,p+ 〈|f2|〉3Q,q′+ .

The exponent four in the definition of 〈|f |〉Q,p+ is not optimal and could be lowered

slightly by following the numerology more carefully. We conjecture (based on parallels in
the methods of proof) that the sharp bounds for (7) and (6) may match the (currently
unknown) sharp estimates at L1 for T and T ∗. Specifically, that for a given σ, (6) should
hold with 〈|f1|〉Q,p 〈|f2|〉3Q,q in place of 〈|f1|〉Q,p+ 〈|f2|〉3Q,q′+ if and only if T ∗ satisfies a

weak-type L1 estimate (and similarly for bounds with logarithmic losses). This would
suggest that, at the very least, Theorems 2 and 3 should hold with Lp log(L) in place of
Lp log(L)4.

Acknowledgements. The author would like to thank Michael Lacey for sparking his
interest in sparse bounds and for several helpful conversations subsequently.
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2. A review of the Lp theory

We quickly recall a now standard method, which seems to originate in [DRdF86], for
proving Lp estimates for T (and T ∗). This section is purely expository and may be skipped
by the experts.

The L2 → L2 bound for T is immediate from (1). To prove a bound near L1, perform a
Calderón-Zygmund decomposition

f = g +
∑
Q

bQ

where bQ is supported on the cube Q and has mean-zero. The contribution from the good
function g is handled, as usual, using the L2 estimate.

Let `(Q) denote the sidelength of a cube Q. If µ had an integrable derivative, we could
deduce a weak-type L1 estimate by leveraging the smoothness of the µj at scale 2j against
the cancellation of bQ for 2j ≥ `(Q), and by using the decay of the µj at scale 2j against the
support of bQ for 2j ≤ `(Q) (this, of course, is just the classic Calderón-Zygmund method).

In general, one can write

µ =
∑
k≤0

µ ∗ ηk

where µ ∗ ηk is smooth at scale 2k. Then (µ ∗ ηk)j is smooth at scale 2j+k, and so the

contribution from bQ is acceptable, as above, when 2j+k ≥ `(Q). Here, however, (µ ∗ ηk)j
only has decay at scale 2j and so, other than the trivial bound (i.e. the (µ ∗ ηk)j are
uniformly in L1 and so each of them gives a bounded convolution operator on Lp), one
is not left with an obvious good option for `(Q) < 2j < 2−k`(Q). This gives a weak-type
estimate

(8) ‖T k[f ]‖L1,∞ . (1− k)‖f‖L1

where

T k[f ] :=
∑
j

εj(µ ∗ ηk)j ∗ f.

On the other hand, provided ηk is chosen with appropriate cancellation (1) implies

(9) ‖T k[f ]‖L2 . 2kα‖f‖L2 .

Then T is bounded on Lp for 1 < p < ∞ from the Marcinkiewicz interpolation theorem.
It is not difficult, also using real interpolation, to do a little better (the following is only
meant for illustration, and we omit its proof):

Lemma 1. Suppose {Tk}k≤0 is any sequence of operators satisfying (8) and (9). Then2

for r > 4

T :=
∑
k≤0

T k

2It is only coincidence that the four here matches the four in the definition of 〈|f |〉Q,p+
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satisfies the “weak-type L(log(L))r estimate”

(10) |{|T [f ]| > λ}| .
∫
|f(x)|
λ

(
log

(
e+
|f(x)|
λ

))r
dx, λ > 0.

In fact, by incorporating the interpolation into the proof rather than crudely using it as
a black-box, one finds that our operator T satisfies a weak-type L log(L) bound, and for
many measures µ one can apply more sophisticated techniques to push even closer to L1.
See, for example, [STW04], [CK17], and the references therein.

3. Proof of Theorem 2

We will use a sparse bound adaptation (inspired by [Lac17a]) of the method outlined in
Section 2. The principle use of the Lp → Lq estimate for convolution with µ is to replace
the “trivial L1 bound” used for scales `(Q) < 2j < 2−k`(Q) above.

Through a limiting argument and appropriate choice of dyadic grid, we may assume
that there are finite N1, N2 such that εj = 0 for j outside of [N1, N2] and that f1, f2 are
supported on Q0 and 3Q0 respectively, where Q0 is a dyadic cube with `(Q0) = 2N2(the
bounds given will be independent of the Nj). Our proof will rely on recursion, each instance
of which reduces N2 and the support of the functions. After a finite number of steps, we
are left with a null operator.

Write

Arp[f ](x) :=

(
1

|B(r)|

∫
B(r)
|f(x+ y)|p dy

) 1
p

Mp[f ](x) := sup
r>0
Arp[f ](x)

T ∗high[f ] := sup
2j≤`(Q0)

σj ∗ |f |

fm1 := (f1)
m
Q0

fm2 := (f2)
m
3Q0

(using notation as in (3)).

We then define

E1 = {Mp[f1] > D 〈|f1|〉Q0,p
} ∪ {M1[T

∗
high[f1]] > D 〈|f1|〉Q0,p

}

∪
⋃
m≥0
{Mp[f

m
1 ] > (m+ 1)D 〈|fm1 |〉Q0,p

}.

and similarly for E2 with f2 in place of f1, 3Q0 in place of Q0, and q′ in place of p.
Choosing D very large (depending on the Lp, Lq

′
bounds for T ∗ and Mp), we can force

|E| := |E1 ∪ E2| ≤ 1
2 |Q0| and, say, E ⊂ 6Q0. Using a Whitney decomposition, write E as

the disjoint union of a collection of dyadic cubes

E =
⋃

Q∈Q1

Q
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each of which satisfies

(11) 5
√
n`(Q) ≤ distance

Q,
 ⋃
Q′∈Q1

Q′

c < 11
√
n`(Q).

We then have, for example, that for every cube Q′ which contains a cube Q ∈ Q1

〈|f1|〉Q′,p . 〈|f1|〉Q0,p
.

Perform a Calderón-Zygmund decomposition of f1

f1 =: g1 +
∑
Q∈Q1

1Q(f1 − 〈f1〉Q,1) =: g1 +
∑
Q∈Q1

b1,Q

= g1 +
∑
Q∈Q1
Q⊂Q0

b1,Q

where, for the last identity, we use that, since Q0 6⊂ E, if Q ∩ Q0 6= ∅ then Q ⊂ Q0. The
good function is bounded

‖g1‖L∞ . 〈|f1|〉Q0,p
.

We will also use repeatedly that for any cube Q′ and r ≥ 1

‖
∑
Q⊂Q′

b1,Q‖Lr . ‖f1‖Lr(Q′).

Decompose

(12) | 〈T [f1], f2〉 | ≤ | 〈T [g1], f2〉 |+ |
∑
Q∈Q1

〈T [b1,Q], f2〉 |.

The Lq boundedness of T implies that the first term on the right above

| 〈T [g1], f2〉 | . |Q0| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

.

Writing

TQ[f ] :=
∑

2j≤`(Q)

εjµj ∗ (1Qf),

the second term of (12)

(13) |
∑
Q∈Q1

〈T [b1,Q], f2〉 | = |
∑
Q∈Q1
Q⊂Q0

〈(T − TQ)[b1,Q], f2〉+〈TQ[f1], f2〉−〈f1〉Q,1 〈TQ[1Q], f2〉 |.

By induction on N2 − N1, for each Q ⊂ Q0 above we can find a sparse collection QQ of
dyadic subcubes of Q such that

| 〈TQ[f1], f2〉 | .
∑

Q′∈QQ

|Q′| 〈|f1|〉Q′,p+ 〈|f2|〉3Q′,q′+ .
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Setting FQ0 = Q0 \ E, we have that

Q := {Q0} ∪
⋃

Q∈Q1
Q⊂Q0

QQ

is sparse, and so it now remains to bound the sums of the first and third terms on the right
of (13)

. |Q0| 〈|f1|〉Q0,p+
〈|f2|〉3Q0,q′+

.

Using the Lq boundedness of TQ and the fact that the 3Q are finitely overlapping (from
(11)), the sum of the third term is

.
∑
Q∈Q1

〈|f1|〉Q0,p
|Q|1/q‖f2‖Lq′ (3Q) . |Q0| 〈|f1|〉Q0,p

〈|f2|〉3Q0,q′
.

The last, and main, step of the proof will be to show that

(14) |
∑
Q∈Q1

〈(T − TQ)[b1,Q], f2〉 | . |Q0| 〈|f1|〉Q0,p+
〈|f2|〉3Q0,q′+

.

Perform a Calderón-Zygmund decomposition of f2

f2 =: g2 +
∑
Q∈Q1

1Q(f2 − 〈f2〉Q,1) =: g2 +
∑
Q∈Q1

b2,Q.

The second good function is bounded

‖g2‖L∞ . 〈|f2|〉3Q0,q′

which, using the Lp boundedness of T and TQ (separately), gives

|
∑
Q∈Q1

〈(T − TQ)[b1,Q], g2〉 | . ‖
∑
Q∈Q1

b1,Q‖Lp‖g2‖Lp′ +
∑
Q∈Q1

‖b1,Q‖Lp‖g2‖Lp′ (3Q)

. |Q0| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

.

Expanding T − TQ, (14) will be finished once we estimate

(15) |
∑

Q,Q′∈Q1

∑
2j≥`(Q)

εj
〈
µj ∗ b1,Q, b2,Q′

〉
|.

Then (15) is

(16) ≤ |
∑

Q,Q′∈Q1

∑
j

2j≥max(`(Q),`(Q′))

εj
〈
µj ∗ b1,Q, b2,Q′

〉
|

+ |
∑

Q,Q′∈Q1

∑
j

`(Q)≤2j<`(Q′)

εj
〈
µj ∗ b1,Q, b2,Q′

〉
|.
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If a term in the right sum from (16) is nonzero then Q ∩ 2Q′ 6= ∅ and so, by (11), `(Q) =
1
2`(Q

′) = 2j . For each such Q,Q′, rescaling the Lp → Lq bound for µ gives

|
〈
µj ∗ b1,Q, b2,Q′

〉
| . |Q′| 〈|f1|〉3Q′,p 〈|f2|〉Q′,q′

and thus the right sum from (16) is

.
∑
Q′∈Q1

|Q′| 〈|f1|〉3Q′,p 〈|f2|〉Q′,q′

≤ sup
Q∈Q1

〈|f2|〉
1− q

′
p′

Q,q′

∑
Q′∈Q1

|Q′| 〈|f1|〉3Q′,p 〈|f2|〉
q′
p′

Q′,q′

. sup
Q∈Q1

〈|f2|〉
1− q

′
p′

Q,q′ |Q0| 〈|f1|〉Q0,p
〈|f2|〉

q′
p′

3Q0,q′

. |Q0| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

.(17)

We bound the left sum from (16) by two terms which are treated in the same manner (it
is irrelevant to the argument whether or not the diagonal `(Q) = `(Q′) is included), one of
which is

(18) |
∑
Q,Q′,j

`(Q)≤`(Q′)≤2j

εj
〈
µj ∗ b1,Q, b2,Q′

〉
|.

It will be useful to decompose µ. Let η̃ be a Schwartz function with ˆ̃η identically 1 on
B(1) and supported on B(2) and η := η̃−1 − η̃ so that η̂ is supported on B(4) \B(1) and

ˆ̃η +
∑
k≤0

η̂k = 1.

Then (18)

≤ |
∑
Q,Q′,j

`(Q)≤`(Q′)≤2j

εj
〈
(η̃ ∗ µ)j ∗ b1,Q, b2,Q′

〉
|

+
∑
k≤0
|

∑
Q,Q′,j

`(Q)≤`(Q′)≤2j

εj
〈
(ηk ∗ µ)j ∗ b1,Q, b2,Q′

〉
|

=: |S̃|+
∑
k≤0
|Sk|.

For S̃ we fix Q and 2j ≥ `(Q) =: 2l. Using the cancellation of b1,Q we have

|η̃j ∗ b1,Q(x)| . 〈|f1|〉Q0,p
22(l−j)(1 + | distance(x,Q)|/2j)−N
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for large N, giving (we will abuse notation by identifying µ with its conjugate reflection)

|

〈
(η̃ ∗ µ)j ∗ b1,Q,

∑
Q′

`(Q)≤`(Q′)≤2j

b2,Q′

〉
| . 〈|f1|〉Q0,p

2l−j |Q|M1[µj ∗
∑
Q′

`(Q)≤`(Q′)≤2j

b2,Q′ ](x
′)

. 2l−j |Q| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

where x′ ∈ Ec. (To obtain the second inequality above, we write
∑
b2,Q′ as the difference of

1⋃Q′f2 and
∑

1Q′ 〈f2〉Q′,1 . The contribution from the former term is bounded by positivity

of M1 ◦ T ∗ and the fact that x′ ∈ Ec, the contribution from the latter term instead uses
the L∞ boundedness of M1[µj ∗ ·].) Summing over j and Q′ then gives

|S̃| . |Q0| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

.

We now fix k ≤ 0 and turn our attention to Sk. We bound the low frequency component∑
Q

∑
j

2j>2−2k`(Q)

|
∑
Q′

`(Q)≤`(Q′)≤2j

εj
〈
(ηk ∗ µ)j ∗ b1,Q, b2,Q′

〉
| . 2k|Q0| 〈|f1|〉Q0,p

〈|f2|〉3Q0,q′

using the same reasoning as for S̃ (and here, in contrast to S̃, it is important that x′ ∈ Ec
since uj is at a coarser scale than ηk+j).

For i = 1, 2 write

bmi,Q := 1Q

(
fmi − 〈fmi 〉Q,1

)
.

Since

fi =
∑
m≥0

fmi

we have

bi,Q =
∑
m≥0

bmi,Q.

Decompose∑
Q

∑
j

2j≤2−2k`(Q)

∑
Q′

`(Q)≤`(Q′)≤2j

εj
〈
(ηk ∗ µ)j ∗ b1,Q, b2,Q′

〉
(19)

=
∑

m1,m2≥0

∑
Q

∑
j

2j≤2−2k`(Q)

∑
Q′

`(Q)≤`(Q′)≤2j

εj

〈
(ηk ∗ µ)j ∗ bm1

1,Q, b
m2
2,Q′

〉

For pairs (m1,m2) with m1 +m2 ≤ −kα2 we use the L2 estimate for convolution with ηk ∗µ.
Writing

Qmi := Q ∩ {fmi 6= 0}
for each 0 ≤ h ≤ −kα2 and 0 ≤ i ≤ i′ ≤ −2k we have
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∑
m≤h

∑
l

|〈(ηk ∗ µ)l+i′ ∗
∑

`(Q)=2l

bm1,Q,
∑

`(Q)=2l+i

bh−m2,Q 〉|

. 2kα
∑
m≤h

∑
l

‖
∑

`(Q)=2l

bm1,Q‖L2‖
∑

`(Q)=2l+i

bh−m2,Q ‖L2

. 2kα
∑
m≤h

∑
l

‖
∑

`(Q)=2l

1Qf
m
1 ‖L2‖

∑
`(Q)=2l+i

1Qf
h−m
2 ‖L2

. 2kα+h 〈|f1|〉Q0,
〈|f2|〉3Q0,q′

∑
m≤h

∑
l

|
⋃

`(Q)=2l

Qm1 |
1
2 |

⋃
`(Q)=2l+i

Qh−m2 |
1
2

. 2kα+h|Q0| 〈|f1|〉Q0,p
〈|f2|〉3Q0,q′

.

Summing over i, i′ and then h we have that the magnitude of the restriction of the sum
on the right side of (19) to m1 +m2 ≤ −kα2 is

. 2
kα
4 |Q0| 〈|f1|〉Q0,p

〈|f2|〉3Q0,q′

which sums over k ≤ 0 to an acceptable contribution.
For m1 + m2 >

−kα
2 we use the Lp improving property of the µ averages. Fix m1,m2

and 0 ≤ i ≤ i′ ≤ 2k. Then∑
l

|〈(ηk ∗ µ)l+i′ ∗ (
∑

`(Q)=2l

bm1
1,Q), (

∑
`(Q)=2l+i

bm2
2,Q)〉|(20)

. ‖fm2
2 ‖Lq′ (

∑
l

‖µl+i′ ∗ (
∑

`(Q)=2l

bm1
1,Q)‖qLq)

1/q.

The second factor on the right of (20) is

. (
∑
l

∑
Q′

`(Q′)=2l+i
′

‖µl+i′ ∗ (
∑

`(Q)=2l

bm1
1,Q)‖qLq(Q′))

1/q

. (
∑
l

∑
Q′

`(Q′)=2l+i
′

|Q′|〈|
∑

`(Q)=2l

bm1
1,Q|〉

q
3Q′,p)

1/q

. sup
Q′′,l

`(Q′′)=2l+i
′

〈|
∑

`(Q)=2l

bm1
1,Q|〉

1− p
q

3Q′′,p (
∑
l

∑
Q′

`(Q′)=2l+i
′

|Q′|〈|
∑

`(Q)=2l

bm1
1,Q|〉

p
3Q′,p)

1/q

. (m1 + 1) 〈|fm1
1 |〉

1− p
q

Q0,p
‖fm1

1 ‖
p
q

Lp

. (m1 + 1)|Q0|
1
q 〈|fm1

1 |〉Q0,p
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where, above, we sum over all dyadic cubes Q′ of sidelength 2l+i
′
. This implies that the

sum over (i, i′) of (20) is

. k2(m1 + 1)|Q0| 〈|fm1
1 |〉Q0,p

〈|fm2
2 |〉3Q0,q′

and so the sum over k of the magnitude of the restriction of the sum on the right side of
(19) to m1 +m2 >

−kα
2 is

. |Q0|
∑
m1,m2

(m1 +m2 + 1)4 〈|fm1
1 |〉Q0,p

〈|fm2
2 |〉3Q0,q′

. |Q0|(
∑
m

(m+ 1)4 〈|fm1 |〉Q0,p
)(
∑
m

(m+ 1)4 〈|fm2 |〉3Q0,q′
)

= |Q0| 〈|f1|〉Q0,p+
〈|f2|〉3Q0,q′+

thus finishing the proof.
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