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ABSTRACT. In this paper we prove self-improvement properties of strong Muckenhoupt
and Reverse Hölder weights with respect to a general Radon measure on Rn. We derive
our result via a Bellman function argument. An important feature of our proof is that it
uses only the Bellman function for the one-dimensional problem for Lebesgue measure;
with this function in hand, we derive dimension free results for general measures and
dimensions.

Keywords: Bellman function, Dimension free estimates, Muckenhoupt weights, Reverse Hölder weights.

Mathematics Subject Classification: Primary: 42B35; Secondary: 43A85

1. INTRODUCTION

It is well known that Muckenhoupt weights on a real line with respect to the Lebesgue
measure satisfy self-improvement properties in the following sense: for p > q we always
have Aq ⊂ Ap; but also for any function w ∈ Ap, there is an ε > 0 such that w ∈ Ap−ε (we
refer to Definition 1 for precise definitions). Besides that, there always exists a q such that
w∈RHq. These self-improvement properties allow one to prove many important results in
harmonic analysis, see, e.g., [4] or a more recent paper [5]. In [7], the authors considered
strong Muckenhoupt classes; in particular, it was proven that for a Radon measure µ on
Rn which is absolutely continuous with respect to the Lebesgue measure dx, any weight
w ∈ A∗p satisfies a Reverse Hölder property with an exponent that does not depend on the
dimension n.

For p > 1, we say that w belongs to the strong Muckenhoupt class with respect to µ ,
w ∈ A∗p, if there exists a number Q > 1 such that for any rectangular box R ⊂ Rn with
edges parallel to axis, we have

〈w〉R〈w
−1/(p−1)〉p−1

R
6 Q,

where 〈ϕ〉R denotes the average of the function ϕ over R:

〈ϕ〉R :=
1

µ(R)

∫
R

ϕ(x)dµ(x).

For p > 1, we say that w belongs to the strong Reverse Hölder class with respect to µ ,
w ∈ RH∗p , if there exists a constant Q > 1 such that for any rectangular box R with edges
parallel to axis, we have

〈wp〉1/p
R
6 Q〈w〉R .

We proceed with the following definition.
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Definition 1. Let µ be a Radon measure on Rn and w be a function which is positive
µ-a.e. For p > 1, we denote the A∗p-characteristic of w by

[w]p := sup
R
〈w〉R〈w

−1/(p−1)〉p−1
R

and the Reverse Hölder characteristic of w by

[w]RHp := sup
R
〈wp〉1/p

R
〈w〉−1

R
,

where both suprema are taken over rectangular boxes R with edges parallel to axis. If
[w]p < ∞, we have w ∈ A∗p and if [w]RHp < ∞, we have w ∈ RH∗p .

In [7] it was proved that if µ is an absolutely continuous Radon measure on Rn and
[w]p < ∞, then for some q > 1 we have [w]RHq < C < ∞ with an explicit dimension free
estimates on q and C. It is of a particular importance that we can take

q = 1+
1

2p+2[w]p
.

To prove this result, the authors used a clever version of the Calderón–Zygmund decompo-
sition from [6]. The aim of this paper is to derive a sharp result from the one-dimensional
case for Lebesgue measure (i.e., for the classical Ap and RHp classes on R). In this
case the result from [7] can be obtained, for example, by means of a so-called Bellman
function; i.e., a function of two variables that satisfies certain boundary and concavity
conditions in its domain. In the one-dimensional case this function is known explicitly,
see [10]. It has been understood for some time that, for classes of functions like Ap, RHp
or BMOp, when we work with their strong multi-dimensional analogs (e.g., A∗p and RH∗p),
the one-dimensional Bellman function should prove the higher-dimensional results with
dimension free constants. For the Lebesgue measure and the inclusion RH∗p ⊂ A∗q, this
was done in [1]. The trick of using the Bellman function for one-dimensional problems
was also used in [3], [2] and [9] (in a slightly different setting, the same trick was also
used in [8]). In this paper, we present a simple version of this trick for general measures;
we prove the result from [7] as well as all other results of self-improving type for strong
Muckenhoupt and Reverse Hölder weights.

Acknowledgements: we are very grateful to Vasiliy Vasyunin for helpful discussions
and suggestions on the presentation of this paper.

2. STATEMENT OF THE MAIN RESULT

2.1. Properties of Muckenhoupt weights A∗p. For p1 :=−1/(p−1) and every t ∈ [0,1]
define u±p1

(t) to be solutions of the equation

(1−u)(1− p1u)−1/p1 = t.

The function u+p1
is decreasing and maps [0,1] onto [0,1]; the function u−p1

is increasing
and maps [0,1] onto [1/p1,0]. For a fixed Q > 1, define

(1) s±p1
= s±p1

(Q) := u±p1
(1/Q).

Our first main result is the following.
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Theorem 2.1. Let µ be a Radon measure on Rn with µ(H) = 0 for every hyperplane H
orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1 and set p1 :=
−1/(p−1). Then for every weight w with [w]p = Q we have

w ∈ A∗q, 1− s−p1
(Q)< q < ∞,

and
w ∈ RH∗q , 16 q < 1/s+p1

(Q),

where s±p1
(Q) are defined in (1). These ranges for q are sharp for n = 1 and µ = dx.

2.2. Properties of Reverse Hölder weights. For p > 1 and every t ∈ [0,1] we define
v±p (t) to be solutions of the equation

(1− pv)1/p(1− v)−1 = t.

In this case, v+p is a decreasing function that maps [0,1] onto [0,1/p] and v−p is an increas-
ing function that maps [0,1] onto [−∞,0]. As before for a fixed Q > 1, we define

(2) s±p = s±p (Q) := v±p (1/Q).

Our second main result concerning Reverse Hölder weights is the following.

Theorem 2.2. Let µ be a Radon measure on Rn with µ(H) = 0 for every hyperplane H
orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1. Then for every
weight w with [w]RHp = Q we have

w ∈ A∗q, 1− s−p (Q)< q < ∞,

and
w ∈ RH∗q , 16 q < 1/s+p (Q),

where s±p (Q) are defined in (2). These ranges for q are sharp for n = 1 and µ = dx.

3. PROOF OF THE MAIN RESULTS

We begin with the following Theorem from [10]. This theorem ensures the existence
of a certain Bellman function for a one-dimensional problem. In what follows, by letters
without sub-indices (e.g., x, x±) we denote points in R2 and by letters with sub-indices
we denote the corresponding coordinates (e.g., x+1 denotes the first coordinate of x+).

Theorem 3.1 (Theorem 1 in [10]). Fix p > 1 and set p1 := −1/(p− 1). Also fix an
r ∈ (1/s−p1

, p1]∪ [1,1/s+p1
) for s±p1

(Q) defined in (1). For every Q > 1 there exists a non-

negative function BQ(x) defined in the domain ΩQ := {x = (x1,x2) ∈R2 : 16 x1x−1/p1
2 6

Q} with the following property: BQ(x) is continuous in x and Q, and for any line segment
[x−,x+]⊂ΩQ and x = λx−+(1−λ )x+, λ ∈ [0,1], we have

BQ(x)> λBQ(x−)+(1−λ )BQ(x+).

Moreover, B(x1,x
p1
1 ) = xr

1 and BQ(x) 6 c(r,Q)xr
1 for some positive constant c(r,Q) and

every x ∈ΩQ.

To use the concavity property of the function BQ for our proof, we need the following
lemma. Its proof is given in [10, Lemma4] with an interval instead of the rectangle;
however, the proof remains the same in our case.
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Lemma 3.2. Let the measure µ be as before. Fix two numbers Q1 > Q > 1 and a rect-
angular box R ⊂ Rn with edges parallel to the axis. For every coordinate vector e, there
exists a hyperplane H normal to e that splits R into two rectangular boxes R1 and R2 with
the following properties:

(i) For i = 1,2 we have µ(Ri)/µ(R) ∈ (c,1− c) for some constant c ∈ (0,1);
(ii) For every weight w with [w]p 6 Q, we have [x1,x2]⊂ΩQ1 and, therefore,

BQ1(x1,x2)>
µ(R1)

µ(R)
BQ1(x

1
1,x

1
2)+

µ(R2)

µ(R)
BQ1(x

i
2,x

2
2),

where

x1 = 〈w〉R , x2 = 〈wp1〉R
xi

1 = 〈w〉Ri , xi
2 = 〈wp1〉

Ri .

We are ready to prove our main result.

Proof of Theorem 2.1. Fix a rectangular box R with edges parallel to the axis, and take
any Q1 > Q. We first explain how we split R into two rectangular boxes. Take one of the
(n−1)-dimensional faces of R, call it Rn−1, that has the largest (n−1)-area. Among all
(n− 2)-dimensional faces of Rn−1, take one of those (call it Rn−2) that have the largest
(n− 2)-area. We proceed like this to get Rn−1, . . . , R1. Now take a vector e that is
orthogonal to every Ri, i = 1, . . . ,n−1.∗ We now split R according to Lemma 3.2. Notice
that all the corresponding i-dimensional faces of R1 and R2 have smaller i-areas than the
corresponding i-dimensional faces of R. We now take the boxes R1 and R2 and repeat
the same procedure. If we repeat this M times, we get a family of rectangular boxes
R = {Ri,M}i=1...2M . Denote

x1 = 〈w〉R, x2 = 〈wp1〉R
xi,M

1 = 〈w〉
Ri,M , xi,M

2 = 〈wp1〉
Ri,M .

Abusing the notation, we also define step-functions

xM
1 (t) :=

2M

∑
i=1

xi,M
1 1Ri,M(t), xM

2 (t) :=
2M

∑
i=1

xi,M
2 1Ri,M(t).

From the construction of rectangular boxes, we notice that xM
1 (t)→ w(t) and xM

2 (t)→
wp1(t) as M→ ∞ for µ-a.e. t ∈ R. Indeed, our splitting procedure (and the fact that we
have µ(Ri)/µ(R) ∈ (1− c,c) at every step) guarantees that

max
i=1,...,2M

diam(Ri,M)→ 0, M→ ∞,

and we obtain the convergence of xM
1 (t) and xM

2 (t) from the Lebegue differentiation theo-
rem for Radon measures. Therefore,

BQ1(x1,x2)>
2M

∑
i=1

µ(Ri,M)

µ(R)
BQ1(x

i,M
1 ,xi,M

2 ) =
1

µ(R)

∫
R

BQ1(x
M
1 (t),xM

2 (t))dµ(t).

∗In the case n = 2, we just take e orthogonal to the longest side of R.
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By the Fatou lemma,

(3) BQ1(x1,x2)>
1

µ(R)

∫
R

lim
M→∞

BQ1(x
M
1 (t),xM

2 (t))dµ(t) =

1
µ(R)

∫
R

BQ1(w(t),w
p1(t))dµ(t) =

1
µ(R)

∫
R

wr(t)dt = 〈wr〉R .

Since BQ1(x1,x2) is continuous in Q1 and the above estimate holds for any Q1 > Q, we
get

c(r,Q)〈w〉r
R
= c(r,Q)xr

1 6 〈wr〉R .
If we use this estimate for q = r ∈ [1,1/s+p1

), we obtain w ∈ RH∗q . If we use this estimate
for −1/(q−1) = r ∈ (1/s−p1

, p1], we obtain w ∈ A∗q for 1− s−p1
(Q)< q < ∞. �

To prove Theorem 2.2 we need to use a different Bellman function BQ. Namely, the
following result holds.

Theorem 3.3 (Theorem 1 in [10]). Fix p > 1 and r ∈ (1/s−p ,1]∪ [p,1/s+p ) for s±p defined
in (2). For every Q > 1 there exists a non-negative function BQ(x) defined in the domain
ΩQ := {x = (x1,x2) ∈ R2 : 16 x1x−1/p

2 6 Q} with the following property: BQ(x) is con-
tinuous in x and Q, and for any line segment [x−,x+] ⊂ ΩQ and x = λx−+(1−λ )x+,
λ ∈ [0,1], we have

BQ(x)> λBQ(x−)+(1−λ )BQ(x+).
Moreover, B(x1,x

p
1) = xr

1 and BQ(x) 6 c(r,Q)xr
1 for some positive constant c(r,Q) and

every x ∈ΩQ.

We also notice that the analog of Lemma 3.2 reads the same, and with this in hand, the
proof of Theorem 2.1 is analogous to the proof of Theorem 2.2; we leave the details to
the reader.
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