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ABSTRACT. In this paper we prove self-improvement properties of strong Muckenhoupt
and Reverse Holder weights with respect to a general Radon measure on R”. We derive
our result via a Bellman function argument. An important feature of our proof is that it
uses only the Bellman function for the one-dimensional problem for Lebesgue measure;
with this function in hand, we derive dimension free results for general measures and
dimensions.
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1. INTRODUCTION

It is well known that Muckenhoupt weights on a real line with respect to the Lebesgue
measure satisfy self-improvement properties in the following sense: for p > g we always
have A, C A,; but also for any function w € A, there is an € > 0 such thatw € A,,_ (we
refer to Definition[I|for precise definitions). Besides that, there always exists a g such that
w € RH,,. These self-improvement properties allow one to prove many important results in
harmonic analysis, see, e.g., [4] or a more recent paper [5]. In [7]], the authors considered
strong Muckenhoupt classes; in particular, it was proven that for a Radon measure y on
R”" which is absolutely continuous with respect to the Lebesgue measure dx, any weight
w € A}, satisfies a Reverse Holder property with an exponent that does not depend on the
dimension n.

For p > 1, we say that w belongs to the strong Muckenhoupt class with respect to UL,
w € Ay, if there exists a number Q > 1 such that for any rectangular box R C R" with
edges parallel to axis, we have

(w)p(w VPPl <0,

where (@) . denotes the average of the function ¢ over R:
1 /
=— x)du(x).
=R / ¢ (x)dp(x)

For p > 1, we say that w belongs to the strong Reverse Holder class with respect to |,
w € RH,, if there exists a constant Q > 1 such that for any rectangular box R with edges
parallel to axis, we have

(WP) /P < QW)

We proceed with the following definition.
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Definition 1. Let 1 be a Radon measure on R” and w be a function which is positive
p-a.e. For p > 1, we denote the Ay -characteristic of w by

Wlp = Sl;p<W>R<W_1/(”_”>§_1

and the Reverse Holder characteristic of w by

-1

Wlgrn, = SI;P<WP V7wt

where both suprema are taken over rectangular boxes R with edges parallel to axis. If
[w]p < oo, we have w € A}, and if [w]gy, < oo, we have w € RH,,.

In [7] it was proved that if u is an absolutely continuous Radon measure on R" and
[W]p < eo, then for some g > 1 we have [w]gy, < C < o with an explicit dimension free
estimates on ¢ and C. It is of a particular importance that we can take

1

=14+ —
1 +2p+2[W]p

To prove this result, the authors used a clever version of the Calderén—Zygmund decompo-
sition from [6]]. The aim of this paper is to derive a sharp result from the one-dimensional
case for Lebesgue measure (i.e., for the classical A, and RH) classes on R). In this
case the result from [7]] can be obtained, for example, by means of a so-called Bellman
function; 1.e., a function of two variables that satisfies certain boundary and concavity
conditions in its domain. In the one-dimensional case this function is known explicitly,
see [10]. It has been understood for some time that, for classes of functions like A, RH,,
or BMO,,, when we work with their strong multi-dimensional analogs (e.g., A}, and RH ),
the one-dimensional Bellman function should prove the higher-dimensional results with
dimension free constants. For the Lebesgue measure and the inclusion RH,, C Ag, this
was done in [1]]. The trick of using the Bellman function for one-dimensional problems
was also used in [3], [2] and [9] (in a slightly different setting, the same trick was also
used in [8]]). In this paper, we present a simple version of this trick for general measures;
we prove the result from [7]] as well as all other results of self-improving type for strong
Muckenhoupt and Reverse Holder weights.

Acknowledgements: we are very grateful to Vasiliy Vasyunin for helpful discussions
and suggestions on the presentation of this paper.

2. STATEMENT OF THE MAIN RESULT
2.1. Properties of Muckenhoupt weights A, For p; := —1/(p—1) and every ¢ € [0, 1]

= (1) to be solutions of the equation

define u ”

(1—u)(1=pu)~ /P =1,

The function u}, is decreasing and maps [0, 1] onto [0, 1]; the function u,, is increasing
and maps [0, 1] onto [1/p1,0]. For a fixed Q > 1, define

(1) sfl :s;tl (Q) := ulfl(l/Q).

Our first main result is the following.
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Theorem 2.1. Let u be a Radon measure on R" with (H) = 0 for every hyperplane H
orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1 and set p :=
—1/(p—1). Then for every weight w with [w]|, = Q we have

weAy, 1-s5,(0)<g<ec,

and
weRH;, 1<q<1/s}(0Q),

where sljfl (Q) are defined in (1)). These ranges for q are sharp forn =1 and @ = dx.

2.2. Properties of Reverse Holder weights. For p > 1 and every 7 € [0, 1] we define

v (1) to be solutions of the equation

(1—p)/P(1—=v)" ' =1.

In this case, v, is a decreasing function that maps [0, 1] onto [0, 1/p] and v,, is an increas-
ing function that maps [0, 1] onto [—oo,0]. As before for a fixed Q > 1, we define

) sff:s;t(Q) = v;,t(l/Q).
Our second main result concerning Reverse Holder weights is the following.

Theorem 2.2. Let i be a Radon measure on R" with w(H) = 0 for every hyperplane H
orthogonal to one of the coordinate axis. Fix numbers p > 1 and Q > 1. Then for every
weight w with [w]gy, = Q we have

weA, 1-s5,(0)<qg<os,

and
weERH,, 1<¢< l/s;(Q),

£(Q) are defined in [@). These ranges for q are sharp for n =1 and u = dx.

where s »

3. PROOF OF THE MAIN RESULTS

We begin with the following Theorem from [[10]. This theorem ensures the existence
of a certain Bellman function for a one-dimensional problem. In what follows, by letters
without sub-indices (e.g., x, xT) we denote points in R? and by letters with sub-indices
we denote the corresponding coordinates (e.g., xT denotes the first coordinate of x™).

Theorem 3.1 (Theorem 1 in [10]). Fix p > 1 and set p; := —1/(p —1). Also fix an
re (1/s,,p1]U[1,1/s)) for s, (Q) defined in (T)). For every Q > 1 there exists a non-

negative function Bg(x) defined in the domain Qg := {x = (x1,x2) € R?: 1 < xlxz_l/p' <

Q} with the following property: Bg(x) is continuous in x and Q, and for any line segment
X, xt] C Qg and x =2Ax" + (1 —2A)x", A € ]0,1], we have

BQ()C) = ABQ()C—) + (1 — )V)BQ(X_._).

Moreover, B(x;,x}") = x| and By(x) < c(r,Q)x| for some positive constant c(r,Q) and
every x € Q.

To use the concavity property of the function By for our proof, we need the following
lemma. Its proof is given in [10, Lemma4] with an interval instead of the rectangle;
however, the proof remains the same in our case.
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Lemma 3.2. Let the measure U be as before. Fix two numbers Q1 > Q > 1 and a rect-
angular box R C R"™ with edges parallel to the axis. For every coordinate vector e, there
exists a hyperplane H normal to e that splits R into two rectangular boxes R' and R* with
the following properties:

(i) Fori=1,2 we have iW(R")/u(R) € (c,1— c) for some constant c¢ € (0,1);

(ii) For every weight w with [w], < Q, we have [x!,x*] C Qq, and, therefore,

L(R') Loy, M(R?) i 2
B > B ; B X2 )
01 (xl,xZ) ‘LL(R) 01 (xl x2)+ ,u(R) Ql(xz x2)
where
X1:<W>R, x2:<wpl>R
xll = <W>Ri7 X2 <Wpl>Ri'

We are ready to prove our main result.

Proof of Theorem 2.1} Fix a rectangular box R with edges parallel to the axis, and take
any Q1 > Q. We first explain how we split R into two rectangular boxes. Take one of the
(n— 1)-dimensional faces of R, call it R,,_1, that has the largest (n — 1)-area. Among all
(n — 2)-dimensional faces of R,_|, take one of those (call it R,_) that have the largest
(n —2)-area. We proceed like this to get R,—1, ..., R;. Now take a vector e that is
orthogonal to every R;, i = 1,...,n— 1]] We now split R according to Lemma[3.2] Notice
that all the corresponding i-dimensional faces of R! and R? have smaller i-areas than the
corresponding i-dimensional faces of R. We now take the boxes R!' and R? and repeat
the same procedure. If we repeat this M times, we get a family of rectangular boxes
X = {R"M}._, ,u. Denote

X1:<W>R, x2:<wP1>R

M M
le = <W>Ri,M7 xlz = <wpl>Ri,M‘

Abusing the notation, we also define step-functions
oM oM
.7M . M
le\/l(t) = lel ﬂRi,M(I), xlzw(t) = leZ ﬂRi,M(l).
i=1 i=1

From the construction of rectangular boxes, we notice that x}/(t) — w(t) and x(¢) —
wP1(t) as M — oo for p-a.e. ¢ € R. Indeed, our splitting procedure (and the fact that we
have u(R')/u(R) € (1 —c,c) at every step) guarantees that

madeiam(R”M) — 0, M — oo,
i=1,....2

and we obtain the convergence of x} () and x}!(¢) from the Lebegue differentiation theo-
rem for Radon measures. Therefore,

H(R™)

By, (M M) —
[.L(R) 01\ 2

2M
CAORSED 7 [ B (0. @)au),

R
u(R

“In the case n = 2, we just take e orthogonal to the longest side of R.
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By the Fatou lemma,

(3) Bo, (x1,%2) / lim Bo, ((0), 4 (1))dp () =

M—o0

/ Boy (0). w7 (O)d(e) = s [ W (@)t = (w7
R

Since By, (x1,x2) is continuous in Q; and the above estimate holds for any Q; > Q, we
get

c(r,Q){w)p = c(r,Q)xy < (W)
If we use this estimate for g = r € [1,1/s, ), we obtain w € RH,. If we use this estimate
for —1/(q—1)=re (1/s,,p1], we obtalnweAZ for 1 -5, (Q) < g <. O

To prove Theorem [2.2] we need to use a different Bellman function Bp. Namely, the
following result holds.

Theorem 3.3 (Theorem 1 in [10]). Fix p > land r € (1/s,,,1]U[p,1/s}) for slf defined
in 2). For every Q > 1 there exists a non—negative function By (x) defined in the domain

Qo :={x=(x1,x) ER?*: 1 <x1x, Vr < Q} with the following property: Bg(x) is con-
tinuous in x and Q, and for any line segment [x~,x7| C Qo and x = Ax~ + (1 — A)x™,
A €[0,1], we have

Bolx) > ABo(x )+ (1 A)Bg(x").
Moreover;, B(xy,xV) = x| and Bg(x) < c(r,Q)x| for some positive constant c(r,Q) and
every x € Q.

We also notice that the analog of Lemma reads the same, and with this in hand, the
proof of Theorem [2.1] is analogous to the proof of Theorem we leave the details to
the reader.
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