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Abstract We modify the classical one-dimensional random walk by letting the
time of each step be determined by a random point process, such as a self-exciting
Hawkes process. We do not require the random walk have independent increments
or satisfy the Markov property. In a suitable rescaled limit as space and time step
sizes tend to zero, we show, as a generalization of Donsker’s theorem, that the
random walk weakly converges to a time-changed Brownian motion, where the
time change is the compensator of the original counting process.

As an application, we view stock price changes as determined by random arrival
times in a limit order book. For a stock price process driven by the limiting time-
changed Brownian motion, we establish conditions under which European option
payoffs are attainable as the terminal value of a self-financing strategy in the stock
and a bond, and establish a unique no-arbitrage pricing formula. For a European
call option we obtain an explicit formula parametrized by the integrated intensity
of arrival times over the life of the option.
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1 Introduction

The two most basic perspectives for modeling the stochastic evolution of an asset
price process are derived from either a discrete time random walk or a continuous
time Brownian motion. The connection between them is that the random walk,
suitably scaled in space and time, weakly converges to Brownian motion as the
increment size tends to zero. Exponentiating the random walk gives either the
familiar binomial tree model or the geometric Brownian motion and the Black-
Scholes-Merton model for option pricing.

For all their virtues, it is well known that these models are too homogeneous
to be very good descriptions of the typical behavior of stock price processes. Rare
events are too rare, volatility is too constant, and memory is too short. Instead,
observed “stylized facts” of asset prices include fat tailed distributions of returns,
heteroscedasticity, uncorrelated but not independent increments, and self-exciting
behavior. Efforts to address these observations in the continuous-time framework
include generalizing Brownian motion to Lévy processes (yielding fat tail distri-
butions), and introducing explicit stochastic volatility as a separate source of ran-
domness (such as with the Heston model).

In this paper we are motivated instead by the literature on dynamics of the
limit order book that underlies stock price formation. From this perspective, stock
price movements are the result of limit and market order arrivals collected in an
electronic limit order book. Order arrival times are random and described by point
processes, most notably in recent literature by “self-exciting” Hawkes processes,
e.g. [18], [1], [4], [32], [15]. It is these order arrivals that explain movements of the
quoted market price. In this view, price heteroscedasticity is explained endoge-
nously by the variability in arrival rates of orders arriving in the order book.

We will consider a generalized random walk for which the i.i.d. space increments
(e.g. log price changes) occur at random times given by a simple point process and
associated counting process, such as a Hawkes process, rather than at the usual
deterministic times. By natural scaling in space and time, we show this generalized
random walk weakly converges to a time-changed Brownian motion, where the time
change is the compensator of the original counting process. With mild assumptions,
the resulting time-changed Brownian motion is a continuous square integrable
martingale with respect to a suitable filtration, and has uncorrelated, but not
necessarily independent, increments. The limiting continuous time process can
serve as the basis for a Black-Scholes style option pricing model that incorporates
the characteristics of the chosen point process describing the “excitability” of
order arrivals in the limit order book underlying the asset price. This affords a
perspective on a heteroscedastic stock price model for option pricing in which
the fluctuating volatility is intrinsically connected to the underlying order book
determining prices. When the point process is a homogeneous Poisson process with
unit intensity, we recover the usual Brownian motion in the limit.

We next briefly summarize our main results, with more complete statements
later. We say that a simple counting process N is regular if the compensator Λ
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of N is continuous, strictly increasing, and Λ(∞) = ∞. This is a mild assumption,
and includes most examples of interest. In order to properly scale the intensity
of a counting process, we show that for any regular counting process N with
compensator Λ and for any integer n ≥ 1 there exists a regular counting process
Nn with compensator Λn = nΛ.

If we are given an i.i.d. sequence {εi : i ≥ 1} of random variables with E[εi] = 0
and V ar(εi) = σ2 <∞ and independent of Nn for all n, we may define a sequence
of rescaled random walks over N by

SnN (t) =
1√
n

Nn(t)∑
i=1

εi.

These random walks over N can be compared to the standard sequence of
rescaled random walks over deterministic (integer) times

Wn(t) =
1√
n

bntc∑
i=1

εi,

that are well-known (Donsker’s Theorem [5]) to converge weakly in the Skorokhod
topology to the process σB, where B is standard Brownian motion.

A similar fact is true for the random walks SnN over N : we show, as a gener-
alized version of Donsker’s theorem, that the sequence {SnN : n ≥ 1} of stochastic
processes defined above converges weakly to the scaled, time-changed Brownian
motion σB ◦Λ. Section 5 presents a natural generalization to sequences of random
walks with a double sequence εni of jump random variables.

The time change Λ is only assumed to be the compensator of a regular counting
process, and so need not be a Levy subordinator, or even Markov. This opens the
door to “self-exciting” point processes such as those often used to model order
arrivals in the high-frequency limit order book.

Theorems 3, 4, and 5 establish various useful properties of B(Λ(t)): it is a con-
tinuous square integrable martingale; its quadratic variation is Λ; it is a standard
Brownian motion if and only if N is Poisson with unit intensity; it has uncorrelated
increments, but independent increments if and only if Λ is deterministic.

As an application, recall that the Black-Scholes stock price model is a rescaled
limit of the binomial tree option pricing model. But instead of branching at the
jump times of the deterministic counting process {btc : t ≥ 0}, we may substitute
any regular counting process N , for example a Hawkes process. The resulting
limiting stock price process becomes

S(t) = S0 exp(σB(Λ(t)) + µΛ(t)),

where B is a standard Brownian motion. If we take the numeraire as

Bt = exp(rt),

we have a generalized Black-Scholes model that is flexible enough to display most
of the stylized facts of stock price returns. For certain contingent claims X paying
off at the maturity time T , and conditional on the value of Λ(T ), we show X
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is attainable (may be replicated by a self-financing strategy) and obtain a no-
arbitrage pricing formula of the form

Vt(X) = EQ[
Bt
BT

X | Ft]

where Q is an equivalent martingale measure for the discounted stock. This is
stated with precise hypotheses as Theorem 7 in section 6.

As an application of the pricing formula, we can give a unique conditional
price (equation (7)) of a vanilla European call option, conditional on the value
T ′ = Λ(T ) of the integrated intensity over the life of the option. The formula turns
out to be the classical Black-Scholes formula, but with the strike price K replaced
by er(T

′−T )K, and the maturity T replaced by T ′. The resulting call price is an
increasing function of T ′, which can be considered a “market activity” parameter
similar in effect to the volatility.

In the literature, financial applications of time-changed Brownian motion (and,
more generally, time-changed Lévy processes) have been extensively studied, es-
pecially by Peter Carr and collaborators, for example in [8], [9], [10], [11], and also
others such as [19], and goes back to [12] and [23]. The main difference with our
work is that in those cases the time change process is an a priori ingredient in the
model, whereas in this work the time change is a derived feature arising out of the
scaled limit of discrete random walks toward a continuous process. Typically in
the literature attention is directed toward Markov time change processes such as
an integrated affine process ([8], [11], [19]) due to the need to compute the Laplace
transform of the time change. In [9], Carr and Lee can consider an arbitrary con-
tinuous time change process because the swap price they study is independent of
the time change. In this paper we restrict attention to independent continuous
time changes, but are most interested as an application in the non-Markov case of
the integrated intensity of a Hawkes process. (However, none of our results assume
any process is Hawkes.) In all cases our time change comes from the compensator
of a point process that provides the jump times of an underlying discrete random
walk, whose rescaled limit is our time-changed Brownian motion.

Another significant direction in the literature has been the study of option
pricing for discrete time models motivated by the binomial tree model, e.g. [13],
[22]. In [27] the authors examine the weak convergence of discrete models where
the jumps are general Bernoulli random variables, and study the corresponding
convergence of option prices. They also consider a subclass of random jump times
defined by Nn equally spaces points in the interval [0, t], where Nn is a sequence
of independent integer-values random variables. This framework is generalized
somewhat by Prigent [25], in which the arrival times remain equally spaced but
there is a more general finite probability space Ωn on which the n-th model is
defined. The comprehensive book [25] also surveys a variety of papers examining
various versions of binomial models with special forms of randomized time steps,
such as [14] in which the time steps are derived from Poisson processes. Jacod
and Shiryaev [20] develop some quite general convergence theorems that imply
Donsker’s theorem, but restrict attention to semi-martingales with independent
increments. These settings do not subsume our framework of i.i.d. jumps over
regular counting processes, in which the jump variables need not be finite valued
and the counting processes may be self-exciting.
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Prigent [25], with many related references, is primarily focused on the general
question of whether option prices for discrete models converge to corresponding
prices for the continuous-time weak limits. This is a subtle topic we have not
addressed in this paper.

Prigent [26] studies the class of risk-neutral measures for a quite general discrete
market model where the log return is defined by marked point processes. Here and
elsewhere, an option price is usually thought of as the conditional expectation of a
discounted payoff with respect to a risk-neutral measure. This yields an arbitrage-
free option price, but it is not unique when the payoff is not attainable.

In the present paper our perspective is somewhat different. We are considering
more general random walks than in [27], but we don’t examine the option prices
for the discrete models directly, but rather show weak convergence to a continuous
time model and price options there. Moreover, rather than try to characterize the
class of risk-neutral measures, we focus on attainable claims, which have unique
option prices. This perspective is motivated by the desire to treat potentially
non-Markov point processes describing arrival times that have recently attracted
attention for modeling the dynamics of the limit order book.

The remainder of the paper is organized as follows. In section 2 we describe
random walks over continuous time point processes and their rescalings. Section
3 describes the weak limit of the rescaled random walks as a time-changed Brow-
nian motion. Properties of the rescaled limit are discussed in section 4. Section 5
describes a generalization of the rescaled sequence of random walks in which the
i.i.d. distribution of jumps need not be fixed along the rescaling sequence. Pinned
processes are introduced in section 6. The pricing of terminal-time-payoff options
is discussed in section 7 and we establish the option pricing formula that holds in
this framework. Most proofs appear in the Appendix.

2 Discrete time random walks

In this section we define some terms and describe a class of random walks over
counting processes suited to our purposes. For background, see for example [17],
[25], and [31].

2.1 Point processes, counting processes, and compensators

We will be considering only simple, non-explosive point processes on [0,∞), i.e.
sequences {Tn} of [0,∞)-valued random variables on a probability space (Ω,F, P )
such that T0 = 0, Tn < Tn+1 a.s. for all n, and limn→∞ Tn = +∞. For such a point
process {Tn}, the corresponding counting process is

N(t) =
∑
n≥1

1(Tn≤t)

with N(0) = 0. The natural filtration FNt = σ(Ns : s ≤ t) of N is automatically
right continuous ([24], I.25). Assuming E[N(t)] < ∞ for all t, the Doob-Meyer
decomposition (e.g. [16]) gives us a unique, cadlag FN -predictable process Λ, called
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the compensator of N , such that Λ(0) = 0 a.s., E
[
Λ(t)

]
<∞ for all t, and N(t)−Λ(t)

is a cadlag FN -martingale.
In this paper we restrict attention to the (large) class of regular counting

processes, defined as follows.

Definition 1 A simple, nonexplosive counting process N is regular if:

1. E[N(t)] <∞ for all t,
2. the compensator Λ of N is continuous and strictly increasing, and
3. Λ(∞) =∞.

2.2 Random walks

The classical one-dimensional random walk W(t) is a piecewise constant cadlag
stochastic process defined by

W(t) =

btc∑
i=1

εi,

where {εi : i ≥ 0} is an i.i.d. sequence of random variables and we assume E[εi] = 0
and V ar(εi) = σ2 <∞.

Instead of jumps restricted to integer times t = 1, 2, 3, . . . of the deterministic
counting process btc, we can consider random walks with discontinuities at the
random jump times of a regular counting process N . We then define

SN (t) =W(N(t)) =

N(t)∑
i=1

εi.

For the process W, if we rescale space by 1/
√
n and event frequency by n, we

obtain the rescaled random walk

Wn(t) =
1√
n
W(nt) =

1√
n

bntc∑
i=1

εi,

with jumps occurring at integer multiples of 1/n. This is the scaling needed for
convergence in the limit to Brownian motion.

If we want to find the scaling limit for the process SN , we need a natural scaling
for the counting process N that corresponds to bntc; we need to scale the jump
arrival frequency or intensity of N . When Λ is absolutely continuous, the intensity
λ is defined by Λ(t) =

∫ t
0
λs ds, and indicates the rate per unit time of event

arrivals. Scaling the event arrival rate by a factor n is equivalent to multiplying
the intensity λ by n. This is the same as multiplying Λ by n, and the latter makes
sense even when an intensity doesn’t exist. Therefore we need a scaled version Nn

of N such that the compensator of Nn is nΛ.

Theorem 1 Let N = {N(t) : t ≥ 0} be a regular counting process. For any n ≥ 1,

there exists a counting process Nn with compensator Λn = nΛ.

In particular, we may take Nn(t) = N(τnt ), where τnt = inf{s : Λ(s) > nΛ(t)}.
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We may then define the corresponding scaled random walk defined by a regular
counting process N(t) to be

SnN (t) =
1√
n
W(Nn(t)) =

1√
n

Nn(t)∑
i=1

εi.

Of course W1 =W and S1N = SN .
Like the rescaled classical random walk, the random walk SnN is a martingale

with respect to the natural filtration and we have explicit expressions for the
variance and covariances in terms of N .

Lemma 1 For each n = 1, 2, . . . and for all s, t ≥ 0 we have:

1. E
[
SnN (t)

]
= 0.

2. Cov
(
SnN (s),SnN (t)

)
= E

[
SnN (s)SnN (t)

]
= σ2

n E
[
Nn(s ∧ t)

]
= σ2E

[
N(s ∧ t)

]
,

where s ∧ t = min{s, t}.
3. V ar

(
SnN (t)

)
= E

[(
SnN (t)

)2]
= σ2

n E
[
Nn(t)

]
= σ2E

[
N(t)

]
.

4. For each n ≥ 1, SnN = {SnN (t) : t ≥ 0} is a cadlag martingale with respect to the

history σ(SnN (u) : 0 ≤ u ≤ t) of SnN .

3 Weak convergence of the rescaled limit

In this section we consider weak convergence of rescaled random walks as the
scaling factor n tends to infinity. In the case of the classical random walks Wn(t),
the limit is Brownian motion (this is known as Donsker’s theorem). For the random
walks Sn, we obtain a time changed Brownian motion. A detailed reference on weak
convergence in this context is the book of Prigent [25].

We denote by D∞ the space of cadlag real-valued functions on [0,∞), and d∞
the Skorokhod metric on D∞, for which the metric space (D∞, d∞) is separable
and complete (see e.g. [5] for definitions). We will be considering weak convergence
of sequences in D∞ relative to the Skorokhod topology.

Let (Ω,F, P ) be a standard Wiener probability space on which are defined (i)
standard Brownian motion B(t), (ii) the i.i.d. sequence of random variables {εi}
with mean 0 and variance σ2, and (iii) the independent regular counting process
N with compensator Λ. Then B ◦ Λ, defined by (B ◦ Λ)(t) = B(Λ(t)), is a random
element of the metric space (D∞, d∞), and so are Wn and SnN for each n.

We may now restate theorem 2 with more precision:

Theorem 2 Given a regular counting process N with compensator Λ, the sequence

{SnN : n ≥ 1} of rescaled random walks over N converges weakly in (D∞, d∞) to the

time-changed Brownian motion σB ◦ Λ. Moreover, B and Λ are independent.

We remark that Λ need not be a subordinator, so the limit σB ◦ Λ, while
continuous, need not be a Lévy process, or even Markov. Theorem 2 is, in spirit, a
generalization of Donsker’s theorem, except that the counting process bntc is not
regular (having a discontinuous compensator). The Donsker case is recovered when
N is chosen to be a homogeneous Poisson process with unit intensity, in which case
the compensator is Λ(t) = t and the weak limit is then σB(t), a multiple of standard
Brownian motion.
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4 Properties of the rescaled limit

The process B ◦ Λ depends on N because Λ depends on N . To emphasis that
dependence, we will use the notation

BN = B ◦ Λ, i.e. BN (t) = B(Λ(t)).

To set notation, let {FNt } be the filtration of the history of N , FNt = σ(Nu :
u ≤ t). Recalling that Λ(t) is strictly increasing and therefore the functional inverse
Λ−1 is well-defined, let {Ht} be the filtration defined by

Ht = σ(B(r), Λ−1(u) : r ≤ t, u ≤ t).

By the usual augmentation if necessary, we assume that these filtrations satisfy
the usual conditions.

Definition 2 (Revuz and Yor, Ch. V, [28]) Let T = {Tt : t ≥ 0} be a right-
continuous filtration. A T -time-change C is a family Ct, t ≥ 0, of T -stopping times
such that the maps s→ Cs are a.s. non-decreasing and right-continuous.

Given a time-change C, a process X is said to be C-continuous if X is constant
on each interval [Ct− , Ct].

Lemma 2 (Revuz and Yor [28]) Let T be a right-continuous filtration, C be an a.s.

finite T -time-change, and X be a continous T -local martingale. If X is C-continuous,

then XC is a continuous local martingale with respect to the filtration {TCt
: t ≥ 0}.

Now we can take the first steps in understanding the properties of BN .

Lemma 3 For each t ≥ 0, Λ(t) is an H-stopping time and {Λ(t) : t ≥ 0} is an a.s.

finite H-time-change.

Proof. For each t ≥ 0, Λ(t) is an H-stopping time: for any s ≥ 0, Λ−1(s) is
Hs-measurable, hence {Λ(t) ≤ s} = {Λ−1(s) ≥ t} ∈ Hs. Since Λ(t) is continuous
and strictly increasing in t, this means that Λ is an a.s. finite H-time-change.

Lemma 4 BN is a continuous local martingale with respect to the filtration HΛ =
{HΛt

: t ≥ 0}.

Proof. Apply Lemma 2 with T = H, C = Λ, and X = B. It is easy to see that
B is a continuous H-martingale, and hence a continuous H-local martingale. It
remains to see that B is Λ-continuous, which is immediate by continuity of Λ. ut

For processes X, Y , denote the quadratic covariation of X and Y by [X,Y ].
The proofs of the following basic facts about BN appear in the Appendix.

Theorem 3 For all t ≥ 0,

1. [BN ,BN ](t) = Λ(t).

2. [Λ,Λ](t) = 0.

3. [BN , Λ](t) = 0.

Corollary 1 The following are equivalent:

1. BN is a standard Brownian motion.
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2. [BN ,BN ](t) = t for all t ≥ 0.

3. N(t)− t is a martingale with respect to the natural filtration.

4. N is a Poisson process with unit intensity.

Proof. Since by Lemma 4 BN is a continuous local martingale, (1) and (2) are
equivalent as a consequence of Levy’s characterization of Brownian motion (see e.g.
Protter [24]). (3) and (4) are equivalent by Watanabe’s characterization of Poisson
processes (Watanabe [30]). It remains to show that (2) and (3) are equivalent. By
Theorem 3, [BN ,BN ](t) = Λ(t) for all t ≥ 0. Hence (2) holds if and only if Λ(t) = t

for all t, which is true if and only if (3) since Λ is the compensator of N . ut
We now summarize a few more important properties of BN :

Theorem 4 Let N be a regular counting process with compensator Λ, B denote stan-

dard Brownian motion, and H the filtration Ht = σ(B(r), Λ−1(u) : r ≤ t, u ≤ t).

Then the limit BN of the random walks SnN over N is a continuous square integrable

martingale with respect to the filtration HΛ.

Furthermore (BN )2 − Λ is a continuous martingale with respect to the filtration

HΛ, and

1. E[BN (t)] = 0.

2. cov(BN (s),BN (t)) = E[N(s ∧ t)] for all s, t ≥ 0.

3. BN has uncorrelated increments.

Although the process BN has uncorrelated increments, in general (and by de-
sign) it does not have independent increments. The following theorem describes
when this stronger property holds.

Theorem 5 Let σ > 0, m ∈ R. The following are equivalent:

1. BN has independent increments.

2. Λ is a deterministic function.

3. N has independent increments.

4. σBN +mΛ has independent increments.

Moreover, if any of the above happens, then, for all s < t, BN (t)−BN (s) is normally

distributed with mean zero and variance Λ(t)− Λ(s).

These properties make BN useful as a model for financial price processes. Fi-
nancial returns time series typically have close to zero autocorrelation, but squared
returns show positive autocorrelation due to typically observed heteroscedasticity
and the corresponding failure of independence of returns.

5 Weak convergence of generalized rescaled random walks

We need not insist that the distribution of the jumps εi be fixed as the sequence
of random walks are rescaled toward the limit BN . Similar results hold in the
following more general situation.

Consider a double sequence of jump random variables {εni : n ≥ 1, i ≥ 1}. We
make the following standing assumptions.

There exists m ∈ R, σ,M > 0, and p > 2 such that for each n ≥ 1:
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1. {εni : i ≥ 1} is a sequence of i.i.d. random variables
2. E[εn1 ] = m/n,
3. V ar(εn1 ) = σ2/n, and
4. ||εn1 ||p ≤M/

√
n,

where ||.||p denotes the Lp norm. Note that we do not need to assume that εni and
εmi are independent for n 6= m.

Now for a regular counting process N with compensator Λ and independent of
the εni , we can define the generalized random walks based on this double sequence
as

Ŵn(t) =

bntc∑
i=1

εni

and

ŜnN (t) =

Nn(t)∑
i=1

εni .

Note that the previously treated random walks Wn and SnN are special cases
of this setting in which m = 0 and εni = εi/

√
n for all i, n, provided that the

assumption ε1 ∈ L2 is strengthened slightly to Lp for some p > 2 (which also holds
in typical cases like normal, Bernoulli, or exponential jumps). The first part of
the next theorem could be considered a simple extension of Donsker’s theorem to
double sequences.

Theorem 6 For the stochastic processes Ŵn(t), Ŝn(t) defined above for n ≥ 1, we

have, as n→∞,

Ŵn ⇒ {mt+ σB(t) : t ≥ 0}

and

ŜnN ⇒ mΛ+ σBN

where ⇒ denotes weak convergence in the space (D, d) as before.

6 Pinned processes

In discussing option prices we will focus on a special class of processes called pinned

processes, of which the Brownian bridge is an example.

Definition 3 We say a continuous random process Λ(t) with Λ(0) = 0 is pinned

at time T if Λ(T ) = T ′ for some deterministic T ′.

Absolutely continuous, increasing, even self-exciting pinned processes are not
hard to come by. For example, let rt be any positive adapted RCLL process,
possibly including a self-excited process such as the intensity of a Hawkes process.
Let Rt = e−rt < 1. For any T ′, c > 0 with c < T ′/T 2, define

Λ(t) =
T ′

T
t− c(T − t)

∫ t

0

Rs ds.
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Then Λ(0) = 0, Λ(T ) = T ′, Λ(∞) =∞, Λ is absolutely continuous, adapted to the
natural filtration of r, and is increasing on [0,∞) because

Λ′(t) =
T ′

T
+ c

∫ t

0

Rs ds− c(T − t)Rt >
T ′

T
− c(T − t) > 0.

The following proposition demonstrates that regular counting processes with
pinned compensators are easily constructed.

Proposition 1 Denote by P (t) the homogeneous Poisson process with rate 1, and let

Λ be any absolutely continuous, strictly increasing process pinned at time T . For each

t, denote by Ft the sigma-algebra FPt ∨FΛ
−1

t = σ(P (s), Λ−1(s) : s ≤ t). Then Λ(t) is

an F-stopping time for each t, and

N(t) = P (Λ(t))

is a regular counting process on [0, T ] with compensator Λ with respect to FΛ.

Proof. We just need to show that Γ ≡ N−Λ is an FΛ-martingale on [0, T ]. Given
s < t ≤ T , we know that S = Λ(s) and T = Λ(t) are F-stopping times bounded by
T ′ = Λ(T ). Therefore by the optional stopping theorem (e.g. [28], II.3.2) applied
to the martingale P (t)− t, we obtain

Γ (s) = P (Λ(s))− Λ(s) = E[P (Λ(t))− Λ(t)|FΛ(s)] = E[Γ (t)|FΛ(s)].

ut

7 Option Pricing

The familiar Black-Scholes option pricing framework for a bond and stock price
process Bt and S(t), given by

Bt = exp(rt), S(t) = S0 exp(σB(t) + µt),

is often motivated as a limit of the exponential of a binomial random walk of the
form Wn(t) discussed above. At short time scales, however, we tend to observe
non-independent increments and some level of self-exciting behavior in the limit
order book.

For example, the Hawkes process (e.g. [18], [1], [2], [15], [32] among many
references) is a popular counting process to model the arrival rates of orders to
the order book, and hence the jump times of the stock price process. We may take
N to be a regular Hawkes process with intensity

λt = α+ β

∫ t

0

µ(t− s)N(ds) > 0,

where α > 0 and the response function µ(t) is a positive function satisfying∫∞
0
µ(t) dt < ∞. The (non-Markov) compensator is Λ(t) =

∫ t
0
λt dt. Then the

random walks SnN , n ≥ 1, can be the basis of a model for the log stock price
that will reflect the self-exciting nature of the Hawkes process. However, we need
not restrict attention to Hawkes processes. When N is any regular point process
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with self-exciting characteristics, we can call the resulting (see Theorem 6) market
model a

“Self-Excited Black-Scholes” model:

Bt = exp(rt), S(t) = S0 exp(σBN (t) + µΛ(t)), (1)

where r, σ, µ are positive constants.

This turns out to be a suitable framework for option pricing that can reflect
heteroscedasticity and other non-stationary stylized facts of stock price behavior.
The goal of this section is to show that in certain cases, conditional on the value
Λ(T ), we can also obtain a pricing formula analogous to the standard Black-Scholes
formula.

Recall the filtration Ht = σ(B(r), Λ−1(u) : r, u ≤ t) with respect to which Λ(t)
is a stopping time for each t. If we define

Gt = HΛt
,

then both BN and Λ, hence S(t), are G-adapted processes on (Ω,F, P ).

It’s convenient to define the additional filtrations, assumed complete:

FBt = σ(B(s) : s ≤ t) ⊂ Ht,

FΛ
−1

t = σ(Λ−1(s) : s ≤ t) ⊂ Ht,

FΛt = σ(Λ(s) : s ≤ t),

FSt = σ(S(s) : s ≤ t) ⊂ Gt.

To discuss the problem of option pricing, we review some standard terminology.
We will say that a pair (φt, ψt) is a self-financing strategy if φ and ψ are G-predictable
processes such that if Vt = φtS(t) + ψtBt, then dVt = φtdS(t) + ψtdBt. Here we
interpret φt as the number of shares of stock held in a portfolio at time t, ψt the
same for the bond, and so Vt is the time-t portfolio value.

If we fix a deterministic maturity time T , we call a random payoff X ∈ GT
at time T a claim. A claim X is an attainable claim if there exists a self-financing
strategy (φ, ψ) with

X = VT = φTS(T ) + ψTBT ,

i.e. the self-financing strategy replicates the claim at the terminal time. When this
is the case, Vt will be the no-arbitrage price of the claim X at any time t < T .

In the classical Black-Scholes model with a stock and a bond, every claim is
attainable (the market is complete) due to the martingale representation property
for Brownian motion. In the context of the market model (1), a suitable represen-
tation property for the time-changed Brownian motion BN is as far as we know
not available. Instead, we will show that certain classes of claims are attainable,
and in the process establish a familiar-looking conditional expectation formula for
the claim price, with respect to a suitably defined measure. The remainder of this
section spells out the details.
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Market Assumptions:

1. (Ω,P,F) is a probability space supporting a Brownian motion B(t) and an inde-

pendent regular point process N with absolutely continuous compensator Λ, with

Λ(t) =
∫ t
0
λu du, where λ is left-continuous with right limits and for some ε > 0,

for all u, λu > ε a.s.; and

2. there are two tradable assets, a stock S(t) and bond B(t) given by

Bt = ert, S(t) = S0 exp(σBN (t) + µΛ(t)), σ, µ > 0, r ≥ 0. (2)

3. X ∈ GT ∩ L1(Ω,F, P ) is a European option contract payoff at a fixed maturity

T > 0.

Theorem 7 (Pricing a European option) Under the Market Assumptions above,

suppose further that the compensator Λ of N is pinned at T . Let Q be the equivalent

martingale measure defined by

dQ

dP
= exp(−

∫ Λ(T )

0

γt dB(t)− 1

2

∫ Λ(T )

0

γ2t dt), (3)

where

γt =
1

σ
(µ+ σ2/2− r

λΛ−1(t)
), 0 ≤ t ≤ Λ(T ).

Then the discounted stock price Zt = B−1
t St (stopped at T ) is a (Q,G)-martingale.

Moreover, suppose in addition that the payoff X is Q-independent of FΛT . Then X

is attainable and the unique no-arbitrage price Vt of X at time t < T is

Vt = (Bt/BT )EQ[X|Gt]. (4)

The proof is postponed to the Appendix.

Corollary 2 Under the Market Assumptions above, if N is an inhomogeneous Poisson

process with positive intensity, then X is attainable and its unique no-arbitrage price

at time t < T is

Vt = (Bt/BT )EQ[X|Gt],

where the equivalent martingale measure is defined in equation (3).

Proof. An inhomogeneous Poisson process has a deterministic intensity, hence
deterministic compensator Λ. The conclusion is immediate from Theorem 7. ut

Corollary 3 Under the Market Assumptions above, suppose further that the compen-

sator Λ of the regular point process N is pinned at time T . Let X ∈ L1 be the payoff

of a vanilla option of the form X = f(S(T )) for some function f .

Then X is attainable and the unique no-arbitrage price Vt of X at time t < T is

Vt = (Bt/BT )EQ[X|Gt], (5)

where the measure Q is the equivalent martingale measure defined by equation (3).

Proof of Corollary 3. Let Λ(T ) = T ′. Since S(T ) = exp(σB(Λ(T )) + mΛ(T )) =
exp(σB(T ′) + mT ′), it follows that S(T ), hence X, is independent of Λ and Λ−1.
The conclusion follows from Theorem 7. ut
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Corollary 4 Under the assumptions of Corollary 3, suppose that X is a European-

style payoff of the form X = f(S(T )). Then the time 0 price of the option is given

by

V0 = e−rT
∫ ∞
−∞

f(S0e
−σ2T ′/2+rT eσy)p(y;σ2T ′)dy, (6)

where T ′ = Λ(T ) and p(y;σ2T ′) is the pdf of a normal distribution in y with mean

zero and variance σ2T ′.

In particular, if X is a European call option with strike K and maturity T , then

its time-0 price is

V0 = CBS(σ, r, S0, e
r(T ′−T )K,T ′), (7)

where CBS(σ, r, S0,K, T ) is the standard Black-Scholes call price at strike K and ma-

turity T .

Corollary 4 follows straightforwardly from (5) and the fact, as shown in the
proof of Theorem 7, that

S(T ) = S0 exp(σB̃(Λ(T ))− (1/2)σ2Λ(T ) + rT )

= S0 exp(σB̃(T ′)− (1/2)σ2T ′ + rT ),

where B̃(T ′) is normally distributed with respect to Q with mean zero and variance
T ′.

Corollaries 3 and 4 raise the question of what happens when Λ is not pinned at
time T , such as for a typical Hawkes process. In that case we don’t expect payoffs
to be attainable in general, and therefore neither do we expect there to be a unique
no-arbitrage price. However, there are some things to say.

When the compensator Λ is not pinned, Λ(T ) =
∫ T
0
λs ds is a random variable

representing the accumulated intensity of N up to time T . We can view equations
(6) and (7) as the price conditional on Λ(T ), and therefore a scenario-based price,
where the scenarios are parametrized by Λ(T ), the accumulated activity of price
changes over the period [0, T ]. These results would be relevant to stress-testing
portfolio values under different possible future regimes of accumulated market
activity over the life of the option.

It is straightforward to check that the expression in equation (7) is increasing in
T ′ = Λ(T ) when the other parameters are held constant. Therefore one can think of
the accumulated intensity Λ(T ) over the life of the option as playing a similar role
as the volatility parameter σ in affecting the option price. The parameter Λ(T )
is a “trading activity” parameter separate from volatility but having a similar
qualitative effect on the option price.

8 Conclusion

When the jump times of a one-dimensional random walk are determined by the
random times of a counting process N with continuous compensator Λ, we obtain
an extension of the usual case of deterministic jump times. We prove that the
rescaled limit as the time step and jump size tend to zero is a time-changed
Brownian motion BN (t) = B(Λ(t)), where the time change is the compensator
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Λ. When N is a homogeneous Poisson process with unit intensity, the limit reverts
to the standard Brownian motion B(t).

We establish various properties of the limit process BN , including that it is a
continuous square integrable martingale with respect to an appropriate filtration,
and has independent increments if and only if the time change Λ is deterministic.

Motivated by the random jump times in the limit order book for a stock price
and Theorem 6, we consider a generalized Black-Scholes model with a bond or
cash account Bt = ert and a stock S(t) = S0 exp(σBN (t) + µΛ(t)). This market
can be thought of as a continuous limit of a discrete stock price model where price
changes are driven by a point process connected to the underlying limit order book
activity. In this sense the market model’s heteroskedastic features are derived
from market-clock variations rather than imposed by an exogenously estimated
stochastic volatility.

For certain classes of option payoffs X, and conditional on Λ(T ), we establish
an option pricing formula in a familiar form

Vt = (Bt/BT )EQ[X|HΛ(t)],

where Q is the risk-neutral measure and H = FB ∨ FΛ
−1

. As an application, we
can price a European call option with strike K and maturity T , conditional on the
value Λ(T ) = T ′ of the integrated intensity of the counting process N over the life
of the option, as

CBS(σ, r, S0, e
r(T ′−T )K,T ′),

where CBS is the usual Black-Scholes call option price formula.
A technical obstacle to expanding the class of attainable claims is the question

of whether or not, or when, BN has the predictable representation property with
respect to HΛ.

9 Appendix

In this Appendix we collect the previously postponed proofs.

Theorem 1: Let N = {N(t) : t ≥ 0} be a regular counting process. For any integer

n ≥ 1, there exists a counting process Nn with Fn-compensator Λn = nΛ where

Fnt = σ{Nn
s : 0 ≤ s ≤ t} is the history of Nn.

In particular, we may take Nn(t) = N(τnt ), where τnt = inf{s : Λ(s) > nΛ(t)}.

Proof. Recall that we are writing F as the right-continuous filtration generated
by the history of N , assumed complete.

Fix n ≥ 1. Since the compensator Λ is strictly increasing and continuous, so
is τnt as a function of t, and Λ(τnt ) = nΛ(t). Next, we need to know that τnt is an
F-stopping time for each t. The definition of τnt implies

{τnt ≥ s} = {Λ(s) ≤ nΛ(t)},

so τnt is an F-stopping time provided {Λ(s) ≤ nΛ(t)} ∈ Fs for all s. There are two
cases.

Case 1: s < t. Then Λ(s) ≤ Λ(t) ≤ nΛ(t) almost surely, hence {Λ(s) ≤ nΛ(t)}
has full measure and so belongs to Fs by completeness of F .
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Case 2: s ≥ t. Then Ft ⊂ Fs, so both Λs and Λ(t) are Fs measurable and again
{Λ(s) ≤ nΛ(t)} ∈ Fs.

Since τnt is a stopping time, we may apply the Optional Stopping Theorem to
the bounded stopping time τnt ∧ u, for any constant u > 0, and the F-martingale

Mt = N(t)− Λ(t).

We may deduce via a monotone convergence argument as u → ∞ that {Mτn
t
} is

an Fτn
t

-martingale. ut

Lemma 1: For each n = 1, 2, . . . and for all s, t ≥ 0 we have:

1. E
[
SnN (t)

]
= 0.

2. Cov
(
SnN (s),SnN (t)

)
= E

[
SnN (s)SnN (t)

]
= σ2

n E
[
Nn(s ∧ t)

]
= σ2E

[
N(s ∧ t)

]
,

where s ∧ t = min{s, t}.
3. V ar

(
SnN (t)

)
= E

[(
SnN (t)

)2]
= σ2

n E
[
Nn(t)

]
= σ2E

[
N(t)

]
.

4. For each n ≥ 1, SnN = {SnN (t) : t ≥ 0} is a cadlag martingale with respect to the

history σ(SnN (u) : 0 ≤ u ≤ t) of SnN .

Proof. Recall our notation Fnt = σ{Nn(s) : 0 ≤ s ≤ t}, the history of Nn.
Part (1) is immediate from the independence of Nn and {εi : i ≥ 1}, by first

conditioning on Fnt and using the property E[εi] = 0.
Part (2) follows from a similar computation, using independence, and the facts

E(εiεj) = σ2δij and E[Nn(s)] = nE[N(s)],

where δij = 1 if i = j, otherwise 0.
Part (3) is immediate from part (2).
For part (4), first we see that SnN (t) is in L1 because, by Jensen’s inequality

and part (3),

E[|SnN (t)|] ≤ (E[(SnN (t))2])
1
2 = (σ2E[N(t)])

1
2 <∞.

Now fix n and let It = σ(SnN (u) : 0 ≤ u ≤ t). For s ≤ t,

√
nE[SnN (t)− SnN (s)|Is] = E[

Nn(t)∑
i=Nn(s)+1

εi|Is] = E[E[

Nn(t)∑
i=Nn(s)+1

εi|Fnt ∨ Is|Is]

= E[

Nn(t)∑
i=Nn(s)+1

E[εi|Fnt ∨ Is]|Is],

where the last equality is true because Nn(t) and Nn(s) are Fnt -measurable. More-
over, when i > Nn(s), εi is independent of Is, hence independent of Fnt ∨Is. Since
E[εi] = 0 for all i, the terms inside the sum in the last expression are zero. This
means E[SnN (t)− SnN (s)|Is] = 0, so SnN is a martingale. ut

Theorem 2: Given a regular counting process N with compensator Λ, the sequence

{SnN : n ≥ 1} of rescaled random walks over N converges weakly to the time-changed

Brownian motion σB ◦ Λ in (D∞, d∞). Moreover, B and Λ are independent.
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Proof. Donsker’s Theorem ([5]) states that the standard random walk Wn

converges weakly to σB. We will show, in addition, that 1
nN

n converges weakly
to Λ, and hence in the product topology (Wn, 1

nN
n) converges weakly to (σB, Λ).

Since, by the Lemma below, composition is continuous in the Skorokhod topology,
we will obtain

Sn =Wn ◦ 1

n
Nn ⇒ σB ◦ Λ.

We consider the spaces Ca = C([0, a], R) and C∞ = C([0,∞), R) of continuous
real-valued functions on [0, a] and [0,∞), respectively, and Da, D∞ the spaces of
real valued functions on [0, a] or [0,∞), respectively, that are right continuous with
left limits.

Define further subsets

D↑ = {x ∈ D∞ : x(0) ≥ 0, x is non-decreasing},
C↑↑ = {x ∈ C∞ : x(0) ≥ 0, x is strictly increasing}.

Lemma 5 (Theorem 13.2.1 and 2 of [31]) The composition mapping

◦ : D∞ ×D↑ → D∞

taking (x, y) to (x ◦ y) is measurable, and is continuous on (C∞ ×D↑) ∪ (D∞ × C↑↑)
with respect to the Skorokhod topology.

For a ≥ 0, define the restriction operator ra : D∞ → Da by (rax)(t) = x(t) for
t ∈ [0, a]. We need the following additional lemma, which follows from theorems
16.7 and 3.1 of [5]:

Lemma 6 Let Xn ∈ D∞ for n = 1, 2, 3, . . . and X ∈ D∞.

1. Xn converges weakly to X if and only if raXn converges weakly to raX for every

a ≥ 0 such that P (X ∈ {x ∈ D∞ : x(a) 6= x(a−)}) = 0.

2. If for each ε > 0, P ({da(raX, raXn) < ε}) → 1 as n → ∞, then raXn converges

weakly to raX.

Proof of Theorem 2, Step 1: 1
nN

n converges weakly to Λ as n→∞.

By Lemma 6 and the continuity of Λ, it suffices to establish, for any ε > 0 and
a ≥ 0,

P (da(raΛ, ra(
1

n
Nn)) ≥ ε)→ 0

as n→∞.
As a temporary notation, let Xn

t = 1
nN

n(t)− Λ(t) = 1
n (Nn(t)− Λnt ). Since Λnt

is the compensator of Nn(t), Xn is a cadlag martingale, so by Jensen’s inquality
|Xn| is a non-negative submartingale. Moreover

da(raΛ, ra(
1

n
Nn)) ≤ sup

0≤t≤a
|raΛ(t)− ra(

1

n
Nn(t))| = sup

0≤t≤a
|Xn
t |.

By Markov’s Inequality, we also have

P (da(raΛ, ra(
1

n
Nn)) ≥ ε) ≤ 1

ε
E[da(raΛ, ra(

1

n
Nn)].
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Hence

P (da(raΛ, ra(
1

n
Nn)) ≥ ε) ≤ 1

ε
E[ sup

0≤t≤a
|Xn
t |].

By Jensen’s inequality and Doob’s martingale inequality ([3], 2.1.5), we then have

1

ε
E[ sup

0≤t≤a
|Xn
t |] ≤

1

ε
(E[( sup

0≤t≤a
|Xn
t |)2])

1
2 =

1

ε
(E[ sup

0≤t≤a
(|Xn

t |)2])
1
2 ≤ 2

ε
(E[(Xn

a )2])
1
2 .

To complete Step 1, it remains only to show that for any t ≥ 0, E[(Xn
t )2]→ 0

as n → ∞. First, note (e.g. Theorem 2.5.3 of [16]), that since Nn is a counting
process with continuous compensator Λn such that E[Λn(t)] <∞ for all t, we have

E[(Nn(t)− Λn(t))2] = E[Λn(t)] for all t ≥ 0.

Therefore

E[(Xn
t )2] =

1

n2
E[Λn(t)] =

1

n
E[Λ(t)],

which tends to zero as n→∞.

Proof of Theorem 2, Step 2: (Wn, 1
nN

n) converges weakly to (σB, Λ) in D∞×D∞
and the limiting components are independent.

This step follows from the next general lemma:

Lemma 7 For each n ≥ 1, let Xn and Yn be independent random elements of the

separable metric spaces (S,m) and (T, n), respectively.

Then

(a) (Xn, Yn) converges weakly to (X,Y ) in S×T if and only if Xn converges weakly

to X in S and Yn converges weakly to Y in T , and

(b) If either condition in (a) holds, then X and Y are independent.

Part (a) of Lemma 7 follows from Theorem 11.4.4 of [31]; part (b) follows
straightforwardly.

Step 2 then follows from Step 1, Donsker’s Theorem, and Lemma 7.

Proof of Theorem 2, Step 3: SnN converges weakly to σB ◦ Λ.

From Step 1, 1
nN

n converges weakly to Λ, and from Donsker’s theorem Wn

converges weakly to σB. By Step 2, we therefore have

(Wn,
1

n
Nn)⇒ (σB, Λ).

Since (σB, Λ) ∈ C∞ ×D↑, Lemma 5 establishes the continuity of the composition
operator ◦ at the point (σB, Λ).

Weak convergence of the composition

SnN =Wn ◦ (
1

n
Nn)

to σB ◦ Λ therefore follows from
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Proposition 2 (Continuous Mapping Theorem, 3.4.3 of [31]) Let (S,m) and

(S′,m′) be metric spaces with random elements Xn converging weakly to X in (S,m).

Let g : S → S′ be measurable and denote by Disc(g) the set of points of discontinuity

of g.

If P (X ∈ Disc(g)) = 0, then g(Xn) converges weakly to g(X).

ut

Theorem 3: For all t ≥ 0,

1. [BN ,BN ](t) = Λ(t).

2. [Λ,Λ](t) = 0.

3. [BN , Λ](t) = 0.

Proof.
Recall that Ht = σ(B(r), Λ−1(u) : r, u ≤ t) and Gt = HΛ(t).
We need the following lemmas.

Lemma 8 (2.4 in Kobayashi [21]) If T is a filtration satisfying the usual conditions,

C is a finite T -time-change, and Z is a T -semimartingale that is C-continuous, then

[Z,Z](C) = [Z(C), Z(C)].

Lemma 9 Λ−1 is a finite G-time-change.

Assume Lemma 9 for the moment; we prove it below. Since Λ−1 is continuous,
Bn is Λ−1-continuous. Therefore by Lemma 8 we may deduce, for each t,

[BN ,BN ](Λ−1(t)) = [BN (Λ−1),BN (Λ−1)](t) = [B,B](t) = t

since BN (t) = B(Λ(t)). Composing both sides by Λ yields part (i). A similar argu-
ment yields part (ii). Applying this argument to the continuous process BN + Λ

and applying the polarization identity gives us part (iii).

Proof of Lemma 9

Since Λ is continuous, strictly increasing, and Λ(∞) =∞, the same is true for
Λ−1, so we only need to show that Λ−1(t) is a G-stopping time for all t.

Fix t > 0; we want to show that {Λ−1(t) ≤ s} ∈ Gs = HΛ(s) for all s ≥ 0, which
is true if and only if

{Λ−1(t) ≤ s} ∩ {Λ(s) ≤ u} ∈ Hu

for all u ≥ 0. We will repeatedly use the convenient fact that for any v, w > 0,
{Λ−1(v) ≤ w} = {Λ(w) ≥ v}. In particular,

{Λ−1(t) ≤ s} ∩ {Λ(s) ≤ u} = {Λ(s) ≥ t} ∩ {Λ(s) ≤ u}.

It remains to prove that the latter belongs to Hu.

Case 1: u < t. Then the event in question is empty, hence in Hu.

Case 2: u ≥ t. Then for all n = 1, 2, 3, . . . , u > t− 1
n , and so

{Λ−1(t− 1

n
) ≥ s} ∈ Ht− 1

n
⊂ Hu.
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Hence

{Λ(s) < t} = ∪∞n=1{Λ(s) ≤ t− 1

n
} ∈ Hu.

This means the complementary event {Λ(s) ≥ t} also belongs to Hu. In addition,

{Λ(s) ≤ u} = {Λ−1(u) ≥ s} ∈ Hu,

and we are done. ut

Theorem 4: Let N be a regular counting process with compensator Λ, B denote stan-

dard Brownian motion, and H the filtration Ht = σ(B(r), Λ−1(u) : r ≤ t, u ≤ t).

Then the limit BN of the random walks SnN over N is a continuous square integrable

martingale with respect to the filtration HΛ.

Furthermore (BN )2 − Λ is a continuous martingale with respect to the filtration

HΛ, and

1. E[BN (t)] = 0.

2. cov(BN (s),BN (t)) = E[N(s ∧ t)] for all s, t ≥ 0.

3. BN has uncorrelated increments.

Proof.
We make use of Burkholder’s Inequality (see Protter [24], theorem IV.73): if X

is a continuous local martingale, X0 = 0, 2 ≤ p < ∞, and T is a finite stopping
time, then

E[( sup
0≤s≤T

|Xs|)p] ≤ CpE[[X,X]
p/2
T ],

where Cp = [qp(p(p−1)
2 )]p/2 with q defined by 1

p + 1
q = 1.

Now we know (Lemma 4) that BN is a continuous local martingale with respect
to G = HΛ. Using Jensen’s inequality, then Burkholder’s inequality, then Theorem
3, we have

E[ sup
0≤s≤t

|BN (s)|] ≤ (E[( sup
0≤s≤t

|BN (s)|)2])
1
2 ≤ 2(E[[BN ,BN ](t)])

1
2 = 2E[Λ(t)]

1
2 <∞.

This implies that BN is a martingale.
By similar argument,

E[(BN (t))2] ≤ E[( sup
0≤s≤t

|BN (s)|)2] ≤ 4E[[BN ,BN ](t)] = 4E[Λ(t)] <∞, (8)

so BN is square integrable.
Next, by standard arguments (e.g. Protter [24], Theorem II.20), the continuous

process

(BN )2 − Λ = (BN )2 − [BN ,BN ] = 2

∫
BN− dBN

is a local martingale. Using an argument similar to equation (8) we may deduce
that (BN )2 − Λ is also a martingale.

It remains to prove the three numbered statements of the Theorem. Part 1 is
immediate since BN is a martingale and BN (0) = 0.
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For part 2, assume s ≤ t. By part 1, cov(BN (s),BN (t)) = E[BN (s)BN (t)]. By
conditioning on Gs and using the martingale property, it is easily shown that

E[BN (s)BN (t)] = E[(BN (s))2] = E[N(s)],

the last equality because (BN )2 − Λ is a martingale with initial value zero.
For part 3, we compute as follows, employing part 2. For all 0 ≤ t1 ≤ t2 ≤ t3 ≤

t4,

E[(BN (t2)− BN (t1))(BN (t4)− BN (t3))]

= E[BN (t2)BN (t4)]− E[BN (t2)BN (t3)]− E[BN (t1)BN (t4)] + E[BN (t1)BN (t3)]

= E[N(t2)]− E[N(t2)]− E[N(t1)] + E[(N(t1)] = 0.

ut

Theorem 5: Let σ > 0, m ∈ R. The following are equivalent:

1. BN has independent increments.

2. Λ is a deterministic function.

3. N has independent increments.

4. σBN +mΛ has independent increments.

Moreover, if any of the above happens, then, for all s < t, BN (t)−BN (s) is normally

distributed with mean zero and variance Λ(t)− Λ(s).

Proof.
We first show that (1) and (2) are equivalent. Assume first that BN has inde-

pendent increments, meaning that for any s ≤ t,

E[BN (t)− BN (s)|Is] = E[BN (t)− BN (s)]

where I is the natural filtration of BN . Note Is ⊂ Gs for all s, since BN is a
G-martingale, hence G-adapted.

Using the identity

BN (t)2 − BN (s)2 = (BN (t)− BN (s))2 + 2BN (s)(BN (t)− BN (s))

and taking expectation conditional on Is, we obtain, by Theorem 4 and indepen-
dence of increments,

E[(BN (t))2 − (BN (s))2|Is] = E[(BN (t)− BN (s))2] + 2BN (s)E[BN (t)− BN (s)]

= E[(BN (t))2] + E[(BN (s))2]− 2E[BN (s)BN (t)]

= E[N(t)] + E[N(s)]− 2E[N(s)]

= E[Λ(t)]− E[Λ(s)].

We therefore have

E[(BN (t))2 − E[Λ(t)]|Is] = (BN (s))2 − E[Λ(s)].

Thus (BN (t))2 − E[Λ(t)], which is evidently also L1, is an I-martingale.
On the other hand, from Theorem 4 and since I ⊂ G, we know that (BN (t))2−

Λ(t) is an I-martingale.
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We also know that BN is a square integrable martingale with respect to G,
hence I, so that (BN )2 is a non-negative I-submartingale. By the Doob-Meyer de-
composition, (BN )2 has a unique compensator A (I-predictable, increasing, right-
continuous, L1 with A(0) = 0) such that (BN )2−A is an I-martingale. Since both
Λ and E[Λ] satisfy these conditions, by uniqueness we must have Λ(t) = E[Λ(t)]
for all t, so Λ must be a deterministic function.

Conversely, assume that Λ is deterministic. (The idea for this part of the proof
comes from the proof of Levy’s Theorem in Protter [24], theorem II.39.) We wish
to prove that BN has independent increments; we establish the slightly stronger
conclusion that, for s < t, BN (t)− BN (s) is independent of Gs.

Fix u ∈ R and define the smooth function F (x, t) = exp(iux + u2

2 t). Define

Zt = F (BN (t), Λ(t)). Itô’s formula yields

Zt = 1 + iu

∫ t

0

Zs dBN (s) +
u2

2

∫ t

0

Zs dΛ(s)− u2

2

∫ t

0

Zs d[BN ,BN ](s)

+
iu3

4

∫ t

0

Zs d[BN , Λ](s) +
u4

8

∫ t

0

Zs d[Λ,Λ](s).

By Theorem 3, this means

Zt = 1 + iu

∫ t

0

Zs dBN (s).

Hence Z is a local G-martingale. Therefore by [24], Theorem I.51, it is also a
martingale: for any t > 0,

sup
0≤r≤t

|Zr| = sup
0≤r≤t

| exp(iuBN (r)+
u2

2
Λ(r))| = sup

0≤r≤t
| exp(

u2

2
Λ(r))| = exp(

u2

2
Λ(t)),

meaning, since Λ(t) is a deterministic finite constant, that

E[ sup
0≤r≤t

|Zr|] = exp(
u2

2
Λ(t)) <∞.

We thus have, for s < t,

E[exp(iuBN (t) +
u2

2
Λ(t))|Gs] = exp(iuBN (s) +

u2

2
Λ(s))

and, since Λ is deterministic,

E[exp(iu(BN (t)− BN (s)))|Gs] = exp(−u
2

2
(Λ(t)− Λ(s))).

Since the right hand side of this last equality is deterministic, we deduce that
BN (t)− BN (s) is independent of Gs, as desired.

Moreover, since now

E[exp(iu(BN (t)− BN (s)))] = exp(−u
2

2
(Λ(t)− Λ(s)))

holds for all u ∈ R, and the right hand side is the moment generating function of
a normal random variable, we deduce that BN (t)− BN (s) is normally distributed
with mean zero and variance Λ(t)− Λ(s).
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Next we prove that (2) and (3) are equivalent.
Assume that N has independent increments, i.e. for s ≤ t, N(t) − N(s) is

independent of FNs . Then

E[N(t)−N(s)|FNs ] = E[N(t)−N(s)] = E[Λ(t)− Λ(s)],

so that
E[N(t)− E[Λ(t)]|FNs ] = N(s)− E[Λ(s)].

Again by the Doob-Meyer uniqueness of the compensator, we have Λ(t) = E[Λ(t)]
and hence Λ is deterministic.

Conversely, if Λ is deterministic, then Bremaud [7] shows, in an extension of
Watanabe’s characterization theorem for Poisson processes, that N has indepen-
dent increments.

Assuming (2), we now get (1) and therefore immediately (4). It remains to
show that (4) implies (2).

For ease of notation, let Xt = σBN (t) + mΛ(t). Let FX denote the natural

filtration of X, and FB
N

the natural filtration of BN .
If X has independent increments, then for s < t,

E[Xt −Xs|FXs ] = E[Xt −Xs] = E[mΛ(t)−mΛ(s)],

so Xt −mE[Λ(t)] is an FX -martingale. Now since [BN ,BN ]t = Λ(t) and [X,X]t =

σ2Λ(t), we can see that Λ is adapted to both FX and FB
N

. Hence X is adapted

to FB
N

and BN is adapted to FX , which implies that FB
N

= FX .

As a result, Xt −mE[Λ(t)] is an FB
N

-martingale. By Theorem 4, so is Xt −
mΛ(t), and hence, by subtraction, so is Λ(t)−E[Λ(t)]. Notice now that both Λ(t)
and E[Λ(t)] qualify as compensators of the nonnegative submartingale Λ(t). By
the uniqueness of the Doob-Meyer decomposition, Λ(t) = E[Λ(t)], and hence Λ is
deterministic.

ut

For Theorem 6, first recall our notation. We are considering a double sequence
of jump random variables {εni : n ≥ 1, i ≥ 1}, and we assume there exists m ∈
R, σ,M > 0, and p > 2 such that for each n ≥ 1:

1. {εni : i ≥ 1} is a sequence of i.i.d. random variables
2. E[εn1 ] = m/n,
3. V ar(εn1 ) = σ2/n, and
4. ||εn1 ||p ≤M/

√
n,

where ||.||p denotes the Lp norm. Note that we do not need to assume that εni and
εm,i are independent for n 6= m. We then define

Ŵn(t) =

bntc∑
i=1

εni

and

ŜnN (t) =

Nn(t)∑
i=1

εni .



24 Alec Kercheval et al.

Theorem 6: For the stochastic processes Ŵn(t), ŜnN (t) defined above for n ≥ 1, we

have, as n→∞,

Ŵn ⇒ {mt+ σB(t) : t ≥ 0}

and

ŜnN ⇒ mΛ+ σBN

where ⇒ denotes weak convergence in the space (D∞, d∞) as before.

Proof.

We give the proof for the casem = 0; the general casem 6= 0 is a straightforward
extension.

Part 1: Ŵn ⇒ σB.

For this part we employ a convergence lemma found in Whitt [31], Internet
Supplement Thm 2.4.2.

First, some notation. Define the truncation function h : R → R by h(x) = x

for |x| ≤ 1, h(x) = 0 for |x| ≥ 2, and extended linearly to preserve continuity:
h(x) = 2− x if x ∈ [1, 2] and −2− x if x ∈ [−2,−1]. Note |h(x)| ≤ 1 all x and h is
supported in [−2, 2].

Also, for convenience define Z to be the collection of all bounded, continuous
functions g : R→ R such that g vanishes on a neighborhood of 0, and there exists
y ∈ R such that g(x)→ y as x→ ±∞.

Definition 4 A sequence {Xn} of random variables is infinitesimal if

lim
n→∞

P (|Xn| > δ) = 0 for all δ > 0,

and is super-infinitesimal if

lim
n→∞

nP (|Xn| > δ) = 0 for all δ > 0,

Lemma 10 (Whitt, Theorem 2.4.2) With the notation above, if the sequence {εn1}
is infinitesimal, then

Ŵn ⇒ L, where L is a Levy process with characteristics (b, σ2, µ)

if and only if

For h, Z defined above, the following three statements are true:

1. limn→∞ nE[h(εn1 )] = b,

2. limn→∞ nV ar(h(εn1 )) = σ2, and

3. limn→∞ nE[g(εn1 )] =
∫
R
gdµ for all g ∈ Z.

Since our desired limit σB is a Levy process with characteristics (0, σ2, 0), we
complete the proof of Part 1 by showing that {εn1} is infinitesimal, and

(i) limn→∞ nE[h(εn1 )] = 0,

(ii) limn→∞ nV ar(h(εn1 )) = σ2, and

(iii) limn→∞ nE[g(εn1 )] = 0.

Lemma 11 The sequence {εn1} is super-infinitesimal.
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The Lemma follows immediately from Markov’s inequality and our assumptions
E[εn1 ] = 0, V ar(εn1 ) = ||εn1 ||22 = σ2/n, and ||εn1 ||p ≤ M/

√
n for some σ,M > 0 and

p > 2:

nP (|εn1 | > δ) = nP (|εn1 |p > δp) ≤ n

δp
E[|εn1 |p] =

n

δp
||εn1 ||pp ≤

n

δp
Mp

np/2
.

Since super-infinitesimal implies infinitesimal, it remains to verify (i)-(iii). For
convenience, define An1 = {|εn1 | ≤ 1} and An2 = {|εn1 | > 1}. Since

h(εn1 ) = εn11An
1

+ h(εn1 )1An
2
,

to prove (i) it suffices to show that nE[εn11An
1
] and nE[h(εn1 )1An

2
] both tend to zero

as n→∞.
First, since E[εn1 ] = 0, we may apply Hölder’s inequality as follows:

|E[εn11An
1
]| = |E[εn1 − εn11An

1
]| ≤ E[|εn1 − εn11An

1
|] ≤ E[|εn1 |2]1/2E[|1− 1An

1
|2]1/2.

Since E[|εn1 |2] = V ar(εn1 ) = σ2/n, the latter is equal to [σ
2

n P (|εn1 | > 1)]1/2. Multi-
plying by n,

n|E[εn11An
1
]| ≤ σ[nP (|εn1 | > 1)]1/2,

which tends to zero as n→∞, by Lemma 11 with δ = 1.
For the second term, recalling |h(x)| ≤ 1 for all x, we have

n|E[h(εn1 )1An
2
]| ≤ nE[1An

2
] = nP (An2 ) = nP (|εn1 | > 1),

which tends to zero again by Lemma 11. This establishes (i).

Next is condition (ii). Using the decomposition with An1 and An2 as before, we
may obtain

nV ar(h(εn1 )) = nE[(εn1 )21An
1
] + nE[h2(εn1 )1An

2
]− nE[h(εn1 )]2.

The second two terms tend to zero as follows.

|nE[h2(εn1 )1An
2
]| ≤ nE[|h2(εn1 )|1An

2
] ≤ nE[1An

2
] = nP (|εn1 | > 1)

tends to zero by Lemma 11. Since |h(x)| ≤ 1 for all x, we have (h(x))2 ≤ |h(x)|,
and hence

nE[h(εn1 )]2 ≤ n|E[h(εn1 )]|,

which tends to zero by part (i).
It remains to show that

lim
n→∞

nE[(εn1 )21An
1
] = σ2.

Applying Hölder’s inequality with p′ = p/2 and 1/q = 1− 1/p′,

n|E[(εn1 )2 − (εn1 )21An
1
]| = nE[(εn1 )2(1− 1An

1
)] ≤ nE[((εn1 )2)p

′
]1/p

′
E[(1− 1An

1
)q]1/q.

The latter is equal to

n||εn1 ||2p(P (|εn1 | > 1))1/q ≤M2(P (|εn1 | > 1))1/q,
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and this tends to zero, since {εn1} is infinitesimal. Since nE[(εn1 )2] = nV ar(εn1 ) = σ2,
we obtain the result, which completes (ii).

For property (iii), let g ∈ Z. From the definition of Z, there exists r, C > 0
such that g = 0 on [−r, r] and |g| ≤ C on R. Then

n|E[g(εn1 )]| ≤ nE[|g(εn1 )|1{|εn1 |>r}] ≤ CnE[1{|εn1 |>r}] = CnP (|εn1 | > r),

which tends to zero by Lemma 11.

Proof of Theorem 6, Part 2: ŜnN ⇒ σBN .
From Part 1, Step 1 of the proof of Theorem 2, and Lemma 7,

(Ŵn,
1

n
Nn)⇒ (σB, Λ).

By the Continuous Mapping Theorem and the continuity of the composition op-
erator, as before, we obtain

Ŵn ◦ 1

n
Nn ⇒ σB ◦ Λ,

i.e.
ŜnN ⇒ σBN in D∞.

ut

Theorem 7: Under the Market Assumptions above, suppose further that the com-

pensator Λ of N is pinned at T . Let Q be the equivalent martingale measure defined

by

dQ

dP
= exp(−

∫ Λ(T )

0

γt dB(t)− 1

2

∫ Λ(T )

0

γ2t dt), (9)

where

γt =
1

σ
(µ+ σ2/2− r

λΛ−1(t)
), 0 ≤ t ≤ Λ(T ).

Then the discounted stock price Zt = B−1
t St (stopped at T ) is a (Q,G)-martingale.

Moreover, suppose in addition that the payoff X is Q-independent of FΛT . Then X

is attainable and the unique no-arbitrage price Vt of X at time t < T is

Vt = (Bt/BT )EQ[X|Gt]. (10)

Proof of Theorem 7.

Given X, our goal is to construct a self-financing strategy in the stock and
bond with time-t value given by Vt of Equation (10).

In this proof we use the convention that when we call a process M(t) a martin-
gale that is only defined on an interval [0, t0], we mean that the process stopped
at t0 is a martingale.

Since Λ is absolutely continuous with derivative λ bounded below by ε > 0, the
inverse function theorem tells us that

Λ−1(t) =

∫ t

0

λ̄u du,
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where

λ̄u =
1

λΛ−1(u)

is positive and bounded above by 1/ε. It follows that

γt =
1

σ
(µ+ σ2/2− rλ̄t)

is bounded and left continuous with right limits. By Girsanov’s Theorem ([24],
theorem III.42), the equivalent measure Q on (Ω,F) defined by (9) is such that,
for 0 ≤ t ≤ Λ(T ),

B̃(t) = B(t) +

∫ t

0

γs ds = B(t) +
µ+ σ2/2

σ
t− r

σ

∫ t

0

λ̄u du

= B(t) +
µ+ σ2/2

σ
t− r

σ
Λ−1(t)

is a standard Brownian motion with respect to (Q,H). Following our conven-
tion, we write

B̃N (t) = B̃(Λ(t)) = BN (t) +
µ+ σ2/2

σ
Λ(t)− r

σ
t.

By Theorem 4, we have B̃N (t) is a square integrable (Q,G)-martingale, and
since [B̃N , B̃N ] = Λ, therefore so is the discounted stock price

Zt ≡ B−1
t S(t) = S0 exp(σBN (t) + µΛ(t)− rt) = S0 exp(σB̃N (t)− 1

2
σ2Λ(t)).

We are assuming that the option payoff X is independent of FΛT . This is equiv-

alent to the independence of X from FΛ
−1

Λ(T ), since these two sigma-algebras are
equal.

To construct a self-financing replicating portfolio, the difficulty is that the
Predictable Representation Property (PRP, [28], V.4) enjoyed by Brownian motion
does not necessarily hold for arbitrary continuous square integrable martingales
like BN . The PRP for Brownian motion is what makes the Black-Scholes option
pricing theory work.

Our strategy is to apply the PRP to the Brownian motion model, and then
change variables by means of the time change Λ and the optional stopping theorem.

Recall that BN , Λ, and S are adapted to the filtration Gt = HΛt
, and B, Λ−1

are adapted to Ht.
Let

Y (t) = Z(Λ−1(t)) = S0 exp(σB̃(t)− 1

2
σ2t).

Evidently Y is a (Q,F B̃) martingale.
Now define

E(t) = EQ[B−1
T X|Ht].

Since
H = FB ∨ FΛ

−1

= F B̃ ∨ FΛ
−1

,

the independence of X from FΛ
−1

Λ(T ) implies E(t) = EQ[B−1
T X|F B̃t ] for t ≤ Λ(T ).
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Since EQ[B−1
T X|F B̃t ] is a (Q,F B̃)-martingale, by the Brownian martingale

representation property (e.g. [28], V.3), there is an F B̃-predictable, hence H-
predictable, process ηt such that

dE(t) = ηtdY (t). (11)

Next we wish to compose this equation with Λ, which is justified by the fol-
lowing lemma.

Lemma 12 ([21], lemma 2.3) Let H be a filtration satisfying the usual conditions

and X be an H-semimartingale that is C-continuous, where C is a finite H-time-

change. Let L(X,H) denote the class of H-predictable processes H for which the stochas-

tic integral
∫ t
0
Hs dXs can be constructed.

If H ∈ L(X,H), then HCt−
∈ L(XC ,HC) for all t. Moreover, with probability one,

for all t ≥ 0, ∫ Ct

0

Hs dXs =

∫ t

0

HCs−
dXCs

.

Since Λ is a finite time-change with respect to H, and letting φt = ηΛ(t), then
φt is HΛ-predictable and we obtain from Equation (11) that

dE(Λ(t)) = φtdZ(t). (12)

We may now consider a portfolio holding φt shares of stock and ψt = E(Λ(t))−
φtZ(t) shares of the bond at time t.

The portfolio value process

Vt = φtS(t) + ψtBt = BtE(Λ(t))

is self-financing by virtue of an easy computation using (12).
To complete the argument, the optional stopping theorem (e.g. [28], II.3) tells

us that for any t ∈ [0, T ]:

E(Λ(t)) = EQ[B−1
T X|HΛ(t)]. (13)

Our portfolio strategy is therefore a replicating strategy because

VT = BTE(Λ(T )) = BTEQ[B−1
T X|HΛ(T )] = X.

Therefore the no-arbitrage price of X at any earlier time t must be the value
of the replicating portfolio

Vt = BtE(Λ(t)) = (Bt/BT )EQ[X|HΛ(t)]

as desired. This completes the proof of Theorem 7. ut
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