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1. Introduction

This article is the second part of our work on the classification of partially
hyperbolic diffeomorphisms homotopic to the identity in 3-dimensional manifolds
started in [BFFP20b].

The standing assumption in [BFFP20b] was that the partially hyperbolic dif-
feomorphisms were dynamically coherent, i.e., left invariant a pair of transverse
foliations tangent to the center stable and center unstable directions. This as-
sumption has some great benefits because it allows one to work with true folia-
tions, as opposed to the branching foliations which will be the main object we
work with in the present paper. True foliations forbid a number of troublesome
behaviors that branching foliations may have, making many arguments simpler,
and some substantial shortcuts possible. Sometimes, new strategies had to be
developped to deal with situations that cannot arise in the dynamically coherent
case.

While assuming dynamical coherence makes a lot of sense from a pedagogical
point of view, it is however a rather unnatural assumption. First of all, it is an
extremely hard assumption to try to verify directly. For example, in the present
article, we obtain dynamical coherence in certain situations only after having
completely understood the global dynamical behavior of the partially hyperbolic
diffeomorphism. In addition, while dynamical coherence was historically thought
to be generally expected in partially hyperbolic systems, many recent works (see,
e.g., [RHRHU16, BGHP17, BFFP20a]) have shattered that belief. For instance,
in the unit tangent bundle of a hyperbolic surface, we proved in [BFFP20a] that
most partially hyperbolic diffeomorphisms are not dynamically coherent.

Thus, it seems that dynamical coherence is more likely to be obtained under
certain circumstances as a corollary of, instead of an initial step towards, a clas-
sification. Nonetheless, the overall scheme, as well as many intermediate results,
that we developed in [BFFP20b] will be adapted here to the general setting. If
nothing else, this shows that assuming dynamical coherence can help develop ef-
ficient strategies for the study of partial hyperbolicity and justify our decision to
split our work in two. Another advantage is that we thus help bring to light the
differences between properties that stem from dynamical coherence as opposed
to those coming only from partial hyperbolicity.

The two main consequences of this second part are the extension of [BFFP20b,
Theorem A], and a description of the only two possible behaviors of partially
hyperbolic diffeomorphisms in hyperbolic 3-manifolds:
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Theorem A. Let f : M → M be a partially hyperbolic diffeomorphism on a
closed Seifert fibered 3-manifold. If f is homotopic to the identity, then it is
dynamically coherent, and some iterate of f is a discretized Anosov flow.

Theorem B. Let f : M → M be a partially hyperbolic diffeomorphism on a
closed hyperbolic 3-manifold. Then, either

(i) the diffeomorphism f is dynamically coherent and has an iterate which is
a discretized Anosov flow, or

(ii) the diffeomorphism f is not dynamically coherent, and up to a finite cover1

and finite iterate, M admits a pair of transversely orientable R-covered,
uniform, branching foliations. A a lift of f to the universal cover trans-
lates the lifts of these foliations.

A discretized Anosov flow is a map of the form φt(x)(x) where φ is a topological
Anosov flow, see next subsection.

The starting point in order to deal with the general case and obtain the the-
orems above is the foundational work of Burago and Ivanov [BI08] proving the
existence of structures called branching foliations assuming the orientability of
the bundles (see Section 3 for proper definitions). These conditions are always
satisfied in finite covers, but the existence of branching foliations without taking
finite lifts is still an open question. However, we prove that if a finite lift is a
discretized Anosov flow then the original partially hyperbolic diffeomorphism is
already a discretized Anosov flow (see section 7.3). Hence we are sometimes able
to remove the finite cover hypothesis.

The existence of a partially hyperbolic diffeomorphism satisfying condition (ii)
in Theorem B is still unknown and is probably the most pressing open question
that follows from this work. Let us note that we did not find any reasons yet, nei-
ther in this work nor in current further research, to dismiss this type of example.
Indeed, while their existence would be conceptually new, the behavior that we
find such example would need to have with respect to their branching foliations
is very similar to those of examples built in [BGHP17]. Therefore, the fact that
they are necessarily non dynamically coherent does not make their existence less
likely.

Both of the theorems above follow from more general, albeit less complete,
results that we now present after recalling some necessary definitions.

1.1. Results. We always assume our manifolds to have non virtually solvable
fundamental group.

Definition 1.1. A C1-diffeomorphism f : M →M on a 3-manifold M is partially
hyperbolic if there is a Df -invariant splitting of the tangent bundle TM into three
1-dimensional bundles

TM = Es ⊕ Ec ⊕ Eu

such that for some n > 0, one has

‖Dfn|Es(x)‖ < 1,

‖Dfn|Eu(x)‖ > 1, and

‖Dfn|Es(x)‖ < ‖Dfn|Ec(x)‖ < ‖Dfn|Eu(x)‖,

for all x ∈M .

1Taking a finite cover is only needed in order to get the existence of branching foliations
preserved by f .
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Let f : M → M be a partially hyperbolic diffeomorphism on a closed 3-

manifold M . When f is homotopic to the identity, we denote by f̃ the specific

lift to the universal cover M̃ that is obtained by lifting such a homotopy.
We assume that f leaves invariant two branching foliations, Wcs

bran and Wcu
bran,

tangent to the center stable (Ecs) and center unstable (Ecu) bundles respectively
(see Definition 3.2). By [BI08], up to taking a finite cover of M that orients the
three bundles and a power of f preserving these orientations, such branching foli-
ations always exist (see Theorem 3.4). These behave like foliations, but different
leaves are allowed to merge together, while not allowed to topologically cross (see

section 3). Their lifts to M̃ are denoted by W̃cs
bran and W̃cu

bran, these are branching

foliations by topological planes in M̃ .
An obvious but fundamental difference between true foliations and their branch-

ing counterparts, is that a point does not necessarily determine a unique leaf.
Recall [BFFP20b, Definition 2.2] the following definition:

Definition 1.2. A discretized Anosov flow is a partially hyperbolic diffeomor-
phism g : M → M on a 3-manifold M that is of the form g(p) = Φt(p)(p) for a
topological Anosov flow Φ and a map t : M → (0,∞).

The most general theorem we obtain in this work is the following.

Theorem 1.3. Let f : M → M be a partially hyperbolic diffeomorphism on a
closed 3-manifold M that is homotopic to the identity. If f preserves two branch-
ing foliations Wcs

bran and Wcu
bran that are f -minimal, then either

(i) f is a discretized Anosov flow (and in particular dynamically coherent),

(ii) f̃ fixes each of the leaves of one of the lifted branching foliations in M̃ ,

and the other branching foliation is R-covered, uniform, and f̃ acts as a
translation on its leaf space in the universal cover, or

(iii) Wcs
bran and Wcu

bran are R-covered and uniform, and f̃ acts as a translation

on the leaf spaces of W̃cs
bran and W̃cu

bran.

In the previous result, we say that a branching foliation Wcs
bran (or Wcu

bran) is
f -minimal when a closed, non empty, f -invariant set which is a union of leaves of
Wcs

bran must be M itself. We emphasize that in this definition, the sets considered
are saturated by leaves ofWcs

bran, but do not a priori contain all the leaves ofWcs
bran

intersecting the given set. When f is either transitive or volume-preserving, and
admits branching foliations, then they are f -minimal (see [BW05]).

We will show that case (ii) of Theorem 1.3 cannot occur when M is hyperbolic
or Seifert fibered (in §12 and §8 respectively), in which case we can also eliminate
the hypothesis of f -minimality, obtaining the following:

Theorem 1.4. Let f : M → M be a partially hyperbolic diffeomorphism on a
closed hyperbolic or Seifert fibered 3-manifold that is homotopic to the identity.
Then either

(i) f is a discretized Anosov flow, or
(ii) up to a finite iterate and a lift to a finite cover, f admits center stable and

center unstable branching foliations, which are R-covered and uniform,

and f̃ acts as a translation on their leaf spaces in M̃ .

As was already pointed out in [BFFP20b, Remark 7.4], case (ii) of Theorem
1.4 can occur in Seifert manifolds, but a finite power of such diffeomorphisms is a
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discretized Anosov flow, leading to Theorem A. Moreover, since every diffeomor-
phism of a hyperbolic 3-manifold has an iterate homotopic to the identity one
also deduces2 Theorem B from it.

We believe that Theorem 1.4 may be proven, following the same strategy as
here, under the more general assumptions of f -minimality together with the
existence of an atoroidal piece in the JSJ decomposition of M .

Remark 1.5. Case (ii) of Theorem 1.3 may also be ruled out under the assump-
tion of absolute partial hyperbolicity (cf. §9).

We end the introduction by stating a dynamical consequence of our results and
analysis.

Theorem 1.6. Let f : M → M be a partially hyperbolic diffeomorphism of a
closed 3-manifold M homotopic to the identity and assume that one of the fol-
lowing conditions is verified:

• M is hyperbolic or Seifert fibered, or,
• the (branching) center stable foliation is f -minimal,

then f has no contractible periodic points.

This result will be proven as Corollary 4.11.

1.2. Remarks and references. We refer to [CRRU15, HP18, Pot18] for sur-
veys on the problem of classification of partially hyperbolic diffeomorphisms in
dimension 3 and to the introduction of [BFFP20b] for a wider introduction to our
results. Instead, we will emphasize here the new tools developed in the present
article as well as put it in perspective with respect to previous work in the quest
for the classification of partially hyperbolic diffeomorphisms in 3-manifolds.

One important feature of the present article is to not assume dynamical co-
herence. This has certainly been done before (see [HP18]), but previous works
tended to have two simplifying characteristics: Their study took place on man-
ifolds where taut foliations are well understood and amenable to classification,
and on which known partially hyperbolic models where available to compare to.
Typically, dynamical coherence was established under the assumption of non-
existence of invariant tori by using the fact that coarse dynamics separates leaves
of the branching foliations. However, for the manifolds considered in this article,
neither of these features exists, and dynamical incoherence does appear in several
different ways.

For instance, we obtain dynamical coherence in Section 7 when the lift of the
partially hyperbolic diffeomorphism fixes each leaf of the lifted branching folia-
tions. We also manage to obtain information on the structure of the branching
foliation in the non dynamically coherent case, leading, in particular, to case (ii)
of Theorem B. This structure also allows us to better understand the dynamical
properties of the system, even when the manifold is not hyperbolic, as can be
seen in Theorem 1.6.

More generally, the framework that we develop for the study of non dynami-
cally coherent partially hyperbolic diffeomorphism should find its use outside of
the homotopic to the identity case that is the focus of the analysis here.

The first tool that we need to develop in this article, is the basic theory of
the topological study of branching foliations. This includes the definition of the
leaf spaces and their behavior under diffeomorphisms which preserve them (see
Section 3).

Among the other tools that we develop, we wish to emphasize:

2To be precise, one needs to apply Theorem 3.4.
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(1) In §5 we introduce the notion of coarsely contracting and coarsely re-
pelling periodic rays. This should be useful for the study of all, i.e.,
not necessarily homotopic to the identity, partially hyperbolic diffeomor-
phisms in 3-manifolds.

(2) In §6 we study the dynamics of certain lifts inside a fixed center stable
leaf and show that, under some assumptions, it cannot admit fixed points.
This involves understanding the behavior of strong stable manifolds of
fixed points under iteration which may find applications in other contexts.

(3) In §7 we prove uniqueness of (branching) foliations under certain condi-
tions. This is fundamental in order to prove results that do not require
taking finite lifts and finite power. As such, it may also be relevant for
the study of topological obstructions for partially hyperbolic diffeomor-
phisms since for instance, the topological obstructions for the existence
of Anosov flows can depend on taking finite lifts (see, e.g., [Cal07]). Note
that uniqueness of branching foliations was previously proven in other
works, but always in a setting where there was an understood model
partially hyperbolic diffeomorphism to compare with.

(4) Finally, in §11, 12 we develop some tools to analyze the geometric struc-
ture of (branching) foliations. This analysis combines tools from Lefschetz
index theory, hyperbolic geometry, and the notion of coarsely expanding
and contracting rays mentioned in item (1).

Note that the tools developed in (4) are used in a different setting in [BFFP20a]
to prove that a large class of partially hyperbolic diffeomorphisms in Seifert man-
ifolds are dynamically incoherent. Together with (1), it has also successfully been
applied in [FP18] to obtain fine dynamical consequences of partial hyperbolicity
in 3-manifolds.

1.3. Acknowledgments. We thank C. Bonatti, A. Gogolev and A. Hammer-
lindl for interesting discussions.

T. Barthelmé was partially supported by the NSERC (Funding reference num-
ber RGPIN-2017-04592).
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expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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2. Outline and discussion

2.1. Setup. We will now set some basic definitions and outline our major argu-
ments. Throughout this article, we assume a good familiarity with the firt part
of our work, [BFFP20b].

As in [BFFP20b], our running hypothesis in this article is that M is a closed
3-manifold with non-solvable fundamental group3, and f : M → M will be a
partially hyperbolic diffeomorphism that is homotopic to the identity.

A lot of the analysis is done for general partially hyperbolic diffeomorhisms
homotopic to the identity and preserving branching foliations. Then we specialize
to obtain the specific results in Seifert manifolds and hyperbolic manifolds.

3The reason being that the case of manifolds with solvable fundamental group is well under-
stood, as discussed in [BFFP20b].
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Some results, particularly in the appendix, are for general partially hyperbolic
diffeomorphisms, without assuming homotopic to the identity.

2.2. Structure of the proof. Many of the constructions and arguments in
[BFFP20b] adapt directly to the non dynamically coherent case. On the other
hand, some subresults are much more complex or need completely different proofs.
There are three main places where the general non dynamically coherent situation
diverges significantly from the dynamically coherent case:

• The first is that in general there may be annular center leaves which do
not contained a closed center leaf inside (see condition (??) in [BFFP20b,
§2]). In the non-dynamically coherent case we prove a weaker statement
that serves the same purpose in many situations.
• A second and more important difference is that we cannot deduce the

impossibility of double translations from the general version of the exis-
tence of cores that “shadow” the periodic orbits of the transverse pseudo-
Anosov flow (see condition (? ? ?) in [BFFP20b, §2]). This means that
here we need to analyze that case further to see what structure we can
obtain from it.
• In hyperbolic and Seifert manifolds, to avoid the need to assume f -

minimality of the foliations in the dynamically coherent case it was enough

to remark that a minimal invariant set lifted to M̃ could not have fixed
points under a good lift of f . When there is branching this no longer
holds, and we need here to make a very delicate analysis that takes place
in §6.

One of the most important questions left open by our work is the following:

Question. Does there exists a partially hyperbolic diffeomorphism of a hyperbolic
3-manifold which acts as a double translation?

We do obtain (in §11) some strong dynamical properties that would have to
be satisfied by such an example. This behavior is akin to what is seen in the
examples of [BGHP17], but we refrain from giving a conjectural answer to our
question.

Let us now take f : M → M to be a partially hyperbolic diffeomorphism,
not necessarily dynamically coherent. In §3, we review Burago–Ivanov’s [BI08]
construction of branching center stable and center unstable foliations. We also
show that these branching foliations have leaf spaces that behave like the leaf
spaces of true foliations.

2.2.1. Dichotomies for branching foliations. In §4, we extend the results from
[BFFP20b] and adapt them to the branching foliation case.

In particular, in §4.1–4.4 we show that the dichotomy obtained in [BFFP20b]
(see condition (?) there) holds without assuming dynamical coherence, so we can

arrange our arguments around the same trichotomy: If W̃cs
bran and W̃cu

bran are f -
minimal, or M is hyperbolic or Seifert-fibered (this is handled in §6), then one of

the following holds, where f̃ is the lift of a homotopy from f to the identity:

(1) double invariance: f̃ fixes every leaf of both W̃cs
bran and W̃cu

bran;

(2) mixed behavior: f̃ fixes every leaf of either W̃cs
bran or W̃cu

bran, and acts
as a translation on the leaf space of the other, which is R-covered and
uniform; or

(3) double translation: f̃ acts as a translation on both W̃cs
bran and W̃cu

bran,
which are R-covered and uniform.
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This allows to prove Theorem 1.6 (see §4.3 and Corollary 4.11).

2.2.2. Center dynamics in fixed leaves. In §5, we work under the assumption

that f̃ fixes every leaf of W̃cs
bran, and study the dynamics within each center

stable leaf. Although the statements that are obtained in [BFFP20b] fail without
dynamical coherence, we are able to obtain the following which is sometimes
enough (Proposition 5.2):

(??′)

Suppose that Wcs
bran is f -minimal, that all the leaves of W̃cs

bran are

fixed by f̃ , and that f̃ does not fix any center leaf in M̃ .
If c is a periodic center leaf of f in M , then c is coarsely contracted
by h. In particular, c contains a periodic point of f .

This fact, together with the fact that periodic center leaves exist on any leaf
with non-trivial fundamental group (see Proposition 5.8) gives us the tool to
continue the analysis of the above trichotomy.

At this point, the reader interested in absolutely partially hyperbolic diffeo-
morphisms can fast forward to §9 to see how one can recover the same statement
of [BFFP20b] (where one gets a closed fixed center curve) under that stronger
dynamical assumption (see Proposition 9.3).

2.2.3. Double invariance implies dynamical coherence. With (??′) in hand, we

show in §7 that the existence of a good lift f̃ with doubly invariant behavior
implies that f is dynamically coherent. By the work of [BFFP20b], we get that
f is a discretized Anosov flow.

Let us stress here that in this case the dynamical coherence of f (a very strong
property) is obtained at the very end of a long and complicated analysis.

There is one additional unsavory and very non trivial issue that we have to
address in this section: The theorem of Burago–Ivanov gives the existence of
branching foliations under some orientability conditions (see Theorem 3.4). These
conditions can always be achieved by taking an appropriate lift of M and power
of f . However, in order not to have these conditions appear in Theorem A or
Theorem B, we need to show that if a lift and power of a partially hyperbolic
diffeomorphism is dynamically coherent, then so is the original one. We do not
know if this statement is true in general, but we prove it (in §7.3) when the lift
is further assumed to be doubly invariant.

The work up to section 7 implies Theorem 1.3.

2.2.4. General version of Theorem A. In §8 we finish the proof of Theorem A
by ruling out both mixed behavior and double translations when M is a Seifert-
fibered manifold.

This uses a combination of the good lift trick, which allows to take one good
lift that fixes one of the foliations, and Proposition 5.2. If a good lift (of a power)
does not fix both branching foliations, then we obtain periodic center leaves that
must be both coarsely expanding and contracting, a contradiction.

2.2.5. No mixed behavior in hyperbolic manifolds. Sections 11 and 12 deal with
the last property we want to show in order to obtain Theorem 1.4 in the hyperbolic
case. That is, we want to eliminate mixed behavior.

To reach this goal, we first get, in §11, a better understanding of homeo-
morphisms that act as a translation on a branching foliation. In §10 we prove
that the dynamics of such a homeomorphism resembles the one of a regulating
pseudo-Anosov flow transverse to the foliation. We push the understanding of
that resemblance further and show (see Proposition 11.1) that, on periodic center
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stable leaves, at least some center rays that are fixed must be expanding, i.e., act
in a similar way as the strong unstable foliation of the pseudo-Anosov regulating
flow.

This property is then used in §12 to rule out mixed behavior, but it does not
rule out double translations.

In the next section we develop the basic theory of branching foliations and
their leaf spaces.

3. Branching foliations and leaf spaces

Many non dynamically coherent partially hyperbolic examples have been con-
structed in recent years, hence in general one cannot assume dynamical coherence
when trying to classify these diffeomorphisms on a given manifold or within a ho-
motopy class. The role of the foliations we used in [BFFP20b], will then be
replaced by branching foliations, that were constructed by Burago and Ivanov
[BI08] for general partially hyperbolic diffeomorphisms under some orientability
conditions.

Remark 3.1. Notice that the term branching is sometimes used with a different
meaning in the study of codimension one foliations (to describe non-separated
leaves in the leaf space). Here, branching means that two leaves may merge (and

this is irrespective of whether the leaf space in M̃ is Hausdorff or not).

We start with a proper definition and refer the reader to [HP18] for a detailed
explanation on this tool as well as contexts where they are used.

Definition 3.2. A branching foliation Fbran of a 3-manifold M is a collection of
C1-immersed surfaces complete for the pull-back metric and satisfying:

(i) Every point x ∈M belongs to at least one surface (called leaf ) of Fbran;
(ii) An immersed leaf of Fbran does not topologically cross itself;
(iii) Different leaves of Fbran do not topologically cross;
(iv) If Ln are leaves of Fbran and xn ∈ Ln is a sequence that converges to x,

then, up to taking a subsequence, Ln converges to a leaf L4 of Fbran with
x ∈ L.

Moreover, we say that a branching foliation is well-approximated by foliations
if there exists a family of foliations Fε, with C1 leaves, and a family of continuous
maps hε : M → M , with ε > 0, such that, for a fixed Riemannian metric, we
have:

(v) The angle between a leaf of Fbran and Fε is less than ε;
(vi) The map hε is at C0-distance less than ε from the identity;
(vii) The map hε maps leaves of Fε to leaves of Fbran by a local diffeomorphism

(so in particular, the restriction of hε to any leaf is C1);
(viii) For every leaf L of Fbran, there exists a leaf Lε of Fε such that hε(Lε) = L.

Notice that, as a branching foliation has C1 leaves and that all possible inter-
sections are not topological crossings, it makes sense to talk about the tangent
distribution to a branching foliation.

Remark 3.3. When Fbran is a branching foliation but not a true foliation, then
the map hε is never a local diffeomorphism, even though it restricts to a local
diffeomorphism on each leaf: There are open sets where leaves are collapsed

4Here convergence should be understood in the pointed compact-open topology, i.e., given a
compact set K in L containing x, there is a sequence of compact subsets Kn of Ln containing
xn such that Kn converges to K in the Hausdorff topology and xn convereges to x.
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transversely by hε. In fact, even when restricted to a leaf, it may fail to be a
global diffeomorphism as leaves of Fbran can self intersect, forming branching
locus.

As is the case with foliations, there exists a small enough scale at which the
branching foliation is “trivially product (branched) foliated”. Let us be more
precise: We fix a Riemannian metric. Then there exists ε0 > 0, such that any open
set B of diameter less than ε0 satisfies the following. The set B is contained in a
smooth chart D2×[0, 1] such that the local leaves of Fbran through B intersects the
chart in sets transverse to the [0, 1]-fibration in D2×[0, 1], each local leaf intersects
every [0, 1]-fiber and they are close to being horizontal. This fact readily follows
from the fact that the branching foliation are tangent to a continuous distribution.

We call the scale ε0 > 0 above the local product structure size.
The foundational result of Burago and Ivanov states that, under some ori-

entability conditions, a partially hyperbolic diffeomorphism always admits a pair
of branching foliations tangent to the center stable and center unstable distribu-
tions. We naturally say that a branching foliation is f -invariant if the image of
any leaf by f is again a leaf.

Theorem 3.4 (Burago-Ivanov [BI08]). Let f be a partially hyperbolic diffeomor-
phism of a 3-manifold M . Suppose that the bundles Es, Eu and Ec are orientable
and that Df preserves these orientations.

Then there exists two f -invariant branching foliations Wcs
bran and Wcu

bran tan-
gent respectively to Ecs and Ecu. Moreover, these branching foliations are well-
approximated by foliations Wcs

ε and Wcu
ε , with associated maps denoted by hcsε

and hcuε .

The collections of surfaces Wcs
bran and Wcu

bran are called the center stable and
center unstable branching foliations.

There is one property that the center stable and center unstable branching
foliations have which will be very useful to us: Since the stable bundle Es is
uniquely integrable, if a point p is in a center stable leaf L, then the entire stable
leaf s(p) through p is also contained in L. As a consequence intersections between
distinct center stable leaves are saturated by stable leaves.

Remark 3.5. Since the manifolds we consider in this article are not virtually
solvable, no leaf of the approximating foliation, is compact (cf. [RHRHU11]).
Thus the approximating foliations Wcs

ε and Wcu
ε are always taut.

Using branching foliations, we can still define center leaves:

Definition 3.6. A center leaf c of a partially hyperbolic diffeomorphism is the
projection to M of a connected component of the intersection between a leaf of

the central stable branching foliation W̃cs
bran and a leaf of the central unstable

branching foliation W̃cu
bran (lifts to M̃).

Even though the collection of center leaves is not a foliation, we will also define
a leaf space of center leaves in section 3.1.

Remark 3.7. Notice that a center leaf c is automatically tangent to the central
direction Ec. However, complete curves that are tangent to the central direction
may fail to be center leaves for our definition. Indeed, even when the diffeo-
morphism is dynamically coherent, the central direction may not be uniquely
integrable, thus, some complete curves may be tangent to Ec, but are not the in-
tersection of a central stable and central unstable (such an example is constructed
in [RHRHU16]).
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(a) Two center-stable leaves sharing a
region

(b) Distinct center leaves inside a
center-stable leaf

Figure 1. The branching of center and center-stable leaves.

3.1. Leaf Spaces. When F is a foliation, the leaf space of F is the collection of

distinct leaves of the lift F̃ of F to M̃ . Moreover, it comes naturally equipped
with a quotient topology. Indeed, the leaf space of F can be defined as the set

M̃ quotiented by the relation “being on the same leaf of F̃”.
When F is a branching foliation, we want to define the leaf space again as the

collection of distinct leaves of the lift F̃ of F to M̃ . However, this space does

not necessarily come from a quotient. Indeed, some points x ∈ M̃ may belong
to more than one (in which case x belongs to uncountably many) distinct leaves,

thus one cannot define a quotient projection from M̃ .
In the next three sections, we will explain how to put a topology on the leaf

spaces of each of the branching foliations. More importantly, we show that these
topologies make the leaf spaces of the branching foliations homeomorphic to those
of the approximating foliations, for small enough ε.

3.1.1. Leaf spaces of the center stable and center unstable foliations. Recall that,
by Theorem 3.4, the branching foliationsWcs

bran andWcu
bran are well-approximated

by foliationsWcs
ε andWcu

ε . Now property (viii) of Definition 3.2 implies that for ε
sufficiently small (which is assumed from now on), there is a canonical surjection

between the leaf spaces of W̃cs
ε and W̃cs

bran and the leaf spaces of W̃cu
ε and W̃cu

bran.
It is possible to modify the proof of [BI08, Theorem 7.2], where the foliations

Wcs
ε and the map hcsε are constructed, so that the map between leaf spaces given

by hcsε is also injective. With this result on hand, we could define the topology on

the leaf space of W̃cs
bran as the one making that map a homeomorphism. However,

proving the injectivity would require to redo the whole proof of [BI08, Theorem
7.2]. So instead, we use a simpler fact which can be easily extracted from the
proof of [BI08, Theorem 7.2]: The map hcsε is “monotone” meaning that, in local
charts, where there is a well defined linear order between leaves, this order is
preserved by hcsε .

Definition 3.8. We denote by:

• Lcsb the leaf space of the center stable branching foliation W̃cs
bran;

• Lcub the leaf space of the center unstable branching foliation W̃cu
bran;

• Lcsε the leaf space of the approximating center stable foliation W̃cs
ε ;

• Lcuε the leaf space of the approximating center unstable foliation W̃cu
ε .

Furthermore, we denote the surjections between the leaf spaces of the branching
foliations and the approximating foliations by

gε,s : Lcsε → Lcsb , and gε,u : Lcuε → Lcub .
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Since Wcs
ε is a true foliation, its leaf space Lcsε has a natural topology making

it a simply connected, but perhaps non Hausdorff, 1-manifold (cf. [BFFP20b,
Appendix B].

Each leaf L of W̃cs
bran is a properly embedded plane in M̃ . Using this one

defines as before L+ to be the closure of the connected component of M̃ r L on
the “positive side of L”, and similarly for L−. To define positive side pick an

orientation to the unstable bundle in M̃ .

Topology of Lcsb . The topology in Lcsb is defined as follows: Consider a finite
collection of transversals τi to Wcs

bran such that:

(i) Each transversal τi is open.
(ii) τi is perpendicular to Ecs everywhere.

(iii) Every leaf of Wcs
bran intersects at least one of the τi.

Let β be a lift to M̃ of some τi. Consider the collection of leaves of W̃cs
bran in-

tersecting β. Each such leaf of W̃cs
bran is a properly embedded plane and intersects

β only once.

Claim 3.9. Let x ∈ β. Let I be the collection of leaves I intersecting x. Then I
is a singleton or order isomorphic to a closed interval.

Proof. Suppose that I is not a singleton. Then, given any leaves L 6= E in I,
either L ⊂ E+ or E ⊂ L+ and only one option occurs (this is thanks to property
(iii) of Definition 3.2). We say L > E in the first case and L < E in the second
case, which gives a total order on I. By property (iv), this order is complete.
Moreover, there are no gaps in this order: Let L 6= E two leaves in I such that
L < E. We want to show that there exists a leaf L′ ∈ I, with L < L′ < E. Let
y be a boundary point of the connected component of L∩E containing x. Then
consider a neighborhood B of y of diameter smaller than ε0, the local product

structure size of the branching foliationWcs
bran. Since W̃cs

bran has a trivially product
foliated structure in B, every leaf that intersects B ∩ (L+ ∩ E−) must intersect
y, and since leaves of Wcs

bran do not cross, they must intersect x also. Thus there
is L′ ∈ I such that L < L′ < E.

So I is order isomorphic to a closed interval in R. �

The claim implies that putting the order topology on the set of leaves of W̃cs
bran

intersecting a lift β of τi makes it homeomorphic to an open interval in R.
Notice the following: suppose that β1, β2 are lifts of τ1, τ2, and L,E are leaves

of W̃cs
bran intersecting both β1, β2. Then the order induced by β1 is the same as the

order induced by β2 (in the set of leaves intersecting both transversals). Hence
the order topology is well defined when there are intersections.

Definition 3.10 (topology of Lcsb ). The topology T in Lcsb is the one generated
by the open intervals defined above. This topology makes Lcsb a simply-connected
1-manifold.

Proposition 3.11. For ε small enough (smaller than the local product sizes of
Wcs

bran and Wcu
bran), the preimage of a point in Lcsb (resp. Lcub ) by gε,s (resp. gε,u)

is a closed interval. Moreover, the space Lcsε (resp. Lcuε ) is homeomorphic to Lcsb
(resp. Lcub ). The maps gε,s : Lcsε → Lcsb are continuous.

Proof. We work with Lcsb as the proof for Lcub is identical. The key property is
to show that the preimage by gε,s of points are closed intervals in the leaf space
Lcsε , the rest will follow rather easily.
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We let Tε be the quotient topology induced by gε,s on Lcsb . Our goal is to show
that Tε = T .

Let ε0 be the local product sizes of Wcs
bran. Let ε < ε0/2.

It is in order to prove this proposition that we will use the remark made above
that the map hcsε is monotone5.

Let I be the preimage of a leaf L ∈ Lcsb . Suppose that I contains two leaves L̂1

and L̂2, we want to show that every leaf in between L̂1 and L̂2 is mapped by h̃csε
to L. From property (vi) of Definition 3.2, we have that the Hausdorff distance

between L̂1 and L̂2 is < 2ε. Now, as 2ε is chosen smaller than the local product
structure size ε0, it follows that the region between the leaves L̂1 and L̂2 has leaf
space which is a closed interval.

Because of the property of monotonicity of h̃csε it follows that gε,s maps the

region between L̂1 and L̂2 to L. This implies that the preimage of L is an interval.
It remains to show that it is closed, but this is just a consequence of the continuity

of h̃csε .
So the preimage of any point is a closed interval. We now proceed with proving

the other needed properties.
Let J be an open interval J in Lcsb for the topology T . Up to taking J smaller,

we can assume that J is the set of branching leaves that intersects a small open
transversal β. We want to show that g−1

ε,s (J) is open in Lcsε . Let L̂1 be a leaf in

g−1
ε,s (J). Then L̂1 intersects β (or a slightly bigger transversal), so all the leaves

of W̃cs
ε close enough to L̂1 ∩ β intersect β. Thus an open neighborhood of L̂1 is

contained in g−1
ε,s (J).

Hence the interval J is also open in the topology Tε. It follows that T ⊂ Tε.
In particular this shows that gε,s is continuous.

Now for the other inclusion. Suppose W is an open set in Tε and y is in
W . Hence (gε,s)

−1(W ) is open and contains (gε,s)
−1(y), which is an interval I

with boundary leaves L,E. Since (gε,s)
−1(W ) is open, it contains and interval of

leaves around, say, L. Consider the part of this interval made up of L and the
side outside (gε,s)

−1(y). This projects to an interval in Lcsb , which is not just y
by definition of I. Hence W contains an open interval around y, and therefore
W is open in T . This shows that T = Tε.

We already proved that the preimage of a point in Lcsb is a a closed interval
in Lcsε . This implies that Lcsb , Lcsε are homeomorphic. This is because the only
collapsing from Lcsε to Lcsb is done along closed intervals I. If L,E are the end-
points of I, then there is no other leaf in the region between L and E besides
those leaves that are in I.

This finishes the proof of the proposition. �

Notice that the leaf spaces Lcsb ,Lcsε are homeomorphic, however the natural
map gε,s : Lcsε → Lcsb is not necessarily a homeomorphism, as it may collapse
points. In the sequel, we fix some ε small enough so that the previous proposition
applies.

3.1.2. Leaf spaces of the center foliation in a center stable or center unstable leaf.
We now define a topology on the leaf space of the center branching foliation,
restricted to a particular center stable or center unstable leaf.

5Otherwise, the preimage could be disconnected. One can recover the rest of the statements,
but that would need to construct new maps ĝε,s by collapsing closed intervals in both spaces
and see that these induce the same topology.
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Remark 3.12. Recall from Definition 3.6 that a center leaf in M̃ is defined as
a connected component of the intersection between a leaf of W̃cs

bran and a leaf of

W̃cu
bran. Now, the following situation may arise (see Figure 2): Two leaves U1, U2

of W̃cu
bran and a leaf L of W̃cs

bran such that the triple intersection U1 ∩ L ∩ U2

contains a connected component of c1 of U1∩L as well as a connected component

c2 of U2 ∩ L. That is, the center leaves c1 and c2 represents the same set in M̃ .
In this case, we also consider c1 and c2 as the same leaf of the center foliation in
L.

L ∈ W̃cs
bran

U2 ∈ W̃cu
bran

U1 ∈ W̃cu
bran

c1 = c2

Figure 2. Different center unstable leaves may intersect a given
center stable leaf in the same center leaf.

We will describe the topology of the center leaf space LcL on a given leaf L

of W̃cs
bran. The center leaf space LuU on a leaf U of W̃cu

bran is defined in the same
manner, so we do not explicit it.

Definition 3.13 (topology A in LcL). Consider a countable set of open transver-
sals τi which are perpendicular to the center bundle in L, and so that the union
intersects every center leaf in L. Put the order topology in the set Ii of center
leaves intersecting τi. This induces the topology A in LcL.

Let L be a fixed leaf of W̃cs
bran. We again fix an ε > 0 and consider the

approximating foliation W̃cu
ε . Since W̃cu

bran is transverse to L, so is W̃cu
ε (for ε

small enough). Thus, W̃cu
ε induces a 1-dimensional (non branching) foliation Fε

on L, and hence its leaf space Lcε is a 1-dimensional, not necessarily Hausdorff,
simply connected manifold.

The behavior described in Remark 3.12 above leads to the following issue: the
unique center leaf c1 = c2 is approximated by two distinct leaves of Fε. Thus, the
leaf space, LcL, of the center foliation on L is not in bijection with Lcε. However,
we still have a surjective, but not necessarily injective, projection prε : Lcε → LcL
as in the previous subsection. Let Aε be the quotient topology from the map prε.

Just as in Proposition 3.11 one can prove the following:

Lemma 3.14. The set of center leaves in L through a point x is a closed interval.
Let c0 be a center leaf in L. Let I = pr−1(c0) ⊂ Lcε. The set I is a closed interval.
If ε < ε0, then the topologies A and Aε are the same.
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3.1.3. Leaf space of the center foliation in M̃ . Finally, we have to put a topology

on the leaf space Lcb of the center foliation in M̃ .

Pick an 0 < ε < ε0 so that W̃cs
ε and W̃cu

ε are transverse to each other. Call Fε
the 1-dimensional foliation obtained as the intersection of W̃cs

ε and W̃cu
ε . The leaf

space Lcε of Fε is now a simply connected, possibly non Hausdorff, 2-dimensional
manifold. But as before, there is only a surjective, and not injective, projection
gε : Lcε → Lcb.

The map gε is defined in the following way: If c̄ is a leaf of Fε, then it is the

intersection of a leaf Ū of W̃cu
ε and a leaf S̄ of W̃cs

ε . Then, there exists a unique
connected component c of gε,u(Ū) ∩ gε,s(S̄) that is at distance less than 2ε from
c̄. We define gε(c̄) = c.

Once again, the topology Bε we put on Lcb is obtained by identifying elements
of Lcε that project to the same element of Lcb and taking the quotient topology.

As done is the previous two subsections 3.1.1 and 3.1.2, in order to prove that
the topology that we put on Lcb makes it a simply connected (not necessarily
Hausdorff) 2-manifold, it is enough to show that the preimages of points by gε
are closed, simply connected sets contained in a local chart of Lcε. In order to
do that, first notice that Lcε is locally homeomorphic to Lcsε × Lcuε . Indeed, any
c̄0 ∈ Lcε is a connected component of Ū0 ∩ S̄0, with Ū0 ∈ Lcuε and S̄0 ∈ Lcsε . Now,
if Vu is a small enough open interval in Lcuε and Vs is a small enough open interval
in Lcsε , then for any Ū ∈ Vu and S̄ ∈ Vs, the intersection Ū ∩ S̄ contains a unique
connected component close to c0. Using this local homeomorphism, the following
lemma will imply that the topology Lcb is as we claimed.

Lemma 3.15. Let c0 be in Lcb. The set R = g−1
ε (c0) is homeomorphic to a closed

rectangle in Lcsε × Lcuε .

Proof. Let c̄1, c̄2 ∈ R. Let Ū1 be the leaf in Lcuε containing c̄1 and let S̄2 be
the the leaf in Lcsε containing c̄2. Let U1 = gε,u(Ū1) and S2 = gε,s(S̄2). Since
c̄1, c̄2 ∈ R, the center leaf c0 is a connected component of U1 ∩ S2. Thus Ū1 and
S̄2 must intersect and the intersection contains a unique connected component c̄3

at distance at most 2ε from c0.
Now, the proof of Lemma 3.14 shows that c̄1 and c̄3 are two ends of an interval

in the leaf space of Fε restricted to Ū1 that is entirely contained in R. Similarly,
for c̄2 and c̄3 considered as elements of the leaf space of Fε restricted to S̄2. In
turns, the arguments of the proof of Lemma 3.14 imply that the set R projects to
a closed interval in both Lcsε and Lcuε , i.e., it is a closed rectangle in Lcsε ×Lcuε . �

Just as in the previous two sections we can also put a topology B on Lcb directly
as follows:

Definition 3.16. (topology B on Lcb) In M pick a collection of very small open
rectangles Ri which are almost perpendicular to the center bundle, and with
boundary two arcs in a leaves ofWcs

bran and two arcs in leaves ofWcu
bran. Consider

all lifts R of these to M̃ . The set of center leaves intersecting R is naturally
bijective to an open rectangle and put the topology making this a local homeo-
morphism. The topology B is generated by these rectangles.

First we justify why the set of center leaves through R is naturally an open
rectangle. Let L1, L2 be the center stable leaves containing the two arcs in the
boundary of R, and U1, U2 be the corresponding center unstable leaves. The set
of center stable leaves between L1, L2 (not including L1, L2) is naturally ordered
isomorphic to an open interval. This was proved in subsection 3.1.1. The same
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for the center unstable foliation. The product is an open rectangle. The set of
center leaves intersecting R is a quotient of this. The sets which are quotiented
to a point are compact subrectangles. The proof is the same as the previous
lemma. Hence the quotient is naturally a rectangle. In addition if a collection
of center leaves intersects two such rectangles R,R′, then the identifications in R
also produce the same identifications in R′ and the order of the center stable and
center unstable foliations in the subsets are the same whether in R or R′. Hence
in the identification, the topologies agree.

Just as in the previous sections one can prove:

Lemma 3.17. For ε < ε0, the topologies B and Bε are the same.

The main property is to prove is exactly that of Lemma 3.15. The rest follows
just as in the previous subsections.

4. General aspects without assuming dynamical coherence

In this section, M is a closed 3-manifold, with non virtually solvable funda-
mental group, f : M →M is a partially hyperbolic diffeomorphism homotopic to

the identity, and f̃ is a lift of f obtained by lifting a homotopy from the identity
to f . Such a lift of f is called a good lift of f . Notice that a good lift commutes

with every deck transformation of M̃ . We do not assume that f is dynamically
coherent.

We will assume throughout this section that the stable, center, and unstable
bundles are oriented, and that f preserves their orientations. This can be achieved
by taking an iterate of f and lifting to a finite cover of M . We will deal with the
effects of replacing f and M in §7.

With this assumption, Burago-Ivanov’s Theorem 3.4 applies. We denote by
Wcs

bran andWcu
bran their center stable and center unstable branching foliations, and

by W̃cs
bran and by W̃cu

bran the corresponding lifts to M̃ .

4.1. First arguments. In this section, we will see that many of the results about
the foliations from the dynamically coherent case work for branching foliations.
From now on, we always assume that the branching foliations Fbran we consider
are well-approximated by taut foliations Fε.

One of the first things to be careful with is the definition of f -minimality for
a branching foliation. We first define the notion of saturation.

Definition 4.1. Let Fbran be a branching foliation. A set C ⊂ M is Fbran-
saturated if, for every x ∈ C, there is a leaf of Fbran that contains x and is
contained in C.

Note that this is much weaker than asking that every leaf intersecting C is
contained in C. In particular, our notion of saturation has the peculiar property
that the complement of a Wcs

bran-saturated set need not be Wcs
bran-saturated (see

Figure 3). With this in mind, we make the following definition.

Definition 4.2. Let Fbran be an f -invariant branching foliation. Then Fbran is
called f -minimal if the only Fbran-saturated and f -invariant sets in M that are
closed are the empty set or the whole manifold.

We emphasize here that closed in the above definition is meant as a set in M ,
not as a set of leaves.

Remark 4.3. Let C be an Fbran-saturated set in M and C̃ = π−1(C). There are

several, in general distinct, sets of leaves in Lbran, the leaf space of F̃bran, that
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L2

L1

R

Figure 3. L1 and L2 are two leaves in C, but the region R is not
in C. Then, in parts of R, all the center stable leaves intersect
the branch locus between L1 and L2, so have parts in C and parts
not in C (and therefore M \ C is not saturated by center stable
leaves).

one can build from C̃. This stems from the fact that there can be different ways

of saturating a given set by leaves of F̃bran.

More precisely, a saturation of C̃ is a set Sat(C̃) ⊂ Lbran such that, for all

x ∈ C̃, there exists L ∈ Sat(C̃) such that x ∈ L and L ⊂ C. Such a set is not

uniquely defined. However, there is a biggest such set: The full saturation of C̃

is the set FullSat(C̃) ⊂ Lbran defined by, if L ∈ Lbran is such that L ⊂ C, then

L ∈ FullSat(C̃). Note that the image of both Sat(C̃) and FullSat(C̃) in M̃ are

just C̃, since C is Fbran-saturated.
Now, it could happen that a set C is closed in M , but a saturation Sat(C)

would fail to be closed in Lbran (recall that the topology on Lbran is defined in
section 3.1.1). However, one can easily see that the following is true: The set

C is a closed subset of M if and only if FullSat(C̃) is a closed subset of the leaf
space Lbran.

A natural but less immediate result (see Lemma B.1) shows that if a saturation

Sat(C̃) is closed in Lbran and C = M , then Sat(C̃) = Lbran (so in particular, there
is only one closed saturation in that case).

4.1.1. Complementary regions. Let Fbran be a branching foliation (assumed to be
well-approximated by taut foliations) on a manifold M that is not finitely covered

by S2 × S1. Then M̃ ' R3, and each leaf of F̃bran is a properly embedded plane

that separates M̃ into two open balls.

The complementary regions of a leaf L ∈ F̃bran are the two connected compo-

nents of M̃ r L (cf. [BFFP20b, §3.1.1]). For each complementary region U of a
leaf L, the closure U = U ∪ L is called a side of L.

A coorientation of F̃bran (defined as an orientation of the leaf space of F̃bran)

determines, for each leaf L ∈ F̃bran, a positive and a negative complementary
region which we denote by L⊕ and L	. The corresponding sides are denoted by
L+ = L⊕ ∪ L and L− = L	 ∪ L.

To define the region between two leaves, it is best to work in the leaf space

Lbran, with the topology defined in §3.1.1. Let K,L ∈ F̃bran be distinct leaves.
Thinking of these as points in the leaf space, Lbran r {K,L} consists of three
open connected components. Only one of these components accumulates on both
K and L — we call this the open Lbran-region between K and L. Its closure in
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Lbran, which is obtained by adjoining K and L, is called the closed Lbran-region
between K and L.

Note that the subset of M̃ that corresponds to the open Lbran-region between

two leaves may not be open. However, the subset of M̃ that corresponds to the
closed Lbran-region between two leaves is closed. It is also connected, but its
interior may not be. See Figure 4.

V L

KU

W
Figure 4. The interior of the closed region between leaves may
not be connected.

4.1.2. Translation-like behavior. Recall that Fbran is assumed to be well-approximated
by taut foliations. Using this, we immediately obtain the Big Half-Space Lemma
([BFFP20b, Lemma 3.3]).

Lemma 4.4. Let L be a leaf of Fbran. For any R > 0, there exists a ball of
radius R contained in each complementary region of L.

Proof. It suffices to apply [BFFP20b, Lemma 3.3] to a leaf corresponding to L
in the approximating foliation Fε, and deduce that each complementary region
of L contains a ball of radius R− ε for any R. �

The following is the equivalent of [BFFP20b, Proposition 3.5]. The same proof
applies if one considers complementary regions and regions between leaves as

subsets of M̃ and Lbran as appropriate.

Proposition 4.5. Let Fbran be a branching foliation, f : M → M a diffeomor-

phism homotopic to the identity and preserving Fbran, and f̃ be a good lift. If

L ∈ F̃bran is not fixed by f̃ , then

(1) the closed Lbran-region between L and f̃(L) is an interval,

(2) f̃ takes each coorientation at L to the corresponding coorientation at f̃(L),
and

(3) the subset of M corresponding to the closed Lbran-region between L and

f̃(L) is contained in the closed 2R-neighborhood of L, where R = max
y∈M̃ d(y, f̃(y)).

4.1.3. Uniform and R-covered branching foliations. A branching foliation is once
again called R-covered if its leaf space Lbran (see section 3.1.1) is homeomorphic
to R. Since the topology on Lbran can be defined as a quotient of the leaf space of

the approximating foliations F̃ε, the branching foliation is R-covered if and only
if the approximating one is, for ε small enough.

The definition of a uniform foliation applies without any change to branching
foliations. It is immediate to notice that a branching foliation is uniform if and
only if the approximating foliations (see Definition 3.2) are uniform (pairs of
leaves in the universal cover are bounded Hausdorff distance appart).
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4.2. The dichotomy. Using Proposition 4.5 we therefore also obtain the equiv-
alent of [BFFP20b, Proposition 3.7].

Proposition 4.6. Let M be a closed 3-manifold that is not finitely covered by
S2 × S1, f : M →M a homeomorphism homotopic to the identity that preserves

a branching foliation Fbran, and f̃ a good lift.

Then the set Λ ⊂ Lbran of leaves that are fixed by f̃ is closed and π1(M)-
invariant. Moreover, each connected component I of LT̃ \ Λ is an open interval

that f̃ preserves and acts on as a translation, and every pair of leaves in I are a
finite Hausdorff distance apart.

In the above proposition, one has to be mindful again that “open” and “closed”

refer to the topology on the leaf space Lbran, and not the topology on M̃ .
From Proposition 4.6, we deduce as in [BFFP20b, §3] that, if the foliation is

f -minimal, we get a dichotomy:

Corollary 4.7. Let M be a closed 3-manifold that is not finitely covered by
S2 × S1, f : M →M a homeomorphism homotopic to the identity that preserves

a branching foliation Fbran, and f̃ a good lift.
If Fbran is f -minimal, then either

(1) f̃ fixes every leaf of F̃bran, or

(2) Fbran is R-covered and uniform, and f̃ acts as a translation on the leaf

space of F̃bran.

Proof. The proof is the same as that in [BFFP20b]. However, since the distinc-

tions between the topology in the leaf space and that of corresponding sets in M̃
becomes essential, we redo the proof.

Let Λ be the set of leaves that are fixed by f̃ . Since f̃ commutes with deck
transformation, each deck transformation preserves Λ. In particular, if I is a
component of L \Λ and g ∈ π1(M) then one has either g(I) = I or g(I) ∩ I = ∅.

So Λ is invariant under f̃ and deck transformations, saturated by F̃bran and
closed for the topology of Lbran by Proposition 4.6.

Let B̃ be the set of points in M̃ contained in a leaf of Λ and let B = π(B̃).

Since Λ is closed in Lcsb , then B̃ is closed in M̃ and so is B in M . In addition B
is f -invariant. Since Fbran is f -minimal, B is either empty or the whole of M .

If B is empty, then Λ is also empty, so Proposition 4.6 implies that we are in
case (2).

Suppose instead that B = M , so B̃ = M̃ . Then we have to prove that
Λ = Lbran. This follows from the more general Lemma B.1, but the proof in this
case is easy so we give it:

Suppose Λ 6= Lbran. Let I be a connected component of Lbran r Λ. Let J be

the set of points of M̃ contained in a leaf in I. The set I is open (in Lbran) and f̃

translates leaves in I. It follows that the interior in M̃ of J is non-empty. These

points in the interior of J are not contained in B̃. This contradicts B̃ = M̃ . So
Λ = Lbran and we are in case (1). �

From now on, we stop considering general well-approximated branching foli-
ations and general branching foliations-preserving diffeomorphisms. Instead, we
specialize to considering partially hyperbolic diffeomorphisms f : M → M , ho-
motopic to the identity, on a 3-manifold with non virtually solvable fundamental
group and that admits a pair of center stable and center unstable branching
foliations, Wcs and Wcu.
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4.2.1. Fixed points and fixed leaves. The non-existence of fixed points, applies
almost the same as in [BFFP20b] (see also [BW05]) but one needs to have a
stronger assumption.

Lemma 4.8. Let L be a leaf of W̃cs
bran that is fixed by W̃cs

bran. If, for any y ∈ L
there exists a leaf L′ of W̃cs

bran fixed by f̃ and intersecting the unstable leaf of y
in a point different from y, then there are no points in L fixed by any non-trivial

power of f̃ .

Proof. Suppose x was a fixed point of f̃n, with n > 0, on L. Then, the unstable
leaf through x would intersect some other fixed stable leaf in a point distinct from

x, and hence contain another fixed point of f̃n, which is impossible. �

Here we see an essential difference with the dynamically coherent setting: If L

is accumulated by a sequence of leaves Ln fixed by f̃ these sequence may intersect
L at a fixed point for all n. Then, we cannot not exclude the existence of fixed
points in the set L∩ (

⋂
n Ln) with that proof. This will be the main endeavor in

§6.

4.3. Good lifts and fixed points. We just showed that a good lift f̃ cannot

have fixed (or periodic) points under the assumption that all leaves of W̃cs
bran

are fixed. We will now exclude the existence of fixed or periodic points under a
different assumption, namely f -minimality.

Theorem 4.9. Let f be a partially hyperbolic diffeomorphism homotopic to the

identity, and f̃ a good lift. If Wcs
bran or Wcu

bran is f -minimal, then f̃ does not have
any periodic point.

Proof. We do the proof assuming Wcs
bran is the f -minimal foliation. Note first

that it is enough to show that f̃ has no fixed points. Indeed, for any fixed n,

Wcs
bran is also fn-minimal and f̃n is a good lift of fn.

By Corollary 4.7, either f̃ fixes every leaf of W̃cs
bran or it acts as a translation

on Lcsb . If f̃ acts as a translation on Lcsb , then it cannot fix any point of M̃ . This

is because for any leaf L of W̃cs
bran, and |i| big enough f̃ i(L) ∩ L = ∅.

On the other hand, if f̃ fixes every leaves of W̃cs
bran, then Lemma 4.8 implies

that f̃ does not admit fixed points either. �

A noteworthy corollary of the above result is that a partially hyperbolic diffeo-
morphism homotopic to the identity that admits a f -minimal branching foliation
cannot have so-called contractible periodic points.

Definition 4.10. Let g be a homeomorphism of a manifold homotopic to the
identity. A point p is a contractible periodic point of g of period n if gn(p) = p and
there exists H : M× [0, 1] a homotopy from the identity to g, such that the closed
path obtained by concatenation of the paths H(p, ·), H(g(p), ·), . . . ,H(gn−1(p), ·)
is homotopically trivial.

Notice that if p is a contractible periodic point of g of period n then there
exists a good lift g̃ of g and a lift p̃ of p such that g̃n(p̃) = p̃. Thus, Theorem 4.9
immediately yields:

Corollary 4.11. Let f be a partially hyperbolic diffeomorphism on a 3-manifold
that is homotopic to the identity. Suppose that f admits a f -minimal branching
center stable or center unstable foliation. Then f does not admit any contractible
periodic points.
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Notice that this completes the proof of Theorem 1.6 in the f -minimal case. For
the hyperbolic and Seifert case, the proof is the same once the proof of Proposition
6.1 below is completed.

4.4. Fundamental group of leaves of Wcs
bran,Wcu

bran. The leaves of the branch-
ing foliationsWcs

bran andWcu
bran given in Theorem 3.4 are only immersed manifolds.

In particular, they may not be injectively immersed. However, in the universal

cover, any leaf of W̃cs
bran or W̃cu

bran is a properly embedded plane (cf. section 3.1).
Thus, there might exists some closed loops in a leaf C of, say, Wcs

bran such
that no lift L of C is fixed by the element of the fundamental group of M that
represents the loop. This type of elements of the fundamental group of C seen as
a set of M are not useful for our purpose. So, we will remove them by convention:

Convention. Fix a lift L of a leaf C ofWcs
bran (orWcu

bran). An element γ ∈ π1(M)
is said to be in the fundamental group of C if it is in the stabilizer of L.

Notice that the fundamental group is only defined up to conjugation, hence
the reason to fix a lift L of C.

This convention seems to eliminate more than just the closed loops coming
from self-intersections, as any potential closed loops that would be homotopically
trivial in M but not in C, would not be considered.

However, there is another way of seeing our notion of fundamental group arise:
Recall (Theorem 3.4) that the branching foliations are approximated by true
foliations Wcu

ε and Wcs
ε and that there exists maps, hcsε and hcuε mapping leaves

ofWcs
ε (orWcu

ε ) to those ofWcs
bran (orWcu

bran). Then, a loop is in the fundamental
group of a leaf C of Wcs

bran if and only if it is freely homotopic to a loop in a
corresponding leaf Cε of Wcs

ε , for every ε small enough. Notice that if there are
several leaves that project to C, in the universal cover, take a lift L and it follows
from Proposition 3.11 that the set of leaves that projects to L is an interval in

the leaf space of W̃cs
ε . It follows that hcsε lifts to a equivariant (with respect to

the defined fundamental group of C) diffeomorphism from the boundary leaves
of the closed interval to L. We call such a leaf Lε and denote Cε = π(Lε).

In other words, for us, the fundamental group of C based at y will be exactly
(hcsε )∗(π1(Cε, y0)) where hcsε (y0) = y.

In particular, sinceWcs
ε andWcu

ε are taut foliations without Reeb components,
each leaf is π1-injective in M . Thus, this second interpretation helps explain our
convention: the closed loops in a leaf ofWcs

bran are either in the fundamental group
as we defined it, or they are due to a self-intersection. In that case, they are not
an essential feature of the leaf, as they stopped being closed when pulled-back to
the approximating leaf.

Following our convention, we will then say that a leaf C of the branching
foliation is a plane, a cylinder, or a Mobiüs band if its corresponding approximated
leaf Cε is, respectively, a plane, a cylinder, or a Mobiüs band, for any small enough
ε.

Using these conventions, [BFFP20b, Proposition 3.14] holds for the leaves of

the branching foliations whenever f̃ has no fixed points in the leaf (cf. Lemma
4.8). For ease of reference, we restate it here.

Proposition 4.12. Assume that f̃ fixes a leaf L of W̃cs
bran then, C = π(L) has

cyclic fundamental group (thus it is either a plane, an annulus or a Möbius band),

or L has a point fixed by f̃ .

Remark 4.13. Similarly, because of possible self-intersections, we need to be
careful on how to define the path-metric on a leaf of Wcs

bran or Wcu
bran.
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If C is a leaf of, say, Wcs
bran, we define a path on C as a continuous curve η that

is the projection of a continuous curve η̃ in a lift L of C to M̃ . We then define
the path-metric on C as usual, but considering only the paths as defined before.

Notice that not every continuous curve η on C is a path in the above sense, as
there might not exists any lift of η that stays on only one lift of C.

Still the analogous of [BFFP20b, Lemma 3.11] holds:

Lemma 4.14. If f̃ fixes every leaf of W̃cs
bran (resp. W̃cu

bran) then there is K > 0

such that for every L ∈ W̃cs
bran (resp. L ∈ W̃cu

bran) we have that dL(x, f̃(x)) < K.

4.5. Gromov hyperbolicity of leaves. We now prove a version of [BFFP20b,
Lemma 3.20] in the non dynamically coherent setting.

Lemma 4.15. Suppose that f is a partially hyperbolic diffeomorphism in M that

is homotopic to the identity. Let f̃ be a good lift of f to M̃ . Suppose that f̃ fixes

every leaf of W̃cs
bran, and that Wcs

bran is f -minimal.
Then all the leaves of Wcs

bran are Gromov hyperbolic.

Proof. The foliation Wcs
ε is taut. Thus, Candel’s theorem [Can93] asserts that

either all the leaves ofWcs
ε are Gromov hyperbolic or there is a holonomy invariant

transverse measure (of zero Euler characteristic).
Assume for a contradiction that µ is a holonomy invariant transverse measure.
Since Wcs

ε is not f -invariant, we have to adjust the proof given in [BFFP20b].

The transverse measure µ lifts to a measure µ̃ transverse to W̃cs
ε . Thus, µ̃

defines a measure on Lcsε , the leaf space of Wcs
ε .

Let gε,s : Lcsε → Lcsb be the canonical projection between the leaf spaces of Wcs
ε

and Wcs
bran (see section 3.1.1). Let ν̃ := (gε,s)∗ µ̃ be the corresponding measure

on Lcsb . Now ν̃ is f̃ -invariant since f̃ is the identity on Lcsb , and it is also π1(M)-

invariant as µ̃ is. The support of ν̃ in Lcsb is a closed set Z in Lcsb that is f̃ -invariant
and π1(M)-invariant.

The measure ν̃ on Lcsb can also be considered as a measure on the set of

transversals to W̃cs
bran in M̃ : For any transversal τ to W̃cs

bran in M̃ , we define ν̃(τ)
as the ν̃-measure of the set of leaves in Lcsb that intersects τ . Notice that the

measure of a point in M̃ (which can be thought of as a degenerate transversal)
can be positive if the image of that point in Lcsb is an interval.

Note also that we refrained from calling ν̃ a transverse measure to W̃cs
bran be-

cause it is by no means holonomy invariant. In fact holonomy itself is not well
defined for a branching foliation. Still ν̃ satisfies the property that if τ1, τ2 are
transversals and every leaf intersecting τ1, also intersects τ2, then ν̃(τ1) ≤ ν̃(τ2).

Projecting down toM ,the measure ν̃ induces a measure ν on the set of transver-
sals to Wcs

bran on M .

Let τ be any unstable segment in M . Since f̃ fixes every leaf of W̃cs
bran, the

measure of f i(τ) (= ν(f i(τ))) is equal to ν(τ) for any integer i. We can choose i
very big and negative so that the length of f i(τ) is extremely small. Therefore it
is contained in a small foliated box ofWcs

bran, which is the projection of a compact
foliated box of Wcs

ε . It follows that ν(τ) is uniformly bounded. In particular this
implies that the ν-measure of any unstable leaf in M is bounded above. In turns,
it implies that for any j > 0 (assumed big enough), there is an unstable segment
uj of length > j which has ν(uj) measure < 1/j. Taking the midpoint of these
segments and a converging subsequence, we obtain a full unstable leaf, call it ζ,
so that ζ has ν(ζ) = 0 (since ν(ζ) < 1/j for all big enough j).
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Let Y be the union of the leaves of Wcs
bran that do not intersect ζ or any of its

iterates by f . Then Y is a closed subset of M and clearly f -invariant. Let L be

a leaf in W̃cs
bran which is in Z, the support of ν̃. Then by definition of support of

ν̃, it follows that π(L) cannot intersect ζ or any of its iterates by f . Hence π(L)
is in Y . In particular Y is not empty. This contradicts the fact that Wcs

bran is
f -minimal, and hence cannot happen.

This finishes the proof of the lemma. �

4.6. Perfect fits in branching foliations. An essential tool for us has been
the use of perfect fits between center leaves and stable (or unstable) leaves inside
a center stable (resp. center unstable) leaf. Despite having branching foliations,
the definitions of a CS-perfect fits, SC-perfect fits and perfect fits (cf [BFFP20b,
§4.1]) remains literally the same. However it is useful to add one precision on
how to define what it means to be “on one side of c” when c is a center leaf
that may have branching loci for the definition of CS-perfect fit. The definition
of SC-perfect fit does not even need this (because the stable foliation is a true
foliation, not a branching one).

Definition 4.16. Let c be a center and s a stable leaf in a center stable leaf L.
We denote by Cs the connected component of Lr c that contains s.
The leaves c and s makes a CS-perfect fit if there exists τ an open transversal

to the center foliation in L that intersects c and such that, for any center leaf c′,
if c′ intersects τ and c′ intersects Cs, then c′ intersects s.

Notice that the condition in the definition needs to apply to any c′ that in-
tersects the transversal τ . In particular, it needs to apply to any c′ such that
c′ ∩ τ = c∩ τ , i.e., any center leaf that branches away from c after its intersection
with the transversal τ .

One can also see the definition of a perfect fit at the leaf space level: Let s
be a stable leaf in L. The leaf s determines a set Is in LcL, the leaf space of the
center branching foliation on L (see section 3.1.2), by considering all the center
leaves that intersect s. That is, c′ ∈ Is if and only if c′ ∩ s 6= ∅. Then c and s
makes a CS-perfect fit if and only if c ∈ ∂Is.

[BFFP20b, Lemma 4.2] and its proof stays valid as written because the stable
foliation is a true foliation. One can also show that if s and c make a SC-perfect
fit, then there exists c0 that makes a perfect fit with s but one needs to modify
the proof by going to the leaf space level.

5. Fixed center or coarse contraction

This section deals with one of the central difficulties in the non-dynamically
coherent setting.

In [BFFP20b, Proposition 4.4] we gave a condition for the existence of center

leaves that are fixed by a good lift f̃ . But the proof of that result does not apply
in the non dynamically coherent setting (see [BFFP20b, Remark 4.8]).

The next proposition will instead give a consequence to the non-existence of

central leaves fixed by f̃ . First, we need a definition.

Definition 5.1. A fixed center leaf c of a partially hyperbolic diffeomorphism
f : M →M is called coarsely contracting if c is homeomorphic to the line, and it
contains an non-empty maximal compact interval I such that:

(1) I contains every fixed point of the restriction of f to c;

(2) For any compact interval J of c such that I ⊂ J̊ , we have f(J) ⊂ J̊ .
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A fixed center leaf c of f is called coarsely expanding if c is coarsely contracting
for f−1.

We also naturally extend the definition of coarsely expanding to leaves that
are just periodic under f .

Proposition 5.2. Let f : M →M be a partially hyperbolic diffeomorphism. Let

f̃ : M̃ → M̃ be a good lift of f . Suppose that Wcs
bran is f -minimal, that all the

leaves of W̃cs
bran are fixed by f̃ , and that f̃ does not fix any center leaf in M̃ .

If c is a periodic center leaf of f in M , then c is coarsely contracting. In
particular, c contains a periodic point of f .

Remark 5.3. If f̃ as above fixes every leaf of W̃cu
bran instead of W̃cs

bran, the con-
clusion of the proposition gives a periodic center leaf that is coarsely expanding
instead.

We start with a preliminary result.

Lemma 5.4. Assume that every leaf of W̃cs
bran is fixed by f̃ and that f̃ does not

fix any center leaf. Then the same holds for f̃n, for every n 6= 0.

Proof. Suppose that there is n > 0 and c0 a center leaf in a center stable leaf L

such that f̃n(c0) = c0.
The standing assumption in section 4 is that all bundles are oriented and that

f preserves their orientations, in particular, f̃ preserves the transverse orientation
to the center and stable foliations on L.

Let Ac be the axis of the action of f̃ on the center leaf space in L.

Since f̃n(c0) = c0, the leaf c0 is not in the axis Ac. Thus, either c0 ∈ ∂Ac, or
there exists a unique center leaf c1 ∈ ∂Ac that separates c0 from Ac, in which

case we must have f̃n(c1) = c1.
Hence, up to renaming c0, we assume that c0 ∈ ∂Ac.
Now, according to [Bar98, Proposition 2.15], the boundary ∂Ac splits into

three disjoint sets: the center leaves c such that c and f̃(c) are non separated

positively, the leaves c such that c and f̃(c) are non separated negatively, and the

leaves that are non separated with a leaf in Ac. Since c0 is fixed by f̃n, it cannot

be a leaf of the third type. Thus, c0 and f̃(c0) are non separated.
Hence, there exists a unique stable leaf s0 that makes a perfect fit with c0 and

separates c0 from f̃(c0) (see section 4.6). This stable leaf is then fixed by f̃n, and

thus admits a fixed point x of f̃n. Therefore, there exists a center leaf c1 through

x that is fixed by f̃n (thanks to Lemma 3.14), and, in case there are several such
leaves, we may chose the one that is in ∂Ac.

Again using the description of ∂Ac, the leaf c1 is non separated from f̃(c1).
Then again, there exists a unique stable leaf s1 making a perfect fit with c1 and

that separates c1 and f̃(c1). Therefore, f̃n(s1) = s1 and there exists a unique

fixed point y ∈ s1 of f̃n.
But, any center leaf c close enough to c1 (and on the correct side of c1) will

intersect both s0 and s1, separate x from y and be attracted to both x and y

under f̃n, which is impossible.

Therefore f̃n also acts freely on the center leaf space for all n > 0. �

In order to obtain coarsely contracting center leaves we will use the following
tool.
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Proposition 5.5. Let f : M → M be a partially hyperbolic diffeomorphism ho-

motopic to the identity. Let f̃ be a good lift of f to M̃ . Suppose that f̃ fixes

each leaf of the branching foliation W̃cs
bran. Let L be a center stable leaf fixed by

γ ∈ π1(M) r {Id}.
Assume that there exists a properly embedded C1-curve, η̂, in L that is trans-

verse to the stable foliation and fixed by both γ and f̃ .
Then,

• If f̃ does not act freely on the center leaf space of L, then there is a center

leaf in L fixed by both f̃ and γ.

• If f̃ acts freely on the center leaf space of L, then every f periodic center
leaf in π(L) is coarsely contracting.

Notice that in the first case, the center leaf projects to an f -invariant closed
center leaf.

Remark also that the hypothesis of Proposition 5.5 are implied by the conclu-
sion of the Graph Transform Lemma [BFFP20b, Appendix H].

We will need to apply the following result from [BFFP20b] whose proof works
equally well in the non dynamically coherent case:

Lemma 5.6 (Lemma 4.15 in [BFFP20b]). Let c be a center leaf in a center

stable leaf L ⊂ M̃ . Suppose that L is Gromov-hyperbolic, and fixed by f̃ and
some nontrivial γ ∈ π1(M). Moreover, assume that there exist two stable leaves
s1, s2 on L such that:

(1) The center leaf c is in the region between s1 and s2;
(2) The leaves s1 and s2 are a bounded Hausdorff distance apart;

(3) The leaves c, s1 and s2 are all fixed by h = γn ◦ f̃m, m 6= 0.

Then, there exists a compact segment I ⊂ c, such that h (if m > 0) or h−1 (if

m < 0) acts as a contraction on cr I̊.

Proof of Proposition 5.5. Since f̃ fixes every leaf of Wcs
bran, Lemma 4.8 implies

that f̃ has no fixed points in M̃ . Therefore, f̃ acts freely on the stable leaf space
(recall that the stable foliation is a true, non branching foliation, so its leaf space
is defined as usual with the quotient topology).

Let S be the stable saturation of the curve η̂. Let α = π(η̂). The curve α is
closed, f -invariant, and tangent to the center bundle.

Case 1 - We start by assuming that f̃ fixes a center leaf c in L.
Suppose that c and η̂ do not intersect a common stable leaf. Then c does not

intersect the set S and there is a unique stable leaf s contained in the boundary

of S such that s separates S from c. Since both S and c are f̃ -invariant, so is s.

But then f̃ must admit a fixed point in s, contradiction6.
Therefore there is a stable leaf s intersecting c in y and η̂ in x. Iterating

forward by f̃ , we deduce that d(f̃n(y), f̃n(x)) converges to zero as y and x are in

the same stable leaf. Since both c and η̂ are f̃ -invariant, it implies that π(c) and
α = π(η̂) are asymptotic. As α is closed and π(c) is a center leaf, we deduce that
α is also a center leaf. Hence η̂ is the required center leaf of the first option of
the proposition.

Case 2 - Assume now that f̃ acts freely on the center leaf space of L.

6Note the distinction of c being fixed by f̃ as opposed to π(c) periodic under f . It is the first

property which creates a fixed point of f̃ and a contradiction.
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According to Lemma 5.4, f̃n also acts freely on the center leaf space of L for
any n 6= 0.

We need to prove now that every center leaf in π(L) that is periodic must be
coarsely contracting.

Let then c be a center leaf in L such that π(c) = e is periodic under f , say of

period m. Then, for some γ1 ∈ π1(M) r {Id}, we have c = γ1f̃
m(c). (Note that

one can show under our current assumptions that π(L) projects to an annulus,
so γ and γ1 are both powers of a particular deck transformation, but we do not
need that fact for the proof). Let

h := γ1 ◦ f̃m.

We now want to show that either c intersect η̂, or there exists another center
leaf, also fixed by h, that does.

Notice that, if c and η̂ intersect a common stable leaf, then c must intersect η̂.
Indeed, both c and η̂ are invariant by h, which contracts the stable length.

Suppose for an instant that c does not intersect η̂, and thus does not intersect
S. Then, there exists a unique stable leaf s in ∂S that separates η̂ from c. That
leaf s must then be invariant by h, so admits a fixed point for h. Then at least
one center leaf, say c1, through that fixed point must be fixed by h. Since c1

intersects S and is invariant by h, it must intersect η̂.
Thus in any case, we have a center leaf c1 that intersects η̂, is invariant by h,

and, by the above argument has both ends that escapes compacts sets of L.
Let I be the projection of c1 onto η̂ along stable leaves.
Suppose first that I is unbounded. Then, considering iterates by fm, we deduce

that π(c1) must be asymptotic to π(η̂), so η̂ must be a center leaf, which is not

allowed, since f̃ is assumed to act freely on center leaves.
So I is bounded in η̂. Let s1 and s2 be the stable leaves through the two

endpoints of the interval I. Since I is fixed by h, so are s1 and s2. Moreover, the
center leaf c1, as well as c if it is different from c1, is in between s1 and s2.

Now, f̃ acts as a translation on η̂, so there exists k ∈ Z such that s2 separates

s1 from f̃k(s1). By Lemma 4.14, s1 and f̃k(s1) are a bounded Hausdorff distance
apart. Thus s1 and s2 are a bounded Hausdorff distance apart. So c satisfies all
the conditions for Lemma 5.6 to hold, thus it is coarsely expanding.

This finishes the proof of Proposition 5.5. �

Now we are ready to prove the main result of this section:

Proof of Proposition 5.2. Let e be a center leaf periodic under f of period m > 0.

Let c be a lift of e to M̃ . Call L a leaf of W̃cs
bran that contains c. Then f̃m(c)

projects to the same center leaf in M as c does, so there exists γ′ ∈ π1(M) with

γ′(f̃m(c)) = c. Clearly γ′ is in the stabilizer of L, because f̃ leaves invariant

every leaf of W̃cs
bran. Moreover, as f̃m also acts freely on the center leaf space

(cf. Lemma 5.4), γ′ is not the identity.

Since f̃ does not have any fixed points, Proposition 4.12 implies that the sta-

bilizer of L in M̃ is infinite cyclic. Thus, there exists γ ∈ π1(M) \ {id} such that

γn ◦ f̃m(c) = c for some n ∈ Z, n 6= 0, and such that γ generates the stabilizer of
L. We call

h := γn ◦ f̃m.
Notice that h is still a partially hyperbolic diffeomorphism and has bounded
derivatives.
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Since f̃ acts freely on LcL, the center leaf space in L, then it also acts freely on
LsL the leaf space of the stable foliation on L.

Let As be the axis for the action of f̃ on the stable leaf space LsL. No stable

leaf in M can be closed, so γ acts freely on LsL. Moreover, as γ and f̃ commute,
As is also the axis for the action of γ on LsL, the stable leaf space of L. As always
As can be a line or a countable union of intervals.

Suppose first that As is a line. Let s be a stable leaf in As and p in s. Then p
and γp can be connected by a transversal to the stable foliation, chosen so that
the projection to π(L) is a smooth simple closed curve. Let η be the union of
the γ iterates of this segment. Then η satisfies the properties in the hypothesis
of Proposition 5.5, which implies the result we sought.

So from now on we assume that the axis is a countable union of intervals, and
we write

As =
⋃
i∈Z

[s−i , s
+
i ] =

⋃
i∈Z

Ti.

Our first claim is that there exists s ∈ As, fixed by h, such that the center leaf
c is between γ−1s and γs.

Suppose that c intersects some stable leaf s′ in As, then s′ is in a unique Ti for
some i (the center leaf c cannot intersect two different intervals otherwise c would
intersect two non-separated leaves, which is impossible). Then, since h fixes c,
it also fixes the axis As and preserves the transverse orientation. It follows that
h(Tj) = Tj for all j. In this case we set s = s+

i . The leaf s is fixed by h and
there exists k 6= 0 such that γ±1Ti = Ti±k. Thus Ti is in between γ−1s and γs
and hence, so is c. Recall here that h preserves orientation.

Now, suppose instead that c does not intersect As. Hence, there is a unique
i such that s+

i−1 ∪ s
−
i separates c from all other stable leaves in As. We again

set s := s+
i . As before, since h fixes both c and As, and preserves the transverse

orientation, it must fix s also. The same argument as above also shows that c is
between γ−1s and γs.

So in any case, we obtained a stable leaf s (chosen as a positive endpoint of
one of the closed intervals Ti), fixed by h, and such that c is between γ−1s and
γs. Notice that both γs and γ−1s are also fixed by h.

The leaf γ−1s is between γs and f̃2m(γs) = γ−2n+1s (assuming n ≥ 1, oth-
erwise between γs and f−2m(γs)). Hence the Hausdorff distance between γ−1s
and γs is bounded above by a uniform constant C > 0, depending only on f and
m.

Thus we obtained that the fixed center leaf c, fixed by h, is in between two
stable leaves, γs and γ−1s, also fixed by h and a bounded Hausdorff distance
apart. Moreover, the leaves of Wcs

bran are Gromov-hyperbolic by Lemma 4.15.
These are all the conditions needed to apply Lemma 5.6, which states that c is
coarsely contracting for h. �

Remark 5.7. Notice that neither Proposition 5.2 nor 5.5 proves that there is a
periodic center leaf. We prove this in the next result. While it is very easy to
produce periodic center leaves in the dynamically coherent situation, in the next
result we consider the non dynamically coherent situation, and also we produce a
periodic center leaf in the projection π(L) of the center stable leaf L in question.
This is much stronger than obtaining a generic periodic center leaf, which a priori
could be in any center stable leaf.
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Proposition 5.8. Let f : M → M be a partially hyperbolic diffeomorphism ho-

motopic to the identity and let f̃ be a good lift to M̃ . Suppose that f̃ fixes ev-

ery leaf of the branching foliation W̃cs
bran. Let L be a center stable leaf fixed by

γ ∈ π1(M) r {Id}. Then there is an f -periodic center leaf in π(L).

Proof. First notice that if one can prove the above result for a finite cover of
M and a finite power of f , then the same result directly follows for the original
map and manifold. Thus, we may assume that M is orientable, f is orientation-
preserving, and the branching foliations are both transversely orientable.

Given these assumptions, L projects to an annulus in M . Let γ be a generator
of the stabilizer of L.

If f̃ fixes a center leaf in L, then it would project to a center leaf fixed by f ,

proving the claim. So we assume that f̃ acts freely on the center leaf space in L.

This implies that f̃ also acts freely on the stable foliation in L, and we can thus

consider the stable axis of f̃ .

Suppose first that the stable axis of f̃ is a countable union of intervals
⋃
i∈Z Ii.

Since γ also acts freely on the stable leaves, and commutes with f̃ , they have the
same axis. Since the axis is a countable collection of intervals, there must exists

a pair of integers n,m such that h := γnf̃m fixes one of the intervals, and hence,
a stable leaf. If m = 0, then γn has a fixed stable leaf, which is impossible. So
m 6= 0, and the stable leaf projects to a periodic stable leaf in M . This periodic
stable leaf thus contain a periodic point, and at least one center leaf through that
point is then periodic. So the proposition is proved in that case.

Suppose now that the stable axis (of γ or f̃) is a line. Then the assumptions
of the Graph Transform Lemma [BFFP20b, Appendix H] are verified. So there

exists a properly embedded curve η̂ in L which is invariant under f̃ and γ. Then
[BFFP20b, Lemma H.3] applies and give a periodic center leaf, as claimed.

�

6. Minimality for Seifert and hyperbolic manifolds

The goal of this section is to show that when M is hyperbolic or Seifert, then if

there are fixed leaves of W̃cs
bran for f̃ , then every leaf is fixed. In the dynamically

coherent case this was obtained in [BFFP20b, Proposition 3.15] but here we face
substancial new difficulties. This will be a consequence of the following:

Proposition 6.1. Suppose that M is hyperbolic or Seifert. Suppose that f̃ fixes

one leaf of W̃cs
bran. Then Wcs

bran is f -minimal (and therefore every leaf of W̃cs
bran is

fixed by f̃). The same statement holds for Wcu
bran. In addition, every leaf of Wcs

ε ,
Wcu
ε , Wcs

bran and Wcu
bran is either a plane or an annulus.

The main issue to extend the proof of [BFFP20b] to the non dynamically
coherent context is that here we cannot ensure the non-existence of fixed points

of f̃ since Lemma 4.8 does not exclude fixed points when the branching foliation
is not f -minimal.

We first need a definition. So far, we only defined f -minimality for the whole
foliations, but we can extend naturally the definition to a foliated subset: We say
that a subset Λ of M , saturated by Wcs

bran (or Wcu
bran) is f -minimal if it is closed,

non-empty, and invariant by f , and such that no proper saturated subset of Λ
verifies all these conditions.

Using this definition, we prove a lemma that holds without assuming M to be
hyperbolic or Seifert.
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Lemma 6.2. Let f̃ be a good lift of f to M̃ . Suppose that Λ is a non empty

f -minimal set of Wcs
bran, such that every leaf L of Λ̃ = π−1(Λ) is fixed by f̃ . Then

there are no fixed points of f̃ in a leaf of Λ̃.

Proof. During the proof of this lemma, we will use the expansion of stable length

by f̃−1 a lot. To lighten the notation, we set g := f̃−1.

Suppose for a contradiction that there is a fixed point x0 of f̃ in a leaf L0 of

Λ̃. This projects to a fixed point y = π(x0) in M . Notice that if a leaf L of Λ̃

intersects u(x0) then, since both are f̃ -invariant, it follows that the intersection
of L and u(x0) has to be x0.

We start with the following

Claim 6.3. There exists b > 0 such that any point in a leaf of Λ̃ is at distance

at most b (for the path metric on the leaf) from a fixed point of f̃ .

Proof. Indeed, suppose this was not the case. Then, for any b > 0, there exists a

disk of radius b in a leaf of Λ̃ that does not contain any fixed point of f̃ . Taking
b→ +∞, up to deck transformations and considering a subsequence, these disks

converge to a full leaf L1 of W̃cs
bran in Λ̃. Here the convergence is with respect to

the topology of the center stable leaf space, which also implies convergence as a

set of M̃ . The leaf L1 does not contain any fixed point of f̃ , because otherwise,

since all leaves of Λ̃ are fixed by f̃ , one would have some fixed points in the disks
accumulating onto L1.

Now consider Λ′, the closure in M of the leaf A = π(L1). Since Λ is closed,
the set Λ′ must be a (closed) subset of Λ, foliated by Wcs

bran. Moreover, by the
previous remark, neither the leaf L1 nor its translates by deck transformations
can intersect u(x0) as they do not have fixed points. It follows that π(x0) /∈ Λ′

contradicting f -minimality of Λ. �

According7 to Lemma 4.14 there is a constant K0 > 0 such that, for any z ∈ L0,
we have

dL0(z, f̃(z)) ≤ K0,

where dL denotes the path-metric on L0.

The rest of the proof will consist in proving that the fact that f̃ moves points
a bounded distance in L0 contradicts the exponential contraction of length along

the stable leaf s(x0) of the fixed point x0 of f̃ in L0. We will do that by building

large metric balls with no fixed points of f̃ , in contradiction with Claim 6.3.
In order to obtain these fixed-point free sets, we will use compact simply con-

nected domains such that their boundary is the union of a segment along the
stable leaf s(x0) and a geodesic segment in L0. We will start by proving three
claims about these domains. For that purpose, we introduce the following nota-
tions: given any y1, y2 ∈ s(x0), we write

• [y1, y2]s is the closed segment along the stable leaf s(x0) between y1 and
y2,
• [y1, y2]L0 is the geodesic segment between them (for the path metric on
L0).

Before moving on to the claims, notice also that, since the stable foliation is a
true foliation, there exists δ, η > 0 such that points in a same stable leaf that are
at distance less than δ in the path-metric of L0, must be at distance less than η

7It is not hard to see that the proof applies to the fixed sublamination.
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along the stable arc. Two consequences of this fact that will be used repeatedly
are:

• points that are far enough away along s(x0) must be at distance greater
than δ in L0, and
• the volume of a δ/2-tubular neighborhood of a stable segment [y1, y2]s

must go to infinity with the length of [y1, y2]s.

Thus there exists domains bounded by stable segments [y1, y2]s and geodesics
[y1, y2]L0 with arbitrarily large diameter. These domains with large diameters
are the subject of the next three claims.

For y1, y2 ∈ s(x0) we denote by Dy1,y2 any of the closed topological disks
bounded bounded by arcs in [y1, y2]s and [y1, y2]L0 . As mentioned before, there
are disks Dy1,y2 of arbitrarily large diameter if y1 is far from y2 in s(x0). Given
C > 0, we let VC be the open tubular neighborhood of [y1, y2]L0 .

Claim 6.4. Let D′ = Dy1,y2 for y1, y2 ∈ s(x0). Suppose that the length of
[y1, y2]L0 is bounded above by d. Then there exists a positive integer i, with
i ≤ d/δ, such that either:

(i) D′ ⊂ gi(D′), or,
(ii) gi (D′ r VC) ∩ (D′ r VC) = ∅,

where C = K0d/δ and g = f̃−1.

Proof. We assume first that the statement is not vacuously true, i.e., that D′rVC
is not empty.

For simplicity, we will only consider positive i. For any such i, let Ci := iK0.
Assume that there is i such that gi (D′ r VCi) ∩ (D′ r VCi) 6= ∅.
Then, in particular, gi(D′) and D′ intersect. Hence, either gi(D′), or g−i(D′),

is contained in D′, or the boundaries must intersect.
First, notice that gi(D′) cannot be entirely contained in D′. If that was the

case, then, for all n > 0, we would have gni(D′) ⊂ D′. But, as powers of gi

increase the length of the stable segment [y1, y2]s, and these images would have
to stay in the compact D′, we would get an accumulation point for s(x0) which
is impossible.

Thus, either D′ ⊂ gi(D′), or the boundaries of gi(D′) and D′ must intersect.
Suppose for the moment that the boundaries intersect. Since gi (D′ r VCi) ∩

(D′ r VCi) 6= ∅, it implies that there exists xi1 ∈ gi(∂D′) ∩ (D′ r VCi). See
Figure 5. Moreover, gi([y1, y2]L0) is in the tubular neighborhood of [y1, y2]L0 of
radius at most Ci = iK0. So xi1 ∈ gi([y1, y2]s) ⊂ s(x0).

Since no ray of s(x0) can stay inD′ nor can self-intersect, there exists two points
zi1, z

i
2 ∈ s(x0)∩ [y1, y2]L0 that we can choose in such a way that y2 ≤ zi1 < xi1 < zi2

(for the order on s(x0) given by an orientation). Since dL0(xi1, z
i
2) ≥ Ci = iK0,

the distance between zi2 and both y1 and y2 must be greater than δ (if necessary,
we take K0 bigger so that K0 > η, then the stable length between zi2 and y2 is
greater than η, and thus their distance in L0 is greater than δ).

So suppose that there exists n such that, D′ 6⊂ gi(D′) for all 1 ≤ i ≤ n, and
all the sets g1 (D′ r VCn) , . . . , gn (D′ r VCn) intersects D′ r VCn , then we obtain
n points z1

2 , . . . , z
n
2 on [y1, y2]L0 , so that zn1 , . . . , z

n
2 , y1, y2 are pairwise at least δ

apart from each other. But the diameter of [y1, y2]s is at most d, so there is a
maximum of d/δ−1 such points. Hence n ≤ d/δ−1, which proves the claim. �

Our next goal is going to be to eliminate possibility (i) in Claim 6.4, at least
for the topological disks with large diameters.
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D′

gi(D′)

Figure 5. What happens when neither (i) nor (ii) is verified for
a given i.

Claim 6.5. Let D′ = Dy1,y2 for y1, y2 ∈ s(x0). Suppose that there exists a
positive integer i such that D′ ⊂ gi(D′). If there exists u ∈ [y1, y2]s such that

d(u, [y1, y2]L0) ≥ 10b+ 3iK0

(
10b

δ
+ 1

)
,

then there exists a ball of radius 2b that does not contain any fixed point of f̃ .

Proof. Since D′ ⊂ gi(D′), where g = f̃−1, the set S = ∪n∈Ngin(D′)rD′ does not
contain any fixed points. We will prove that S contains a ball of radius 2b.

Let n be an integer such that 10b/δ ≤ n ≤ 10b/δ + 1. Consider the subset S0

of S defined by

S0 =

2n⋃
k=1

gik(D′) rD′.

Let c be a path starting at gni(u). In order for c to escape S0, either c must
intersect gki([y1, y2]L0) for some 0 ≤ k ≤ 2n, or c must intersects gki([y1, y2]s) for
all 0 ≤ k ≤ n− 1 or all n+ 1 ≤ k ≤ 2n.

If c intersects gki([y1, y2]L0), then its length is bounded below by

dL0

(
gni(u), gki([y1, y2]L0)

)
≥ dL0 (u, [y1, y2]L0)− (n+ k)iK0

≥ dL0 (u, [y1, y2]L0)− 3iK0

(
10b

δ
+ 1

)
≥ 10b.

On the other hand, since the stable segments gki([y1, y2]s), 0 ≤ k ≤ n must
be at least δ apart, if c intersects gki([y1, y2]s) for all 0 ≤ k ≤ n − 1 or all
n+ 1 ≤ k ≤ 2n, then the length of c is bounded below by nδ ≥ 10b.

So in either case, the length of c is greater than 10b. Thus the ball of radius
2b centered at gni(u) is contained in S0, which does not contain any fixed points

of f̃ . �

As a consequence, we obtain

Claim 6.6. Let D′ = Dy1,y2 with y1, y2 ∈ s(x0). Let d be the length of [y1, y2]L0.
Suppose that there exists u ∈ [y1, y2]s ∩ ∂D′ such that

d(u, [y1, y2]L0) ≥ 10b+ 3K0
d

δ

(
10b

δ
+ 1

)
.
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Then there exists i, with i ≤ d/δ, such that gi (D′ r VC) ∩ (D′ r VC) = ∅, where
VC is the tubular neighborhood of the geodesic segment [y1, y2]L0 of radius C =

K0d/δ and g = f̃−1.

In particular, D′ r VC contains no fixed points of f̃ .

Proof. Since the conclusion of Claim 6.5 is in contradiction with Claim 6.3, it
implies that only possibility (ii) in Claim 6.4 can arise for disks that have a large
enough diameter. Our claim is just a reformulation of this. �

Now that we proved Claim 6.6, we can finish our proof of Lemma 6.2.
Since g expands exponentially the stable lengths, we can pick z ∈ s(x0) such

that the length of [z, g(z)]s is arbitrarily large as needed. In particular the set
L0 r ([z, g(z)]s ∪ [z, g(z)]L0) contains at least one bounded connected component
of arbitrarily large diameter. This is because the geodesic segment [z, g(z)]L0 has
length bounded by K0, whereas the length of [z, g(z)]s, and therefore the volume
of its δ/2-tubular neighborhood, are arbitrarily large.

Hence, picking z far enough in s(x0), we can assure that there exists y1, y2 ∈
s(x0) such that [y1, y2]s ⊂ [z, g(z)]s, [y1, y2]L0 ⊂ [z, g(z)]L0 , and such that there
is a topological disk D = Dy1,y2 bounded by [y1, y2]s and [y1, y2]L0 that satisfies
to the assumptions of Claim 6.6. We fix such a z ∈ s(x0) and a corresponding D.

Let i0 be the positive integer given by Claim 6.6 applied to D. Notice that the
length of [y1, y2]L0 is less than K0, so i0 ≤ K0/δ.

Let w be a point in [y1, y2]s that is farthest from z. Consider the closed
domain R bounded by the geodesics [w, gi0(w)]L0 and [y2, g

i0(y1)]L0 , and the
stable segments [w, y2]s and [gi0(y1), gi0(w)]s (see Figure 6). To be precise, R is
obtained as the closure of the union of all the bounded connected components of
L0 minus the four curves.

z = y1 y2

g(z)

w

g(w)

Dy1,y2

Figure 6. A depiction of case (ii) in Claim 6.4.

Notice that the distance between [w, gi0(w)]L0 and [y2, g
i0(y1)]L0 is as large as

we want, because gi0 moves points a uniform bounded distance away (at most
i0K0, so at most K2

0/δ), whereas the distance between w and [z, g(z)]L0 is as
large as we want.
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Now, if necessary, we modify our choice of the original z ∈ s(x0) so that the
diameter of D is even larger in order to have a point x ∈ R such that

min
{
d
(
x, [w, gi0(w)]L0

)
, d
(
x, [y1, g

i0(y2)]L0

)}
≥ 10b+ C +

(
1 +

4b

δ

)
K2

0

δ
.

Let RC := R r VC , where VC is the union of the tubular neighborhoods of

[w, gi0(w)]L0 and [y1, g
i0(y2)]L0 of radius C = 10b+ 3

K2
0
δ

(
10b
δ + 1

)
.

By construction, R can be covered by topological disks that are bounded by
parts of the stable leaf s(x0) and parts of either [w, gi0(w)]L0 or [y1, g

i0(y2)]L0 .
Moreover, the distance between [w, gi0(w)]L0 and [y1, g

i0(y2)]L0 can be made ar-
bitrarily large by choosing z further in s(x0) if necessary. Hence, RC is not empty
and, since C is chosen big enough, any such topological disk that intersect RC
will automatically satisfy the hypothesis of Claim 6.6.

Hence, f̃ admits no fixed points in RC . Similarly, writing DC for the disk D

minus the C-tubular neighborhood of [y1, y2]L0 , we know that f̃ admits no fixed
points in DC .

Now we consider WC to be the union RC ∪DC minus the C-tubular neighbor-

hood of [w, gi0(w)]L0 . The set WC does not contain any fixed points of f̃ either.
Hence, the set S = ∪n∈Zgni0 (WC) is also fixed-point free.

Moreover, the boundary of the set DC ∩WC contains two disjoint sides made
of subsegments of the stable segment [y1, y2]s (see Figure 6), and the distance be-
tween these two sides must be greater than δ (because the two sides are far enough
apart in the stable leaf s(x0)). Furthermore, since g increases the stable length,
for any n ≥ 0, the distance in L0 between the two stable sides of gni0 (DC ∩Wc)
must also be greater than δ (having two distinct and far enough apart stable side
is the reason we introduced WC instead of just considering RC ∪DC).

The proof of Lemma 6.2 then follows from the next claim, which directly
contradicts Claim 6.3.

Claim 6.7. There is a ball of radius 2b in the set S = ∪n∈Zgni0 (WC).

Proof. Let n0 be such that 2b/δ − 1 < n0 ≤ 2b/δ. We will build a ball of radius
2b inside the subset S0 of S defined by

S0 = ∪2n0+1
k=0 gki0 (WC) .

Let x be a point in R such that

min
{
d
(
x, [w, gi0(w)]L0

)
, d
(
x, [y1, g

i0(y2)]L0

)}
≥ 10b+ C +

(
1 +

4b

δ

)
K2

0

δ
.

Then x ∈ RC , so gn0(x) ∈ S0. We will show that the ball of radius 2b around
gn0i0(x) is in S0.

Let c be a geodesic ray starting at gn0(x). In order for c to exit S0, it needs to
intersect a boundary component of S0. Now, by construction, the boundary of S0

is composed of a stable segment Is1 in ∂DC , a stable segment Is2 in ∂g(2n0+1)i0(RC)

(in fact Is2 = g(2n0+2)i0(Is1) but we do not need that), and the images by powers
of gi0 of two curves γ1 and γ2, which are curves at distance C from, respectively,
[y1, y2]L0 ∪ [y2, g

i0(y1)]L0 and [w, gi0(w)]L0 .
In the rest of the argument, the difference between γ1 and γ2 is irrelevant, so

we will just write γ to refer to either of them.
Thus, for c to exit S, it needs to either intersect Is1 , Is2 or gni0(γ) for some

0 ≤ n ≤ 2n0 + 1.
Suppose first that c exits through Is1 . Then it needs to have crossed the domains

WC∩DC , g
i0(WC∩DC), . . . , gn0i0(WC∩DC). Here by cross we mean intersecting
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the two stable sides. Now, as we noticed earlier the distance between the two
stable sides of gki0(WC ∩ DC) is greater than δ for any k ≥ 0. Thus, if c exits
through Is1 , its length needs to be at least (n0 +1)δ, which is strictly greater than
2b by our choice of n0.

Similarly, if c exits through Is2 . Then it needs to have crossed the domains

g(n0+1)i0 (WC ∩DC) , . . . , g(2n0+1)i0(WC ∩ DC), in which case, again, the length
of c is greater than (n0 + 1)δ > 2b.

Finally, suppose that c exits through a gki0(γ) for some 0 ≤ k ≤ 2n0 +1. Then,
in order to prove our claim, all we have to do is to show that the distance between
gn0i0(x) and gki0(γ) is larger than 2b for all 0 ≤ k ≤ 1 + 4b/δ.

Our condition on x implies that

d(x, γ) ≥ 10b+ C +

(
1 +

4b

δ

)
K2

0

δ
− C = 10b+

(
1 +

4b

δ

)
K2

0

δ
.

Hence, if 0 ≤ k ≤ 1 + 4b/δ, then we have

d(x, gki0(γ)) ≥ d(x, γ)− ki0K0

≥ d(x, γ)−
(

1 +
4b

δ

)
K2

0

δ

≥ 10b.

Therefore, the ball of radius 2b centered at gn0i0(x) is entirely in S, proving Claim
6.7. �

This ends the proof of Lemma 6.2. �

An important consequence of Lemma 6.2 is the following:

Corollary 6.8. Suppose that f is a partially hyperbolic diffeomorphism in M

that is homotopic to the identity. Let f̃ be a good lift of f to M̃ . Suppose that
Λ is a non empty (saturated) f -minimal subset of Wcs

bran such that every leaf of

the lift Λ̃ to M̃ is fixed by f̃ . Then every leaf in the f -minimal set Λ of Wcs
bran,

is either a plane or an annulus.

Proof. Let A be a leaf of Λ and L a lift in M̃ . By Lemma 6.2, L does not admit

any fixed points of f̃ . Hence, f̃ acts freely on the space of stable leaves in L.
Now, recall that π1(A) can be defined as the elements γ ∈ π1(M) that fix L

(see section 4.4). So if γ ∈ π1(A), it must also act freely on the space of stable

leaves in L. As f̃ commutes with every deck transformation, Corollary E.4 of
[BFFP20b] (which still applies in the context of branching foliation, as does all
of [BFFP20b, Appendix E]) implies that π(A) is abelian, i.e., A is either a plane
or an annulus (again with the understanding that A might actually only be an
immersion of one of these manifolds in M and recalling that all bundles were
assumed to be orientable in this section, so in particular the leaves cannot be
Möbius bands). �

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. This proof follows the same structure as the one of
[BFFP20b, Proposition 3.15] and we will continuously refer to it. Recall the
standing assumption that all bundles are orientable and their orientation is pre-
served by f .

Consider Λ an f -minimal non empty subset. We need to show that Λ = M .
We assume by contradiction that Λ 6= M .
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Since Wcs
bran has no closed leaves and Λ is f -minimal, there cannot be any

isolated leaves in Λ (for the topology of the stable leaf space).

Now, Lemma 6.2 allows us to assert that f̃ has no fixed points in leaves of Λ̃.
Then, Corollary 6.8 implies that each leaf of Λ is either a plane or an annulus.

We fix an ε small enough and let Λ′ be the pull back of Λ to the approximating
foliation Wcs

ε . That is, Λ′ = (hcsε )−1(Λ). Let V be a connected component of

M̃ \ Λ̃′.
[BFFP20b, Claim 3.16] applies to V , since it is just a general fact about codi-

mension one foliations. So the projection π(V ) of V to M has only finitely many
boundary leaves.

Now, we need to prove the analogous to [BFFP20b, Claim 3.18]:

Claim 6.9. Let L ∈ ∂V . Then π(L) is an annulus.

The proof of that claim is slightly different from the dynamically coherent case,
as we now need to use both the foliation Wcs

ε and the branching foliation Wcs
bran.

Proof. Suppose that π(L) is a plane. Recall (see [CC00]) that π(V ) has an octopus
decomposition and a compact core. So for any δ > 0, the subset of points in π(L)
that are at distance greater then δ from another boundary component of π(V ) is
precompact. Since π(L) is supposed to be a plane, that subset must be contained
in a closed disk D. Then π(L) r D is an annulus that is δ-close to another
boundary component, π(L′) of π(V ). Moreover, the subset of π(L′) that is δ-
close to π(L) rD then also has to be an annulus. If π1(L′) were not a plane it
would be an annulus and its non-trivial curve corresponds to a curve homotopic
to the boundary of the closed disk D which is homotopically trivial in M . Since
the leaves of Wcs

ε are π1-injective, this implies that π(L′) is also a plane.
Since M is irreducible this implies that π(V ) is homeomorphic to an open disk

times an interval. So π(V ) has only two boundary components, both of which are
planes. In particular, the isotropy group of V is trivial and π(V ) is homeomorphic
to V .

We will now switch to the branching foliation to finish the proof. Let A =
hcsε (π(L)) and B = hcsε (π(L′)). Since we chose ε small enough, up to taking δ
small enough also, the unstable segments through A r hcsε (D) intersect B, and
their length is uniformly bounded. Moreover, no unstable ray of A can stay
in hcsε (π(V )). This is because π(V ) is homeomorphic to an open disk times an
interval. So, since D is compact, the length of every unstable segment between A
and B is bounded by a uniform constant. Notice that, sinceWcs

bran is a branching
foliation, we may have A ∩ B 6= ∅, i.e., some of these unstable segments may be
points.

Since L and L′ are in ∂V , which is a connected component of M̃ r Λ̃′, we
have that A,B ∈ ∂ (M r Λ). So in particular, A and B are fixed by f . Hence,
the set of unstable segments between A and B is also invariant by f . Since
the length of unstable segments between A and B are bounded above and f
expands the unstable length, all the unstable segments must have zero length.
i.e., A = B. Which implies that V is empty, which contradicts the assumption
that Λ 6= M . �

Thus we showed that every component of π(∂V ) is an annulus. We can then
apply without change the (topological) arguments of the proof of [BFFP20b,
Proposition 3.15] to obtain a torus T , composed of annuli along leaves of Wcs

ε ,
together with annuli transverse to Wcs

ε , that bounds a solid torus U ′ in π(V ).
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Now consider U = hcsε (U ′). Because of the collapsing of leaves, U may not be
a solid torus. If U is empty for any any such component U ′, this would directly
contradict the assumption Λ 6= M . So for some such complementary component
U ′, the set U is not empty and it is contained in a solid torus (the ε-tubular
neighborhood of U ′ in M). We can then use the same “volume vs. length”
argument on U , exactly as in the end of the proof of [BFFP20b, Proposition
3.15], to get a final contradiction. This ends the proof of Proposition 6.1. �

As a consequence, we get the following result that completes the proof of
Theorem 1.6 as announced.

Corollary 6.10. Suppose that f is a partially hyperbolic diffeomorphism homo-
topic to the identity. Suppose that f is either volume preserving or transitive, or

that M is either hyperbolic or Seifert. Let f̃ be a good lift of f . Then f̃ has no
periodic points. In particular, f has no contractible periodic points.

Proof. Up to finite covers and iterates, we may assume that f preserves the
branching foliations Wcs

bran,Wcu
bran.

If f̃ acts as a translation on either Wcs
bran or Wcu

bran, then it does not have
periodic points.

Otherwise, since we showed that under our assumptions the branching folia-
tions are f -minimal. The result then follows from Theorem 4.9. �

7. Double invariance implies dynamical coherence

In this section we show that if the center-stable and center-unstable branching

foliations are minimal and leafwise fixed by a good lift f̃ : M̃ → M̃ , then, f has to
be dynamically coherent (i.e., the branching foliations do not branch). Therefore,
we will be able to apply the results from the dynamically coherent setting.

The universal cover M̃ of M is homeomorphic to R3 (since it admits a partially
hyperbolic diffeomorphism, see Appendix B of [BFFP20b]). We do not assume
anything further on M in this section.

Recall also that a center leaf is a connected component of the intersection of a

leaf of W̃cs
bran and one of W̃cu

bran (cf. Definition 3.6).
This section (and the proof of dynamical coherence) is split in three parts.

First, in subsection 7.1, we show that, for an appropriate lift of M and power of
f , double invariance of the foliations implies that the center leaves are fixed. The
lift and power we need to consider here is in order to have everything orientable
and coorientable. Then, in section 7.2, we show that if a good lift fixes every
center leaf, then it must be dynamically coherent. Finally, in section 7.3, we show
that if a lift and power of a partially hyperbolic diffeomorphism is dynamically
coherent and fixes the center leaves, then the original diffeomorphism is itself
dynamically coherent (and a good lift of a power of it will fix every center leaf).

7.1. Center leaves are all fixed. In this section we recover the results of
[BFFP20b, §6] in the context of branching foliations. This will be the key to
obtaining dynamical coherence (in section 7.2).

Proposition 7.1. Let f : M → M be a partially hyperbolic diffeomorphism ho-
motopic to the identity and admitting branching foliations Wcs

bran,Wcu
bran that are

f -minimal. Suppose that a good lift f̃ of f to M̃ fixes every leaf of W̃cs
bran, W̃cu

bran.

Then, every center leaf is fixed by f̃ .
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We stress again that the assumption of f -minimality is automatic when f is
transitive or when M is hyperbolic or Seifert, see section 6)

To prove Proposition 7.1, as in the dynamically coherent setting, we need the
following result.

Lemma 7.2. Suppose that the hypothesis of Proposition 7.1 are satisfied. Then

either every center leaf is fixed by f̃ or no center leaf is fixed by f̃ .

Assuming this lemma, it is easy to prove Proposition 7.1:

Proof of Proposition 7.1. Suppose that f̃ fixes no center leaf. By Proposition
5.8 and the fact that there must be some non-planar leaf there are periodic

center leaves in M . Then we can apply Proposition 5.2 first to W̃cs
bran and then

W̃cu
bran. The conclusion is that for every f periodic center leaf M , the center

leaf must be first coarsely contracting by f and then coarsely expanding by f .

This is a contradiction. Hence f̃ fixes a center leaf and Lemma 7.2 implies the
proposition. �

To prove the lemma we will explain the modifications one has to make in the
proof of [BFFP20b, Lemma 6.4] to adapt it to the non dynamically coherent
setting.

Proof of Lemma 7.2. Let

Fixc
f̃

:= {c : f̃(c) = c}.

The first difference from the dynamically coherent setting is that we will not

directly regard this set as a subset of M̃ (because center leaves may merge).
However, it is not hard to see that the argument of Lemma 6.3 of [BFFP20b]

holds: If c is a fixed center leaf in a center stable leaf L in M̃ , then for any center
leaf c′ in L close enough to c (for the topology of the center leaf space in L), there

exists a strong stable leaf that intersect c, c′ and f̃(c′). Now, since f̃ fixes the

center unstable leaves, c′ and f̃(c′) are on the same center unstable leaf. Since

no transversal can intersect the same leaf twice, it implies that c′ = f̃(c′).
Thus, we obtained that if c is a fixed center leaf in a center stable leaf L in

M̃ , center leaves near c in L are also fixed. This is in the center leaf space of L,
which is a 1-dimensional manifold.

The same argument evidently applies for center leaves near c in its center
unstable leaf.

Note that since a good lift f̃ fixes every leaf of W̃cs
bran, then f fixes every leaf of

Wcs
bran. In particular f -minimality of Wcs

bran is equivalent to minimality of Wcs
bran.

Hence Wcs
bran is minimal. Similarly for Wcu

bran.8

We now assume that the set of fixed center leaves is non-empty and we want
to show that all the center leaves are fixed.

To do this, we proceed as in [BFFP20b, Lemma 6.4]: We show first that every
center leaf in a center stable leaf (resp. center unstable leaf) which projects to
an annulus has to be fixed (due to our orientability assumptions, leaves cannot
project to a Möbius band). Then the same argument as in [BFFP20b, Lemma
6.4] applies to show that every center leaf has to be fixed.

Let L be any center stable leaf that projects to an annulus. Let γ be a generator
of the isotropy group of L.

8Note that f -minimality and minimality are in fact always equivalent as long as the branching
foliation does not have compact leaf and without assumptions on f , see Lemma B.2.
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Since the set of fixed center leaves is open in the center leaf spaces of any center
unstable leaf, minimality of Wcs

bran implies that L must have some fixed center
leaves.

We will first prove that, if f does not fix all center leaves in L, then some center
leaves in π(L) are periodic under f . Then we will show, as in Proposition 5.5,
that any periodic leaf in π(L) must be coarsely contracting. The same argument
applied to the center-unstable leaves yields that periodic center leaves must also
be coarsely expanding, a contradiction.

Since f̃ cannot have fixed points (as f̃ fixes all the leaves of W̃cs
bran and W̃cu

bran),

then f̃ acts freely on the space of stable leaves in L.
We assume, for a contradiction, that not all center leaves in L are fixed. Let

FixL be the set (in, LcL, the center leaf space on L) of center leaves fixed by γ.
The set FixL is open, and assumed not to be the whole of L. So let c1 be any

leaf in ∂FixL.
The leaf c1 is not fixed by f̃ , so f̃(c1) is non-separated from c1. Hence, there

exists a (unique) stable leaf s1, which separates f̃(c1) from c1 and makes a perfect
fit with c1 (see section 4.6 for the definition of perfect fits in the non dynamically

coherent setting). Then f̃(s1) makes a perfect fit with f̃(c1). Because c1 and f̃(c1)

are non separated from each other, s1 and f̃(s1) intersect a common transversal

to the stable foliation. It follows that the stable axis of f̃ acting on L is a line.

Thus, since γ commutes with f̃ , the stable axis of γ is that same line. Moreover,

both the stable leaves s1 and f̃(s1) are in the axis of f̃ .

Since the stable axis of f̃ acting on L is a line, the Graph Transform argument
[BFFP20b, Appendix H] applies and we obtain a curve η̂, tangent to the center

direction, that is fixed by both γ and f̃ .
As s1 makes a perfect fit with c1 and s1 intersects η̂, we deduce that there

exists a stable leaf s that intersects both c1 and η̂. Let x = s ∩ η̂ and y = s ∩ c1.
We denote by J the segment of s between x and y.

Since η̂ projects down to a closed curve π(η̂), and f̃ decreases stable lengths,
there exist n1, n2 ∈ Z and m1,m2 ∈ N as large as we want such that the four

points γn1 f̃m1(x), γn1 f̃m1(y), γn2 f̃m2(x) and γn2 f̃m2(y) are all in a disk of radius
as small as we want.

Suppose now that γn1 f̃m1(c1) 6= γn2 f̃m2(c1). Then, up to switching n1,m1 and

n2,m2, we obtain that γn2 f̃m2(c1) intersects γn1 f̃m1(J). This is in contradiction

with the fact that c1 is in ∂FixL which is invariant by both f̃ and γ.

Thus γn1 f̃m1(c1) = γn2 f̃m2(c1). In other words, c1 is fixed by the map h =

γnf̃m for some n,m integers, m > 0. (Although not useful for the rest of the
proof, one can further notice that η̂ and c1 intersect, as h decreases the length of
J by forward iterations and both c1 and η̂ are fixed by h.)

Now recall that we built above a stable leaf s1 making a perfect fit with c1.

And, by our choice of s1, the center leaf c1 is in between s1 and s2 := f̃−1(s1).
The leaves s1 and s2 are both fixed by h (since c1 is), and a bounded distance

apart, so Lemma 5.6 holds and we deduce that c1, as well as any other center leaf
c that is in between s1 and s2 must be coarsely contracting. Note now that any

center leaf c in L that is fixed by some h′ = γn
′
f̃m

′
is separated from FixL by a

center leaf c′1 ⊂ ∂FixL as above. Hence, we proved that every non-fixed periodic
leaf in L is coarsely contracting.

Therefore, the same argument applied to the center unstable leaf containing c1

shows that c1 must also be coarsely expanding, a contradiction.



PARTIAL HYPERBOLICITY IN 3 MANIFOLDS II 39

So we obtained that every center stable or center unstable leaf L which is fixed

by some non trivial element of π1(M) has all of its center leaves fixed by f̃ . Since
Fixc

f̃
is open (in the center leaf space), minimality of the foliations implies that

it contains every center leaf, as in the end of the proof of [BFFP20b, Lemma
6.4]. �

7.2. Dynamical coherence. We now want to prove dynamical coherence pro-
vided that a good lift fixes every center leaf. We start with the following:

Lemma 7.3. Suppose that f̃ fixes every leaf of the center foliation in M̃ . Then

there is a global bound on the length from x to f̃(x) in any center leaf containing
x.

In the dynamically coherent case this was very easy as the center curves form
an actual foliation and there is a local product picture near any compact segment.
We have to be more careful in the non dynamically coherent setting.

Proof. We assume the conclusion of the lemma fails. Then there exists a sequence

xi of points in M̃ contained in center leaves ci such that the length in ci from xi
to f̃(xi) divverges to infinity. Notice that this length depends not only on xi but
also on ci since there may be many center leaves through xi. We denote by ei
the segment in ci from xi to f̃(xi).

Up to acting by covering translations we can assume that the xi converge to a

point x ∈ M̃ . Let Li and Ui be respectively a center stable and center unstable
leaves containing ci. Up to considering a subsequence, we may assume that Li
converges to a center stable leaf L containing x (see condition (iv) of Definition
3.2). Similarly, we can further assume that Ui converges to some center unstable
leaf U , with x ∈ U .

For i large enough, all the leaves Li intersect a small unstable segment in u(x).
The set of center stable leaves intersecting this segment is a also a segment (even
though many different leaves may intersect a given point in u(x)). Hence we may
assume that Li is weakly monotone, and so is Ui. Let c be the center leaf through

x contained in L ∩ U . Then f̃(x) ∈ c, and we call e the segment in c from x to

f̃(x).
Suppose first that Li = L for all big i. So we may assume Li = L for all i.

Then the center leaves ci are all in L and, for i big enough, intersect s(x). Hence
the leaves ci are, for i big enough, contained in an interval of the center leaf space
in L. In addition they are converging to c which is a center leaf through x and

f̃(x). This implies that the length of ei is converging to the length of e and hence
the length of ei is bounded in i. Contradiction.

Suppose now that the Li are all distinct from L. Notice that the points xi, and

f̃(xi) are all in a compact region of M̃ . Since Li converges to L, we have that
u(xi) intersects L for big enough i. We call this nearby intersection yi. Likewise

u(f̃(xi)) intersects L in f̃(yi). We want to push the center segments ci contained
in Ui ∩ Li along unstable segments to center segments in Ui ∩ L.

For i big enough, both xi and f̃(xi) are very near L. Thus, their unstable leaves

u(xi) and u(f̃(xi)) both intersect L. Let yi be the intersection of u(xi) with L
(recall that this intersection is unique as the center stable branching foliation is

approximated by a taut foliation). Then f̃(yi) is the intersection of u(f̃(xi)) with

L (since L is fixed by f̃). Then the intersection of the unstable saturation of

ei with L is a compact segment inside a center leaf between yi and f̃(yi) (since

f̃ fixes every center leaf). Let bi be this segment between yi and f̃(yi). The
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segments bi also converge to e, so the previous paragraph shows that the lengths
of the bi are bounded. Since the distance between xi and yi converges to zero,
this in turn implies that the lengths of the segments ei are themselves bounded.
Which contradicts our assumption and finishes the proof. �

Lemma 7.4. Suppose f̃ fixes every leaf of the center foliation in M̃ . Assume

c1, c2 are different center leaves in the same leaf L of W̃cs
bran. Then, c1 ∩ c2 = ∅.

Proof. Suppose not, there is x ∈ c1 ∩ c2 but c1 6= c2. Then f̃(x) is also in c1 ∩ c2.

If c1 coincides with c2 in their respective segments from x to f̃(x), then applying

iterates of f̃ implies that c1 = c2, contrary to assumption.
So we may assume that x is a boundary point of an open interval I in, say, c1

which is disjoint from c2, but such that both endpoints are in c2. Then c1 ∪ c2

bounds a bigon B with endpoints x, y and a “side” in I. All center segments in
B pass through x and y and they have bounded length (by Lemma 7.3). Each
stable segment intersecting I also intersects the other “boundary” component of
B. See figure 7.

L

c1

c2

f̃−1(x)
x f̃−2(x)

B

Figure 7. Two centers that merge. The bound on the distance be-

tween x and f̃(x) forces a behavior like the figure.

The stable lengths grow without bound under negative iterates of f̃ . Hence,
since a stable segment can intersect a local foliated disk of the stable foliation in

L only in a bounded length, it follows that the diameter in f̃n(L) of f̃n(B) grows

without bound as n goes to −∞. But the length of the center segments in f̃n(B)
are all bounded according to Lemma 7.3. Moreover, between any two points in

f̃n(B) there exists a path along (at most) two center leaves (one just follows the
center leaf to one of the endpoint and then switch to the appropriate other center
leaf). Thus the diameter is bounded, which is a contradiction. �

Thus we deduce what we wanted to obtain in this section.

Corollary 7.5. If a good lift f̃ fixes every center leaf, then, f is dynamically
coherent.

Proof. By Proposition B.3 it is enough to show that the leaves of the branching
foliations do not merge.
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Assume that two center unstable leaves U1 and U2 merge. Let L be a center
stable leaf intersecting U1 and U2 at the merging, i.e., L is a leaf through a point x
such that the unstable leaf through x is a boundary component of U1∩U2. Then,
connected components of U1∩L and U2∩L gives two center leaves that intersect
but do not coincide. This contradicts Lemma 7.4. A symmetric argument gives
that two center stable leaf cannot merge either, proving dynamical coherence of
f . �

7.3. Dynamical coherence without taking lifts and iterates. We now want
to prove that, if a finite lift and finite power of a partially hyperbolic diffeomor-
phism is dynamically coherent, then the original diffeomorphism is itself dynam-
ically coherent. Although we do not know how to prove it in this generality, we
show it when a good lift of the dynamically coherent lift fixes every center leaf,
which is enough for our purposes.

We start by showing a uniqueness result for the pairs of the center stable and
center unstable foliations under some conditions.

Lemma 7.6. Let g : M → M be a dynamically coherent partially hyperbolic
diffeomorphism homotopic to the identity. Let Wcs and Wcu be g-invariant foli-
ations tangent to Ecs and Ecu respectively. Let Wc be the center foliation asso-
ciated with Wcs and Wcu (defined as in Definition 3.6), and assume that there

exists a good lift g̃ which fixes all the leaves of W̃c.
Suppose that Wcs

1 and Wcu
1 are two g-invariant foliations tangent respectively

to Ecs and Ecu. Suppose that g̃ also fixes all the leaves of the center foliation

W̃c
1, associated with Wcs

1 and Wcu
1 .

Then Wcs =Wcs
1 and Wcu =Wcu

1 .

Note that if the foliations Wcs, Wcu, Wcs
1 and Wcu

1 are assumed to be g-
minimal, then Proposition 7.1 implies that the hypothesis of the lemma are sat-
isfied.

Proof. The argument is similar to the one made in Lemma 7.4.

Let W̃cs
1 , W̃cu

1 be two g-equivariant foliations as in the lemma. Recall that the

center foliation W̃c
1 is defined by taking the connected components of intersections

of leaves of W̃cs
1 and W̃cu

1 .

Since every leaf of both W̃c and W̃c
1 are fixed by g̃, Lemma 7.3 implies that g̃

moves points a uniformly bounded amount in both center foliations.

Consider, for a contradiction, a point x ∈ M̃ such that W̃c(x) 6= W̃c
1(x) (note

that we are dealing here with actual foliations, not branching ones, so this nota-
tion make sense). Without loss of generality, we can choose x so that the leaves

L := W̃cs(x) and L1 := W̃cs
1 (x) do not coincide in any neighborhood of x.

Let c and c1 be the center leaves obtained as the connected components of
L ∩ F and L1 ∩ F containing x.

By assumption, both c and c1 are fixed by g̃, so we are in the exact same set up
as in the proof of Lemma 7.4. Thus we deduce that c = c1, a contradiction. �

We can now state and prove the aim of this section.

Proposition 7.7. Let f : M →M be a partially hyperbolic diffeomorphism such
that fk is homotopic to the identity for some k > 0. Let M̂ be a finite cover of
M . Let g be a lift to M̂ of a homotopy of fk to the identity.

Suppose that g is dynamically coherent and that there exists a good lift g̃ of g
that fixes all the center leaves. Then, f is dynamically coherent.
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Proof. First we notice that the assumptions of the proposition will be verified for
any further finite cover M̄ of M̂ (because one can take a further lift ḡ of g to M̄ ,
it is dynamically coherent and g̃ is a good lift of ḡ too). Hence, without loss of

generality, we may and do assume that M̂ is a normal cover of M .

Let W̃cs and W̃cu be the lifts to M̃ of the center stable and center unstable
foliations of g. Our goal is to show that these foliations are π1(M)-invariant, thus
decending to foliations in M , and that these projected foliations are f -invariant.

Notice that g̃ fixes each leaf of W̃cs and W̃cu.
The map g is obtained from a lift of a homotopy of fk to the identity. Lifting

that homotopy further to M̃ , we get a good lift f̃k of fk that is also a lift (and

hence a good lift) of g to M̃ . As both g̃ and f̃k are good lifts of g, there exists

β ∈ π1(M̂) ⊂ π1(M) such that g̃ = βf̃k. (Note however that g̃ is not necessarily

a good lift of fk as g̃ only commutes with elements of π1(M̂) and not π1(M).)

Moreover, both g̃ and f̃k move points a bounded distance in M̃ , hence so does

β = g̃(f̃k)−1. Lemma A.1 then implies that either β is the identity or M is Seifert
(and β is either the identity or a power of a regular fiber).

We split the rest of the proof in these two cases.

Case 1 − Suppose that M is not a Seifert fibered space.

Then β is the identity, which means that g̃ = f̃k.

Let γ be a deck transformation in π1(M). Define the foliations Fcsγ := γW̃cs,

Fcuγ := γW̃cu, and Fcγ := γW̃c. The leaves of these foliations are all fixed by g̃

because γ commutes with f̃k = g̃. In particular, Lemma 7.6 then implies that

γW̃cs = W̃cs and γW̃cu = W̃cu. Since this is true for any element of π1(M),
these foliations descend to foliations Wcs

M ,Wcu
M in M .

Now we need too show that Wcs
M ,Wcu

M are also f -invariant. Equivalently, we

need to show that W̃cu and W̃cs are invariant by any lift f1 of f to M̃ .

Let f1 be a lift of f to M̃ . Notice that f may not be homotopic to the identity,

so f1 is not assumed to be a good lift. Let Fcs1 := f1(W̃cs) and Fcu1 := f1(W̃cu).
We will first show that f1 and g̃ commute. Both f1g̃ and g̃f1 are lifts of the

map fk+1 to M̃ . So (g̃)−1(f1)−1g̃f1 is a deck transformation γ ∈ π1(M). As g̃

moves points a bounded distance, we have that d(f1(y), g̃f1(y)) is bounded in M̃ .
In addition, f1 has bounded derivatives so d(y, (f1)−1g̃f1(y)) is also bounded in

M̃ . So using again that g̃ is a good lift, we deduce that d(y, (g̃)−1(f1)−1g̃f1(y))

is bounded in M̃ .
Hence γ is a deck transformation that moves points a bounded distance. Ap-

plying Lemma A.1 again gives that β is the identity (since M is not Seifert).
Hence f1 and g̃ commute.

Since g̃ fixes every leaf of W̃c (the center foliation in M̃) and commutes with

f1, we deduce that g̃ fixes every leaf of f1(W̃c). We can again apply Lemma 7.6

to get that f1(W̃cs) = W̃cs and f1(W̃cu) = W̃cu. That is, the foliations W̃cs and

W̃cu are f1-invariant. Since this holds for any lift of f , it implies that Wcs
M and

Wcu
M are f -invariant. Hence f is dynamically coherent with foliations Wcs

M ,Wcu
M .

This completes the proof when M is not Seifert fibered.

Case 2 − Assume that M is Seifert fibered.

In this case, Lemma A.1 implies that β = g̃(f̃k)−1 is either the identity or
represent a power of a regular fiber of the Seifert fibration. In any case, β is
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in a normal subgroup of π1(M) isomorphic to Z. Moreover, as proved earlier,

β ∈ π1(M̂).
Let γ ∈ π1(M) be any deck transformation. As before, consider the foliations

Fcsγ := γW̃cs and Fcuγ := γW̃cu.
We first claim that these foliations are g̃-invariant. We show this for Fcsγ the

other being analogous. Let L ∈ W̃cs. We have

g̃(γL) = βf̃k(γL) = βγf̃k(L) = γβ±1f̃k(L).

Notice that both f̃k (because it is a lift of g) and β (because it belongs to

π1(M̂) and the foliation Wcs is defined in M̂) preserve the foliation W̃cs. It

follows that β±1f̃k(L) ∈ W̃cs, so

g̃(γL) = γβ±1f̃k(L) ∈ Fcsγ .
Thus Fcsγ is g̃-invariant.

We now want to show that the foliations Fcsγ , Fcuγ and Fcγ := γW̃c are all
leafwise fixed by g̃.

Since M̂ was chosen to be a normal cover of M , any element γ ∈ π1(M) can

be thought of as a difeomorphism of M̂ . Hence we can consider the foliation
F̂csγ := γWcs in M̂ . Note that F̂csγ is tangent to the center stable distribution

Ecs ⊂ TM̂ , since γ preserves the tangent bundle decomposition, as it is defined
by f in M . The argument above shows that F̂csγ is g-invariant.

Thus, we can consider g to be a dynamically coherent diffeomorphism for
the pair of transverse foliations F̂csγ and Wcu. Moreover, g is homotopic to the

identity and the good lift g̃ fixes every leaf of W̃cu. Since M̂ is Seifert, mixed
behaviour is excluded (cf. [BFFP20b, Theorem 5.1]) and this implies that g̃ must
also fix every leaf of Fcsγ .

The symmetric argument show that Fcuγ is also fixed by g̃. So we can apply

Proposition 6.1 to both F̂csγ and F̂cuγ , implying that they are g-minimal. Hence,
the center foliation Fcγ is fixed by g̃, thanks to Proposition 7.1.

Since all the leaves of Fcγ are fixed by g̃, we can finally apply Lemma 7.6 to

deduce that Fcsγ = W̃cs and Fcuγ = W̃cu. As this is true for any γ, the foliations

W̃cs and W̃cu descends to foliations Wcs
M and Wcu

M on M in this case too.
We now again have to show that Wcs

M and Wcu
M are f -invariant. The argument

is the same for both foliations, so we only deal with Wcs
M .

We start with a preliminary step. Let f∗ be the automorphism of π1(M)
induced by f . Let

A := π1(M̂) ∩ f∗(π1(M̂)) ∩ · · · ∩ (f∗)
k−1(π1(M̂)).

The set A is a finite index, normal subgroup of π1(M). Moreover, as fk is
homotopic to the identity, f∗(A) = A.

As we remarked at the beginning of the proof, we can without loss of generality
prove the result for any further finite cover of M̂ . Thus we choose if necessary
a further cover so that π1(M̂) = A. Since f∗(A) = A, the map f lifts to a

homeomorphism f̂ of M̂ .

As in the first case, we let f1 be an arbitrary lift of f̂ to M̃ and we define

Fcs1 := f1(W̃cs) and Fcu1 := f1(W̃cu). (Note that f1 is in particular also a lift of
f .)
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Note as before that both g̃f1 and f1g̃ are lifts of fk+1, and g̃f1(g̃)−1(f1)−1 is a
bounded distance from the identity (because g̃ is and f1 has bounded derivatives).
So δ := g̃f1(g̃)−1(f1)−1 is an element of π1(M) a bounded distance from identity.
By Lemma A.1, δ represents a power of a regular fiber of the Seifert fibration,
so is in the normal Z subgroup of π1(M) (note that since π1(M) is not virtually
nilpotent, there exists a unique Seifert fibration on M , see Appendix A).

In addition g̃f1 and f1g̃ are also lifts of the homeomorphisms gf̂ and f̂g in M̂

to M̃ . Hence δ is in π1(M̂).
Using once more the arguments above, we get that (f1)−1δf1(δ)−1 is a bounded

distance from the identity, and projects to the identity in M (and in M̂), hence
it is a deck transformation η also contained in the Z normal subgroup of π1(M).

Thus δ and η commute. Moreover, η is also in π1(M̂).

Now we can show that g̃ preserves Fcs1 : Let L in W̃cs. Then

g̃(f1(L)) = δf1(g̃(L)) = δf1(L) = f1(ηδ(L)).

Here ηδ(L) is in W̃cs, because L is in W̃cs and ηδ is in π1(M̂). Hence f̃1(ηδL) is

in f1(W̃cs) so g̃ preserves Fcs1 .

What we proved implies that g preserves f̂(Wcs) in M̂ . Now consider the pair

of foliations f̂(Wcs) and Wcu. They are both invariant by g, so g is dynamically

coherent for this particular pair of foliations, and g̃ fixes the leaves of W̃cu. So

once again, as M̂ is Seifert, we get that g̃ must also fix every leaf of f1(W̃cs) (cf.
[BFFP20b, Theorem 5.1]).

The symmetric argument implies that g̃ fixes every leaf of f1(W̃cu). Once

again, M̂ being Seifert implies that all the foliations are g-minimal (Proposition

6.1). Hence g̃ also fixes the center foliation f1(W̃c) (Proposition 7.1). So Lemma

7.6 applies and we deduce that f1(W̃cs) = W̃cs and f1(W̃cu) = W̃cu.
In particular, f preserves the foliations Wcs

M and Wcu
M as wanted. So f is

dynamically coherent. �

8. Proof of Theorem A

In this section, we finish the proof of Theorem A. That is, f : M → M is
assumed to be a partially hyperbolic diffeomorphism homotopic to identity in a
Seifert manifold, and we need to show that a power of f is a discretized Anosov
flow.

We first fix a finite cover M̂ of M so that M̂ is orientable, and so are all the
bundles. Then, up to a finite power, a lift g will preserve the orientations of
the bundles. More precisely, there exists some integer k > 0 such that the lift g
obtained by lifting a homotopy of fk to the identity preserves the orientations.

Thanks to Theorem 3.4, there are branching foliations Wcs
bran and Wcu

bran in M̂
that are preserved by g.

In order to finish the proof of Theorem A, we just need one more lemma.

Lemma 8.1. There exists a lift g̃ of an iterate of g that fixes every leaf of W̃cs
bran

and also fixes every leaf of W̃cu
bran.

Postponing the proof of the lemma, we can finish the proof.

Proof of Theorem A. According to Lemma 8.1, there exists a lift g̃ of a power of gi

of g that fixes the leaves of both W̃cs
bran and W̃cu

bran. Then Proposition 7.1 implies
that g̃ fixes every center leaf. Thus Corollary 7.5 gives that gi is dynamically
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coherent. Then Proposition 7.7 tells us that f is also dynamically coherent. So
we can now use the results of [BFFP20b, §7] to conclude. �

So all we have left to do is prove Lemma 8.1, which we now do.

8.1. Proof of Lemma 8.1. In [BFFP20b, §7] we showed that it was always
possible in a Seifert manifold to choose a convenient good lift.

Proposition 8.2. There exists a good lift of an iterate of g which fixes a leaf

(and therefore every leaf) of W̃cs
bran.

Proof. As stated in [BFFP20b, Remark 7.2], the proof of [BFFP20b, Proposition
7.1] works in the non-dynamically coherent case.

The only change needed is to replace the words foliations by branching foli-
ations. Note also that [BFFP20b, Proposition 7.1] requires the Seifert fibration

to be orientable. This is implied by our assumptions: Indeed, M̂ is orientable,
all the bundles are orientable and Wcs

bran is a horizontal foliation (see [BFFP20b,
Theorem F.3]). Thus the Seifert fibration is orientable. �

Using Proposition 8.2, the lemma follows readily.

Proof of Lemma 8.1. First, using Proposition 8.2 we consider a good lift g̃i of

an iterate gi that fixes every leaf of W̃cs
bran. Suppose this lift fixes one center

unstabe leaf. Then Proposition 6.1 gives that Wcu
bran is gi-minimal. So Corollary

4.7 implies that g̃i also fixes every leaf of W̃cu
bran.

Thus we can suppose for a contradiction that g̃i fixes no center unstable leaf.
Therefore no center leaf can be fixed by g̃. Applying Proposition 5.2 we deduce
that every periodic center leaf of g has to be coarsely contracting.

Exchanging roles, and applying Proposition 8.2 to the center unstable branch-
ing foliation we deduce that every periodic center leaf for g must be coarsely
expanding. Notice that, althought the lifts may be different, the coarsely ex-
panding and coarsely contracting behavior is for periodic center leaves of the
original map g for both Wcs

bran and Wcu
bran.

As there must be at least one such periodic center leaf (cf. Proposition 5.8)
this gives a contradiction. So there exists a good lift of an iterate of g that fixes

leaves of both W̃cs
bran and W̃cu

bran. �

9. Absolutely partially hyperbolic diffeomorphisms

In this section, we explain how one can improve Theorem 1.3 if one uses a
strong version of partial hyperbolicity.

Definition 9.1. A partially hyperbolic diffeomorphism f : M → M on a 3-
manifold is called absolutely partially hyperbolic if there exists constants λ1 <
1 < λ2 such that for some ` > 0 and every x ∈M , we have

‖Df `|Es(x)‖ < λ1 < ‖Df `|Ec(x)‖ < λ2 < ‖Df `|Eu(x)‖.

Notice that, although subtle, the difference between being absolutely partially
hyperbolic versus just partially hyperbolic is far from trivial. Here, we just show
that with this stronger property one can significantly simplify the arguments.
However, some previous results have shown significant differences between the two
notions, specifically with regard to the integrability of the bundles (see [BBI09,
RHRHU16, Pot15]).

We will show the following
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Theorem 9.2. Let f : M → M be an absolutely partially hyperbolic diffeomor-
phism on a 3-manifold. Suppose that f is homotopic to the identity and preserves
two branching foliations Wcs

bran and Wcu
bran that are both f -minimal. Then either

(i) f is a discretized Anosov flow, or,

(ii) Wcs
bran and Wcu

bran are R-covered and uniform and a good lift f̃ of f act as
a translation on their leaf spaces.

In order to prove this theorem, the main step will be to show that, using
absolute partial hyperbolicity, we have an improvement of Proposition 5.2.

Proposition 9.3. Let f : M → M be an absolutely partially hyperbolic diffeo-

morphism homotopic to the identity and f̃ a good lift of f to M̃ . Assume that

every leaf of W̃cs
bran is fixed by f̃ . Let L be a leaf whose stabilizer is generated by

γ ∈ π1(M) \ {id}. Then, there is a center leaf in L fixed by f̃ .

The proof is essentially the same as the one in [HPS18, Section 5.4] but we
repeat it since the contexts are different.

Proof. The proof is by contradiction. Assume that f̃ does not fix any center leaf
in L.

Proposition 5.8 gives that there exists a center leaf periodic by f . Now, using
the proof of Proposition 5.2 on the lift c of such a periodic leaf, we can be more
precise: Let h := γn ◦ fm, with m > 0 and γ ∈ π1(M), be the diffeomorphism
fixing c. There exists two stable leaves s1 and s2 in L fixed by h, a bounded
distance apart in L and such that c separates s1 from s2 in L. We denote by B
the band bounded by s1 and s2.

Since γ is an isometry, the diffeomorphism h is absolutely partially hyperbolic,
and we can (modulo taking iterates) assume that there are constants λ1 < λ2

such that

‖Dh|Es‖ < λ1 < λ2 < ‖Dh|Ec‖.
Moreover, there is a constant R > 1 such that ‖Dh−1‖ ≤ R in all of L.

For simplicity, we will assume that the distance between s1 and s2 is smaller
than 1/2 so that the band B is contained in the neighborhood B̂ =

⋃
x∈S1

B1(x)
of radius 1 around s1.

For every positive d there is a constant r(d) > 0 such that for any set of
diameter less than d, the length of a stable leaf contained in this set is at most
r(d). This is because in a foliated box only one segment of a stable segment can
intersect it. This implies that stable leaves (and center leaves as well) are quasi-
isometrically embedded in their neighborhoods of a fixed diameter. So there is
K > 0 so that for any stable segment J contained in B̂ with endpoints z and w
we have

length(J) ≤ KdB̂(z, w).

Now, choose n > 0 such that K2 λ
n
1
λn2
� 1

2 and once n is fixed, choose D > 0 so

that D
2 � 2Rn + 2K

λn2
.

We now pick points z, w ∈ s1 such that dB̂(z, w) = D and take Js an arc of s1

joining these points. From the choice of K and D we know that length(Js) ≤ KD.
So, it follows that length(hn(Js)) ≤ KDλn1 .

Choose a center curve Jc joining B1(hn(z)) with B1(hn(w)) (this can be done
because c separates s1 from s2) and call zn and wn the endpoints in each ball. It
follows that length(Jc) ≤ K2Dλn1 + 2K.
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Since the distance between the endpoints of Jc and hn(z), hn(w) is less than
1, by iterating backwards by h−n we get that d(h−n(zn), z) and d(h−n(wn), w)
are less than Rn.

This implies that

D ≤ dB̂(z, w) ≤ K2λ
n
1

λn2
D + 2Rn +

2K

λn2
,

a contradiction with the choices of n and D. This completes the proof of the
proposition. �

Using this proposition, we can prove Theorem 9.2 in the same way as [BFFP20b,
Theorem 5.1]

Proof of Theorem 9.2. Let f̃ be a good lift of f . Since Wcs
bran and Wcu

bran are f -

minimal, by Corollary 4.7, f̃ either fixes each leaf of W̃cs
bran and W̃cu

bran, or act as
a translation on both leaf space (in which case the foliations are R-covered and

uniform and we are in case (ii) of the theorem), or f̃ translates one and fixes the
other.

If f̃ fixes the leaves of both W̃cs
bran and W̃cu

bran then Proposition 7.1 and Corollary
7.5 imply that we are in case (i) of the theorem.

So we have to show that we cannot be in the mixed case. Suppose that f̃ fixes

every leaf of W̃cs
bran.

Since M is not T3, there are leaves of Wcs
bran with non-trivial fundamental

group. Consider the lift L in W̃cs
bran of such a leaf, with L invariant by γ in

π1(M) r {Id}. We can apply Proposition 9.3 to conclude that there is a center

leaf c in L that is fixed by f̃ . So, in particular, f̃ needs to fix a center unstable

leaf containing c. Thus f̃ has to also fix every leaf of W̃cu
bran. �

10. Regulating pseudo-Anosov flows and translations

The rest of the paper is concerned with hyperbolic 3-manifolds. We will get
positive results dealing with the non-dynamically coherent case.

That is, we want to understand the dynamics of a homeomorphism acting by
translation on a branching foliation.

In order to be able to do that, we first need to build a regulating pseudo-Anosov
flow transverse to the branching foliation.

The existence of such a flow is a relatively immediate consequence of the con-
struction of the regulating flow and the fact that the branching foliation is well-
approximated by foliations.

Proposition 10.1. Let M be a hyperbolic 3-manifold and F a branching foliation
well-approximated by foliations Fε such that F (and thus also Fε for small ε) are
R-covered and uniform. Then, there exists a transverse and regulating pseudo-
Anosov flow Φ for F .

Proof. By [Thu, Cal00, Fen02] (see [BFFP20b, Theorem D.3]) for any ε, there
exists a pseudo-Anosov flow Φε transverse to and regulating for Fε.

Now, as ε get small, the angle between leaves of Fε and leaves of F becomes
arbitrarily small.

Then, since both F and Fε are R-covered and uniform, for any leaf L ∈ F ,
there exists two leaves L1 and L2 such that L is in between L1 and L2. As Φε is
regulating for Fε, every orbit intersects both L1 and L2, thus L. So every orbit
of Φε intersect every leaf of F , that is, Φε is regulating for F .
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The fact that the flow Φε can be chosen transverse to F follows from the
construction of Φε (see [Thu, Cal00, Fen02]). The flow Φε is build by blowing down
certain laminations transverse to Fε. Moreover these laminations are transverse
to any foliation that are close enough to Fε for a uniform angle. Since the
angle between F and Fε gets arbitrarily small, Φε will also be transverse. For
a continuous family of R-covered foliations, this property is explicitely stated in
[Cal00, Corollary 5.3.22]. �

Using the regulating pseudo-Anosov flow given by Proposition 10.1, all of
[BFFP20b, Section 8] works for a branching foliation without change. Thus
we obtain

Proposition 10.2. Let M be a hyperbolic 3-manifold. Let f : M → M be a
homeomorphism homotopic to the identity that preserves a (branching) foliation

F . Suppose that F is uniform and R-covered, and that a good lift f̃ of f acts as a
translation on the leaf space of F . Let Φ be a transverse regulating pseudo-Anosov
flow to F .

Then, for every γ ∈ π1(M) associated with a periodic orbit of Φ, there is

a compact f̂γ-invariant set Tγ in Mγ which intersects every leaf of F̂γ, where

Mγ = M̃
/
〈γ〉 and f̂γ : Mγ →Mγ is the corresponding lift of f .

Moreover, if an iterate f̂kγ of f̂γ fixes a leaf L of F̂γ, and γ fixes all the prongs

of this orbit, then the fixed set of f̂kγ in L is contained in Tγ ∩L and has negative
Lefschetz index.

Almost without any change, we also obtain the corresponding version of [BFFP20b,
Proposition 9.1]

Proposition 10.3. Let f be partially hyperbolic diffeomorphism in a hyperbolic
3-manifold which preserves a branching foliation Wcs

bran tangent to Ecs. Assume

that a good lift f̃ of f acts as a translation on the foliation Wcs
bran and let Φ be a

transverse regulating pseudo-Anosov flow. Then, for every γ ∈ π1(M) associated

to the inverse periodic orbit of Φ there are n > 0,m > 0 such that h = γn ◦ f̃m
fixes a leaf L of Wcs

bran.

Proof. The only difference is that we cannot say that the action of h in the leaf
space is expanding since collapsing of leaves may change the behavior. However,
the same proof gives the existence of an interval in the leaf space which is mapped
inside itself by h−1 giving a fixed leaf as desired. �

Remark 10.4. Note that in the non dynamically coherent situation, the proof
of [BFFP20b, Theorem B] does not give a contradiction: it could happen (and
indeed happens in a situation with similar properties, see e.g., [BGHP17]) that
having a fixed point in a leaf of the foliation, does not force the dynamics on the
leaf space to be repelling around the leaf in terms of the action on the leaf space.
This issue has previously appeared, in particular in Lemma 6.2.

Notice that if one assumes the existence of a periodic center leaf, then we can
easily prove a version of [BFFP20b, Theorem B] in the non dynamically coherent
setting.

Proposition 10.5. Let f : M → M be a partially hyperbolic diffeomorphism on
a hyperbolic 3-manifold. Suppose that there exists a closed center leaf c that is
periodic under f . Then f is a discretized Anosov flow.
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Proof. We start by replacing f by a power, so that f becomes homotopic to the
identity.

Let f̃ be a good lift of f . We will show that f̃ fixes every leaf of W̃cs
bran and

W̃cu
bran. Then, section 7 above shows that the original f (before taking a power)

is dynamically coherent, hence the result follows from [BFFP20b, Theorem B].

Suppose that f̃ does not fix every leaf of, say, W̃cs
bran. Then Corollary 4.7

implies that the leaf space of W̃cs
bran is R and that f̃ acts as a translation on it.

Let c̃ be a lift of the periodic closed center leaf c. Since c is periodic and f̃

acts as a translation, there exists γ ∈ π1(M), non-trivial such that γ(c̃) = f̃k(c̃)
for some k. Now c is also closed, so there exists g (distinct from any power of

γ, since they do not act in the same way on the leaf space of W̃cs
bran) such that

g(c̃) = c̃. Thus g and γ produce a Z2 subgroup in π1(M), which is impossible
since M is hyperbolic. �

Remark 10.6. The arguments here show that the dynamics of the transverse

pseudo-Anosov flow coarsely affects the dynamics of f . In particular, if f̃ is a
translation with respect to a certain R-covered branching foliation, there must
be a lower bound on the topological entropy of f . It is possible that one can

get a uniform lower bound independent of the foliation by getting that f̃ must
translate a certain uniform amount and this would give another way to check that
a partially hyperbolic diffeomorphism in a hyperbolic 3-manifold is a discretized
Anosov flows

11. Translations in hyperbolic 3-manifolds

In this section we obtain further consequences of having a partially hyperbolic
diffeomorphism act as a translation in a hyperbolic 3-manifold.

We start by recalling the setting. Let f : M →M be a (not necessarily dynam-
ically coherent) partially hyperbolic diffeomorphism on a hyperbolic 3-manifold.
Up to replacing f by a power, we assume that it is homotopic to the identity. Up
to taking a further iterate of f and a lift to a finite cover of M , we can assume

that f admits branching foliations, and that the good lift f̃ acts as a translation

on the leaf space of W̃cs
bran.

Let Φcs be a transverse regulating pseudo-Anosov flow to Wcs
bran given by

Proposition 10.1. This flow is fixed throughout the discussion.
Then Proposition 10.3 shows that, for any periodic orbit of Φcs, there exists a

center stable leaf periodic by f .

11.1. Periodic center rays. We will now produce rays in periodic center leaves
which are expanding. A ray in L is a proper embedding of [0,∞) into L. We say
that a ray is a center ray if it is contained in a center leaf. So a center ray cx is
the closure in L of a connected component of c r {x} where c is a center curve
and x ∈ c.

Let γ in π1(M) be associated with a periodic orbit δ0 of the pseudo-Anosov flow

Φcs. Let L be a leaf (given by Proposition 10.3) of W̃cs
bran fixed by h := γn ◦ f̃m,

with m > 0.
A center ray cx is expanding if h(cx) = cx and x is the unique fixed point of h

in cx and every y ∈ cx r {x} verifies that h−n(y)→ x as n→ +∞.

Proposition 11.1. Assume that a good lift f̃ of f acts as a translation on the

(branching) foliation W̃cs
bran. Let Φcs be a regulating transverse pseudo-Anosov

flow. Let γ in π1(M) associated with a periodic orbit δ0 of Φcs. Let L be a leaf
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of W̃cs
bran fixed by h = γn ◦ f̃m, where m > 0. Assume that γ fixes all prongs of

a lift of δ0 to M̃ . Then there are at least two center rays in L, fixed by h, which
are expanding.

Remark 11.2. We should stress that we cannot guarantee to get a single center
leaf with both rays expanding. For example it is very easy to construct an example
such that h has Lefschetz index −1 in L, it has exactly 3 fixed center leaves in L,
and only two fixed expanding rays, which are contained in distinct center leaves
(see Figure 9). This situation occurs in the examples constructed in [BGHP17]
in the unit tangent bundle of a surface.

We will use Proposition 11.1 and its proof to eliminate the mixed behavior in
hyperbolic 3-manifolds. It should be noted that this proposition also gives some
relevant information about the structure of the enigmatic double translations
examples which are not ruled out by our study.

The key point is to understand how each fixed center leaf contributes to the
total Lefschetz index of the map in a center-stable leaf which we can control.
Since the dynamics preserves foliations and one of them has a well understood
dynamical behavior (i.e., in the center stable foliation, the stable foliation is
contracting) we can compute the index just by looking at the dynamics in the
center foliation (see Figure 8).

As remarked above, one do have to be careful when computing the index as
cancellations might happen with branching foliation (see Figure 9).

Index −1Index 0Index 1

Figure 8. Contribution of index of a center arc depending on the
center dynamics

We are now ready to give a proof of Proposition 11.1.

Proof of Proposition 11.1. By Proposition 10.2, we know that the fixed point set
of h in L is contained in Tγ and has Lefschetz index 1− p where p is the number
of stable prongs at the fixed point. In particular h has some fixed points in L.

Let L2 = f̃m(L). We denote by τ12 : L→ L2 the flow along Φ̃cs map.
Let g := γn ◦ τ12 : L→ L. The map g is a bounded distance away from h.

Claim 11.3. Let c1, c2 be two distinct center leaves in L that have a non-trivial
intersection. Suppose that both c1, c2 are fixed by h, and there exist two distinct
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Figure 9. Two segments of zero index merge with a point with
index 1 to produce a global -1 index.

points z, y ∈ c1∩c2 which are fixed by h. Then the center leaves c1 and c2 coincide
on the segment between z and y.

Proof of Claim 11.3. Let [y, z]c1 and [y, z]c2 be the center segments between y
and z in c1 and c2 respectively.

Assume for a contradiction that [y, z]c1 and [y, z]c2 are distinct. Then, up to
changing y and z, we can assume that the intersection between the open intervals
(y, z)c1 and (y, z)c2 is empty.

Thus, by construction, [y, z]c1 and [y, z]c2 intersect only at z and y. We let B
be the bigon in L bounded by [y, z]c1 and [y, z]c2 .

Note that any stable leaf that enters the bigon B must exit it (otherwise it
would limit in a stable leaf entirely contained in B, which is impossible). Hence,
B is “product foliated” by stable leaves. Since B is compact the length of the
stable segments contained in B is bounded.

Since z, y are fixed by h it follows that B is also fixed by h. Let s be one such
stable segment connecting (z, y)c1 to (z, y)c2 . Then, the images of s under powers
of h−1 stay in B but must also have unbounded length, contradiction. �

Let x be a fixed point of h. Recall from Lemma 3.14 that the set of center
leaves through x in L is a closed interval. In particular h fixes the endpoints of
this interval. Hence, x is contained in a center leaf c such that h(c) = c.

Claim 11.4. All the fixed points of h in L are contained in the union of finitely
many compact segments of center leaves in L.

Proof of Claim 11.4. Let c be a center leaf fixed by h. Since the fixed points are
contained in a compact set C (see Lemma 8.12 of [BFFP20b]), there is a minimal
compact interval J in c which contains all the fixed points of h in c.

Suppose that there exists infinitely many distinct such minimal intervals Ji in
center leaves ci. Since the fixed points of h in L are in a compact set, we can
choose i, j large enough, so that Ji is very close in the Hausdorff distance of L
to Jj . Let z be an endpoint of Ji. Then the stable leaf s(z) through z intersects
the center leaf cj . As z is fixed by h and so is cj , contraction of the stable length
implies that z ∈ cj , thus z ∈ Jj .
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Hence, both endpoints of Ji are on Jj . By Claim 11.3, it implies that Ji ⊂ Jj ,
and minimality of the interval Jj implies Jj = Ji which is a contradiction. �

Let {Ji, 1 ≤ i ≤ i0} be a finite family of compact intervals containing all the
fixed point of h, as given by Claim 11.4. Note that we do not necessarily take
the minimal intervals as constructed in the proof of Claim 11.4, as we want the
following properties for that family.

Claim 11.5. We can choose the collection of intervals {Ji, 1 ≤ i ≤ i0}, each in
a center leaf fixed by h, satisfying the following properties:

(1) The union
⋃

1≤i≤i0 Ji contains all the fixed points of h.

(2) The endpoints of each interval Ji are fixed by h.
(3) The intervals are pairwise disjoint.

Proof of Claim 11.5. Let c1, . . . , cn be a minimal collection of center leaves that
contains all fixed points of h in L, as given by Claim 11.4. Let Ji be the minimal
compact interval containing all fixed points of h in ci.

The family Ji then satisfies conditions (1) and (2). So we only have to show
that one can split the intervals Ji further so that conditions (3) is also satisfied
(while still satisfying the first two conditions).

Notice that ci, cj intersect if and only if Ji, Jj intersect. Thus, we can restrict
our attention to each connected component of the union of the ci’s separately.

Up to renaming, assume that ∪1≤i≤kck is a connected component of ∪1≤i≤nck.
Now we can consider the union of the J1, . . . , Jk as a graph, where the vertices

are are the endpoints of the segments Ji together with the points where two
segments merge, and the edge are the subsegments joining the vertices. With
this convention, the union of the J1, . . . , Jk is then a tree. Otherwise there would
be a bigon in L enclosed by the union, which is ruled out by Claim 11.3.

Let B be this tree. Our goal is to remove enough open segments from the Ji’s
so that no vertex of this associated tree has degree 3 or more. Consider a vertex
p in B with degree 3 or more. Then there are two edges e1 and e2 abutting at p
on the same side of p. We claim that e1 cannot have points fixed by h arbitrarily
close to p (except for p itself). Otherwise one would have a fixed point y ∈ e1 such
that s(y) intersects e2. Since e2 is contained in a fixed leaf, e2 ∩ s(y) is fixed by
h. This implies (since h decreases stable length) that y is in e2. Thus, by Claim
11.3, the intersection of e1 and e2 would contain the segment [y, p], contradicting
the fact that they are distinct edges.

Thus, we can remove an open interval (p, z) from, say, e1, where z is fixed by
h but (p, z) has no fixed points. In the new tree, p has index one less than before
and z has index one.

Doing this recursively on each vertex of index strictly greater than 2, we will
obtain, as sought, a disjoint collection of intervals that also satisfy conditions (1)
and (2). �

Now we will look at the index of h on the fixed intervals Ji, 1 ≤ i ≤ i0 produced
by Claim 11.5. Note that for each such interval Ji there are no other fixed points
of h nearby in L. Let c be a leaf fixed by h containing Ji.

If h is contracting on c near both endpoints of Ji on the outside then the index

of Ji is +1. This is because the stable foliation is contracting under h = γn ◦ f̃m
(since m > 0). Hence h is contracting near Ji. If h is expanding on both sides,
the index is −1. If one side is contracting and the other is expanding then the
index is zero.



PARTIAL HYPERBOLICITY IN 3 MANIFOLDS II 53

The global index for h can then be computed by adding the indexes of h on
each of the intervals Ji, taking care of cancellations.

Let ck, 1 ≤ k ≤ k0, be finitely many center leaves, fixed by h and containing
all the Ji. We choose this collection to have the minimum possible number of
leaves.

Each leaf ck contains finitely many segments Ji, so there are exactly two infinite
rays that do not contain any Ji. The contribution of ck to the global index of
h (before possible cancellations) will then be −1 if both rays are expanding, 0 if
one is expanding while the other contracts and 1 if both are contracting.

Suppose for a contradiction, that there is at most one expanding ray in L. So
each ck, considered separately, has index either 0 or 1.

If there is an expanding ray, let ck be a leaf with an expanding ray. Otherwise
let ck be any leaf. Now we need to consider how the other leaves and the possible
cancellations impact the global index of h. Let cl be a leaf that intersect ck. If
cl shares an expanding ray with ck, then the other ray of cl is contracting, and
eventually disjoint from the corresponding ray of ck. The fixed set (if any) of
this ray in cl has index zero. If cl does not share an expanding ray with ck, then
both rays of cl are contracting. The ray that is added to the same end as the
expanding ray of ck contributes index 1. The other ray contributes index 0. In
any case the index, starting at 0 or 1, does not decrease.

Now, if cm is another leaf that is disjoint from the set above, then both rays are
contracting and it contributes an index 1. So again the index does not decrease.

Thus, if there is at most one expanding ray, then the index of h is at least
0. This contradicts the fact that the index of h is 1 − p where p ≥ 2, and thus
finishes the proof of Proposition 11.1. �

11.2. Periodic rays and boundary dynamics. Proposition 11.1 gave the ex-
istence of periodic rays that are coarsely expanding. Here we will show that
such a ray has a well-defined ideal point on the circle at infinity of the leaf,
and that it corresponds to the endpoint of a prong of the transverse regulating
pseudo-Anosov flow, Φcs.

As previously, we assume that we have a center stable leaf L ∈ W̃cs
bran such

that there is a deck transformation γ for which γ ◦ f̃m(L) = L for some m > 0.

We let L2 = f̃m(L) and define τ12 : L→ L2 the flow along Φ̃cs map. We also take
as before

h := γ ◦ f̃m and g := γ ◦ τ12.

Recall that h and g are maps of L that are a bounded distance from each other.
Also g preserves the (singular) foliations Gs and Gu. We again assume that if g
has a fixed point x0 in L then γ is such that g preserves each of the prongs of
Gs(x0) (resp. Gu(x0)).

The action of g on the circle at infinity S1(L1) has an even number of fixed
points, which are alternately contracting and repelling. We denote by P the set of
contracting fixed points and by N the set of repelling ones. With these notations,
we get the following.

Proposition 11.6. Let η : [0,∞) → L be a contracting fixed ray for h. Then
limt→∞ η(t) exists in S1(L) and it is a (unique) point in N . (Symmetrically, if
η is an expanding fixed ray, its limit point belongs to P .)

Proof. Let y in P and U a small neighborhood of y in L∪S1(L) as in [BFFP20b,
§8]. If η has a point q in U ∩ L, then hn(q) converges to y as n → +∞, so η
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could not be a contracting ray, a contradiction. So η cannot limit on any point
in P . If z is in S1(L) r {N ∪ P}, then hn(z) converges to a point in P under
forward iteration. Hence again a small neighborhood Z of z in L ∪ S1(L) is sent
under some iterate inside a neighborhood U as in the first part of the proof. So
any point in Z ∩ L converges to a point in P under forward iteration. Hence η
cannot limit to a point in S1(L)r {N ∪ P} either. So η can only limit on points
in N . Since η is properly embedded in L, the set of accumulations points of η is
connected, so it has to be a single point. �

12. Mixed case in hyperbolic manifolds

In this section we show that even in the non-dynamically coherent case, the
mixed behavior is impossible for hyperbolic 3-manifolds. This will be done by
using the study of translations in hyperbolic 3-manifolds developed in sections
10 and 11 to provide more information on the dynamics of general partially
hyperbolic diffeomorphisms.

The main result of this section is the following.

Theorem 12.1. Let f : M → M be a partially hyperbolic diffeomorphism ho-
motopic to the identity on a hyperbolic 3-manifold M . Suppose that there ex-
ists a finite lift and finite power f̂ of f that preserves two branching foliations

Wcs
bran,Wcu

bran and is such that a good lift f̃ fixes a leaf of W̃cu
bran. Then, f is a

discretized Anosov flow.

12.1. The set up. Consider a partially hyperbolic diffeomorphism f as in The-
orem 12.1.

Our goal is to show that the good lift f̃ of f fixes every leaf of W̃cs
bran, W̃cu

bran.

Indeed, Proposition 7.1 (and Corollary 7.5) then implies that f̂ is dynamically

coherent, so we can then use [BFFP20b, Theorem B] to obtain that f̂ is a dis-
cretized Anosov flow. In turns, thanks to Proposition 7.7, we obtain that f itself
is dynamically coherent and a discretized Anosov flow.

Since Proposition 7.7 allows us to use finite lifts and powers, we assume directly
that f = f̂ , that Wcs

bran and Wcu
bran are orientable and transversely orientable and

that f preserves their orientations.

Since f̃ is assumed to fix one leaf of W̃cu
bran, Proposition 6.1 implies that every

leaf of W̃cu
bran is fixed. We will prove that every leaf of W̃cs

bran is fixed by f̃ by
contradiction. So, by Proposition 6.1, we can assume thatWcs

bran is R-covered and

uniform and that f̃ acts as a translation on the leaf space of W̃cs
bran. In particular,

there are no center curves fixed by f̃ .
Then, we can apply Proposition 5.2 to Wcu

bran to deduce that every periodic
center leaf is coarsely expanding.

On the other hand, since f̃ acts as a translation on W̃cs
bran, we can use the

results from sections 10 and 11. Let Φcs be a regulating pseudo-Anosov flow
transverse to Wcs

bran given by Proposition 10.1.
The flow Φcs is a genuine pseudo-Anosov, that is it admits at least one periodic

orbit which is a p-prong with p ≥ 3 (see [BFFP20b, Proposition D.4]).
Now, we choose γ in π1(M), associated to this prong, and apply Proposition

10.3: Up to taking powers, we can assume that h := γ ◦ f̃k for some k > 0 fixes

a leaf L of W̃cs
bran. Moreover, the dynamics in L resembles that of the dynamics

of a p-prong, and in particular fixes every prong.
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Notice that Proposition 11.1 also provides some center rays which are expand-
ing in L for h. We will need to use some of the ideas involved in the proof of that
proposition (even though the statement itself will not be used).

We summarize the discussion above in the following proposition.

Proposition 12.2. Let f : M → M be a partially hyperbolic diffeomorphism
homotopic to the identity of a hyperbolic 3-manifold M preserving branching fo-

liations Wcs
bran,Wcu

bran. Suppose that a good lift f̃ fixes a leaf of W̃cu
bran and acts

as a translation on W̃cs
bran. Then, up to taking finite iterates and covers, there

exists γ ∈ π1(M) and k > 0 such that a center stable leaf L ∈ W̃cs
bran is fixed by

h := γ ◦ f̃k and its Lefschetz index is IFix(h)(h) = 1 − p with p ≥ 3. Moreover,
every center curve fixed by h in L is coarsely expanding.

Let γ be as in the proposition. Let L be a center stable leaf fixed by h = γ ◦ f̃k
and L2 = f̃k(L). As previously, we write τ12 : L → L2 for the map obtained by

flowing from L to L2 along Φ̃cs. We set g := γ ◦ τ12.
The map g acts on the compactification of L with its ideal circle L∪S1(L) the

same way as h does (see sections 10 and 11).

Let δ be the unique orbit of Φ̃cs fixed by γ and let x be the (unique) intersection
of δ with L. Note that x is the unique fixed point of g. Since we assume that
γ fixes the prongs of δ, then h has exactly 2p fixed points in S1(L). These fixed
points are contracting if they correspond to an ideal point of Gu(x) and expanding
if they are ideal points of Gs(x).

12.2. Proof of Theorem 12.1. To prove Theorem 12.1 we will first show some

properties. Recall from Proposition 11.6 that every proper ray in L ∈ W̃cs
bran,

fixed by h has a unique limit point in S1(L) (notice that the ray must be either
expanding or contracting). We will show that the fixed rays associated to the
center and stable (branching) foliations have different limit points at infinity.

Lemma 12.3. Let s be a stable leaf in L which is fixed by h. Then the two rays
of s limit to distinct ideal points of L. The same holds if c is a center leaf in L
fixed by h.

Proof. We do the proof for the center leaf c, the one for stable leaves is analogous,
and a little bit easier (since there is no branching).

By hypothesis, c is fixed by h, hence it is coarsely expanding under h. It follows
that there are fixed points of h in c. By Proposition 11.6 each ray of c can only
limit in a point in P ⊂ S1(L), where, as previously, P is the set of attracting
fixed points of h in S1(L). Let q1, q2 be the ideal points of the rays. What we
have to prove is that q1 and q2 are distinct.

Suppose that q1 = q2. Then c bounds a unique region S in L which limits only
in q1 ∈ S1(L). The other complementary region of c in L limits to every point
in S1(L). Let z be a fixed point of h in c. Then the stable leaf s(z) of z has a
ray s1 entering S. It cannot intersect c again, and it is properly embedded in L.
Hence it has to limit in q1 as well. See Figure 10.

But now this ray is contracting for h. This contradicts Proposition 11.6 because
this ray should limit in a point of N . �

Remark 12.4. The proof used strongly that periodic center leafs are coarsely
expanding, in order to induce a behavior at infinity. In the examples of [BGHP17]
it does happen that different stable curves land in the same ideal point at infinity
in their center stable leaf.
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Lq1

z

cs(z)

Figure 10. Rays have to land in different points of S1(L).

Now we show a sort of dynamical coherence for fixed center rays.

Lemma 12.5. Suppose that c1, c2 are distinct center leaves in L which are fixed
by h. Then c1, c2 cannot intersect.

Notice that since f is not necessarily dynamically coherent, the distinct center
leaves c1, c2 can a priori intersect each other. The proof will depend very strongly
on the fact that center rays fixed by h are coarsely expanding.

Proof. Suppose that c1, c2 intersect. Since c1, c2 are both fixed by h, so is their
intersection. Since h is coarsely expanding in each, then c1, c2 share a fixed point
of h. In the the proof of Claim 11.3, we showed that c1 and c2 cannot form a
bigon B.

It follows that there is a point x, fixed by h, which is an endpoint of all
intersections of c1 and c2: On one side x bounds a ray e1 of c1 and a ray e2 of c2

such that e1 and e2 are disjoint. For a point y in e1 near enough to x, we have
that s(y) must intersects c2. Since stable lengths are contracting under powers
of h, it implies that e1 is contracting towards x near x and similarly for e2 (see
figure 11). But e1 is coarsely expanding. Hence there must exist fixed points of
h in e1. Let y ∈ e1 be the closest point to x which is fixed by h. Similarly, let z
in e2 closest to x fixed by h.

The leaves s(y), s(z) are not separated from each other in the stable leaf space
in L.

Let now c be a center leaf through x, which is between c1 and c2 and which is
the first center leaf not intersecting s(y). Then h(c) = c. In addition c has a ray
e with endpoint x and intersecting only stable leaves which intersect c1 between
x and y. It follows that this ray is contracting under h, contradicting Proposition
12.2, because this is fixed by h. �

Thus far, we showed that distinct center leaves in L, which are fixed by h
do not intersect. Then, the proof of Claim 11.4 also implies that fixed center
leaves cannot accumulate (as accumulation would imply that some fixed leaves
intersect).
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Figure 11. Showing the existence of fixed points below x in Lemma 12.5.

We conclude that there are finitely many center leaves in L that are fixed under
h. Each such center leaf is coarsely expanding. For each such center leaf c, we
consider a small enough open topological disk containing all the fixed points of h
in c, and no other fixed point of h in L. Then, on such disks, the Lefschetz index
of h is −1. Since the total Lefschetz number of h in L is 1− p it follows that:

Lemma 12.6. There are exactly p− 1 center leaves which are fixed by h in L.

This together with the following lemma will allow us to make a counting ar-
gument to reach a contradiction.

Lemma 12.7. Let c1, c2 be two distinct center leaves in L fixed by h. Let y1 ∈ c1

and y2 ∈ c2 be fixed points of h. Then s(y1) and s(y2) do not have common ideal
points.

Proof. Suppose, for a contradiction, that there are distinct fixed center leaves c1,
c2 satisfying the following: There are points y1 ∈ c1 and y2 ∈ c2, fixed by h, such
that s1 = s(y1) and s2 = s(y2) share an ideal point in S1(L).

Let q be the common ideal point of the corresponding rays of s1 and s2. Let ej
be the ray in sj with endpoint yj and ideal point q. Suppose first that no center
leaf intersecting e1 intersects e2. Let c0 be a center leaf intersecting e1. Iterate c0

by powers of h−1. It pushes points in s1 away from y1. Since the leaves h−i(c0)
all intersect s1 and none of them intersect s2, the sequence (h−i(c0)) converges
to a collection of center leaves as i → +∞. Then there is only one center leaf
in this limit, call it c, which separates all of h−i(c0) from s2. This c is invariant
under h, but it has an ideal point in q. Now q is a repelling fixed point, so c must
have an attracting ray, a contradiction.

It follows that some center leaf intersecting e1 also intersects e2. Let c0 be one
such center leaf. Now iterate by positive powers of h. Then (hi(c0)) converges
to a fixed center leaf v1 through y1 and a fixed center leaf v2 through y2. But
then v1 and c1 are both fixed by h and both contain y1. Lemma 12.5 implies
that c1 = v1 and c2 = v2. In particular v1 6= v2, and they are non separated from
each other. In this case, consider s the unique stable leaf defined as the first leaf
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Figure 12. A depiction of the main objects in the proof of Lemma 12.7.

not intersecting c1 that separates s1 from s2. Then, as above, h fixes s and has
a fixed point y in s. But a center leaf c through y fixed by h has to intersect
the interior of the ray e1. This intersection point is the intersection of c fixed
by h, and s1 fixed by h. So this intersection point is fixed by h. But this is a
contradiction, because y1 is the only fixed point of h in s1. So Lemma 12.7 is
proven. �

We now can complete the proof of Theorem 12.1.

Proof of Theorem 12.1. By Lemma 12.6, there are p− 1 center leaves fixed by h
in L. We denote them by c1, . . . , cp−1.

Each center leaf has at least one fixed point. Let yi, 1 ≤ i ≤ p − 1 be a fixed
point in ci. Then, for each i, Lemma 12.3 states that s(yi) has two distinct ideal
points z1

i and z2
i .

Moreover, for every i 6= j, the ideal points of the stable leaves are distinct by
Lemma 12.7. It follows that there are at least 2p − 2 distinct points in S1(L)
which are repelling.

But we also know that there are exactly p points in S1(L) that are repelling
under h. It follows that 2p− 2 ≤ p, which implies p = 2. However, we had that
p ≥ 3, thus obtaining a contradiction.

This finishes the proof of Theorem 12.1. �

Appendix A. Some 3-manifold topology

Besides the 3-manifold topology presented in [BFFP20b, Appendix A] we will
need an additional result important to understand certain particular deck trans-
formations when one lifts to finite covers.

Lemma A.1. Let M be a closed, irreducible 3-manifold with fundamental group
that is not virtually nilpotent. Suppose that β is a non trivial deck transformation
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so that d(x, β(x)) is bounded above in M̃ . Then M is a Seifert fibered space and
β represents a power of a regular fiber.

Proof. First we assume that M is orientable. Then, the JSJ decomposition states
that M has a canonical decomposition into Seifert fibered and geometrically

atoroidal pieces. We lift this to a decomposition of M̃ and construct a tree
T in the following way: The vertices are the lifts of components of the torus
decomposition of M , and we associate an edge if two components intersect along
the lift of a torus. Such a lift of a torus is called a wall. There is a minimum
separation distance between any two walls.

The deck transformation β acts on this tree. Let W be a wall. Suppose that

β(W ) is distinct from W . But, as subsets of M̃ , the walls W,β(W ) are a finite
Hausdorff distance from each other. Then π(W ), π(β(W )) are tori in M , and the

region V in M̃ between W,β(W ) projects to π(V ) which is T2 × [0, 1] in M . If
this happens then M is a torus bundle over a circle. In that case, use that π1(M)
is not virtually nilpotent, so the monodromy of the fibration is an Anosov map
of T2. But then no β as above could satisfy the bounded distance property. It
follows that β(W ) = W for any wall, and in particular β(P ) = P for any vertex
of T .

Now consider a vertex P . Suppose first that π(P ) is homotopically atoroidal.
By the Geometrization Theorem, π(P ) is hyperbolic. If β restricted to P were
to satisfy the bounded distance property, then it would have to be the identity
on P . Hence β itself is the identity, contradiction.

Hence all the pieces of the torus decomposition ofM are homotopically toroidal.
Suppose now that there is one such piece π(P ) that is geometrically atoroidal
(but not homotopically atoroidal). The proof of the Seifert fibered conjecture
([CJ94, Gab92]) shows that π(P ) has no boundary and π(P ) is Seifert. In other
words, M = π(P ) is Seifert. So we can assume that all the pieces of the torus
decomposition are geometrically toroidal. Then they are all Seifert fibered. Thus
M is a graph manifold.

We will show that the torus decomposition of M is in fact trivial, proving that
M is Seifert fibered. Suppose it is not true. Then the tree T is infinite. Let
P1, P2, P3 be three consecutive vertices in T . Let W1 be the wall between P1 and

P2. Then β(W1) (as a set in M̃) is a bounded distance from W1 and sends the
Seifert fibration of P in W1 to lifts of Seifert fibers. It follows that β = δk1α1

where δ1 represents a regular fiber in π(P1), and α1 is a loop in π(W1). Similarly
if W2 is the wall between P2 and P3 then β = δi3α3 where α3 is a loop in π(W3).
Then α1, α3 are both in the boundary of π(P2). The loops representing δk1α1,
δi3α3 are both in the boundary of π(P2). They represent the same element of
π1(M) only when k = i = 0 and α1, α3 are freely homotopic. That means that
P2 is a torus times an interval, which is impossible in the torus decomposition in
our situation as explained above.

It follows now that the torus decomposition of M is trivial, which implies that
M is Seifert fibered. Moreover, if the base is not hyperbolic, then π1(M) is
virtually nilpotent ([Sco83, Theorem 5.3]). But this contradicts the hypothesis
of the lemma.

It follows that the base is hyperbolic. Also β induces a transformation in the
universal cover of the base that is a bounded distance from the identity. This
can only happen if this transformation is the identity. Therefore β represents
a power of a regular Seifert fiber in M (notice that non-regular fibers induce a
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finite symmetry on the base, thus not the identity, and not a bounded distance
from the identity).

So the Lemma is proven when M is orientable. If M is not orientable, then it
has a double cover M2 which is orientable. Now β2 lifts to an element of π1(M2)
that satisfies the assumption of the lemma. So we can apply the result to M2 and
obtain that M2 is Seifert. Thus M is doubly covered by a Seifert space, which,
by a result of Tollefson [Tol78], implies that M itself is Seifert fibered. It follows
that β corresponds to a power of a regular fiber. This finishes the proof of the
lemma. �

Appendix B. Minimality and f-minimality

We prove that in certain situations minimality is equivalent to f -minimality.
We need the following result which is of interest in itself.

Lemma B.1. Let Lcsb be the leaf space of W̃cs
bran. Let B ⊂ Lcsb be a closed set of

leaves. Suppose that, for all x ∈ M̃ , there exists a leaf L ∈ B containing x. Then
B = Lcsb .

Proof. The lemma is obvious when Wcs
bran is a true foliation (and one does not

need to require B to be closed). However, when Wcs
bran has some branching, one

could possibly have a union of leaves that cover all of M̃ without using all the

leaves of W̃cs
bran. For closed sets of leaves we show this is not possible.

Let L be a leaf of W̃cs
bran, x a point in L and τ an open unstable segment

through x. The set of leaves of W̃cs
bran intersecting τ is isomorphic to an open

interval. Using the transversal orientation to W̃cs
bran, we can put an order on this

interval.
By our assumption, every point in τ intersects a leaf in B. Let L′ be the

supremum of leaves in B, intersecting τ and smaller than or equal to L. Since B
is closed, we have L′ ∈ B. Notice that x is in both L and L′.

We claim that L′ = L. If L is not equal to L′ then they branch out. Let y
be a boundary point of L ∩ L′. Let z ∈ L′, with z /∈ L be close enough to y so
that its unstable leaf u(z) intersects L. Now take any point w ∈ u(z) in between

z and L ∩ u(z). Any leaf L1 ∈ W̃cs
bran that contains w must contain y. Hence

(because leaves do not cross), L1 also contains x. By definition, it is above L′,
thus L1 is not in B. Since this is true for any leaf through w, it contradicts our
assumption. �

Lemma B.2. When Wcs
bran does not have compact leaves, then f -minimality of

Wcs
bran is equivalent to minimality of Wcs

bran.

Proof. Note that minimality obviously implies f -minimality, so we only need to
show the other implication.

Suppose that Wcs
bran is not minimal and let C be the union of a set of Wcs

bran
leaves which is closed and not M . Let Wcs

ε be an approximating foliation, with
approximating map hcsε sending leaves of Wcs

ε to those of Wcs. Then (hcsε )−1(C)
is a set which is a union of Wcs

ε leaves, which is closed and not M . In particular
it contains an exceptional minimal set D. By [HH87, Theorem 4.1.3] the actual
foliation Wcs

ε has finitely many exceptional minimal sets B1, . . . , Bk. The union
B of these is not M because D 6= M . The set of leaves in B is a closed set of
leaves denoted by B. Then A = hcsε (B) is a closed subset of M , and A = hcsε (B) is

a closed set of leaves, being the image by hcsε of the leaves in B. Let Ã = π−1(A),
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we stress that this is on the leaf space level, not in terms of sets. This is a closed
subset of Lcsb .

Let Ai := hcsε (Bi). Every leaf of Wcs
bran which is the image of a leaf in Bi is

dense in Ai. Using this, it is easy to see that f(A) = A. By f -minimality it
follows that A = M .

Since A = M then Ã is a closed subset of Lcsb , whose union of points in all

leaves of Ã is M̃ as A = M . Lemma B.1 implies that Ã = Lcsb . Hence for each
leaf E of Wcs

bran, it is the image of a leaf F in some Bi. Conversely every leaf of
Wcs
ε maps by hcsε to a leaf of Wcs

bran.
For each leaf E of Wcs

bran, its preimage (hcsε )−1(E) is a closed interval of leaves
of Wcs

ε . No leaf in the interior of the interval can be in a Bi as it is a minimal
set. It follows that the complementary regions of B in M are I-bundles. These
can be collapsed to generate another foliation C. Since the Bi were minimal sets
ofWcs

ε , then the collapsing of each of these is a minimal set of C. Since the union
is all of M , there can be only one such minimal set, so Wcs

ε is minimal.
But this contradicts the fact that D is an exceptional minimal set of Wcs

ε . �

We state the following criteria for dynamical coherence (which in this setting
is quite obvious).

Proposition B.3 (Proposition 1.6 and Remark 1.10 in [BW05]). Assume that
f is a partially hyperbolic diffeomorphism admitting branching foliations Wcs

bran
and Wcu

bran and assume that

• no two different leaves of Wcs
bran intersect,

• no two different leaves of Wcu
bran intersect.

Then, f is dynamically coherent.

Appendix C. The Lefschetz index

Here we define the Lefschetz index and give the main property that we used.
We refer to the monograph by Franks [Fra82, Section 5] for details and other
references.

For any space X and subset A ⊂ X, we denote by Hk(X,A) the k-th relative
homology group with coefficients in Z.

Definition C.1. Let V ⊂ Rk be an open set and F : V ⊂ Rk → Rk be a
continuous map such that the set of fixed point of F is Γ ⊂ V , a compact
set. Then the Lefschetz index of F , denoted by IΓ(F ) is an element in Z ∼=
Hk(Rk,Rk−{0}), defined as follows. It is the image by (id−F )∗ : Hk(V, V −Γ)→
Hk(Rk,Rk − {0}) of the class uΓ, where uΓ itself is the image of the generator 1
under the composite Hk(Rk,Rk −D) → Hk(Rk,Rk − Γ) ∼= Hk(V, V − Γ). Here
D is a ball containing Γ.

It is easy to see that if Γ = Fix(F ) = Γ1 ∪ · · · ∪ Γj , where Γi are compact and

disjoint then IΓ(F ) =
∑j

1 IΓ(F ). Here IΓ(F ) is the index restricted to an open
set Vi of V which does not intersect the other Γm, see [Fra82, Theorem 5.8 (b)].

This technical definition works well with the standard examples. For a sin-
gle hyperbolic fixed point q, the index at q is exactly sgn(det(id − DqF )) (see
[Fra82, Proposition 5.7]), where det is the determinant, and sgn is the sign of the
determinant. Hence in dimension 2 the index of a hyperbolic fixed point when
the orientation of the bundles is preserved is −1. This can be generalized to a
p-prong hyperbolic fixed point to obtain that the index is 1− p. This is because
the index is invariant by homotopic changes. A p-prong can be easily split into
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p−1 distinct hyperbolic points which are differentiable. In addition for any fixed
set which behaves locally as a hyperbolic fixed point, the index is the same as
the hyperbolic fixed point.

The main property we use is the following.

Proposition C.2 (Theorem 5.8(c) of [Fra82]). Let P be a topological plane
equipped with a metric d. Let g, h : P → P be two homeomorphisms. Suppose
that there exists R > 0 such that:

• For every x ∈ P , one has that d(g(x), h(x)) < R;
• There is a disk D such that, for every x /∈ D, one has that d(x, g(x)) >

2R.

Then, the total index IFix(g)(g) = IFix(h)(h).

See also [KH95, Section 8.6] for an alternate presentation of the Lefschetz
index.
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