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Abstract. We propose a generalization of the concept of discretized Anosov
flows that covers a wide class of partially hyperbolic diffeomorphisms in 3-
manifolds, and that we call collapsed Anosov flows. They are related with
Anosov flows via a self orbit equivalence of the flow. We show that all the
examples from [BGHP] belong to this class, and that it is an open and closed
class among partially hyperbolic diffeomorphisms. We provide some equiv-
alent definitions which may be more amenable to analysis and are useful in
different situations. Conversely we describe the class of partially hyperbolic
diffeomorphisms that are collapsed Anosov flows associated with certain types
of Anosov flows.

1. Introduction

For about 15 years Pujals’ conjecture [BWi] has served as a blueprint and
motivation for the understanding and classification of partially hyperbolic diffeo-
morphisms in dimension 3. In most 3-manifolds, that is, those with non virtually
solvable fundamental group1, the conjecture affirmed that, up to iterates and
finite lifts, a transitive partially hyperbolic diffeomorphism had to behave like
the discretization of an Anosov flow: the diffeomorphism should globally fix each
orbit of an associated Anosov flow, moving points along the orbits.

In the past few years, Pujals’ conjecture was disproved: Examples built in
[BGP, BGHP] (see also [BPP, BZ]) gave a plethora of new partially hyperbolic
diffeomorphisms. All of these new examples are such that they have infinite order
in the mapping class group of their supporting manifolds, contrarily to Pujals’
conjecture.

Thanks to a criterion developed in [BGHP], called ϕ-transversality (see Def-
inition 2.8), these new examples — as well as the older examples of [BWi] —
can be described in the following way: Start with an Anosov flow φt on a man-
ifold M . Then find a diffeomorphism ϕ of M that preserves the transversality
of the bundles of the Anosov splitting (more precisely, such that the flow φt is
ϕ-transversal to itself, see Definition 2.8). Finally, compose ϕ with a very large
time of the flow φt and obtain a partially hyperbolic diffeomorphism.

Finding the good diffeomorphisms ϕ is generally the difficult step, but one
type of map that does work (as chosen in [BWi]) is a smooth symmetry of the
Anosov flow.
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In this article we show that, while not obvious from the construction, all of the
new examples of partially hyperbolic diffeomorphisms are related to symmetries
(self orbit equivalences to be precise) of the starting flow.

More generally, the main goal of our article is to introduce, and start the study
of, a new class of partially hyperbolic diffeomorphisms in dimension 3, that we
call collapsed Anosov flows. A partially hyperbolic diffeomorphism is a collapsed
Anosov flow if there exists a global collapsing map, homotopic to the identity,
that semi-conjugates a self orbit equivalence of a topological Anosov flow with
the diffeomorphism.

This class of diffeomorphisms has very interesting properties. In particular we
show the following (formalized below as Theorems A and C).

Informal Statement. Collapsed Anosov flows form an open and closed class
of partially hyperbolic diffeomorphisms in dimension 3 that contains all known
examples in manifolds with non-virtually solvable fundamental group.

Since our goal is in part to lay down the basis for a future study of this class, we
introduce four definitions: Three of them (collapsed Anosov flow, strong collapsed
Anosov flow and leaf space collapsed Anosov flow, Definitions 2.5, 2.7 and 2.10
respectively) have to do with how restrictive one wants the semi-conjugacy to
be in terms of its behavior with respect to either center curves or the branching
foliations of the partially hyperbolic diffeomorphisms. The last definition (quasi-
geodesic partially hyperbolic diffeomorphisms, Definition 2.13) is singular as it
instead asks for the center foliation to be by quasigeodesics inside each center
stable and center unstable leaves2.

Under some orientability conditions, we prove equivalence between quasigeodesic
partially hyperbolic diffeomorphisms, strong collapsed Anosov flows and leaf
space collapsed Anosov flows (Theorems B and D). We believe that these equiv-
alences will show themselves to be quite useful: For instance, the proof, obtained
in [FP2], that every hyperbolic 3-manifold that admits a partially hyperbolic also
admits an Anosov flow relies on these equivalences.

In light of the fact that the known counter-examples to Pujals’ conjecture are
all collapsed Anosov flows, it is natural to ask the following (thus extending [BGP,
Question 1] and making [Pot2, Question 12] precise).

Question 1. Let M be a 3-manifold with non virtually solvable fundamental
group and f : M Ñ M a (transitive) partially hyperbolic diffeomorphism. Is f a
collapsed Anosov flow?

One interest of Pujals’ conjecture was to suggest that the classification of par-
tially hyperbolic diffeomorphisms in dimension 3 could be done up to classification
of Anosov flows. If the question above admits a positive answer, then that view
behind Pujals’ conjecture may still be true, as it seems possible to understand all
the self orbit equivalences of Anosov flows without having a full classification of
the flows.

While we will not suggest an answer to Question 1 in full generality, there are
several contexts where we can say more:

(i) When M is hyperbolic, the answer is proven to be positive in [FP2].
(ii) When the partially hyperbolic diffeomorphism is homotopic to the iden-

tity, the answer is likely positive (see [BFFP1, BFFP2]).

2It also requires the center stable/unstable branching foliations to be by Gromov-hyperbolic
leaves.
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(iii) For Seifert manifolds, current work in progress by the second and third
authors also indicates a positive answer.

Another potential interest we see in collapsed Anosov flows is that it may
allow to successfully decouple the dynamical study of partially hyperbolic diffeo-
morphisms from the question of their classification. Indeed, one may be able to
obtain fine dynamical properties when restricting to particular types of collapsed
Anosov flows.

This strategy has previously been successfully used in [AVW, BFT, BaG2,
DWX, FP1, GM] for discretized Anosov flows, or similar concepts. Discretized
Anosov flows were introduced in [BFFP1] (although related notions appeared
previously, for instance in [BWi, BoG]). One can view them as collapsed Anosov
flows where the self orbit equivalence is trivial, meaning that it fixes every orbit
of the flow (see §5). By [BFFP1, BFFP2], discretized Anosov flows represent a
very large class of partially hyperbolic diffeomorphisms. An example of a dy-
namical consequence is [FP1], where it is shown that discretized Anosov flows
are always accessible unless they come from suspensions (in particular, smooth
volume preserving ones are ergodic). In fact, another, albeit slightly weaker,
accessibility result is obtained for some specific collapsed Anosov flows in [FP1]
(but without using that terminology), and it seems plausible that such results
could be achievable for other classes of collapsed Anosov flows.

Finally, we can use the interaction of collapsed Anosov flows with self orbit
equivalences of Anosov flows to classify them up to isotopy. Over the years,
a deep knowledge of the orbit space of Anosov flows in dimension 3 has been
attained. This in turn gives restrictions on how a self orbit equivalence can
act. For instance, self orbit equivalences that are homotopic to the identity
were classified in [BaG1], showing that there are at most two types of actions
in that case. Knowing restrictions about self orbit equivalences (for instance
which isotopy classes can support them) directly implies restrictions on possible
collapsed Anosov flows.

On the other hand, a general method to build self orbit equivalences of Anosov
flow has not yet been developed. The construction methods of [BGHP] together
with Theorem A gives one such method.

We illustrate what consequences this interaction gives us in a few specific
cases. In particular, we give a complete description of collapsed Anosov flows
up to isotopy: 1) when the manifold is the unit tangent bundle of a surface; 2)
when the associated flow is the Franks–Williams example [FW]; or 3) when the
collapsed Anosov flow is homotopic to the identity (see §11).

The conceptualization of the notion of collapsed Anosov flows that we introduce
here has been in part motivated by [FP2] (and to a lesser extent [BFFP1, BFFP2]).
The indebtedness we have to these previous works does not translate, however,
into their direct use in the present article. Indeed, the scope, as well as most of the
techniques we use here, are different in nature from those in the aforementioned
work.

2. Collapsed Anosov flows

In this paper, M will always denote a closed 3-dimensional manifold. It is
possible that some notions make sense in higher dimensions but we will repeatedly
use facts about foliations and Anosov flows in dimension 3 that are unknown in
higher dimensions and we have not checked to which extent arguments extend
(even if only in part) to higher dimensions.
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In this section, we will make precise the different definitions of collapsed Anosov
flows alluded to earlier and formally state the main results of this article.

First we review the notion of topological Anosov flows, in order to be able to
introduce collapsed Anosov flows.

2.1. Anosov flows and topological Anosov flows. Recall that an Anosov
flow is a flow φt : M ÑM generated by a vector field X such that Dφt preserves
a splitting TM “ Es ‘ RX ‘ Eu and there exists T ą 0 satisfying

}DφT v
s} ă

1

2
ă 2 ă }DφT v

u},

for every unit vector vσ P Eσ (σ “ s, u).
It is well known that this property implies that the splitting is continuous.

Moreover, it follows that the bundles Es and Eu are uniquely integrable into
φt-invariant foliations Fs and Fu tangent respectively to Es and Eu [Ano] called
the strong stable and strong unstable foliations of φt. One obtains φt-invariant
foliations Fws and Fwu called the weak stable and weak unstable foliations by
taking the saturation of the previous foliations by the flow. Note that these
foliations are the unique foliations tangent respectively to Ews :“ Es ‘ RX and
Ewu :“ RX ‘ Eu [Ano]. See [HPS] or [CP, §4] and references therein for more
details.

The following generalizes Anosov flows: A topological Anosov flow is a contin-
uous flow φt : M ÑM generated by a vector field X which shares the topological
properties of an Anosov flow, that is:

‚ It preserves two continuous one dimensional foliations Fs and Fu such
that if y P Fspxq then dpφtpxq, φtpyqq Ñ 0 as tÑ8 and dpφtpxq, φtpyqq ą
ε0 ą 0 for all t ă t0 (t0 depending on x, y) and the same properties but
with time reversed for Fu.

‚ It preserves Fws and Fwu, the weak stable and unstable (two-dimensional)
foliations defined as the flow saturation of the foliations Fs and Fu. More-
over, the foliations Fws and Fu (resp. Fwu and Fs) are uniformly topo-
logically transverse meaning that there are local charts of uniform size at
each point sending the Fws to horizontal planes and Fu to vertical lines in
the cube r´1, 1s3 (resp. Fwu to horizontal planes and Fs to vertical lines).

An orbit equivalence between (topological) Anosov flows φ1
t : M Ñ M and

φ2
t : N Ñ N is a homeomorphism β : M Ñ N sending orbits of φ1

t to orbits of
φ2
t preserving the orientation. In other words, there exists a reparametrization
φ2
upx,tq

3 of φ2
t such that β is a conjugation, i.e., βpφ1

t pxqq “ φ2
upt,xqpβpxqq, where

upt, xq is monotone increasing for fixed x.

Remark 2.1. It has been recently proved that every transitive topological Anosov
flow is orbit equivalent to an Anosov flow [Sha].

Definition 2.2. A self orbit equivalence of an Anosov flow φt is an orbit equiv-
alence between φt and itself.

Self orbit equivalences homotopic to the identity have been studied in [BaG1]
to understand fiberwise Anosov dynamics, but in fact there are self orbit equiv-
alences of certain Anosov flows which are not homotopic to the identity.

3In order for φ2
upx,tq to be a flow, the function u must satisfy the following cocycle condition:

upx, t` sq “ upφ1
t pxq, sq ` upx, tq. See, e.g., [KH, §2.2].
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Definition 2.3. We say that a self orbit equivalence β is trivial if there exists
a continuous function τ : M Ñ R such that βpxq “ φτpxqpxq. Two self orbit
equivalences α, β are said to be equivalent (or that they belong to the same class)
if α ˝ β´1 is a trivial self orbit equivalence.

2.2. Partially hyperbolic diffeomorphisms. A partially hyperbolic diffeomor-
phism is a diffeomorphism f : M ÑM such that Df preserves a splitting TM “

Es ‘Ec ‘Eu into non-trivial bundles such that there is ` ą 0 verifying that for
every x PM and unit vectors vσ P Eσpxq (σ “ s, c, u) one has:

}Df `vs} ă
1

2
mint1, }Df `vc}u, and }Df `vu} ą 2 maxt1, }Df `vc}u.

As in the Anosov flow case, this condition implies that the bundles are contin-
uous. It also implies unique integrability of the bundles Es and Eu into foliations
Ws and Wu, called strong stable and strong unstable foliations respectively (see
[CP]). We denote by Ecs “ Es ‘ Ec and Ecu “ Ec ‘ Eu.

Remark 2.4. It follows that given an Anosov flow, its time one map is partially
hyperbolic and Ec coincides with the bundle generated by the vector field tangent
to the flow.

When necessary, we will denote the dependence of bundles or foliations on the
maps with a subscript, e.g., Esf or Fsφ.

2.3. Collapsed Anosov flows and strong collapsed Anosov flows. We are
now ready to give the formal definition of a collapsed Anosov flow.

Definition 2.5 (Collapsed Anosov Flow). A partially hyperbolic diffeomorphism
f of a closed 3-dimensional manifold M is said to be a collapsed Anosov flow if
there exists a topological Anosov flow φt, a continuous map h : M Ñ M homo-
topic to the identity and a self orbit equivalence β : M ÑM of φt such that:

(i) The map h is differentiable along the orbits of φt and maps the vector
field tangent to φt to non-zero vectors tangent to Ec.

(ii) For every x PM one has that f ˝ hpxq “ h ˝ βpxq.

As noted earlier, discretized Anosov flows (as defined in [BFFP1], see §5.5) are
collapsed Anosov flows, where h can be taken to be the identity and β is a trivial
self orbit equivalence.

Another case, discussed previously, that is easily seen to be a collapsed Anosov
flow is when an Anosov flow φt commutes with a smooth map β (as in [BWi,
Proposition 4.5] for instance), then β ˝ φ1 is a collapsed Anosov flow (with self
orbit equivalence β ˝ φ1 and h the identity). However, we show (Proposition
10.10) that these examples are always “periodic” in the sense that a power of the
diffeomorphism is a discretized Anosov flow (or, equivalently, a power of the self
orbit equivalence is trivial).

In contrast, the examples of [BGHP] will give, thanks to Theorem A, collapsed
Anosov flows associated with self orbit equivalences of infinite order.

Remark 2.6. The definition of a collapsed Anosov flow forces the center direction
of f to be orientable, since we can induce an orientation from the orientation
of the flow direction via h. To see this, suppose that Ec is not orientable, and
suppose that α is a closed curve starting at x in M such that it reverses the local
orientation of Ec. Let γ be the deck transformation associated to α. Lift x to rx

in ĂM . Let rh be a lift of h which is a lift of a homotopy of h to the identity. Then
rh commutes with every deck transformation. Since h is homotopic to the identity
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it is degree one, so there is ry in ĂM such that rhpryq “ rx. Let η be a curve in ĂM

from ry to γpryq. Along rhpηq the projection of the flow lines of rφt by rh induces a

non zero vector tangent to Ec. Since γ commutes with rh the final vector is the
tangent to Ec in the direction induced by γ. But γ was supposed to reverse the
direction of Ec so this is a contradiction to the fact that the tangent vectors to

Ec are changing continuously along the curve rhpηq.

Note that we require more from a collapsed Anosov flow than just being semi-
conjugated to a self orbit equivalence of an Anosov flow. Indeed condition (i)
of Definition 2.5 asks that the semi-conjugacy h at least preserve the center
direction.

There are several reasons for this condition: First, going back to at least [HPS],
an overarching idea has been that any kind of classification for partially hyperbolic
diffeomorphisms should be “up to center dynamics” (where the precise meaning
of this can be taken to be more strong or less strong, and somehow has to be
adapted to the particular situation of study). Therefore we see condition (i) as
the minimal requirement in order to keep to the spirit of this paradigm. A second,
less philosophical, reason is that a collapsed Anosov flow thus defined is a natural
extension of the concept of discretized Anosov flow introduced in [BFFP1] (see
§5.5, in particular Proposition 5.15). Finally, Definition 2.5 provides us with a
model of the dynamical behavior of the partially hyperbolic diffeomorphism to
compare it with. Moreover, since some features of the dynamics of a self orbit
equivalence β can be readily understood, we hope that Definition 2.5 is enough
to understand some of the dynamical properties of a collapsed Anosov flow, as
has been the case for discretized Anosov flows.

There is an issue one quickly runs into when one wants to extract more geo-
metrical or topological information about the partially hyperbolic diffeomorphism
from the collapsed Anosov flow definition: The map h sends orbits of the Anosov
flow to center curves (i.e., curves tangent to the center direction) of the diffeo-
morphism f . However, it is usually difficult in partially hyperbolic dynamics to
extract much knowledge about the behavior of center stable and center unstable
(branching) foliations from coarse information about center curves. In fact, the
center curves obtained via h may, a priori, not even be inside the intersection of
a center stable and center unstable leaf4.

One can resolve this issue, while preserving the interest of the class of partially
hyperbolic diffeomorphisms thus defined, by requiring that the semi-conjugacy h
somehow sends the weak stable and unstable directions of the flow to the center
stable and unstable directions of the diffeomorphism. This leads us to our next
definition.

Definition 2.7 (Strong Collapsed Anosov Flow). A partially hyperbolic diffeo-
morphism f of a closed 3-manifold M is called a strong collapsed Anosov flow if
there exists a topological Anosov flow φt, a continuous map h : M Ñ M homo-
topic to identity and a self orbit equivalence β : M ÑM of φt such that:

(i) The map h is differentiable along orbits of φt and maps the vector field
tangent to φt to non vanishing vectors tangent to Ec.

(ii) The image by h of a leaf of Fwsφ (resp. Fwuφ ) is a C1-surface tangent to

Ecs (resp. Ecu).
(iii) The map h locally preserves the orientation in leaves of both foliations.

4It is not even known if a collapsed Anosov flow necessarily admits invariant center stable
or center unstable branching foliations, as the existence result of Burago–Ivanov [BI], see §3,
requires some orientability conditions.
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(iv) For every x PM one has that f ˝ hpxq “ h ˝ βpxq.

By being a C1-surface tangent to Ecs we mean that if rh is a lift of h to ĂM and

L is a leaf of rFwsφ then rhpLq is a C1, properly embedded plane in ĂM tangent to
Ecs.

Under these conditions, we can make precise what we mean by h locally pre-
serves the orientation: the map h sends a segment I of an orbit on a leaf L in
Fwsφ , oriented by the direction of the flow, to a segment hpIq of a center curve

that locally splits hpLq in two. We thus ask for the left side of I to be send by h
to the left side of hpIq (note that there may be some collapsing).

Clearly, a strong collapsed Anosov flow is a collapsed Anosov flow, but we do
not know whether those definitions are distinct or equivalent.

Notice that a strong collapsed Anosov flow automatically admits a pair of
invariant center stable and center unstable branching foliations (see §3 for the
precise definition) by looking at the image under h of the weak foliations of
the Anosov flow. Definition 2.5 on the other hand does not directly imply the
existence of such branching foliations. But even if one assumes that a collapsed
Anosov flow has branching foliations (or even true foliations), it is not clear that it
is enough to make it a strong collapsed Anosov flow. Part of the issue arising here
is that, in general, the center direction of a a partially hyperbolic diffeomorphism
is not uniquely integrable (even when it integrates to a foliation, see [HHU2]).

Let us mention here, that we obtain some results about unique integrability of
the center direction in §10.2.

2.4. First result and examples. In [BGHP] a notion of transversality was
introduced that allows to produce new examples of partially hyperbolic diffeo-
morphisms. This encompasses results proved in previous papers [BPP, BGP, BZ].

Definition 2.8. Let φt : M ÑM be an Anosov flow generated by a vector field
X in a closed 3-manifold and preserving a splitting TM “ Es ‘ RX ‘ Eu and
ϕ : M ÑM a diffeomorphism. We say that φt is ϕ-transverse to itself if DϕpEuq
is transverse to Es ‘ RX and Dϕ´1pEsq is transverse to RX ‘ Eu.

Note that this notion makes sense more generally when considering any par-
tially hyperbolic diffeomorphism instead of the Anosov flow φt, see [BGHP].

Using this notion, [BGHP] proves:

Proposition 2.9 (Proposition 2.4 [BGHP]). If an Anosov flow φt is ϕ-transverse
to itself, then there exists T ą 0 such that , for all t ą T , the map ft :“ φt ˝ϕ˝φt
is5 partially hyperbolic.

Not only does [BGHP] give that criterion for building partially hyperbolic
diffeomorphisms, but it also gives many examples (using results of [BPP, BGP,
BZ]) of maps ϕ and Anosov flows φt that are ϕ-transverse to themselves.

But while great at providing examples, this criterion fails, at least directly,
to give any direct understanding of the structure that these maps may enjoy.
Indeed, it is a priori not obvious, and it may even seem contradictory, how these
examples may act: On the one hand, many of them are not homotopic to the
identity, while when t is large, the dynamics seems to be governed by the Anosov
flow φt.

Our first main result gives an understanding of how the behaviors of ϕ and φt
must play together and makes clear the structure of these examples.

5Note that we wrote it this way for convenience, since ft is smoothly conjugate to φ2t ˝ ϕ
and to ϕ ˝ φ2t.
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Theorem A. Let φt : M Ñ M be an Anosov flow on a closed 3-manifold and
ϕ : M ÑM a diffeomorphisms such that φt is ϕ-transversal to itself. Then, there
exists t0 ą 0 such that for all t ą t0 the diffeomorphism ft “ φt ˝ϕ˝φt is a strong
collapsed Anosov flow of the flow φt.

With the help of Theorem A one can prove that all the partially hyperbolic
diffeomorphisms built in [BGHP] are collapsed Anosov flows.6 This not only gives
a wealth of examples, but also shows that all known constructions of partially hy-
perbolic diffeomorphisms on 3-manifolds with non virtually solvable fundamental
group are collapsed Anosov flows.

In the examples that we advertised earlier, i.e., the discretized Anosov flows
and the examples of [BWi], the map h of Definition 2.7 could always be taken
to be a homeomorphism (in fact, the identity). Now, some of the collapsed
Anosov flows obtained through Theorem A show why we cannot always ask for
the collapsing map h to be a homeomorphism: Indeed, if h is injective, then the
image by h of the weak stable and weak unstable foliations of the Anosov flow
φt are center stable and center unstable foliations of the strong collapsed Anosov
flow f . In particular, f must be dynamically coherent7. Since some examples
built in [BGHP] are shown to be non dynamically coherent, the associated map
h must be non-injective.

It is an interesting question to try to determine when the map h can be a
homeomorphism, or equivalently when a strong collapsed Anosov flow may be
dynamically coherent. Some examples build in [BPP, BZ] are dynamically coher-
ent and associated with a non-periodic self orbit equivalence. But the associated
Anosov flow is non transitive.

So far, the only collapsed Anosov flows associated with a transitive Anosov flow
that are known to be dynamically coherent are such that the self orbit equivalent
is periodic (i.e., such that a power is a trivial self orbit equivalence).

2.5. Leaf space collapsed Anosov flows. Although not explicit, the definition
of a strong collapsed Anosov flow implies the existence of center stable Wcs and
center unstable Wcu branching foliations (we defer their precise definitions to
§3) that are invariant under f . By taking the intersection of these branching
foliations (in an appropriate way), one gets an invariant 1-dimensional center
branching foliation Wc.

It is possible to generalize the definition of a leaf space of a true foliation to
the branching case (see §3 or [BFFP2]), and we thus obtain the center leaf space

Lc, on which any lift rf of f to the universal cover acts naturally.
For a collapsed Anosov flow which preserves branching foliations, this center

leaf space Lc should be the same as the orbit space of an Anosov flow, and the

action of rf should correspond to the action of a lift of a self orbit equivalence.
This idea is made precise in the next definition of a leaf space collapsed Anosov
flow.

For a topological Anosov flow φt : M ÑM we denote by Oφ the orbit space of

the flow rφt which is the lift of φt to ĂM . We recall that Oφ is homeomorphic to
R2 and π1pMq acts naturally on Oφ, see [Bar1, Fen1].

6To be precise, one proves that all examples à la [BGHP], understood as any example obtained
via Proposition 2.9, are collapsed Anosov flows by applying Theorems A and C together. See
Remark 10.4.

7A partially hyperbolic diffeomorphism f is called dynamically coherent if it preserves a pair
of foliations tangent to respectively Es ‘ Ec and Ec ‘ Eu.
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Definition 2.10 (Leaf space collapsed Anosov flow). We say that a partially hy-
perbolic diffeomorphism f of a closed 3-manifold is a leaf space collapsed Anosov
flow if it preserves center stable and center unstable branching foliations Wcs

and Wcu and there exists a topological Anosov flow φt and a homeomorphism
H : Oφ Ñ Lc which is π1pMq-equivariant.

That H is π1pMq-equivariant means that if γ P π1pMq is a deck transformation,
then, Hpγoq “ γHpoq, for any o P Oφ.

Remark 2.11. We emphasize that the map H : Oφ Ñ Lc in the definition above is
a homeomorphism, and not just a surjective continuous map as h : M Ñ M was
in Definitions 2.5 and 2.7. We can require this because, although distinct center
leaves may merge, they always represent different points in the center leaf space
Lc.

Remark 2.12. Note that Definition 2.10 does not involve a self orbit equivalence
explicitly. However, it is easy to note that there is a self orbit equivalence class

associated to a leaf space collapsed Anosov flow since the action of a lift rf of f

to ĂM induces a permutation of leaves of Lc which via H induces a permutation
of orbits of φt. The fact that from this one can actually construct a self orbit
equivalence follows from a standard averaging argument, see for instance [Bar1,
Theorem 3.4].

The homeomorphism H of Definition 2.10 identifies the center leaf space of a
leaf space collapsed Anosov flow f with the orbit space of an Anosov flow φt. The
difficulty to go from there to a strong collapsed Anosov flow (Definition 2.7) is to
build a map h on the manifold from the map H which is only on the orbit/center
leaf space. This is done (in §9) using a standard averaging argument (although
made harder by the existence of branching).

There is however a wrinkle to smooth out before this: The map H of Definition
2.10 is not explicitly required to behave well with respect to the center stable and
unstable (branching) foliations. That is, H is not assumed to identify the weak
(un)stable leaf space of φt with the center (un)stable leaf space of f . However,
thanks to the fact that pairwise transverse foliations invariant by an Anosov
flow are unique (see Proposition 5.5), H will automatically identify the weak
(un)stable leaf space of the Anosov flows with the center (un)stable leaf space of
the diffeomorphism (Proposition 5.6).

Thus we obtain the following equivalence:

Theorem B. If a diffeomorphism f is a strong collapsed Anosov flow then it
is a leaf space collapsed Anosov flow. Moreover, if Es or Eu are orientable, the
converse also holds.

In order to prove Theorem A, we will prove that the examples are leaf space
collapsed Anosov flows and use Theorem B (some additional work allows to bypass
the orientability condition in Theorem B).

2.6. The space of collapsed Anosov flows. Based on a result of [HPS], that
we expand upon in Appendix B, we are able to obtain a global stability result
for collapsed Anosov flows.

Theorem C. The space of collapsed Anosov flows for a given Anosov flow φt and
self orbit equivalence class β is open and closed among partially hyperbolic dif-
feomorphisms on 3-manifolds. Similarly, the space of leaf space collapsed Anosov
flows is open and closed among partially hyperbolic diffeomorphisms.
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Similar statements for other classes of systems have been obtained in [Pot1,
FPS]. This result has also been announced for discretized Anosov flows in any
dimension in [Mar].

In terms of classification, Theorem C gives us that any partially hyperbolic
diffeomorphism in a connected component of a collapsed Anosov flow (in the space
of partially hyperbolic diffeomorphisms) is also a collapsed Anosov flow, for the
same flow and the same self orbit equivalence class. In particular, two leaf space
collapsed Anosov flows in the same connected component have homeomorphic
center leaf spaces and act equivariantly on them.

However, to stay even closer to the spirit of the first efforts at a classification
of partially hyperbolic diffeomorphisms, as in [HPS] or Pujals’ conjecture [BWi],
we may want to ask more: One may hope that inside a connected component,
not only are the center leaf spaces homeomorphic, but so is the structure of
branching of center leaves. More precisely, suppose that f1 and f2 are two leaf
space collapsed Anosov flows associated with an Anosov flow φt and the same self
orbit equivalence class β. Then Lc1 the center leaf space of f1 is homeomorphic
to Lc2, via the composition H2 ˝ H

´1
1 , where the Hi are as in Definition 2.10.

However it may a priori happen that two center leaves c1, c
1
1 P Lc1 merge (i.e.,

have a non empty intersection in ĂM), while their images by H2 ˝H
´1
1 do not.

We show (in §5.5) that this issue does not arise for discretized Anosov flows (or,
as a consequence, for collapsed Anosov flows for which the self orbit equivalence
class is periodic), but, in general, we do not know whether the branching structure
is completely determined by the Anosov flow and the self orbit equivalence class.

Question 2. Is the branching locus8 of a collapsed Anosov flow determined by the
Anosov flow φt and the self orbit equivalence class (or, at least, is the branching
locus constant in a connected component of partially hyperbolic diffeomorphisms)?

Related questions can be found in [HPS, §7].
A first step towards Question 2 could be to prove that, if a collapsed Anosov

flow is dynamically incoherent, then all collapsed Anosov flows in its connected
component are also dynamically incoherent. This is true in certain manifolds,
or classes of partially hyperbolic diffeomorphisms (e.g., hyperbolic manifolds
[BFFP2, Theorem B], or Seifert manifolds when the action on the base is pseudo-
Anosov [BFFP3]). One natural, seemingly simple but far from well-understood,
class of examples where this is not known is for partially hyperbolic diffeomor-
phisms in Seifert manifolds which act as a Dehn-twist on the base.

2.7. Quasigeodesic partially hyperbolic diffeomorphisms. The last defi-
nition we introduce describes a class of partially hyperbolic diffeomorphism that
are, in some sense, geometrically well-behaved.

As before, we consider f : M ÑM a partially hyperbolic diffeomorphism which
preserves branching foliations Wcs and Wcu tangent respectively to Ecs and Ecu

(cf. §3).

We say that a curve in a leaf L of the lifted branching foliation ĄWcs (or ĄWcu) is
a quasigeodesic if it admits a parametrization η : RÑ L such that dLpηptq, ηpsqq ě

8To be precise, consider Oφ to be the orbit space of the lift rφt of φt to the universal cover.
We can define the branching locus as a function B : Oφ ˆOφ Ñ t0, 1u such that if Bpo1, o2q “ 1

then the corresponding center leaves intersect in ĂM . One could define more refined notions
taking into account how many connected components of intersection they have, or the direction
on which center curves branch, etc.... All these things could a priori be determined by the data
of the flow and the self orbit equivalence class and be independent of the partially hyperbolic
diffeomorphism that realizes this as a collapsed Anosov flow.
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c|t´s|´ c1 for some c P p0, 1q, c1 ą 0 where dL is the path metric induced on L by

the pullback metric from ĂM . A family of curves is uniformly quasigeodesic if the
constants c, c1 can be chosen independently of the curve. Following common usage
in the field, we say that a curve α in a leaf L of Wcs or Wcu is a quasigeodesic,

if a lift α̃ to a leaf rL in ĂM is a quasigeodesic.

Definition 2.13 (Quasigeodesic partially hyperbolic diffeomorphism). Consider
f : M ÑM a partially hyperbolic diffeomorphism. We say that f is quasigeodesic
if it preserves center stable and center unstable branching foliations with Gromov-
hyperbolic leaves such that the center curves are uniform quasigeodesics inside
center stable and center unstable leaves.

Note that this definition is independent of the choice of Riemannian metric on
M (cf. Proposition A.5).

For true foliations, deciding whether their leaves are Gromov-hyperbolic can
be done via Candel’s uniformization theorem (see [CC, §I.12.6]). While Candel’s
theorem does not directly apply to branching foliations, it may be used when these
branching foliations are well-approximated by true foliations (see Appendix A.3),
as occurs for example in the existence theorem of Burago–Ivanov (Theorem 3.3).
In particular, one can prove that, when the branching foliations are minimal and
the manifold has fundamental group with exponential growth, then the leaves are
Gromov-hyperbolic [FP1, §5.1]. Notice that the weak stable and weak unstable
foliations of Anosov flows always have Gromov-hyperbolic leaves [Fen1].

It turns out that quasigeodesic partially hyperbolic diffeomorphism and leaf
space collapsed Anosov flows are one and the same class (at least under some
orientability conditions), thereby giving a nice geometrical description of (strong)
collapsed Anosov flows.

Theorem D. A leaf space collapsed Anosov flow is a quasigeodesic partially
hyperbolic diffeomorphism. Moreover, if the bundles Es and Eu are orientable,
the converse holds.

Although we do not use it to prove Theorem A, this characterization can be
used to prove that some partially hyperbolic diffeomorphism are collapsed Anosov
flows, as is done in [FP2]. (In fact, [FP2] motivated some of the results in this
article, including Theorem D.)

The geometric description we obtain for collapsed Anosov flows is in fact more
precise than this: We show that the center leaves of a quasigeodesic partially
hyperbolic diffeomorphism must form a quasigeodesic fan inside each center stable
or unstable leaf, as is the case for orbits of Anosov flows (see Theorem 6.11). In
addition, we prove that the branching of center leaves, if it exists, is fairly well-
behaved, see Lemma 10.5.

A parallel can be made between the cases studied here and the classification
of partially hyperbolic diffeomorphisms on 3-manifolds with (virtually) nilpotent
fundamental group: On these manifolds, while the branching foliations are not
Gromov hyperbolic, the center leaves may be quasigeodesics inside their branch-
ing center (un)stable leaves. Determining when this is the case turned out to be
a successful strategy for the classification, see [HP1, HP2].

Remark 2.14. Both Theorem C and Theorem D, giving the equivalence between
strong collapsed Anosov flows, leaf space collapsed Anosov flows and quasi-
geodesic partially hyperbolic diffeomorphism require some orientability conditions
for one of their directions. The knowledgeable reader might surmise that this is
linked to the theorem of Burago–Ivanov (Theorem 3.3), giving the existence of
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branching foliations under some orientability conditions of the bundles. This is
only partly true: each of the Definitions 2.7, 2.10 and 2.13 assumes already the
existence of branching foliations, but what we do need for some arguments from
Burago–Ivanov Theorem is that these branching foliations are well approximated
by true foliations.

While we think it likely that both Theorem C and Theorem D would hold
without the orientability assumptions, we are not able to prove this at this time.

In particular, one step that would be very helpful to solve this problem, would
be to prove uniqueness of the invariant branching foliations tangent to the center
stable and center unstable bundles for partially hyperbolic diffeomorphisms (see
Question 4).

The uniqueness question, which has a very wide scope of potential applications,
is quite open in general. Here we prove it for the examples of Theorem A in
Proposition 10.2.

2.8. Realization of self orbit equivalences. One way of looking at the defi-
nition of collapsed Anosov flows is as a partially hyperbolic realization of a self
orbit equivalence of an Anosov flow.

Quite clearly, not every self orbit equivalence of an Anosov flow can be a
partially hyperbolic diffeomorphism: Just consider a trivial self orbit equivalence
φhp¨q of an Anosov flow φt : M Ñ M where h : M Ñ R is such that hpx0q “ 0
for some x0 PM , which therefore cannot be partially hyperbolic. However, if we
consider the equivalence class of a trivial self orbit equivalence, then that class
has an element that can be represented as a partially hyperbolic diffeomorphism.

Therefore, the following natural problem presents itself.

Question 3. Is every self orbit equivalence class of an Anosov flow realized by a
collapsed Anosov flow?

Notice that a positive answer would in particular imply that there exists ex-
amples of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds which
are not discretized Anosov flows, even up to finite powers, see [BFFP2, Theorem
B].

While not complete enough to fully answer Question 3, the constructions of
[BGHP] lead, via Theorem A, to the realization of many classes of self orbit
equivalences. In fact, for some Anosov flows, their construction is enough to
realize (virtually) all self orbit equivalence classes.

On the other hand, a basic understanding of the self orbit equivalences of
Anosov flows, such as the one obtained in [BaG1] for those homotopic to the
identity, directly leads to restrictions on possible collapsed Anosov flows (up to
isotopy).

We chose to illustrate both of these principles on three specific, but important,
examples.

In Theorem 11.1, we show how [BaG1, Theorem 1.1] translates to strong col-
lapsed Anosov flows that are homotopic to identity.

In Theorem 11.2 and Theorem 11.5, we show that, on the unit tangent bundle
of a hyperbolic surface and when considering the Franks–Williams example (or
some generalizations of it) the answer to Question 3 is (virtually) positive and
we describe all possible collapsed Anosov flows up to isotopy.

2.9. Organization of the paper. In §3, we recall the definition of branching
foliation and the existence theorem of Burago–Ivanov. We also state a more pre-
cise existence theorem for true foliations that approximate branching foliations.
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This precision can be extracted from the original proof of Burago–Ivanov and we
explain how to do that in Appendix A.

In §4, we prove Theorem C. To prove it, we first recall some results that can
be extracted from [HPS], as explained in Appendix B.

In §5, we prove some general facts on topological Anosov flows and show that
discretized Anosov flows (in the sense of [BFFP1, BFFP2]) are (strong) collapsed
Anosov flows.

In §6, we prove (Theorem 6.11) that the center leaves of a quasigeodesic par-
tially hyperbolic diffeomorphism must make a quasigeodesic fan in each center
(un)stable leaf. To prove this, we study general subfoliations by quasigeodesic
leaves of a foliation and obtain some results that apply in the general case.

In §7, we prove Theorem D.
In §8 and §9, we prove both directions of Theorem B.
In §10, we prove Theorem A. We also (see §10.2) prove a result about the

uniqueness of center stable and center unstable branching foliations, in the set-
ting of the examples of Theorem A, as well as a (branching) version of unique
integrability of their center curves (Proposition 10.6).

Finally, in §11, we prove some classification results about collapsed Anosov
flows and self orbit equivalences.

3. Branching foliations and leaf spaces

In this section we review the notion of branching foliations introduced in [BI]
and their leaf spaces. Under some orientability assumptions, partially hyper-
bolic diffeomorphisms always preserve branching foliations which are well ap-
proximated by foliations, so it makes sense to consider partially hyperbolic dif-
feomorphisms preserving some branching foliations. We assume basic familiarity
with foliations in 3-manifolds, see, e.g., [BFFP1, Appendix B] and references
therein.

Given a plane field E in a 3-manifold M we call complete surface tangent
to E a C1-immersion ϕ : U Ñ M from a simply connected domain U Ă R2

into a 3-manifold M which is complete for the pull-back metric and such that
DpϕpR

2q “ Epϕppqq at every p P U .

Definition 3.1 (Branching foliation). A branching foliation F of a 3-manifold
M tangent to E is a collection of complete surfaces tangent to E such that:

(i) every point x PM belongs to (the image of) some surface,
(ii) the surfaces pairwise do not topologically cross (see below),
(iii) the family is complete in the pointed compact open topology (see below),
(iv) it is minimal in the sense that one cannot remove any surface from the

collection and still satisfy properties (i) to (iii).

The condition of no topological crossing is quite subtle, since the crossing may
take place far in the manifold (it cannot be defined locally, and it is part of the
reason surfaces are defined to be with simply connected domain). Following [BI,
Section 4], given two complete surfaces ϕ : U Ñ M and ψ : V Ñ M tangent to
E we say that they topologically cross if there is a curve γ : p0, 1q Ñ U a C1-
immersion Ψ: V ˆ p´ε, εq Ñ M such that Ψp¨, 0q “ ψ and a map γ̃ : p0, 1q Ñ
V ˆ p´ε, εq whose image intersects both V ˆ p0, εq and V ˆ p´ε, 0q such that
ϕ ˝ γ “ Ψ ˝ γ̃. This notion is well defined and symmetric on the surfaces.

Remark 3.2. The key difference between branching foliations defined above and
the branched laminations introduced in [HPS, §6.B] is this added assumption (ii)
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of no topological crossing between surfaces. Of course, this added notion only
makes sense in the codimension one setting.

The completeness of the family stated in the definition of branching foliation
should be understood in the compact open topology, meaning that if there is a
sequence ϕn : Un Ñ M of complete surfaces tangent to E in the family and one
has that ϕnppnq Ñ x for some points pn P Un, then there is a surface ϕ : U ÑM
in the family such that for a point p P U it verifies that the map ϕ in an arbitrarily
large ball around p is C1-close to some reparametrization (see next paragraph)
of the maps ϕn in a large ball around pn (see also [BI, Lemma 7.1]).

Note that condition (iv) above is not stated explicitly in [BI], but can be
easily deduced by choosing one leaf in each equivalence class (up to topological
reparametrization). There is a big ambiguity on the choice of the parametriza-
tions and since we want to focus on their images, we want to avoid it. For that,
we will say that two complete surfaces ϕ : U Ñ M and ψ : V Ñ M tangent to
E are the same up to reparametrization if there is a homeomorphism h : U Ñ V
such that ϕ “ ψ ˝ h.

It is standard in the literature to abuse notation and talk about leaf of a
branching foliation F to refer either to the complete surface ϕ : U Ñ M up to
reparametrization, or to its image. In this article, we will try to avoid this for
clarity. In fact, some of our results a posteriori help justifying this classical abuse
(see the end of Remark 3.4).

In [BI, Theorem 7.2] it is shown that branching foliations can be approximated
arbitrarily well by true foliations. The statement of [BI, Theorem 7.2] does not
state explicitly some properties of the approximation that we will need. We
explain in Proposition A.1 of the appendix how the following statement indeed
follows from the proof in [BI, Theorem 7.2].

Theorem 3.3. Let F be a branching foliation tangent to a transversely orientable
distribution E on a closed 3-manifold M . Then, for every ε ą 0 there exists a
foliation Fε and a continuous map hε : M ÑM such that the following conditions
hold:

(i) the angle between E and TFε at every point is smaller than ε,
(ii) for every surface ϕ : U ÑM in F there is a unique leaf L of the foliation

Fε such that hε is a local C1 diffeomorphism from L to the surface: That
is, for every x P L there is a neighborhood V of x in L and an open subset
W Ă U such that ϕ´1 ˝ hε : V ÑW is a diffeomorphism,

(iii) dphεpxq, xq ă ε for every x PM .

The uniqueness of the correspondence between leaves of the true and branching
foliations, given by item (ii) above, allows to simplify the definition of the leaf
spaces of the center stable, center unstable and center (branching) foliations given
in [BFFP2, Section 3].

Let f : M Ñ M be a partially hyperbolic diffeomorphism and assume that f
preserves branching foliations Wcs and Wcu tangent respectively to Ecs “ Es‘Ec

and Ecu “ Ec ‘ Eu. That f preserves the branching foliation means that each
surface of the collection is mapped, up to reparametrization, to another surface
in the collection.

Remark 3.4. There is no closed contractible curve everywhere transverse to Ecs

(cf. [BI, Lemma 2.3]) since by Novikov theorem this would imply the existence of a
Reeb component for some of the approximating foliations, and thus a closed curve
tangent to Eu which is impossible. This also has the important consequence that
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the approximating foliation Fcsε given by Theorem 3.3, for small ε, is Reebless.
The same holds for Ecu and Wcu and Fcuε . Notice that once that one knows
that the branching foliation is Reebless, one can simplify a bit its treatment, in
particular, when lifting to the universal cover, there is no ambiguity in identifying
surfaces up to reparametrization with their images.

Remark 3.4 and Palmeira’s theorem imply that the universal cover ĂM of M is

homeomorphic to R3 and that the leaf space of the lifted foliations ĂFcsε and ĄFcuε
of Fcsε and Fcuε respectively are 1-dimensional simply connected (possibly non-

Hausdorff) manifolds. Theorem 3.3 implies that all of these leaf spaces ĂFcsε for
ε ą 0 are independent of ε ą 0 and are naturally bijective with the leaf space

of ĄWcs. It allows one to put a topology on the leaf space Lcs “ ĂM{
ĆWcs which

is the same as the topology on ĂM{
ĄFcsε

independently of ε ą 0. In the same way

we define a topology on Lcu “ ĂM{
ĆWcu . It also allows to define the action of rf , a

lift of f on these spaces, since rf preserves the lifted branching foliations ĄWcs and
ĄWcu.

The same holds for every deck transformation γ P π1pMq that acts on these
leaf spaces canonically. Using these identifications there is a canonical action on

the leaf spaces of ĂFcsε ,
ĄFcuε by either lifts of f or deck transformations.

We obtain also a way to define a leaf space Lc for the center branching foliation.

A center leaf in ĂM is a connected component of the intersection of a leaf L of ĄWcs

and a leaf U of ĄWcu. The center leaf space is this set with the natural topology
induced from the quotient of the subset of the Cartesian product two original
leaf spaces. Another way to see this is using the identification of leaf spaces of
ĄWcs, ĂFcsε ; and ĄWcu,ĄFcuε to define the center leaf space as the leaf space of the

foliation ĂFcε obtained as the intersection of the foliations ĂFcsε and ĄFcuε . This is
again well defined independently of ε and there is a well defined action of π1pMq

on this leaf space as well as an action of rf any lift of f to ĂM .

Remark 3.5. The notions of leaf spaces of ĄWcs and ĄWcu coincide with the ones
studied in [BFFP2, Section 3] where we did not rely on the approximating foli-
ations. The definition of the center leaf space Lc taken here may however differ
slightly9 from the one defined in [BFFP2, Section 3] which is a quotient of this
definition: In [BFFP2, Section 3] if two connected components c1 of L1XU1 and

c2 of L2XU2 (Li in ĄWcs, Ui in ĄWcu) are the same set in ĂM , then they produced a
single center leaf. Here we do not identify them. So the center leaf space defined
in [BFFP2] is a quotient of the one we define here.

In the cases we will be interested in, there will be a nice topological structure in
the leaf space Lc which will be homeomorphic to R2. Notice that in this setting,

the foliations Wcs,Wcu induced in Lc by ĂFcsε ,
ĄFcuε are (topologically) transverse

and invariant under the action of π1pMq and rf .
The assumption that a partially hyperbolic diffeomorphism of a 3-manifold

preserves branching foliations is justified, since it always holds up to finite cover
and iterate as the following fundamental result of [BI] shows.

Theorem 3.6 (Burago–Ivanov). Let f : M ÑM be a partially hyperbolic diffeo-
morphism with splitting TM “ Es ‘ Ec ‘ Eu such that the bundles are oriented

9We do not know whether there exists examples where the two definitions are actually dif-
ferent, but, at least formally, they are not the same.
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and Df preserves their orientation. Then, there are f -invariant branching folia-
tions Wcs and Wcu tangent respectively to Ecs “ Es ‘ Ec and Ecu “ Ec ‘ Eu.

To be precise, the invariance by f of the branching foliations means the fol-
lowing: If pϕ,Uq is a leaf of Wcs then pf ˝ ϕ,Uq is also a leaf of Wcs modulo
reparametrization.

Notice that the branching foliations constructed in [BI] are invariant under
every diffeomorphism that preserves the bundles Ecs and Ecu and preserves ori-
entations of the bundles Ec, Es and Eu. Some other consequences of their con-
struction is explored in Appendix A. One goal being to better understand the
uniqueness properties these foliations may have.

Notation 3.7. Given a branching foliation F on M we will denote by pϕ,Uq the
leaves of F to refer to the surface ϕ : U ÑM . If f : M ÑM is a diffeomorphism
that preserves the branching foliation F we will denote by fpϕ,Uq to the leaf
pψ, V q P F which is a reparametrization of pf ˝ ϕ,Uq.

4. The space of collapsed Anosov flows

We want to show Theorem C. First we recall some results from [HPS] that we
need.

4.1. Graph transform method. The structural stability results of Hirsch,
Pugh and Shub [HPS] provide conditions implying that perturbations of a par-
tially hyperbolic diffeomorphisms preserving a foliation tangent to the center di-
rection are leaf conjugate to the original one. Their classical stability result (see
[HPS, §7]) requires the center bundle to be integrable plus a technical condition
called plaque expansivity. We refer the reader to [HPS] for the precise definitions
of these notions since we do not use them here.

In [HPS, §6] the authors develop a more general theory that permits leaves
to merge (see also [CP, Theorem 4.26]). The more general theory allows one to
remove the technical conditions at the expense of not knowing if centers remain
disjoint after perturbation. Since in our case this is what usually happens, this
is precisely what we need.

We will use [HPS, Theorem 6.8] (which is part of [HPS, Theorem 6.1]). We
need a uniform version of the result whose proof is exactly the same10. We state
it in dimension 3 for simplicity, but it holds in any dimension.

We first need some definitions from [HPS]. A C1-leaf immersion is a C1-
immersion, ı : V Ñ M , of a manifold V (which is typically a disjoint union of
possibly uncountably many connected complete manifolds) to M whose image
is a closed set in M . For a diffeomorphism g : M Ñ M , a C1-leaf immersion
ı : V ÑM is said to be g-invariant if there exists a C1-diffeomorphism ı˚g : V Ñ
V verifying ı ˝ ı˚g “ g ˝ ı. Two C1-leaf immersions ı, ı1 from V to M are said to
be C1-close if they are uniformly C1-close, meaning that there exists ε ą 0 such
that for every x P V we have dpıpxq, ı1pxqq ă ε and11 }Dxı´Dxı

1} ă ε.

10The only difference in the statement is that it implies the size of the neighborhood to be
independent of f P U, where U is as in Theorem 4.1 . This is implied directly by the proof in
[HPS] as the construction of the C1-neighborhood of a map depends only on the C1-size of f as
well as the geometry of the bundles Es, Ec and Eu. These quantities are certainly constant in
a neighborhood of a given f0.

11To make sense of the difference of derivatives, one can for instance, embed M in some Rk

with large k.
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Theorem 4.1. Let f0 : M ÑM be a partially hyperbolic diffeomorphism. There
exists U a C1-neighborhood of f0 such that if g, g1 P U and ıg : V Ñ M is a
g-invariant C1-leaf immersion tangent to Ecg, then there exists ıg1 : V Ñ M a

g1-invariant C1-leaf immersion tangent to Ecg1 and C1-close to ıg and a homeo-

morphism τ : V Ñ V which is C0-close to the identity12 verifying that pıgq˚gpxq “
pıg1q˚g

1pτpxqq for every x P V .

We will also need a version of the result above for branching foliations13.
If g : M Ñ M and g1 : M Ñ M are partially hyperbolic diffeomorphisms pre-

serving respectively branching foliations Wcs
g and Wcs

g1 tangent to Ecsg and Ecsg1 .
We say that Wcs

g and Wcs
g1 are ε-equivalent if:

(i) There exists a π1pMq-invariant homeomorphism H from Lcsg to Lcsg1 , the

leaf spaces of ĄWcs
g and ĄWcs

g1 in ĂM respectively.

(ii) There are lifts g̃ and g̃1 of g and g1 respectively such that the actions on
Lcsg and Lcsg1 are conjugate via H, that is, H ˝ g̃ “ g̃1 ˝H.

(iii) Given L “ pϕ,Uq P Lcsg a leaf of ĄWcs
g we have that the leaf HpLq “ pψ, V q

of ĄWcs
g1 is uniformly ε-C1-close to L. This means that there exists a

diffeomorphism η : U Ñ V such that the maps ϕ and ψ ˝ η are uniformly
ε-close as well as their derivatives.

We can now state the result we will need.

Theorem 4.2. Let f0 : M Ñ M be a partially hyperbolic diffeomorphism of a
closed 3-manifold M . There exists U an open neighborhood of f0 in the C1 topol-
ogy and ε ą 0 with the property that every g P U is partially hyperbolic and if Wcs

g

is a branching foliation tangent to Ecsg and invariant under g, then, for every

g1 P U there is a branching foliations Wcs
g1 , invariant under g1 and ε-equivalent to

Wcs
g .

The proof of both Theorem 4.1 and Theorem 4.2 are the same as the ones given
in [HPS] with some simplifications (due to the fact that we are in small dimension
and the lamination is normally expanded and not normally hyperbolic). For the
convenience of the reader, we will include a short sketch of the proof of Theorem
4.2 in Appendix B (part of the justification for this appendix is the fact that [HPS,
§6] proves many other results and what we need is not always easily separated
from what we do not need). The sketch will also serve to show how the uniform
estimates follow from the same arguments (and how the non-crossing condition is
automatically satisfied). This will also serve to explain how Theorem 4.1 follows
from [HPS].

4.2. Proof of Theorem C. Recall (cf. Remark 2.12) that a leaf space collapsed
Anosov flow induces naturally a self orbit equivalence class (i.e., a self orbit
equivalence up to trivial self orbit equivalences).

Proposition 4.3. Let f : M Ñ M be a partially hyperbolic diffeomorphism.
Then, there exists a neighborhood U of f such that if there is g P U which is a leaf
space collapsed Anosov flow associated to a topological Anosov flow φt : M ÑM

12In particular, it preserves connected components.
13See [HPS, §6.B] for the related notion of branched lamination (which is also intimately

related to the statement of Theorem 4.1) which differs from the notion of branching foliations
we use in this paper. The latter has to do with codimension one phenomena and features the
non-topological crossing condition that makes no sense in the setting of [HPS, §6.B].
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and a self orbit equivalence class rβs. Then, every g1 P U is a leaf space collapsed
Anosov with respect to φt and rβs.

Proof. Let U be a neighborhood given by Theorem 4.2. Then, for any g1 P U, we
obtain a pair of branching foliations Wcs

g1 and Wcu
g1 with the same dynamics as g

in their leaf spaces.

Let ĄWcs
g1 and ĄWcu

g1 be the lifted foliations to the universal cover. For each leaf

F of ĄWcs
g there is a unique leaf F 1 “ HpF q of ĄWcs

g1 which is ε close to it, and vice
versa.

Let c be a center leaf of g. It is a connected component of the intersection

of a leaf F of ĄWcs
g and L of ĄWcu

g . Hence, there is a unique component c1 of the
intersection of HpF q and HpLq which is ε-close to c. So the center leaf spaces
of g and g1 are equivariantly homeomorphic. So one gets Definition 2.10 for g1

which implies that g1 is a leaf space collapsed Anosov flow with respect to the
flow φt. Moreover, H conjugates the respective actions of lifts of g and g1 on
their center leaf spaces. Hence, their corresponding self orbit equivalence are
equivalent (cf. Remark 2.12). �

This proposition implies Theorem C for leaf space collapsed Anosov flows.
The open property is immediate. In order to see that it is a closed property
consider fn : M ÑM leaf space collapsed Anosov flows converging to a partially
hyperbolic diffeomorphism f : M Ñ M . If we apply Proposition 4.3 to f we get
a neighborhood U such that if g P U is leaf space collapsed Anosov flow, then
every g1 P U is leaf space collapsed Anosov flow. Since fn Ñ f it follows that for
large n we have that fn P U and so we can apply the proposition with g “ fn
and g1 “ f .

An analogous proof detailed below will give Theorem C for collapsed Anosov
flows using Theorem 4.1 instead of Theorem 4.2. This case is much more involved
because we need to construct a map in the manifold and not just on the leaf space
level.

Proposition 4.4. The space of collapsed Anosov flows is open and closed among
partially hyperbolic diffeomorphisms.

Proof. Let f0 : M Ñ M be a partially hyperbolic diffeomorphism. We will show
that there is a neighborhood U of f0 verifying that if there is g P U which is a
collapsed Anosov flow, then every f P U is a collapsed Anosov flow. This shows
that being collapsed Anosov flow is an open and closed property among partially
hyperbolic diffeomorphisms as explained above.

For such a f0 : M Ñ M we will take U to be the neighborhood given by
Theorem 4.1 and assume that there is g P U which is a collapsed Anosov flow.
That is, there exists an Anosov flow φt : M ÑM , a continuous map h : M ÑM
homotopic to the identity as in Definition 2.5 and a self orbit equivalence β such
that g ˝ h “ h ˝ β. We want to construct, for g1 P U a map h1 : M Ñ M and a
self orbit equivalence β1 of φt which verify Definition 2.5.

First, we will consider a leaf immersion ıg : V ÑM induced by h and φt. This
is defined as follows: Consider V to be the disjoint union of orbits of φt, each
one with the smooth structure induced by the length of the curves in M . Note
that even if V is a disjoint union, we can think of points in V as points of M
so we can apply both h and β to these leaves. We define ıgpxq “ hpxq. This is
a well defined C1-leaf immersion since leaves can be lifted to the universal cover
where the lift of g acts and induces a map from V to V which is exactly β. In
particular, we get that pıgq˚g “ β.
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We now consider g1 P U and Theorem 4.1 gives us a C1-leaf immersion ıg1 : V Ñ
M and a homeomorphism τ : V Ñ V which is globally C0-close to the identity
such that pıgq˚gpxq “ pıg1q˚g

1pτpxqq. We need to construct h1 and β1 using this
map.

Note that for ϕ : V Ñ V a C1-diffeomorphism we get that ıg1˝ϕ is also a C1-leaf
immersion with the same properties, so we need to show that there is a choice of
ϕ which makes h1 : M ÑM continuous when defined as h1pxq “ ıg1 ˝ ϕpxq where
we identify V with M as a set. The subtlety here is that even though V and M
are identified as sets, their topologies are completely different. In particular V
has many more open sets.

To obtain h1, β1 we will take advantage of the fact that ıg was defined using h
which is continuous and that ıg1 and ıg are uniformly C1-close. First some local
considerations. The curves igpαq where α is a component of V are all integral
curves of Ecg and likewise those of ig1 are integral curves of Ecg1 . In a fixed small

scale one can choose local coordinates px, y, zq so that the curves igpαq are all ε0

C1-close to vertical curves, with fixed ε0. The same happens for ig1pαq. Hence in
a local box, for a fixed point z in ig1pαq there is a unique point denoted by ηpzq
in the corresponding local sheet of igpαq which is the closest point to z. This
defines a function η. Switching the roles, this implies that this function is locally
injective. Finally this function has derivative which is non zero everywhere.

So, given x P V we consider Ix the ε-neighborhood around x with the metric
of V (induced by M), in particular this is contained in the same component of
V . Consider `x “ ıgpIxq. Take ϕ0pxq to be the preimage by ıg of the closest
point in `x to ıg1pxq. The map ϕ0 : V Ñ V is continuous and close to the identity.
By integrating in Ix and using the orientation, one can make it to be a C1-
diffeomorphism ϕ of V . We claim that ıg1 ˝ ϕ´1 works. Consider xn Ñ x a
converging sequence in M . It follows that `xn Ñ `x uniformly in the C1-topology.
We get that ıg1pϕ´1pxnqq maps to the closest point in average to `xn in ıg1pIxnq
and this point varies continuously. This shows that ıg1 ˝ ϕ´1 is continuous seen
as a map from M to M .

Once we got the leaf immersion ıg1 ˝ ϕ´1, that we will now rename to be
denoted by ıg1 to simplify notation, we can also define β1 : M ÑM viewing M as
the disjoint union of the components of V . We set β1pxq “ pıg1q˚g

1pxq P V – M .
The map β1 is bijective since it is bijective in each component of V and maps
components to components bijectively. We need to check that β1 is continuous
with the topology of M (which is weaker than the one of V ). But the continuity
of β1 is a direct consequence of the continuity of g1 which forces the maps pıg1q˚g

1

in different components of V to be close when the components are close in M .
The equation g1 ˝ h1 “ h1 ˝ β1 is automatically verified. �

Remark 4.5. We can also show that being a quasigeodesic partially hyperbolic
diffeomorphism is an open and closed property: If f is a quasigeodesic partially
hyperbolic diffeomorphism, in a finite cover, an iterate of f is a leaf space collapsed
Anosov flow (cf. Theorem D). Suppose that fn Ñ f is a sequence of quasigeodesic
collapsed Anosov flows converging to a partially hyperbolic diffeomorphism f .
Using the neighborhood U of f given by Theorem 4.2, it follows that there are
f -invariant branching foliations tangent to Ecs, Ecu. Let g be a lift of a finite
iterate f i of f to a finite cover M1 of M so that the lifted bundles Ec, Es, Eu in
M1 are orientable and g preserves the orientations. Let gn be the lifts to M1 of
f in which converge to g. Since gn converges to g and g preserves orientations of
the bundles then same happens for gn for n big enough. We assume it is true
for all n. It now follows from Theorem D that the gn are leaf space collapsed
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Anosov flows. By Theorem C it follows that g is a leaf space collapsed Anosov
flow. Hence using Theorem D again, it follows that g is a quasigeodesic collapsed
Anosov flow. Since f itself preserves branching foliations, it now follows that f
is a quasigeodesic collapsed Anosov flow, because the foliations of g are lifts of
foliations of f . This proves that being a quasigeodesic collapsed Anosov flow is a
closed property among partially hyperbolic diffeomorphisms. The open property
is proved analogously.

As mentioned in §1, we may wonder whether a collapsed Anosov flow is au-
tomatically a strong, or leaf space, collapsed Anosov flow. Notice that, if not,
then Theorem C implies that there is at least one entire connected component
of partially hyperbolic diffeomorphisms on which all maps are collapsed Anosov
flows, but none are leaf space collapsed Anosov flows.

To try to decide whether all collapsed Anosov flows are leaf space collapsed
Anosov flows, one tool that would greatly help is if the following was true:

Question 4. Suppose that the bundles Ec, Es, Eu are orientable. Is the invariant
branching foliation of a collapsed Anosov flow tangent to the center stable (resp.
the center unstable) bundle unique?

Notice that this question also naturally arises in the existence theorem of
Burago–Ivanov (Theorem 3.3), as their construction yields two, a priori distinct,
center (un)stable branching foliations (see also Appendix A).

But the scope of potential use, if Question 4 were to be true, is much greater:
When studying partially hyperbolic diffeomorphisms in dimension 3, if one wants
to use branching foliations (which so far has been the main tool to understand
partially hyperbolic diffeomorphisms geometrically or topologically), then one
has to use the existence result of Burago–Ivanov. Now that result comes with
an orientability condition, thus forcing one to take a finite lift and finite power
to ensure the existence of such foliations. Knowing uniqueness of such foliations
would then allow to prove that they can project to the original manifold. Hence,
one may hope to obtain geometrical consequences for the original map as well as
for its lifts and powers.

5. Some results about topological Anosov flows

5.1. Foliations of Anosov flows. Let φt : M ÑM be a topological Anosov flow
on a closed 3-manifold M . We study here the φt-invariant foliations saturated by
orbits. We say that a foliation F is φt-saturated if for every leaf L P F and x P L
we have that φtpxq P L for all t P R.

Proposition 5.1. Let F be a foliation by surfaces which is saturated by orbits of
φt and such that Fwsφ ‰ F. Then there is an attractor of φt on which F “ Fwuφ .

Proof. We use the spectral decomposition of Anosov flows, see [FH, §5.3], which
also works for topological Anosov flows using essentially the same arguments.
This implies that the set of points in M whose ω-limit set is contained in an
attractor of the Anosov flow is open and dense. Note that the set of points on
which Fwsφ ‰ F is open, therefore, there is an open set U of points whose ω-limit
set is contained in an attractor A ĂM of the flow φt and such that Fwsφ ‰ F.

In particular, there is a point x P U which belongs to the stable manifold Fwsφ
of a periodic orbit o. Notice that since F is φt-saturated, this implies that the
closure of the local leaf of Fpxq contains the weak unstable manifold Fwuφ of o,

because Fwsφ pxq “ Fpxq.
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Claim 5.2. Let S be a surface topologically transverse to Fwsφ poq where o is a

periodic point of φ. Then, φtpSq as tÑ8 contains Fwuφ poq.

Proof. The fact that the surface S is topologically transverse to Fwsφ poq means

that (up to iterating forward) there is a small transversal D to the flow through
o on which the trace of S contains a curve transverse to the trace of Fwsφ poq with
D. The Poincaré first return map to D is conjugate to a fixed saddle on o XD
and its forward iterates then make S converge to the trace of Fwuφ poq by forward
iteration. �

Since the foliation is continuous, this implies that the leaf Fwuφ poq is contained
in F. Since this leaf is dense in the attractor A it follows that F coincides with
Fwuφ in A as announced. �

A direct corollary is:

Corollary 5.3. Let φt be a transitive topological Anosov flow, then, there are
exactly two φt-saturated foliations, which are Fwsφ and Fwuφ .

Proof. Note that if φt is transitive, then M is the unique attractor and repeller.
�

Remark 5.4. If φt is not transitive, then Corollary 5.3 does not hold. Indeed, it is
possible to construct several φt saturated foliations which coincide with the weak-
stable and unstable foliations in subsets of the non-wandering set, but which are
different from both of these foliations in the wandering region. Indeed, to make a
concrete example, consider the Franks–Williams [FW] Anosov flow φt : M Ñ M
with an attractor A and a repeller R such that every orbit not in AYR intersects
a C1 smooth torus T transverse to φt and choose a foliation G of T which is
transverse14 to both Fwsφ X T and Fwuφ X T . If one considers the orbit of G by

φt one gets a φt-saturated foliation on M r pA Y Rq that can be completed to
a φt-saturated foliation by taking the foliation Fwuφ in A and Fwsφ in R. Notice
that one can construct uncountably many such foliations. Other examples can
be constructed along the same lines using the zoo of examples from [BBY].

Notice however that while non-transitive (topological) Anosov flows may have
several flow saturated foliations, one cannot choose them to be pairwise transverse
as we will show:

Proposition 5.5. Let φt be a topological Anosov flow and let F1 and F2 be two
topologically transverse φt-saturated foliations. Then, up to relabeling, one has
that F1 “ Fwsφ and F2 “ Fwuφ .

Proof. The proof is very similar to that of Proposition 5.1. In the transitive
case the result follows directly from Corollary 5.3, so we will assume that φt is
non-transitive.

Consider a point x PM such that its forward orbit accumulates in an attractor
A and its backward orbit in a repeller R. Then, we claim that in x the foliations
must coincide with Fwsφ and Fwuφ . If this were not the case, then, say F1 does
not coincide with either of them in a neighborhood of x. Assume that F2 does
not coincide with Fwsφ in a neighborhood of x (if it does not coincide with Fwuφ
one makes a symmetric argument). Then, it follows by the argument in Propo-
sition 5.1 that both F1 and F2 must coincide with Fwuφ in A, so they cannot be
transverse.

14Notice that these foliations are indeed C1, so one can take any foliation generated by a
vector field between the two tangent spaces.
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Now, notice that points whose forward orbit accumulates in an attractor and
backward orbit in a repeller are an open and dense subset of M(cf. [FH, §5.3]).
This also works exactly the same for topological Anosov flows. So this completes
the proof. �

5.2. Leaf space collapsed Anosov flows respect weak foliations. Here we
will consider Definition 2.10, where φt is the Anosov flow in question.

Recall that we denote by Owsφ and Owuφ the one-dimensional foliations of Oφ

induced respectively by ĄFwsφ and ĄFwuφ , the weak stable and weak unstable folia-

tions of φ̃t which are precisely the lifts of the foliations Fwsφ and Fwuφ to ĂM. We
also denote by Ocsf and Ocuf the foliations induced in Lc by the center stable and
center unstable branching foliations.

Proposition 5.6. If f is a leaf space collapsed Anosov flow (Definition 2.10)
then up to taking φ´t the map H maps Owsφ to Ocsf and Owuφ to Ocuf .

Proof. Assume that f verifies Definition 2.10. Here H is the map H : Oφ Ñ Lc

which is π1pMq-invariant. Consider the preimage under H of the center stable
and center unstable foliations Ocsf and Ocuf in Lc. These clearly project to foli-

ations in M by the π1pMq-invariance, and provide different foliations which are
φt saturated.

It follows from Proposition 5.5 that one must be Fwsφ and the other Fwuφ . Thus,
up to changing the flow φt to the flow ηt defined by ηt “ φ´t, the homeomorphism
H must map the foliations Owsφ and Owuφ to Ocsf and Ocuf respectively. �

5.3. Expansive flows and topological Anosov flows. We first define the
notion of expansive flow:

Definition 5.7. A non singular flow φt : M Ñ M is expansive if for every ε ą
0 there exists δ ą 0 such that if x, y P M and σ : R Ñ R is an increasing
homeomorphism with σp0q “ 0 such that dpφtpxq, φσptqpyqq ď δ for every t P R
then y “ φspxq for some |s| ă ε.

Remark 5.8. The use of ε in the definition of expansivity is to account for the
recurrence of the flow in M itself and so that orbits that auto-accumulate also
separate. If one knows that the flow φt : M ÑM has properly embedded orbits15

then to establish expansivity it is enough to show that there is some δ such that
different orbits cannot be Hausdorff distance less than δ form each other. In such
cases we will call δ an expansivity constant for φt. We refer the reader to [BWa]
for more on expansive flows.

The following is a direct consequence of [IM, Theorem 1.5] or [Pat, Lemma 7]:

Theorem 5.9. Let φt : M Ñ M be an expansive flow preserving a foliation.
Then φt is a topological Anosov flow.

Proof. The results [IM, Theorem 1.5] or [Pat, Lemma 7] show that an expansive
flow preserves transverse singular foliations (one stable and one unstable) whose
singularities consist of periodic orbits whose local structure is of a p-prong with
p ě 3.

We claim that prong singularities of singular stable and unstable foliations are
incompatible with preserving a foliation. Suppose that φt preserves a foliation F

and φt has a singular p-prong orbit α. Let L be the leaf of F through α. The

15This cannot happen if M is compact, but will sometimes be easy to know for instance,
when lifting the flow to the universal cover.
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arguments in the proof of Proposition 5.1 show that on each side of α the leaf L
has to agree with either a prong of a stable leaf of φt of α or an unstable prong.
Now look transversely. Since there are at least six prongs of φt at α (at least
3 stable and at least 3 unstable), then locally transversally one component of
M ´ L intersects at least one stable and one unstable prong of α. A nearby leaf
L1 of F intersecting that component will intersect a stable and an unstable prong
of α. Flowing forward along φt preserves L1, brings it closer to α along the stable
of α and farther from α along the unstable of α. This forces L1 to topologically
cross itself, which is impossible for a foliation.

This contradiction shows that the flow cannot have any singularities, and there-
fore it is a topological Anosov flow. �

Remark 5.10. Notice that the previous Theorem does not require the foliation
invariant by the flow to coincide with the weak stable and unstable foliations
of the topological Anosov flow (cf. Remark 5.4). If φt preserves two transverse
foliations then these must coincide with the weak stable and unstable foliations
of the topological Anosov flow thanks to Proposition 5.5.

5.4. The quasigeodesic property. In this section, we prove Gromov hyper-
bolicity of the leaves of the weak foliations of a topological Anosov flow, and the
quasigeodesic property of its orbits along the leaves. This was proved in [Fen1,
§5] for Anosov flows and we adapt his proof to the topological setting.

Before properly stating the result, we comment on the Gromov hyperbolicity

of leaves of ĄFwsφ and ĄFwuφ : Since φt is only a topological Anosov, these leaves

could just be topological, and not even contain rectifiable curves. This would
be problematic in order to induce a structure of path metric space. However, it
is possible to change the smooth structure so that individual leaves are C1 (see
[Cal1]). We thus do that and fix a chosen metric.

Proposition 5.11. Let φt : M Ñ M be a topological Anosov flow. Then, leaves

of ĄFwsφ and ĄFwuφ are Gromov hyperbolic and orbits of rφt are uniform quasigeodesics

in each leaf.

Proof. We give a detailed outline of the proof since in [Fen1] the assumption of
being an Anosov flow (rather than a topological Anosov flow) is used. We do the
proof for Fws, the one for Fws is completely analogous. First, using results of
Calegari [Cal1] one can assume that leaves of Fwsφ are C1.

For a set X we denote by ccxpXq the connected component of X containing x.
We choose a finite covering of M by the interior of local product structure boxes
Bi with the following property:

‚ Each Bi is of the form
Ť

tPr´ε,εs φtpDiq and Di is a square transverse to

φt with four boundaries contained respectively in leaves of Fwsφ and Fwuφ .

‚ For every pair of points x, y P Bi it follows that ccxpF
ws
φ pxqXBiq intersects

ccypF
uu
φ pyqq in a unique point and ccxpF

wu
φ pxqXBiq intersects ccypF

ss
φ pyqq

in a unique point.

Let a0 be the maximum of the diameters of the Bi’s. In addition there is a1 ą 0
so that any set of diameter ă a1 is contained in at least one Bi.

In the universal cover, we get a locally finite covering tB̃j
i u where each B̃j

i
projects homeomorphically to Bi by the universal covering projection. Let a3 be
the minimum area of any local sheet of Fws contained in some box Bi.

Stable segments are only continuous, hence not necessarily rectifiable. We
define a “coarse length” of stable segments as follows. First notice that a stable
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segment in ĂM can only intersect a box B̃j
i in a single component. So we define

the “coarse length” of a stable segment s as the minimum number of boxes B̃j
i

that can cover it. Since φ is a topological Anosov flow, there is t0 ą 0 such that
for every stable segment I of coarse length between 9a0 and 10a0 we have that
rφtpIq has diameter less than a1 for every t ě t0 and hence it is contained in

some box B̃j
i . In other words flowing time t0 divides the coarse length of a stable

segment by roughly a factor of 10. Hence for long stable segments, its diameter
is a bounded additive error from 2 log10 a2, where a2 is its original coarse length.

To show that leaves of Fwsφ are Gromov hyperbolic it is enough to show that

disks inside the leaves of ĄFwsφ have exponential area with respect to the radius

with uniform constants. We have just proved this because a stable segment of

diameter d intersects at least C10d{2 distinct B̃j
i , where C is a global constant. A

fixed percentage of the union of these B̃j
i have to be disjoint, yielding exponential

area in terms of d.
This proves uniform Gromov hyperbolicity of leaves of Fws.

Now we prove that orbits are uniformly quasigeodesics inside the leaves of ĄFwsφ .

We need to show that there exists c ą 1 such that for every L P ĄFwsφ and x P L

we have that dLpx, rφtpxqq ě c´1t´ c. By lifting to a finite cover assume that Fwu

is transversely orientable. This does not affect the quasigeodesic property. We
will use a different metric in the leaves of Fws. First we reparametrize the flow so
that it is a parametrization by unit speed. The new flow is still an expansive flow,
so it still has strong stable and unstable foliations, even though these probably
have changed. For any leaf L of F and x in L choose a basis of TxF

ws as follows.
Recall that leaves of Fws are C1. One basis vector is vx “ Txφ. Continuously
choose a unit normal wx to Txφ in TxF

ws. Continuity is in M . We now define a
metric in TxF

ws as follows: For any v P TxF
ws, there exists unique reals b and c

such that v “ bvx ` cwx, and we set

|v| “ |b| ` |c|.

This definition gives a Finsler metric on each leaf.

Given a leaf E of rFws, we define the distance in E to be the path metric

generated by the Finsler metric | ¨ | above lifted to ĂM .

Given any x, y in the same flow line of rφ in E let y “ rφtpxq with t ą 0. There
is a projection from E to the flowline ` of x by projecting along the strong stable
segments. For any piece wise smooth curve with endpoints in `, the projection
above decreases its length. This is because of the definition of the infinitesimal
metric. Hence the flowline is a length minimizing geodesic in this metric. Since
the metrics in E are quasicomparable, then flow lines are uniform quasigeodesics

in their ĄFws leaves.
This finishes the proof of the proposition. �

Remark 5.12. In fact, the proof shows that inside each leaf of ĄFws the orbits of
the flow form a quasigeodesic fan (cf. Definition 6.5).

5.5. Discretized Anosov flows revisited. Here we show that discretized Anosov
flows defined in [BFFP1] fit well with all the definitions of collapsed Anosov flows.

Definition 5.13. A partially hyperbolic diffeomorphism f : M Ñ M is a dis-
cretized Anosov flow if there exists a topological Anosov flow φt : M ÑM and a
continuous function τ : M Ñ R such that fpxq “ φτpxqpxq for every x PM .
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In [BFFP1, Appendix G] we asked for the function τ to be positive, but this
is unnecessary:

Proposition 5.14. If f is a discretized Anosov flow, then the function τ : M Ñ R

cannot vanish.

Proof. In [BFFP1, Proposition G.2], we proved that if f is a discretized Anosov
flow, then f must be dynamically coherent. The argument presented in [BFFP1,
Proposition G.2] assumed that the map τ was positive, but we will show below
how they can easily be modified in order not to use this assumption. Once we
know that f is dynamically coherent, we will directly deduce that τ cannot vanish.

First, we prove, that the vector field X tangent to the flow φt needs to be in
the center bundle of f :

If X is tangent to Es at some point, then as in [BFFP1, Proposition G.2],
this implies that there is an interval along the flow direction totally tangent to
Es. Since Es is uniquely integrable, then this interval in the flow direction is
contained in a stable leaf. Now, the function τ is bounded, so the length along a
flow line from x to fpxq is bounded. Iterating negatively by f increases the stable
length exponentially, so first we can assume that there is x in M such that the
interval in the center leaf from x to fpxq is contained in a stable leaf. Then again
applying negative powers of f , produces a contradiction to τ being bounded. It
follows that X is never tangent to Es. The symmetric argument implies that it
is never tangent to Eu either. Then, as in the proof of [BFFP1, Proposition G.2]
one proves, that X is always tangent to Ec and that f is dynamically coherent.

Since f is dynamically coherent, we can consider the good lift rf obtained
via the lift of the natural homotopy along the flowlines of the lifted topological

Anosov flow. This lift rf cannot have fixed points (see, e.g., [BWi, Corollary 3.11]
or [BFFP1, Lemma 3.13]), thus τ cannot vanish. �

The following relates the notion of discretized Anosov flows and collapsed
Anosov flows.

Proposition 5.15. If f is a discretized Anosov flow, then it verifies Definition
2.7 with h being a homeomorphism and β being a trivial self orbit equivalence.
Conversely, if f verifies Definition 2.7 with β a trivial self orbit equivalence, then
f is a discretized Anosov flow.

Proof. To prove the direct assertion let us just take h to be the identity. In
[BFFP1, Proposition G.2] it is shown that the center stable and center unstable
foliations of f correspond to the weak stable and weak unstable foliations of the
topological Anosov flow (in particular, these weak foliations whose leaves are a
priori only C0 have C1-leaves). Then βpxq “ φτpxqpxq which proves the result.

For the converse statement, notice first that since f verifies Definition 2.7 then
the image under h of leaves of Fwsφ provides a branching foliation tangent to Ecs,
and likewise for Fwuφ . Finally the image of any flow line is a curve tangent to

Ec, providing a branching center foliation. Consider a good lift rf corresponding
to lifting β to a homotopy along the flow lines, and using a lift of h lifting a

homotopy to the identity. The equation f ˝ hpxq “ h ˝ βpxq then implies that rf

preserves every center leaf in ĂM . Again the argument of [BWi, Corollary 3.11]
(or [BFFP1, Lemma 3.13]) implies that the lift to the universal cover cannot
have fixed points. Moreover, when lifted to the universal cover, one has the same
situation as in the doubly invariant case, as studied in [BFFP2, §7.2]. This proves
that the branching foliations are actual foliations, proving dynamical coherence
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of f . Now this immediately implies that f is a discretized Anosov flow (see also
[BFFP1, §6]). �

With what we proved so far, we can show that when the self orbit equivalence
is trivial, then the two notions of collapsed Anosov flows (Definition 2.5) and
strong collapsed Anosov flows (Definition 2.7) coincide.

Proposition 5.16. Let f be a collapsed Anosov flows such that the associated
self orbit equivalence β is trivial, then f is a strong collapsed Anosov flows.

Proof. Since β is trivial, the image of the flowline foliation by h is an f -invariant
branching foliation, whose leaves are tangent to Ec. This is a center branching

foliation in this case. Moreover, a good lift rf leaves invariant every center leaf.

As in [BFFP2, Lemma 7.3] we know that rf moves point a bounded distance
in each center. An argument similar to [BFFP2, Lemma 7.4] allows to show
that center curves are disjoint or coincide. This implies that f verifies Definition
5.13. �

In view of the above, we can even wonder whether it would be sufficient for
a definition of collapsed Anosov flow to only require the partially hyperbolic
diffeomorphism to be semi-conjugate to a self orbit equivalence:

Question 5. Let f : M Ñ M be a partially hyperbolic diffeomorphism such that
there exists a (topological) Anosov flow φt : M Ñ M , a self orbit equivalence
β : M Ñ M and a map h : M Ñ M continuous and homotopic to the identity
such that f ˝ h “ h ˝ β. Is f a collapsed Anosov flow?

6. Quasigeodesic behavior inside foliations

In this section we study some properties of one dimensional foliations which
subfoliate a two dimensional foliation with Gromov hyperbolic leaves. Then, we
restrict to the partially hyperbolic setting and show Theorem 6.11 that is the key
step to obtain Theorem D which will be shown in the next section.

6.1. One dimensional foliations inside two dimensional foliations. Let F
be a foliation on a 3-manifold. In this section, we will assume that there is a
metric on M that makes every leaf of F negatively curved. Then we can even as-
sume the metric on each leaf is constant curvature ´1 by Candel’s uniformization
theorem. This assumption is verified whenever the foliation does not have a trans-
verse invariant measure of zero Euler characteristic (by Candel’s uniformization
theorem, see [CC, §I.12.6] or [Cal3, §8] for a precise statement).

Consider a one dimensional foliation G which subfoliates F (i.e., leaves of F are
saturated by leaves of G). We suppose here that G has differentiable leaves.

Definition 6.1. The foliation G is a uniform quasigeodesic foliation of F if every
leaf ` P G is a quasigeodesic in its corresponding leaf L P F with uniform constants.

Let us make precise what we mean by uniform constants in the above definition:

Call rF and rG be the lifts of F and G respectively to the universal cover. Let `

be a leaf of rG in a leaf L of rF. Then ` is a C-quasigeodesic if there is a constant
C ą 1 such that for every x, y P ` we have that d`px, yq ă CdLpx, yq ` C. Here
dL denotes the distance in L given by a Riemannian metric and d` denotes the
distance in ` induced by restricting the Riemannian metric to `.

In Definition 6.1, we require that there exists a constant C ą 1 such that,
for any L P F and any ` P G, the leaf ` is a C-quasigeodesic. Note that, by
compactness of M , this definition does not depend on the choice of metric (see
Proposition A.5).
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Remark 6.2. One can in fact prove, by adapting the proof of [Cal3, Lemma
10.20], that if G subfoliates F with quasigeodesic leaves, then it is automatically
a uniform quasigeodesic foliation.

Notice then that the usual Morse Lemma (cf. [BH, §III.H.1]) implies that given

a leaf L P rF and ` P rG in L, there exists a unique geodesic ˆ̀ in L which is bounded
Hausdorff distance in L away from ` and determines two distinct point ``, `´ on
S1pLq the circle at infinity (or Gromov boundary) of L called the endpoints (or

ideal points) of ` or ˆ̀.

Remark 6.3 (Uniform bound). There is a positive constant k ą 0 such that for

any ` leaf of rG in a leaf L of rF, if ˆ̀ is the geodesic in L with ideal points `´, ``

then the Hausdorff distance in L, dHp`, ˆ̀q ă k. In addition if x, y in `, if ˆ̀
x,y is

the geodesic segment in L from x to y and `x,y the compact segment in ` from x

to y, then dHp`x,y, ˆ̀
x,yq ă k. See [BH, Theorem III.H.1.7].

Let rG|L be the foliation rG when restricted to L. As is the case for foliations
by geodesics [Cal2, Construction 5.5.4], we are able to show that foliations by
quasigeodesics of a hyperbolic plane are quite restrictive:

Proposition 6.4. Given L P rF we have that the leaf space L
rG,L

“ L{
rG

of the

foliation rG is homeomorphic to R and either there is a point p P S1pLq such that

every leaf of rG|L has p as one of its endpoints or there are exactly two points in

S1pLq invariant under every isometry of L preserving the foliation rG|L. If rn is

a sequence of rays16 in leaves of rG converging to a ray r, then the ideal points of
rn in S1pLq converge to the ideal point of r.

Proof. We first show that the leaf space L{
rG

is Hausdorff. Suppose this is not

true and there are `n leaves in rG converging to two distinct leaves `, `1 of rG.
Let x, y be points in `, `1 respectively. Then there are xn, yn in `n converging

to x, y respectively. Hence dLpxn, ynq is bounded. We claim that d`npxn, ynq goes
to infinity. Otherwise up to subsequence we would have d`npxn, ynq ď a0. But
using the local product structure of foliations, we would deduce that y is in `, a
contradiction.

Hence d`npxn, ynq must converge to infinity, but, since dLpxn, ynq is bounded,
this contradicts the uniform quasigeodesic behavior. Therefore L{

rG
is Hausdorff,

and hence homeomorphic to R.

We now show that the ideal points of rays of leaves of rG in S1pLq vary contin-

uously. Let xn be a sequence in L converging to x in L, and `n, ` the leaves of rG

through xn and x respectively.
Let rn be rays in `n starting in xn converging to a ray r in ` starting in x. Let

yn, y be the ideal points of rn, r respectively. We want to show that yn converges
to y.

Suppose this is not the case, we assume up to subsequence that yn converges
to z ‰ y. Since rn converges to r and r has ideal point y, then for n large rn
has a point tn very close to y in the compactification LYS1pLq. The ray rn also
has a point zn very close to z in L Y S1pLq. We assume that tn Ñ y, zn Ñ z.
The compact segment sn of ln from tn to zn is at most k distant in L from the
geodesic segment connecting them. Since tn is very close to y and zn is very close

16A ray of a leaf ` of rG in a leaf L P rF is the closure of a connected component of ` r txu
for some x P `. Each ray has a well defined ideal point r8 P S1

pLq which coincides with the
corresponding ideal point of `.
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to z, then all of these geodesic segments intersect a fixed compact set of L, and
similarly for the segments sn of rn. Up to another subsequence sn converges to

a leaf `1 of rG. This leaf is not `, contradicting that L{
rG

is Hausdorff. This proves

the continuity property.
Identify the leaf space L{

rG
with R, with parametrization `t, t P R and consider

a sequence `tn , tn Ñ `8. Notice first that the endpoints p`tnq
˘ determine a

weakly nested sequence of intervals in S1pLq which needs to shrink as nÑ8. If
they do not shrink they limit to a geodesic g in L. But recall that the `n are at
distance at most k corresponding geodesics (cf. Remark 6.3): If the endpoints are
trapped by the endpoints of g, then the leaves are trapped by a neighborhood of
size k of g and cannot escape in L, contradiction.

Hence we get two points of S1pLq one for `8 and one for ´8. If these two

points coincide then we get that every leaf of rG must have that limit point as a
limit point. Otherwise, we get the other condition. Obviously any isometry of L
leaving the foliation invariant has to preserve this pair of ideal points. �

We now define some structures related to what follows from the previous propo-
sition.

Definition 6.5. We say that a leaf L P rF is a weak quasigeodesic fan for the

foliation rG if there is a point p P S1pLq such that every leaf of rG|L has p as one of

its limit points. In this case we call p the funnel point of rG|L. The leaf L P rF is a
quasigeodesic fan if moreover given a point q P S1pLqr tpu there is a unique leaf

of rG|L whose endpoints are p and q. We say that a leaf A of F is a quasigeodesic

fan or a weak quasigeodesic fan if a lift L of it to ĂM is a quasigeodesic fan or a
weak quasigeodesic fan respectively.

Lemma 6.6. If G is a uniform quasigeodesic subfoliation of F then, for every leaf

L P rF we have that there are at most two points in S1pLq which are not endpoints

of any of the curves in rG|L.

Moreover, if a leaf L P rF is a weak quasigeodesic fan, then every points of
S1pLq is the endpoint of a center leaf. See Figure 1.

Proof. We use the notation of Proposition 6.4. We justify this for the case that
the limit points of `tn , nÑ8 and `tn , nÑ ´8 are distinct points x, y in S1pLq.
Let I, J be the complementary intervals of x, y in S1pLq. First note that not all
leaves can have both endpoints in the closure of J . Consider the curve α which
is k distant from the geodesic connecting x, y and in the side limiting on I. By

the property of k, then any leaf of rG is entirely contained in the component of α
that limits on J . This is impossible. Hence there are leaves with one ideal point

in I, and similarly for J . Let ` be a leaf of rG|L with one endpoint in I. Clearly
the other endpoint of ` cannot be in I. We proved in Proposition 6.4 that the
endpoints of corresponding rays of `t vary continuously when t varies. Since they
limit to x, y when tÑ ˘8 it follows that the set of limit points of rays of leaves

of rG|L contains I. This shows that the case x “ y occurs exactly when rG|L is a
weak quasigeodesic fan in L. When x, y are distinct we may have that neither is

an ideal point of a leaf of rG, one of them is, or both of them are. �

From Proposition 6.4 we deduce:

Corollary 6.7. If F a foliation by hyperbolic leaves admits a uniformly quasi-
geodesic subfoliation G then every leaf of F has cyclic fundamental group (thus a
leaf is either a plane, an annulus or a Möbius band).
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Figure 1. Some quasigeodesic foliations of the disk which are not
quasigeodesic fans (the bottom right one is a weak quasigeodesic
fan).

Proof. Deck transformations of M act as isometries, so if a deck transformation

fixes some leaf L P rF then it is an isometry which preserves rG|L. Note that it
must be a hyperbolic isometry since there is a uniform injectivity radius of leaves
of F. Hyperbolic isometries that fix a given point or a pair of points at infinity
commute, so this concludes. �

Our first goal is to show that there are weak quasigeodesic fan leaves of F,
and that the collection of such leaves forms a sublamination of F. This is the
analogue of [Cal2, Lemma 5.3.6] (see also [Cal2, Lemma 5.5.5]) which is done for
the case of geodesic subfoliations in leaves of F.

We first need a technical result that produces some weak quasigeodesic fan
leaves from certain configurations and will be used several times.

Lemma 6.8. Suppose that xn is a sequence in ĂM such that there are disks Dn

in the leaves Ln P rF centered at xn with radius converging to infinity and satis-
fying the following: There are disks En in Ln of bounded diameter, such that the

distance in Ln from En to Dn goes to infinity and such that any leaf of rG|Ln in-
tersecting Dn also intersects En. Then, given a sequence of deck transformations
γnj P π1pMq such that γnjxnj Ñ x for some subsequence nj Ñ 8 we have that
the leaf through x is a weak quasigeodesic fan.

Proof. We can assume without loss of generality that xn Ñ x up to changing by
deck transformations and taking a subsequence.
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Call a1 ą 0 an upper bound of the diameters of the En. Assume by contradic-

tion that the leaf L of rF through x is not a weak quasigeodesic fan. Then there

is a pair of leaves `, `1 of rG|L which do not share any ideal point in S1pLq. These
curves are at at most k distant in L from the corresponding geodesics because of
the uniform bound, see Remark 6.3.

Since `, `1 do not share ideal points, then two properties follow:

(i) there are points y, y1 in `, `1 respectively attaining the minimum distance
a0 between points in `, `1,

(ii) there is t ą 0 such that if z P `, and z1 P `1 then if both dLpz, yq and
dLpz

1, y1q are larger than t then

dLpz, `
1q, dLpz

1, `q ą 10pa0 ` a1 ` k ` 4q.

The points xn converge to x in L. The distance from x to y, y1 in L is finite,
so up to changing xn in Ln by a bounded distance (and choosing a subdisk of Dn

with radius still going to infinity with n) we may assume that xn converges to

y. Since the foliations rG|Ln converge to rGL we see that the foliations in the disk
of radius 100pt ` a0 ` 1q (recall that t, a0 are fixed) around xn converge to the
foliation in a disk of radius 100pt` a0 ` 1q around y in L. In L on both sides of
y, y1 the leaves `, `1 spread more than 10pa0 ` a1 ` k` 4q from each other. So we

see this in some of the leaves of rG|Ln as well. This is within fixed distance t. But
the property of En means that these leaves come back within a1 of each after a
distance larger than t if n is big enough.

We now use that these curves are uniform quasigeodesics. Recall their prop-
erties:

(i) they are within a0 ` 1 from each other near y, y1;
(ii) they are within within a1 ` 1 from each other when they both intersect

En.

This implies that the geodesic segments connecting these pairs of points are within
pa0`a1`2q throughout. By the uniform quasigeodesic property the segments in

leaves of rG|Ln are within pa0 ` a1 ` 2q ` 2k from each other throughout. But we
proved that they have points where the curves are more than 10pa0`a1`2`2k`2q
apart from each other in between.

This contradiction shows that the limit leaf is a weak quasigeodesic fan and
finishes the proof of the lemma. �

We can now show:

Proposition 6.9. The set of leaves L P rF which are weak quasigeodesic fans for
rG is non empty, closed and π1pMq-invariant. Hence it induces a sublamination
of F in M .

Proof. The π1pMq invariance property is obvious.
We first show that the set of weak quasigeodesic fan leaves is non empty. Let

L be a leaf of rF. We will construct sets Dn, En in L satisfying the hypothesis of

the previous lemma. Let `1 be a leaf of rG|L. Let I be the closed interval of leaves

of rG|L all of which share both endpoints with `1. This could be a degenerate
interval, that is, `1 itself. Let ` be a boundary leaf of I. Now consider a leaf `1

sufficiently near ` intersecting a transversal τ from x in ` to x1 in `1. In addition
assume that `1 is not in I. Let E be a disk containing τ . Let En “ E of fixed
diameter.
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Since `1 is not in I, it has at least one ideal point z1 which is not an ideal point
of `. Let r1 be the ray of `1 starting in x1 and with ideal point z1. Let r be the
ray of ` starting in x and going in the same direction as r1.

Recall that the leaf space of rG|L is the reals R. Let V be the complementary

region of r Y τ Y r1 which only contains rays of leaves of rG|L which intersect τ .

Hence every leaf of rG|L intersecting V also intersects the fixed set E.
Finally since r1 and r do not have the same ideal points and are quasigeodesics

we can find Dn a set of diameter greater than n contained in V and such that
the distance in L from Dn to E is greater than n. Taking Ln “ L for any n, we
can apply the previous lemma and get leaves of F which are weak quasigeodesic
fans. This proves the first assertion of the proposition.

Now we prove that the set of leaves that are not weak quasigeodesic fan is
open.

Let L be a leaf that is not a weak quasigeodesic fan. Then there are leaves `, `1

which do not share any ideal points. As in the previous lemma:

(i) there are points y P `, y1 P `1 realizing the minimum distance a0 between
them,

(ii) for any a2 ą 0, there is t ą 0 such that if distance along ` from y to z is
greater than t then dLpz, `

1q ą a2 and vice versa for points in `1.

Hence once a1, a2, t are fixed we obtain for any leaf F sufficiently near L that we

have leaves `F , `
1
F in rG|F satisfying this property in F . Specifically this does not

hold for every point z in `F with distance in `F from a fixed point is ą t, but for
some points. We choose a2 ą a0 ` 100k. Fix this pair of leaves `F , `

1
F .

Now suppose that F is a weak quasigeodesic fan. We will obtain a contra-

diction. For any two leaves ζ, ζ 1 in rG|F they have a common endpoint in some
direction. If they share both endpoints then they are within 2k of each other.
So if a2 ą 2k then the pair `F , `

1
F cannot be ζ, ζ 1. Since a2 ą 2k, it follows that

`F , `
1
F cannot be ζ, ζ 1.

Next, suppose that ζ, ζ 1 share one but not both ideal points. The corresponding
geodesics ζ̂, ζ̂ 1 of F to ζ, ζ 1 are asymptotic, but disjoint. By negative curvature
in the direction where they are asymptotic, the distance in F between points yt
in ζ̂ converging to the common ideal point and ζ̂ 1 is always decreasing, modulo
a bounded error, and converging to zero. Since ζ, ζ 1 are k distant from ζ̂, ζ̂ 1

respectively, then the distance in F between points yt in ζ converging to the
common ideal point and ζ 1 in F is roughly decreasing modulo an error of at most
4k. But the leaves `, `1 have points very distant (ą a2 ą a0`100k from the other
leaf), then follow along to points roughly a0 distant, then again some points very
distant (ą a2). Therefore `, `1 cannot be ζ, ζ 1.

This contradicts the existence of leaves `, `1 in F , which have to be some pair
ζ, ζ 1. This contradiction finishes the proof that the set of non weak quasigeodesic
fans is open. This finishes the proof of the proposition. �

6.2. Branching foliations. Now consider two transverse branching foliations
Wcs and Wcu in M (the names are given for obvious reasons) which determine

a one dimensional branching foliation Wc by intersection. We consider ĄWcs,
ĄWcu the lifts to the universal cover. We assume that Wcs,Wcu are transversely
orientable. Let Fcsε ,F

cu
ε be the approximating foliations from Wcs,Wcu given by

Theorem 3.3 for some small ε ą 0. Let and ĂFcsε ,
ĄFcuε their lifts to ĂM . These

determine a foliation ĂFcε which subfoliates both. The foliation ĂFcε also projects
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to a one dimensional foliation Fcε which subfoliates both Fcsε ,F
cu
ε . Since Fcsε ,F

cu
ε

have C1 smooth leaves, then leaves of Fcε are C1.
We can then copy the notions above to define:

Definition 6.10. We say that Wc is by uniform quasigeodesics in Wcs and Wcu

if leaves of Fcsε ,F
cu
ε are Gromov hyperbolic and ĂFcε is a foliation by uniform

quasigeodesics in both ĂFcsε and ĄFcuε as in Definition 6.1 . Similarly we can define

as in Definition 6.5 leaves of ĄWcs or ĄWcu (or leaves of Wcs,Wcu) being (weak)-

quasigeodesic fans by the identification between the leaves of ĂFcsε and ĄWcs (resp.
ĄFcuε and ĄWcu).

The leaves of ĄWcs, ĄWcu have their intrinsic geometry induced from the Rie-

mannian geometry of ĂM . These leaves are quasi-isometric to the corresponding

leaves of rFcsε ,
rFcuε . In particular the notions above are independent of ε.

6.3. The partially hyperbolic setting. Here we state the main result of this
section:

Theorem 6.11. Let f : M Ñ M be a partially hyperbolic diffeomorphism pre-
serving branching foliations Wcs and Wcu such that the foliation Wc is by uniform
quasigeodesics (cf. Definition 6.10). Then, the center leaves of Wc form a quasi-
geodesic fan in each Wcs and Wcu leaf.

We will split the proof of Theorem 6.11 into two parts. Proposition 6.15 shows

that every leaf of ĄWcs must be a weak quasigeodesic fan and Proposition 6.20

shows that different centers in a leaf of ĄWcs do not have the same pair of points at
infinity. Both proposition follow the same strategy, first we construct an invariant
lamination of good leaves where the property we want holds, and then we apply
Proposition 6.12 below to show that every leaf is a good leaf.

6.4. A general result about invariant laminations. Here we give a general
result that will be used repeatedly in what follows and might be interesting in
itself. The result is stated for Wcs, but obviously works for Wcu as well.

Proposition 6.12. Let f : M Ñ M be a partially hyperbolic diffeomorphism

preserving a branching foliation Wcs tangent to Ecs and rf a lift to ĂM . Suppose

that M is orientable. Let P Ă Lcs be a closed π1pMq- and rf -invariant subset

of the leaf space of ĄWcs. Assume that the stabilizer of each leaf of Lcs is at
most infinite cyclic. Then, for every N connected component of Lcs r P there is
γ P π1pMq, a leaf L P N and a leaf L1 P N such that γL “ L but γL1 ‰ L1.

Proof. Assume by contradiction that every leaf in N is invariant by the same
deck transformations. Then we can assume by taking finite covers and iterates
that all the bundles are orientable and f preserves orientation. Consider the

approximating foliation Fcsε , with lift ĂFcsε and leaf space Lcsε , which is canonically
equivariantly homeomorphic to Lcs. Let Pε be the closed set corresponding to P

and Nε the open set corresponding to N. Then the set of leaves in Nε projects
to an open Fcsε foliated set U in M . The hypothesis mean that every leaf in Nε

is invariant by the same deck transformations. In particular the foliation Fcsε
restricted to U has trivial holonomy (the germ of holonomy of every closed curve
in a leaf of Fcsε in U is trivial).

Now use [CC, Theorem I.9.2.1] applied to Fcsε in U . This implies that the leaf

space of ĂFcsε in Nε is homeomorphic to R. In particular the same is true for the

leaf space of ĄWcs in N.
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Our assumption is that either every leaf in N has trivial stabilizer, or that
every leaf of N has exactly the same stabilizer which is Z. Denote by G ă π1pMq
the subgroup of deck transformations fixing N. The group G is the same group
which fixes Nε. We need the following property:

Claim 6.13. Up to deck transformations N is rf periodic.

Proof. The projection V of N to M may not be open if Wcs,Wcu are not foliations
and rather branching foliations. Nevertheless V is not a single leaf and has non
empty interior, hence contains an open unstable segment τ . Let x in τ . Iterating

positively by f one gets a limit point of the sequence fnpxq. Since P is rf and
π1pMq-invariant then for some fixed n, fnpV q and V intersect in their interiors.

Hence rfnpNq is a deck translate of N. �

By the claim, after taking an iterate we can assume that G is f˚-invariant. We
will take such an iterate. We will need some arguments from standard 3-manifold
topology. If the stabilizer of leaves in Nε is always trivial, then as it acts freely
on R it follows that G is abelian. By [Hem, Theorem 9.13] we get that G can be
either 0, Z, Z2 or Z3. Suppose on the other hand that the subgroup stabilizing
every leaf of Nε is infinite cyclic, generated by γ. It is very easy to see that
for any α in G then αγα´1 “ γ˘, hence xγy is a normal subgroup. In addition
G{xγy acts freely on R hence it is abelian. Since αγα´1 “ γ˘ it follows that
G has a subgroup of index 2 which is abelian. Again by [Hem, Theorem 9.13]
this subgroup G1 of index 2 can only be Z,Z2,Z3. Notice that f˚pγq “ γ˘ so
f˚ preserves G1. So in any case f˚ preserves an abelian subgroup G1 of index at
most 2, which can only be 0,Z,Z2,Z3. We need the following:

Claim 6.14. The action of f˚ in G1 does not have eigenvalues of modulus larger
than 1.

Proof. Let U be the open set in M which is the projection of the leaves in Nε. The
completion Û of U has an octopus decomposition (cf. [CC, Proposition I.5.2.14])

with a thin part T and a core K such that K is compact and Û retracts onto K
hence π1pÛq is finitely generated.

By the orientability conditions it follows that the boundaries of K are tori.

Since leaves are properly embedded in ĂM it follows that either K is a solid torus
or that all boundary components of K are π1-injective in π1pMq and hence π1pÛq
injects in π1pMq (note that the image is exactly G).

We proved before that G1 can be only 0,Z,Z2,Z3.
The claim is trivial if G1 is either 0 or Z. If G1 “ Z3, using that M is prime

we can apply [Hem, Theorem 9.11] to deduce that M has virtually abelian fun-
damental group, and then the result follows from [BI].

Finally, if G1 “ Z2 then [Hem, Theorem 10.5] implies that K is T2 ˆ r0, 1s
up to double cover. This case was dealt with in [HHU1]. We just provide a
couple of details: in this case up to finite index G1 is generated by α, β, where α
corresponds to a curve in K X T . The curve α has to be preserved up to finite
order. This implies the result. �

We now complete the proof of Proposition 6.12. The contradiction will be
given by a volume versus length argument that will imply that the action of f˚
on G1 must have an eigenvalue of modulus larger than one. More precisely, [HPS,
Proposition 5.2] implies that if there is an open f -invariant set X ĂM such that
the inclusion ı : X Ă M verifies that ı˚pπ1pXqq is abelian and there is a strong
unstable manifold inside X which is at distance ě ε from the boundary of X,
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then f˚ must have an eigenvalue of modulus larger than 1 in ı˚pπ1pXqq. The
same proof applies if i˚pπ1pXqq has a subgroup of index 2 which is abelian and
preserved by f˚. Notice that

ı˚pπ1pXqq Ă ı˚pπ1pÛqq “ ı˚pGq.

We will apply the result from [HPS] to the interior X of the projection of the
closure of N to M . This is an open f -invariant set (after taking the iterate we
considered before). Let x be a point in BX. Let `x P r0,8s be the length of the
open unstable segment inside X whose boundaries are in BX and one of them
is x. This interval is possibly trivial giving `x “ 0 or a complete ray giving
`x “ 8. It follows that the function `x of x cannot be bounded in BX. Otherwise
it would have a maximum and backward iteration would give a contradiction.
This allows to construct an unstable curve completely contained in the interior
of X. Moreover, the closure of such unstable leaf must be at positive distance of
BX because of local product structure. This completes the proof. �

6.5. Funnel leaves. Here we show:

Proposition 6.15. In the setting of Theorem 6.11 we have that every leaf of
Wcs and Wcu is a weak quasigeodesic fan for Fc.

Recall that we proved in Proposition 6.9 that the set P of leaves of ĄWcs which

are weak quasigeodesic fans is non empty, π1pMq invariant, rf invariant, and
closed. We did that in the (non branching) foliations setting, but subsection
6.2 implies the result in the branching foliations setting as well. Let Λ be the
projection of the leaves in P to M . This is a closed, f -invariant set of Wcs leaves,
that is a sublamination of Wcs. We want to show that these are all the leaves of
Wcs.

Notice that, if we assumed that the branching foliations are f -minimal (see
[BFFP1, BFFP2]), which happens for instance when f is transitive, then (by
definition of f -minimality) Λ would automatically consist of all the leaves of
Wcs.

So the rest of this section will deal with the general case, and the reader only
interested in the transitive case can skip this section.

In order to prove that Λ covers all the leaves of Wcs, we will first consider a
slightly larger lamination such that the leaves in the complementary region are all
planes. This will allow us to apply Proposition 6.12. First we show that annular
leaves which are not in Λ can only accumulate on Λ.

Lemma 6.16. Let A be an annular leaf of Wcs in the complement of Λ. Then
A only limits on points in Λ, that is, the closure of A is contained in ΛYA.

Proof. Let A be an annular leaf of Wcs in the complement of Λ. Let γ be a

generator of π1pAq. Let L be a lift of A to ĂM invariant by γ. There are two
possibilities depending on the action of γ:

Claim 6.17. If γ does not act freely on the center leaf space in L (i.e., if there
is a center curve which is invariant under γ) then A limits only on points of Λ.

Proof of Claim 6.17. The set of center leaves in L invariant by γ is a non empty,
bounded and closed interval I. Let c, c1 be the boundary leaves of this interval.

Recall from the proof of Corollary 6.7 that the action of γ on S1pLq fixes only
the ideal points z1, z2 of c, c1 and acts as a translation on any complementary
interval. Let e be a center leaf in L not in I. Hence it has one ideal point, call it
t which is not an ideal point of c, with t contained in the interval component J of
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S1pLqrtz1, z2u. If the other ideal point t1 of e is also not an ideal point of c, then
t1 is also in J . Recall that γ acts as a translation on J . There are two options: if
γptq, γpt1q link with t1, t1 in S1pLq then e and γpeq intersect transversely, which is
a contradiction. If γptq, γpt1q do not link with t1, t1, then this shows that the leaf
space of the center foliation in L is non Hausdorff. This contradicts Proposition
6.4.

It follows that every such center leaf e shares an ideal point with c, c1. Suppose
it is z1. In addition if e1 is another leaf with an ideal point in J , then the other
ideal point of e1 is also z1.

Let now xi be points in A converging to a point x in M . In particular, they
are getting further and further apart from a fixed closed core curve α in A. Up to
taking a subsequence, we can assume that they are all in the same complementary
component of α in A. Lift xi to points yi in L. The distance in L, call it di, from
yi to c is going to infinity. Let Di be disks in L around yi of radius di{2. Any
center curve intersecting Di has one ideal point in J , hence also an ideal point
which is z1. Hence any two of these eventually get 3k from each other. So we
can find a set Ei of diameter less than 3k intersecting all of these leaves. Now
Lemma 6.8 implies that the leaf through the limit of xi is a weak quasigeodesic
fan. In particular it is in Λ. �

Claim 6.18. If γ acts freely on the center leaf space in L then A limits only on
leaves of Λ.

Proof of Claim 6.18. As in the previous claim, we choose xi in A with lifts yi in
L. Choose α a simple closed core curve in A, and let α̃ be its lift to L. Choose
xi in a fixed component of A r α, hence yi are in a fixed component of L r α̃,
whose limit set is J Y tz1, z2u. Let ci be a center leaf through yi.

The center leaf space in L is R, hence for any c center in L, then c, γpcq are
connected by a transversal. It follows that we can choose α transverse to the
center foliation in A, and α̃ intersects all centers in L.

We need an additional fact: if e is any center leaf in L, then no ideal point of
e is z1 or z2. Suppose not, say z1 is an ideal point of e. Let z be the other ideal
point. If z “ z2 then by iterating by γ then one obtains a center leaf invariant
by γ which was treated in the previous claim.

If z is not z2, then iterate by positive or negative powers of γ so that z converges
to z2. This would produce a center leaf fixed by γ ´ again this would mean we
are in the setting of the previous claim.

So no e has ideal point z1 or z2. Let wi be the ideal point of ci which is in J .
Since α̃ intersects all centers in L it follows that the other ideal point of ci is not
in J and hence it is in I. Since wi is not z1 or z2 then γpwiq and γ´1pwiq are
different from wi. Since the distance from wi to α̃ is going to infinity, it follows
that the distance di from wi to γpciq and γ´1pciq is going to infinity as well. Let
Di be the disk in L centered at yi with radius mintdi{2, dLpyi, α̃qu. Any center
leaf intersecting Di intersects α̃ between si “ γ´1pciq X α̃ and s1i “ γpciq X α̃.
This set has diameter bounded by twice the length of α. So we can choose this
set contained in Ei of bounded diameter.

With these properties, Lemma 6.8 implies that any leaf containing a limit of
the xi is in Λ. �

Claims 6.17 and 6.18 together complete the proof of Lemma 6.16. �

We also need the following technical result.
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Lemma 6.19. Consider the set P0 Ă Lcs consisting of leaves invariant under
some non trivial deck transformation. Then, the set P Y P0 is a closed set of

leaves of Lcs (that is, a sublamination) which is rf - and π1pMq-invariant.
Moreover, if P Y P0 “ Lcs then there are two possibilities:

(i) either P “ Lcs, or,
(ii) in each connected component of Lcs r P all leaves are invariant by the

same deck transformations.

Proof. Recall that Λ is be the projection of P to M . We will also use the ap-
proximating foliation Fcsε of Wcs (up to finite lift this is no problem, see Theorem
3.3) and denote by Λε the lamination in Fcsε induced by the blown up leaves of
Λ. Since leaves with non trivial fundamental group are clearly f -invariant, it is
enough to show the rest of the claims in the Lemma for the foliation Fcsε and the
lamination Λε.

Consider the completion Û of a connected component U of M r Λε and its
octopus decomposition (cf. [CC, Proposition I.5.2.14]) with a thin part T and a
core K so that K is compact and T “ T1 Y . . . Y Tm where each Ti (an arm) is
an I-bundle.

Lemma 6.16 implies that every annulus leaf B of Fcsε in M r Λε accumulates
only in Λε. Suppose that it is contained in the component U as above. Recall
that Û “ KYT . We choose K big enough so that each component KXT (which
is also an annulus) is transverse to Fcsε . Then except for a compact subannulus
in B, the rest of B is contained in T . In particular since the foliation restricted
to each component of T is a foliated I-bundle, it follows that BXK is a compact
annulus KB. Using [CC, Theorem I.6.1.1] we know that the set of leaves of Fcsε
restricted to K which are compact is a compact set. Notice that the intersection
of a leaf B of Fcsε in U with K is compact if and only if B is an annulus (the other
option is B is a plane). Hence the set of annuli leaves in Fcsε |K is a compact set.

This shows the first statement of Lemma 6.19 holds: P YP0 is a sublamination
of Wcs which is f invariant.

We need to show that if the set of annulus leaves in U is all of U then every
leaf in U is invariant under the same deck transformation. This follows from the
fact (cf. Corollary 6.7) that every leaf is either a plane or an annulus. Since K is
compact, there is a finite set tγ1, . . . , γku in π1pKq such that leaves which are not
planes in U must be fixed by some of the γi. This is because any such annulus leaf
is incompressible in K, and distinct leaves are disjoint. Hence there are finitely
many of these which are pairwise not isotopic [Hem]. If they are isotopic then
they correspond to the same deck transformation. Note that since every leaf is
a plane or an annulus, we deduce that if all leaves in K are fixed by some of the
γi, this gives a partition of K by disjoint compact sets, which implies that it is a
unique compact set as we wanted to show.

Finally if the set P Y P0 is not all of the leaves of Wcs, then the preimage P0

in the leaf space Lcs is not all of Lcs. Let N be a complementary component of

P0. By Claim 6.13 up to deck transformations N is rf periodic. All leaves of ĄWcs

in N have trivial stabilizer. Proposition 6.12 shows that this is impossible. We
conclude that this case cannot happen so we have only the possibilities (i) and
(ii).

This finishes the proof of Lemma 6.19. �

We now can prove Proposition 6.15:
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Proof of Proposition 6.15. According to the first part of Lemma 6.19, the family

P YP0 is a rf - and π1pMq-invariant lamination. Hence we can apply Proposition
6.12 to it. Since no leaves outside of P Y P0 is fixed by any deck transformation,
Proposition 6.12 implies that P YP0 “ Lcs. Now the second part of Lemma 6.19,
yields that P “ Lcs.

This shows that every leaf is a weak quasigeodesic fan. �

6.6. Unique centers for given limit points. Here we show the following, that
together with Proposition 6.15 completes the proof of Theorem 6.11:

Proposition 6.20. If every leaf of Wcs and Wcu are weak quasigeodesic fan,
then they all are quasigeodesic fans.

Remark 6.21. Notice that in order to obtain, in Proposition 6.15, that each leaf
of Wcs is a weak quasigeodesic fan, we only needed to use the fact that the center
leaves were uniform quasigeodesic in Wcs (and vice versa for Wcu). To get here
that it is actually a quasigeodesic fan, we need to use the fact that center leaves
are uniform quasigeodesic in both Wcs and Wcu.

We are going to prove Proposition 6.20 by contradiction, dealing with leaves
of Wcu, the case of Wcs being symmetric.

By Lemma 6.6, for any leaf V of ĄWcu with funnel point p P S1pV q and every
point q in S1pV qr tpu, there is a center leaf in V with ideal point q. By contra-

diction, we will assume that there is a leaf V0 of ĄWcu which has more than one
center curve with the same pair of limit points p, q P S1pV0q. Since the leaf V0

is a weak quasigeodesic fan, the set of center leaves that have p and q as limit
points forms a non trivial closed interval. Let I be the interior of the interval of

leaves of ĄWcs which intersects V0 in some of those centers. We think of I as an
open interval of Lcs.

Remark 6.22. The funnel direction in leaves of ĄWcs varies continuously. This

is because the funnel direction in a leaf L of ĄWcs is the one where leaves are
eventually within 2k of each other and in the other direction some of them diverge
a lot. So near L one sees in the same direction center leaves which are within
2k ` 1 of each other for a long distance, while in the opposite direction they
diverge substantially from each other. This means that the same direction as
that in L is the funnel direction of the nearby leaves.

For any L in I the funnel direction in L defines a direction in the center LXV0.
Since these vary continuously with L, it follows that up to switching p and q, the
stable funnel direction for any L in I is the direction in L X V0 with ideal point
p. This implies that for any L in I, the rays in the funnel direction of LX V0 are
eventually 2k ` 1 from each other. We let

Q “
ď

nPZ

ď

γPπ1pMq

rfnpγIq.

This is a non empty, open rf and π1pMq-invariant subset of Lcs and we consider
P “ LcsrQ. Let Λ be the lamination in M obtained by projecting the leaves in
P to M . We want to show that P is everything, and therefore get a contradiction,
since I and hence Q is not empty. For this, we will again apply Proposition 6.12
to a lamination Λ˚ that contains Λ; to construct it we need some preliminary
results.
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We will use the approximating foliation setting. Let Λε be the sublamination
of Fcsε associated with Λ and let U be a connected component of M r Λε. We
will need the following technical property:

Claim 6.23. Let L1, L2 be two leaves in Q. Then, there is a constant K “

KpL1, L2q ą 0 such that for every pair of center leaves ci P Li, for i “ 1, 2, we
have that there is a ray r1 of c1 and a ray r2 of c2 both in the funnel directions of

L1 and L2 respectively, such that the Hausdorff distance dHpr1, r2q in ĂM is less
than K.

Proof. We can cover an interval joining L1 and L2 by finitely many translates

and iterates of I. Each translate is a deck translate of an rf iterate of I. Deck

translates do not change the geometry. The map rf has bounded derivatives so
distorts distances by a bounded multiplicative amount. Hence it is enough to
prove this for leaves in I. Let then L1, L2 in I and r1, r2 rays of centers ci in
Li such that ri is in the funnel direction in Li. Then in Li the center ci has in
the funnel direction the same ideal point as V0 X Li. Hence ri has a subray with
Hausdorff distance in Li less than 2k ` 1 from a subray of V0 X Li in the funnel
direction of Li. Then in V0, the centers V0 XL1, V0 XL2 have subrays which are
less than 2k ` 1 in Hausdorff distance in V0 from each other. Then the rays ri
have subrays less than 6k`3 Hausdorff distant from each other in ĂM . This gives
the desired bound. �

The main property we need is the following:

Lemma 6.24. Let B be an annular leaf of Fcsε in U . Then B only limits on
points in Λε. In particular this shows that Q cannot be all of Lcs.

Proof. We will give a similar proof to that of Lemma 6.16.
Let A be the leaf in Wcs corresponding to B under the map hcs given by

Theorem 3.3. Since B is an annulus, so is A and we call again γ a generator of
π1pAq.

As in Lemma 6.16, there are two options for γ, it either acts freely on the

center leaf space in L (the lift of A to ĂM fixed by γ), or it does not.
Thanks to Proposition 6.15, every center leaf share one ideal point (the funnel

point), which is therefore a fixed point of γ. We explained before (cf. Corollary
6.7) that by compactness of M , γ cannot act parabolically on S1pLq, so it must
fix two points on S1pLq. Hence, γ fixes a center curve in L, which project to a
closed center curve in A.

Let e be the corresponding closed center curve in B. Let rU be a lift of U to ĂM .
Suppose that B limits in a point in U . Hence there are infinitely many lifts Li of

B contained in rU and limit to L leaf in rU . Each such lift Li contains a lift ci of e.
The leaf L is contained in an image γ rfnpIq, so there a unique K as in the claim

above that works for any pair E1, E2 in γ rfnpIq. The claim also works for the

approximating foliations, doing the intersections of leaves of ĂFcsε ,
ĄFcuε . Hence for

any i, j then ci, cj have rays a fixed bounded distance K from each other in the
funnel direction in Li, Lj . But every ci is a lift of a fixed closed curve e. As the
bound is the same, we get a contradiction, since the lifts of e form a uniformly

discrete set in ĂM . This contradiction proves the first assertion of the lemma.
To prove the second assertion suppose that Q “ Lcs. First recall that Wcs

has an annular leaf A. Otherwise all leaves of Wcs are planes. By a result of
Rosenberg [Ros] it implies that M is the 3-torus, so π1pMq is abelian, which we
are assuming is not the case. Hence Wcs has an annular leaf A. Since it is non
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compact it limits somewhere. If Q “ Lcs the argument to prove the first assertion
leads to a contradiction. This shows that Q is not Lcs. �

End of the proof of Proposition 6.20. From Lemma 6.24, we deduce that Λ is not
empty. Let Λ1 be the union of the annular leaves of Wcs. For any annular leaf A
not in Λ, the previous lemma shows that it limits only on Λ. This is the technical
property that is needed to deduce that Λ Y Λ1 is a sublamination of Wcs (as in
the proof of the first assertion of Lemma 6.19).

Hence we can finish in exactly the same way as Proposition 6.15: Λ Y Λ1 is
lamination to which Proposition 6.12 applies which yields that Λ Y Λ1 is all of
Wcs. Now the second part of Lemma 6.16 also applies here so Λ is itself all of
Wcs. This contradicts the fact that Q “ Wcs r Λ is non empty, thus ends the
proof of Proposition 6.20. �

7. A criterion. Proof of Theorem D

In this section we prove Theorem D. We start by proving the converse direction,
in §7.1 and §7.2, and prove the direct direction in §7.3.

In particular, we consider f : M Ñ M to be a partially hyperbolic diffeomor-
phism preserving branching foliations Wcs and Wcu whose leaves are Gromov
hyperbolic with the induced metric. We assume that centers in each leaf of Wcs

and Wcu are uniform quasigeodesics so that Theorem 6.11 applies.
To show that being quasigeodesic partially hyperbolic diffeomorphism implies

leaf space collapsed Anosov flow we will assume that the bundles Es, Ec and Eu

are orientable. (Note that orientability of Ec is a consequence of the definition
and Theorem 6.11.)

7.1. Constructing an expansive flow. Let f : M Ñ M be a quasigeodesic
partially hyperbolic diffeomorphism. We assume that the bundles Es, Ec and
Eu are orientable.

Let Wcs and Wcu be the center stable and unstable branching foliations given
by Definition 2.13. Since the bundles are assumed to be orientable, we can apply
Theorem 3.3 to obtain approximating foliations Fcsε and Fcuε with maps hcs and
hcu. The intersection of Fcsε and Fcuε gives rise to an orientable foliation Fcε tangent
to a vector field Xc.

Note that Theorem 6.11 shows that in each leaf of Fcsε (resp. Fcuε ) we have
that the foliation Fcε is made of uniform quasigeodesics and that no two of them
share both points at infinity. (In fact, Theorem 6.11 implies that inside each leaf
of Fcsε (resp. Fcuε ) the foliation Fcε is a quasigeodesic fan, but we will not need
this in the following.)

Proposition 7.1. The flow φct : M Ñ M generated by Xc is expansive and pre-
serves the transverse foliations Fcsε and Fcuε .

Proof. Recall (see §6.2) that since f is a quasigeodesic partially hyperbolic diffeo-
morphism, the leaves of the approximating foliations Fcsε and Fcuε are also Gromov
hyperbolic (one can even choose these to be by hyperbolic surfaces [Cal3, Chapter
8]). By hypothesis, the orbits of the flow φct are quasigeodesics in the leaves of
each of the foliations.

There is δ0 ą 0 such that every leaf of ĂFcsε and ĄFcuε is properly embedded in its

δ0-neighborhood in ĂM (see, e.g., [Cal3]).
By that we mean that:

(i) any set of diameter less than δ0 is contained in a foliated chart of each of
these foliations; and
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(ii) if p is in L leaf of ĂFcsε or ĄFcuε then the ball of radius δ0 around p in ĂM
intersects L only in the local sheet of L through p.

Now choose δ ă δ0 so that if two points x, y in ĂM are less than δ apart then
ĂFcsε pxq intersects ĄFcuε pyq in a point less than δ0 from both of them and similarly

for ĂFcsε pyq X
ĄFcuε pxq. We will show that δ serves as an expansivity constant for

the flow rφct , and this implies that the flow φct is expansive too. Since there is no

recurrence for the flow in ĂM the definition of expansivity is equivalent to showing
that different orbits cannot remain bounded Hausdorff distance apart, cf. Remark
5.8.

Assume by contradiction that two different orbits o1 and o2 of rφct in ĂM are at
Hausdorff distance less than δ. These orbits correspond to leaves of the intersected

foliation ĂFcε between ĂFcsε and ĄFcuε . Suppose first that they are in the same leaf of

L of ĂFcsε (or ĄFcuε ). Since they are not the same orbit, they cannot have both ideal
points the same in S1pLq, by Theorem 6.11. Hence they diverge from each other
infinitely in L in some direction. By the choice of δ0 they diverge from each other

at least δ0 (and hence at least δ) in ĂM as well in that direction. Suppose now

that o1, o2 are not the same leaf of ĂFcsε or ĄFcuε . Let then o3 be the intersection of
ĂFcsε po1q X

ĄFcuε po2q. Then o3 is distinct from both o1, o2. Since o1, o2 are always
less than δ apart then o3 is less than δ0 apart from either o1 or o2. Since o3, o1

are in the same ĂFcsε leaf the first argument shows that this is a contradiction, that
is o1, o3 have to diverge from each other more than δ0. This shows that δ works
as an expansive constant for the flow.

It is obvious that the flow preserves the described foliations. This finishes the
proof of the proposition. �

7.2. Deducing that the map is a collapsed Anosov flow. We can now show:

Proposition 7.2. The flow φct is a topological Anosov flow and f is a leaf space
collapsed Anosov flow with respect to φct .

Proof. Notice first that by Proposition 7.1 and Theorem 5.9 we know that the
flow φct is a topological Anosov flow. Moreover, by Proposition 5.5 we know that
the foliations Fcsε and Fcuε correspond to the weak stable and unstable foliations
respectively (maybe up to changing orientation of the vector field Xc).

Using the maps hcs and hcu given by Theorem 3.3 in the universal cover one

can construct a π1pMq-invariant homeomorphism H from the orbit space of rφct
and the center leaf space of f as follows: A center leaf in ĂM is a component c of

the intersection of a leaf L of ĄWcs and a leaf G of ĄWcu. There are unique leaves

L1 P ĂFcsε , G1 P ĄFcuε so that rhcspL
1q “ L, rhcupG

1q “ G.

There is a unique component α of the intersection of L1 and G1 (that is, an orbit

of rφt) which is ε close to c. The map H is the one that sends this orbit α to c.
This completes the proof. �

7.3. The quasigeodesic property. Here we show:

Proposition 7.3. Let f : M Ñ M be a leaf space collapsed Anosov flow. Then,
the Wcs-foliation is by Gromov hyperbolic leaves and the center foliation inside
each leaf of Wcs is a quasigeodesic fan.

Proof. We do the proof for Wcs, the same proof works for Wcu.
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Up to taking a finite cover and a lift of an iterate of f we may assume that
Es, Ec, Eu are orientable and f preserves the lifted foliation. Since the quasi-
geodesic properties are verified in the universal cover, this does not change the
result. In addition f is still a leaf space collapsed Anosov flow in the cover. Let
φt be the Anosov flow associated to f . Let H : Oφ Ñ Lc be the associated home-

omorphism between orbit space of rφt and center leaf space in ĂM . Proposition 5.6
implies that H maps Owsφ to Ocsf and Owuφ to Ocuf .

Using Theorem 3.3, we can approximate Wcs, Wcu by actual foliations Fcsε ,F
cu
ε .

The intersection of Fcsε ,F
cu
ε is a one-dimensional foliation G in M , with lift rG.

Given any flow line α of rφt it is the intersection of a stable leaf L0 with an

unstable leaf U0. Under H these leaves L0, U0 map to leaves L1 of ĄWcs and U1

of ĄWcu respectively. Thanks to item (ii) of Theorem 3.3, the leaves L1, U1 are ε

near respectively from unique leaves L of ĂFcsε and U of ĄFcuε .

Therefore α is associated with a unique leaf of rG and vice versa. This associ-

ation is a homeomorphism from the orbit space Oφ to the leaf space of rG. This
homeomorphism is clearly π1pMq equivariant.

By the result of Haefliger, Ghys and Barbot [Bar2, Prop.1.36], it follows that
there is a homeomorphism η from M to M sending the flow foliation of φt to
the foliation G. We can then orient the foliation G using this homeomorphism.
Hence this foliation becomes the flow foliation of a flow ψt. Since the flow φt is
expansive then the flow ψt is also expansive. By Theorem 5.9 it follows that ψt is
a topological Anosov flow. By the equivalence of the flow foliations of φt and ψt
it now follows that the stable foliation of ψt is Fcsε . By Proposition 5.11 it follows
that the foliation Fcsε is by Gromov hyperbolic leaves and the flow lines in leaves
of Fcsε are uniform quasigeodesics.

This implies that the leaves of Wcs are Gromov hyperbolic and the center

leaves in leaves of ĄWcs are uniform quasigeodesics.
This finishes the proof of Proposition 7.3. �

This finishes the proof of Theorem D.

8. Strong implies leaf space collapsed Anosov flow

In this section we show that Definition 2.7 implies Definition 2.10. The main
point is to construct the branching foliations from the map h provided by Defi-
nition 2.7. The rest of the conditions will be rather direct.

Proposition 8.1. If f is a strong collapsed Anosov flow, then it is a leaf space
collapsed Anosov flow.

We first show the following lemma:

Lemma 8.2. Let f be a strong collapsed Anosov flow (Definition 2.7), then
there are f -invariant branching foliations Wcs and Wcu tangent to Ecs and Ecu

respectively such that the image of each of the leaves of Wcs (resp. Wcu) coincides
with hpFwsφ pxqq (resp. hpFwuφ pxqq) for some x PM .

Proof. The statement is symmetric, so we show it for Ecs.
Using a result of Calegari [Cal1] we can assume that leaves of Fwsφ are C1.

Take the pull back of the ambient metric. For each leaf L P Fwsφ we define a
continuous local homeomorphism ϕL : UL Ñ M where UL is the universal cover
of the leaf L Ă M with this intrinsic metric. Note that UL is a complete metric
space, homeomorphic to R2.
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By assumption, the image by h of L is a C1-surface tangent to Ecs. This

means that when lifted to the universal cover, there is ϕ̂L : UL Ñ ĂM a C1-proper

embedding tangent to Ecs such that its image coincides with h̃ ˝ ϕL : UL Ñ ĂM .
Moreover, since h is homotopic to identity, one gets that the image of ϕ̂L is
complete with the metric induced by the embedding. This fact, as well as the
non-topological crossings is ensured by the local preservation of the orientation
that makes backtracking impossible.

Finally, to show the minimality condition, we need to show that the image

of two different leaves of ĄFwsφ by h̃ are different. Suppose then that L1, L2 are

distinct leaves of ĄFwsφ which are mapped to the same surface by h̃. Suppose

first that L1, L2 intersect a common unstable leaf F . In particular, the set of
leaves separating L1 from L2 is an interval. If for some leaf L in this interval we
have h̃pLq “ h̃pL1q, then since there is no topological crossing between leaves,

it also follows that h̃pL1q “ h̃pL2q, which contradicts our assumption. Thus

h̃pLq “ h̃pL1q. For any such L, the intersection L X F is a single flow line αL.

The above shows that h̃pαLq is contained in h̃pL1q. Therefore the region in F

made up of the flow lines between αL1 and αL2 is mapped into h̃pL2q. Therefore
this is mapped into a region tangent to Ecs. This contradicts the fact that F is
mapped to a surface tangent to Ecu because h is close to the identity and the
region between αL1 and αL2 contains arbitrarily large disks.

For general leaves L1, L2 the region between them is the connected component

of ĂM ´ pL1 Y L2q which limits on both of them. If h̃pL1q “ h̃pL2q then for any

leaf L between L1, L2 then h̃pLq “ h̃pL1q. There is a leaf L which is between L1

and L2 and which intersects a common unstable F with L1. By the first case
h̃pL1q “ h̃pLq. This leads to a contradiction.

This finishes the proof of the lemma. �

Proof of Proposition 8.1. We just need to show that there is a homeomorphism
between the leaf spaces. Thanks to Lemma 8.2, this is the one induced by h. �

9. Leaf space implies strong collapsed Anosov flow

In this section we will show that Definition 2.10 implies Definition 2.7 under
some orientability assumption. Together with Proposition 8.1 it completes the
proof of Theorem B.

Proposition 9.1. If f is a leaf space collapsed Anosov flow and Ecs is transver-
sally orientable, then it is a strong collapsed Anosov flow.

The strategy is quite simple, we wish to map each orbit of the Anosov flow
to the corresponding center curve given by Definition 2.10. The difficulty in
implementing the strategy has to do with the fact that we only have a map at
the level of leaf spaces, so we first need to construct an actual map of the manifold
which realizes this equivalence, for this, we first construct a specific realization
of the (topological) Anosov flow that allows us to get this map in a natural way.
Once this is done, a standard averaging argument achieves the local injectivity
along orbits of the flow.

9.1. Constructing a convenient realization of the Anosov flow. Let f be
a leaf space collapsed Anosov flow with Ecs transversally orientable. We consider
φt : M Ñ M the topological Anosov flow and H : Oφ Ñ Lc given by Definition
2.10.
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We will start by applying Theorem 3.3 to Wcs to get an approximating foliation

Fcsε . We denote by ĄWcs and ĂFcsε the lifts to ĂM . As explained in §A.3 we can
consider a metric on M that makes leaves of Fcsε negatively curved. In Proposition

7.3 we proved that the center leaves inside each leaf of ĄWcs form a quasigeodesic

fan. Then we can pull them back to each leaf of ĂFcsε to get a funnel point
ppLq P S1pLq in each leaf L P Fcsε .

We consider the flow rψt : ĂM Ñ ĂM defined as follows: For a point x P L P ĂFcsε
we consider rψtpxq to be moving along the geodesic through x with endpoint the
funnel point of L at unit speed. This definition is clearly π1pMq-invariant, and
this flow descends to M and we denote it by ψt.

In Proposition 7.1 we proved the following:

Proposition 9.2. The flow ψt is topologically Anosov and orbit equivalent to φt
by an orbit equivalence homotopic to the identity.

9.2. Averaging to construct the map. We will now construct a map h0 : M Ñ

M which maps orbits of ψt (cf. Proposition 9.2) to curves tangent to the cen-
ter. Later we will modify this map and construct the self orbit equivalence to
verify Definition 2.7. Denote by H0 : Oψ Ñ Lc the π1pMq-invariant homeomor-
phism between leaf spaces. Recall that Proposition 5.6 implies that H0 maps the
weak-stable/unstable foliations of ψt to the center stable and unstable branching
foliations of f .

Construction of a map: For a fixed small ε ą 0, we denote by hcs : M Ñ M
the collapsing map from Fcsε to Wcs given by Theorem 3.3.

Pick a point x P ĂM and let `x be a center leaf in ĂM which is the center

leaf H0poxq where ox is the orbit of x by rψ. Note that ox is a geodesic in a

negatively curved surface, and we can push the metric in Lx :“ ĄFwsφ pxq “
ĂFcsε pxq

to rhcspLxq which is a leaf of ĄWcs. We can push the metric because hcs is a
local diffeomorphism between respective leaves of Fcsε and Wcs, and this lifts to

diffeomorphisms between respective leaves of ĂFcsε and ĄWcs. With this metric, ox
is a geodesic in Lx and `x is a quasigeodesic in Lx with the same endpoints.

We can then define a map px : `x Ñ rhcspoxq by orthogonal projection in Lx.
Since Lx is negatively curved the orthogonal projection is a uniquely defined
function and it is continuous.

Lemma 9.3. The map px is proper, in particular extends continuously (as the

identity) to the compactification of `x and rhcspoxq.

Proof. This follows directly from the fact that `x is a quasigeodesic with the same

endpoints as the geodesic rhcspoxq with respect to the chosen metric. �

In principle, the map px can fail to be injective, so one cannot define an inverse.
But there is a standard procedure of averaging going back at least to [Ful] (see
also [HP1, Section 8] for discussion) which allows to find a natural way to invert
px.

We can define from px a map p̂x : `x Ñ R by identifying rhcspoxq with R via the

map bx : rhcspoxq Ñ R such that bxprh
cspψtpxqq “ t.

For y, z P `x we denote by ry, zs the segment of `x between y and z. For any
t P R we denote by y ` t the point in `x at oriented distance t from y. Lemma
9.3 then implies that if we choose an appropriate orientation along Ec we have
that the map p̂x verifies that for every y P `x we have limtÑ˘8 p̂xpy ` tq “ ˘8.

Let pTx : `x Ñ R be the map defined by
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pTx pyq “

ż

ry,y`T s
p̂xpzqdz.

Lemma 9.3 implies that for T ą 0 large enough we have that not only pTx is C1

along `x but also its derivative does not vanish. Indeed, since p̂x is continuous,
we have

pTx py ` tq ´ p
T
x pyq “

ż

ry`T,y`T`ts
p̂xpzqdz ´

ż

ry,y`ts
p̂xpzqdz

„ tpp̂xpy ` T q ´ p̂xpyqq.

Said otherwise, we deduce that if uxptq “ pTx py ` tq for some y P `x then
u1xptq ą 0 everywhere. It follows that we can define an inverse map qx : R Ñ `x
which is a C1-diffeomorphism preserving orientation which is the inverse of pTx .
We collect some properties of qx in the following statement:

Lemma 9.4. The map x ÞÑ qx vary continuously in the C1-topology in com-
pact parts and is π1pMq-invariant in the sense that for γ P π1pMq we have that
qγxptq “ γqxptq. Moreover, there is a C1 increasing diffeomorphism ux : R Ñ R

such that uxp0q “ 0 and if xt “ ψtpxq then qxtp0q “ qxpuxptqq.

Proof. All the objects we considered depend on continuous and π1pMq-invariant
choices. The last property just follows from the way we defined qx and the fact
that qxt also has `x as target since `x “ `xt . �

Now we can define the map h : M Ñ M . For x P ĂM we define rhpxq to be
qxp0q P `x, since this is continuous and π1pMq-invariant it induces a continuous
map h in M homotopic to the identity.

Verifying the properties. We will now verify the sought properties of h.

Lemma 9.5. The map h : M Ñ M is smooth along the orbits of ψt and the
derivative maps the vector field to a (positively oriented) non-zero vector tangent
to Ec. That is, h verifies condition (i) in Definition 2.7.

Proof. Fix an orbit ox of rψt and we get that by definition for every y P ox we
have that `x “ `y. Therefore, the map h will map ox to `x. By Lemma 9.4 we
deduce that the image by h of the vector field is a positively oriented vector in
Ec. �

We can now proceed to prove Proposition 9.1.

Proof of Proposition 9.1. Since the partially hyperbolic diffeomorphism is a leaf
space collapsed Anosov flow it preserves branching foliations Wcs and Wcu. The
fact that h maps weak stable into surfaces tangent to Ecs is direct from its

construction since it maps leaves of ĄFwsψ to surfaces tangent to Ecs. Now, by

Proposition 5.6 we also get that the weak unstable maps to surfaces tangent to

Ecu. The lift h̃ of h to ĂM maps every weak stable/unstable by construction into

a properly embedded surface in ĂM respecting the orientation.
We now need to construct the self orbit equivalence β : M ÑM which makes

the commutation f ˝h “ h ˝β work. For this, given x PM consider y “ f ˝hpxq.
Note that y may belong to several center curves. But since h is injective along
orbits of the flow ψt it makes sense to consider its inverse restricted to the center
curve `y :“ fp`xq which is also the image of an orbit of ψt. Then, one can define
βpxq “ ph|`yq

´1pyq.
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One gets that βpxq is continuous by construction and continuity of h (as well
as continuity of the maps qx, cf. Lemma 9.4). Moreover, β is injective since it is
injective along orbits as well as maps different orbits to different orbits. Finally,
β is surjective since the equation f ˝ h “ h ˝ β implies that β has degree one as
a map. This implies that β is a homeomorphism which clearly preserves orbits
and its orientation thus a self orbit equivalence for ψt. �

The averaging method gives several ways on which a given collapsed Anosov
flow can be realized (different choices of h that affect the choice of β). The
following remarks should also be taken into account if one wants to formulate
uniqueness properties for collapsed Anosov flows.

Remark 9.6. Let f : M ÑM be a collapsed Anosov flow with respect to a topolog-
ical Anosov flow φt : M ÑM and the self orbit equivalence β : M ÑM . In par-
ticular, there exists h : M ÑM homotopic to the identity such that f ˝h “ h˝β.
Assume that α : M ÑM is another self orbit equivalence of φt. Then, it follows
that taking ĥ “ h ˝ α and β̂ “ α´1 ˝ β ˝ α we get that f ˝ ĥ “ ĥ ˝ β̂.

Thus, if α is homotopic to the identity, then f is also a collapsed Anosov flow
associated with the Anosov flow φt via the collapsing map ĥ and the self orbit
equivalence β̂.

Remark 9.7. Let f : M ÑM be a collapsed Anosov flow with respect to a topo-
logical Anosov flow φt : M Ñ M and self orbit equivalence β : M Ñ M and let
ψt : M ÑM be a flow conjugate to φt by a homeomorphism g : M ÑM , that is,
ψt “ g´1 ˝ φt ˝ g. Then, if h : M ÑM is the map homotopic to the identity such
that f ˝ h “ h ˝ β then one has that if ĥ “ h ˝ g and β̂ “ g´1 ˝ β ˝ g then β̂ is a
self orbit equivalence of ψt and f ˝ ĥ “ ĥ ˝ β̂.

Thus, if g is homotopic to the identity, then f is also a collapsed Anosov flow
associated with the Anosov flow ψt via the collapsing map ĥ and the self orbit
equivalence β̂.

10. Examples

10.1. Proof of Theorem A. In order to prove Theorem A, we first collect some
facts that are easily extracted from [BGHP].

Proposition 10.1. Let φs : M Ñ M be an Anosov flow generated by a vector
field X and ϕ : M Ñ M a diffeomorphism such that φs is ϕ-transverse to itself.
Then, there exists t0 ą 0 and a function δ : rt0,8q Ñ Rą0 with δptq Ñ 0 as tÑ8

such that for every t ą t0 one has that the diffeomorphism ft “ φt ˝ϕ˝φt verifies:

(i) ft is partially hyperbolic and the bundles Est , E
c
t and Eut of ft make an

angle less than δptq with the bundles Esφ, RX and Euφ respectively;

(ii) for every immersed curve c : RÑM everywhere tangent to Ect there exists
x PM and a homeomorphism u : RÑ R such that dpcpupsqq, φspxqq ă δptq
for every s P R, moreover, the point x is unique in that if y verifies the
same, then y “ φspxq for some s P R;

(iii) for every x PM there is an immersed curve c : RÑM everywhere tangent
to Ect and a homeomorphism u : RÑ R such that dpcpupsqq, φspxqq ă δptq
for every s P R.

Proof. Item (i) is a direct consequence of [BGHP, Proposition 2.4] and [BGHP,
Remark 2.6].

Item (ii) follows from the standard shadowing lemma for Anosov flows (see e.g,
[BGHP, Theorem 5.3]) and item (iii) from its global version (cf. [BGHP, Theorem
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5.5]). Note that [BGHP, Theorem 5.5] is stated for flows, so to do this we apply
the trick in [BGHP, Proposition 5.11], we lift to a finite cover, take an iterate,
so that we can apply Theorem 3.6 to get branching foliations. Using Theorem
3.3 we construct a flow whose orbits are arbitrarily close to curves tangent to the
center, so we can apply [BGHP, Theorem 5.5] to this flow to get the center curve
which then projects to M . �

The strong information we get with the previous proposition allows us to show
the following result which answers positively Question 4 in the setting of the
examples of [BGHP].

Proposition 10.2. Let φs : M Ñ M be an Anosov flow generated by a vector
field X and ϕ : M Ñ M a diffeomorphism such that φs is ϕ-transverse to itself.
Let ft “ φt ˝ ϕ ˝ φt. Assume that the invariant bundles of ft are orientable and
that t is sufficiently large. Then, ft is a leaf space collapsed Anosov flow and
there is a unique ft-invariant branching foliation tangent to Ecst and a unique
ft-invariant branching foliation tangent to Ecut .

Proof. By taking g “ fkt we can assume that g preserves the orientation of the
bundles. So, by Theorem 3.6, there are g-invariant branching foliations Wcs and
Wcu tangent respectively to Ecst and Ecut . Note that if we show that these are the
unique g-invariant branching foliations for g, then it will follow that ftpW

csq and
ftpW

cuq are g-invariant branching foliations, so we deduce that ftpW
csq “ Wcs

and ftpW
cuq “Wcu.

To show the uniqueness we first show that g is a leaf space collapsed Anosov
flow with respect to φt using the following claim based on Proposition 10.1. We
choose t large enough so that the value of δ given by Proposition 10.1 is much
smaller than the local product structure size (note that the bundles Est , E

c
t and

Eut make uniform angles boundedly away from zero as t increases). We also take
100δ ď α where α is the expansivity constant for the Anosov flow φt.

Claim 10.3. Given a pair of g-invariant branching foliations Wcs
1 ,W

cu
1 and a

center curve c “ L X F in ĂM obtained by intersecting a leaf L P ĄWcs
1 with a

leaf F P ĄWcu
1 we have that there is a unique orbit ox of rφt which is at Hausdorff

distance less than δ from c. Conversely, for every orbit ox of rφt there is a unique

pair of leaves Lx P ĄWcs
1 and Fx P ĄWcu

1 such that the curve cx “ Lx X Fx is at
distance less than δ from ox.

Proof of Claim 10.3. The first statement follows directly from Proposition 10.1
(ii). To get the second statement, we use Proposition 10.1 (iii). Note that this

gives that for every orbit ox of rφt we can find at least one pair of leaves Lx P ĄWcs
1

and Fx P ĄWcu
1 so that cx “ Lx X Fx is δ close to ox.

We need to show uniqueness of cx. So we let cx and c1x be center leaves δ-close

to the same orbit ox of rφt. We write cx “ Lx X Fx and c1x “ L1x X F 1x with

Lx, L
1
x P

ĄWcs
1 and Fx, F

1
x P

ĄWcu
1 . We want to show that Lx X F

1
x “ L1x X Fx “ cx

which implies that cx “ c1x. We argue for Lx X F 1x since the other is similar.
Assuming that Lx X F

1
x “ c2x ‰ cx we get that all center curves of Lx in between

form an interval since leaves of ĄWcu
1 do not cross. Therefore, we can find centers

which will have backward iterates c1, c2 (since they are intersected by strong

stable leaves) whose distance in ĂM will be in between 4δ and α{4. Let o1, o2

be orbits of φ̃s which are δ near c1, c2 respectively, by Proposition 10.1 (ii). In
particular o1, o2 are within α{4`2δ from each other, which is less than α. Since α
is the expansivity constant of the flow φs it follows that o1, o2 are the same orbit.
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Hence c1, c2 are in fact within 2δ from each other, contrary to construction. This
contradiction means that cx is unique given ox. �

Now, we have showed that there is a bijection between the orbit space of the
Anosov flow and the leaf space of g which can be easily seen to be a π1pMq-
invariant homeomorphism. Indeed, the invariance under the action of π1pMq
comes from the fact that Proposition 10.1 (iii) is done in M and the continuity
follows from the fact that the leaves of the foliations vary continuously in compact
sets. This shows that g is a leaf space collapsed Anosov flow (and therefore is
also quasigeodesic partially hyperbolic by Theorem D).

To complete the proof we must show that the (g-invariant) branching foliations
tangent to Ecst and Ecut respectively are unique. We deal with Ecst . Assume there
is a pair of g-invariant branching foliations Wcs

1 and Wcs
2 tangent to Ecst and let

Wcu be one g-invariant branching foliation tangent to Ecut .
Note that applying the claim to the pairs pWcs

1 ,W
cuq and pWcs

2 ,W
cuq we get

the structure of a leaf space collapsed Anosov flow for g in two different ways.

If Wcs
1 and Wcs

2 are not equal the following happens: there is a leaf L1 of ĄWcs
1

which is not a leaf of ĄWcs
2 . We work with the maps between the leaf spaces and

the orbit space of φ̃s, because of the leaf space collapsed Anosov flow structure.
By Proposition 5.6, L is associated with a weak stable leaf E of φ̃s. By the same

proposition the weak stable E is associated with a leaf L2 of ĄWcs
2 . Since L1 is not

a leaf of ĄWcs
2 there is a center leaf c1 in L1 such that the corresponding center

leaf c2 under these identifications is not contained in L1. In other words c1, c2 are
distinct curves tangent to the center bundle, but associated with the same orbit

ox of Ăφs.
If that is the case, still we know by Proposition 10.1 (ii) that c1, c2 are at

distance less than 2δ from each other. Now consider fpc1q, fpc2q. If δ is sufficiently
small then fpc1q, fpc2q are less than α{2 from each other, so by Proposition 10.1
(ii), the corresponding flowlines from fpc1q, fpc2q are within α{2` 2δ from each
other, and, as in the proof of the claim, these orbits are the same. Iterating, this
happens for all forward and backward iterates.

But this is impossible unless c1 “ c2 since the unstable lengths increase by for-
ward iteration and stable lengths increase under backward iteration, both beyond
the local product structure boxes size, which is much bigger than δ.

This finishes the proof of Proposition 10.2. �

Now we can use the previous proposition to deduce Theorem A.

Proof of Theorem A. Consider t ą 0 large enough so that both Proposition 10.1
and Proposition 10.2 holds.

We can choose a finite normal cover P : M̂ Ñ M such that the lifts of all
bundles are orientable. An iterate of ft lifts to M̂ and we can consider a lift g
of a possibly further iterate so that g preserves the orientation of the bundles.
Applying Proposition 10.2 to g we get that g is a leaf space collapsed Anosov
flow and that it admits a unique pair of g-invariant branching foliations Wcs

0 and
Wcu

0 tangent to Ecs and Ecu respectively.
As explained in Remark A.3 using the uniqueness of branching foliations, we

obtain that Wcs
0 (and Wcu

0 ) must coincide with the uppermost and lowermost
branching foliations constructed in [BI]. More specifically the uppermost center
stable foliation is the same as the lowermost center stable foliation. This implies
that these branching foliations project to M since given γ a deck transformation
of M̂ with respect to the cover P we get that it preserves the bundles, so it
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verifies that γWcs
0 and γWcu

0 are branching foliations tangent to Ecs and Ecu and
depending on how γ acts on the orientation it preserves the uppermost branching
foliation or it maps it into the lowermost one. Since these are equal by Proposition
10.2 we deduce γWcs

0 “Wcs
0 and γWcu

0 “Wcu
0 .

Now denote by Wcs,Wcu the projection of these branching foliations to M .
Let B be the lift of ftpW

csq to M̂ . Since fkt lifts to g in M̂ , it follows that
fkt pW

csq “Wcs. The foliation gpBq projects to fkt ˝ ftpW
csq, which is then equal

to ftpW
csq, so gpBq “ B. Then the uniqueness of branching foliations in M̂

implies that B “Wcs
0 , and we finally conclude that ftpW

csq “Wcs.
Hence ft preserves branching foliations Wcs,Wcu and ft is also a leaf space

collapsed Anosov flow. By Theorem D we get that ft is also a quasigeodesic
partially hyperbolic diffeomorphism.

To show that ft is a strong collapsed Anosov flow, we point out to the proof
of Theorem B in §9.

Theorem A states that ft is also a strong collapsed Anosov flow. However,
since we do not assume that the bundles are orientable, we cannot use Theorem
B directly to deduce this. Instead, we redo and adapt some of the steps of the
proof Theorem B in §9 to these particular examples.

In §9 we constructed a map which sent an orbit of an Anosov flow ψt which
was orbit equivalent to the original Anosov flow φ̂t to a curve tangent to Ec. This
worked fine under orientability assumptions, so we get a map ĥ : M̂ Ñ M̂ with
these properties. Our goal is to show that we can project that map to M .

We consider an orbit equivalence k̂ : M̂ Ñ M̂ from the flow φ̂t : M̂ Ñ M̂ (the

lift of φt to M̂) to the flow ψt constructed in §9. We let ĥ0 “ ĥ ˝ k̂´1 which maps

orbits of φ̂t to curves tangent to the centers. If we consider a deck transformation
γ with respect to P : M̂ ÑM and an orbit ox of φ̂t we claim that

ĥ0pγoxq “ γĥ0poxq.

Indeed, by construction, for any orbit o, ĥ0poq is the unique curve tangent to

Ec which is δ near o. Now γĥ0poxq is a curve tangent to Ec which is δ near the
orbit γpoxq. Hence, the above formula must hold.

Using this we can prove that we can make a quotient map of ĥ0 to M . Given

a center leaf c in M we say that c is closed if given a lift c̃ in ĂM , there is a non
trivial deck transformation α such that αpc̃q “ c̃. We have already proved that ft
is a leaf space collapsed Anosov flow, which implies that c is closed if and only if it
is associated with a closed orbit of φs. Let γ1, . . . , γn be the deck transformations
of the cover M̂ ÑM . Given y a point in a non periodic orbit of φs, let x1, . . . , xn
be the lifts of y to M̂ , which are related by the tγiu. We consider the center leaves

in M or M̂ which are not closed, or equivalently the non periodic orbits of φs or
φ̂s. So given y, there are finitely many xi. For each xi, we compute ĥ0pxiq, which
by the formula above projects by P to the same center leaf in M . In this center
leaf there is an induced metric given by length along the centers. This metric
induces an identification with R. Using this identification, we can compute the
average of P pĥ0pxiqq for 1 ď i ď n. Let h0pyq be this average. Note that we have
used that the center leaf is not closed, as otherwise it is more complicated to take
averages.

Now we use the following properties: There are finitely many γi, the length
along center leaves varies continuously, and ĥ0 is continuous on the non periodic
center leaves. These properties imply that this function extends to a continuous
function in all of M .
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We now obtained the collapsing function h0 sending orbits of φs to curves
tangent to Ec in M . Finally we need to construct the self orbit equivalence β
to satisfy ft ˝ h0 “ h0 ˝ β. The construction is now exactly as in the end of the
proof of Proposition 9.1 since no orientation is needed then. This shows that ft
is a strong collapsed Anosov flow. �

Remark 10.4. Notice that, in the proof of Theorem A (more precisely, in Proposi-
tion 10.2), the time t1 we require to have so that ft is leaf space collapsed Anosov
flow for all t ą t1 may be greater than the time t0 required so that ft is a partially
hyperbolic diffeomorphism for all t ą t0.

Hence, Theorem A does not directly say that all the examples à la [BGHP]
(meaning all examples proven to be partially hyperbolic using Proposition 2.9)
are (leaf space) collapsed Anosov flows.

However, since ft is partially hyperbolic for all t ą t0 and leaf space collapsed
Anosov flow for all t ą t1 ě t0, Theorem C implies that all ft, t ą t0 are indeed
leaf space collapsed Anosov flows.

10.2. Uniqueness of curves tangent to the center bundle. In this section
we show that under some uniqueness properties of the branching foliations like
the ones obtained in Proposition 10.2 we can deduce a stronger form of uniqueness
of integrability of the center bundle. This also motivates Question 4 as a way to
understand finer geometric properties of the center bundle beyond the fact that
it can help to remove orientability assumptions in our results.

We first prove a general fact about quasigeodesic partially hyperbolic diffeo-
morphisms that may be of interest and which essentially states that the center
direction inside center stable (or center unstable) leaves is a semi-flow (i.e., it can
only branch in one direction).

Lemma 10.5. Suppose that f is a quasigeodesic partially hyperbolic diffeomor-

phism with branching foliations Wcs and Wcu. Given L a leaf of ĄWcs suppose that
two center leaves c1, c2 in L intersect in x. Then c1, c2 coincide in the ray from

x to the funnel point in L. The symmetric statement holds for leaves in ĄWcu.

Proof. Suppose this is not the case. There are two options:

(i) There are y, z in the ray of c1 to the funnel point, so that both belong to
the intersection of c1, c2 but no point in the segment of c1 between them
is in c2. This is called a finite bigon; or

(ii) There is y in c1 X c2 so that the ray in c1 from y to the funnel point is
disjoint from c2. This is called an infinite bigon.

We first show that option (i) cannot happen. Let B be the bigon formed by
the segments in c1 Y c2 bounded by y, z. Let `i be the segment in ci from y to
z. Consider the negative iterate by f of B: Since the stable lengths converge
to infinity, the diameters of f´npBq goes to infinity as n Ñ `8. The curves
f´np`iq are uniform quasigeodesics arcs with same pair of endpoints, hence they
are a uniform bounded distance from each other. Consider points midway in
f´npBq: up to subsequences and deck transformations the two boundary center
rays converge to distinct center leaves in the same center stable leaf, and which
have the same ideal points. This is disallowed by Proposition 6.20.

A similar argument rules out option (ii) by considering the infinite bigon B
and taking points at increasing distance from the point where they intersect in
the direction where they converge to the same point. The same argument gives
two center leaves which have the same ideal points.

This proves the lemma. �
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We can use this to get a precise description of curves tangent to Ec assuming
uniqueness of branching foliations.

Proposition 10.6. Suppose that f is a quasigeodesic partially hyperbolic diffeo-
morphism such that all the bundles are orientable and f preserves the orienta-
tions. Suppose that there is a unique pair of center stable and center unstable
branching foliations that are invariant by f . Then any curve in M which is
tangent to Ec is the intersection of a center stable and a center unstable leaf.

Proof. Let Wcs,Wcu be branching foliations given by Theorem 3.6. As explained
in Proposition A.2, two natural f -invariant branching foliations tangent to Ecs

are constructed in [BI]: The lowermost one in the positive center direction, and
the uppermost one. By hypothesis, these two branching foliations must coincide.

Orient the center bundle to be positive in the center stable funnel direction.

Now suppose that c is a curve in ĂM tangent to Ec. Let x be a point in c. Consider
a ray r in c starting at x and in the positive direction. Suppose that x is in a
center stable leaf U .

Claim 10.7. The ray r is contained in U .

Proof of Claim 10.7. Consider U1, U2 the uppermost and lowermost center stable

leaves of ĄWcu through x. Since we assumed that center stable and center unsta-
ble branching foliations are unique, Wcu is both the lowermost and uppermost
branching foliation of [BI] (see Appendix A). In particular, this implies that U2

is the lowermost local center unstable surface from x in the positive center di-
rection as constructed by Burago–Ivanov in [BI]. Similarly U1 is the uppermost
local center unstable surface through x. If one does a local saturation S of c
through stable leaves, then [BI, Lemma 3.1] shows that S is a C1 surface tangent
to Ecu. In particular S is locally between U1 and U2. Let L be a center stable
leaf containing c. Let ci “ Ui X c. Now ci are center leaves in L both through x.
Lemma 10.5 shows that the rays of ci starting at x and in the positive direction
coincide. In particular U1, U2 coincide locally near x and so does U . Hence r is
locally contained in U .

This situation has a uniformity: there is fixed ε0 ą 0 so that one can always get
a segment of length ε0 in r contained in U . This generates point x1 in r at least
ε0 along r from x. Notice that x1 is in every center unstable leaf in rU1, U2s. Now

restart with x1. Get U1
1 , U

1
2 the uppermost and lowermost leaves of ĄWcs through

x1. Notice that the intervals rU1, U2s Ă rU
1
1 , U

1
2 s. Apply the same argument for

a length ě ε0 along r to get second segment in r now contained in every leaf in
rU1

1 , U
1
2 s and hence in U . Then iterate, obtaining points xj in r escaping in r.

This proves the claim. �

Now we prove that there is a ĄWcu leaf that contains all of c. Let p0 “ x. For
each i, we choose a point pi in c that is a distance along c at least 1 from pi´1.
We choose the sequence so that the pi escapes in the direction opposite to the

funnel. This direction is opposite to where the points xj were. Let Ui a ĄWcu leaf
with pi in Ui. Let ri “ rpi,`8q be the ray of c starting in pi and going in the
direction of the funnel. By Claim 10.7 the entire ray ri is contained in Ui. All

Ui contain p0. The set of ĄWcu leaves through p0 is a compact interval. Up to
subsequence assume Ui converges to a leaf V as i Ñ 8. Then since all Ui for
i ą“ j contain pj then V contains pj . Hence V contains all the pi’s. By the
claim then V contains the entire curve c.

By the same arguments c is contained in a ĄWcs leaf E. This finishes the proof
of the proposition. �
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Remark 10.8. Note that in the case of the examples worked out in Theorem A
we are able to get that for large enough t ą 0 the diffeomorphism ft when lifted
to a finite cover satisfies the hypothesis of Proposition 10.2 and so Proposition

10.6 can be applied to obtain that every curve tangent to Ec is obtained (in ĂM)
as the intersection of a center stable and a center unstable leaf of the branching
foliations. This is a form of unique integrability of the center bundle, even if
different center curves may merge. Note in particular that if ft is dynamically
coherent, this implies that Ec is uniquely integrable as a bundle. In particular
notice the difference: one can prove that ft is partially hyperbolic for all t ě t1,
but to get the unique integrability of the center bundle as above one needs t ě t0,
where in theory t0 ą t1.

We also note that the property of not having unique f -invariant center sta-
ble or center unstable branching foliations is an open property among partially
hyperbolic diffeomorphisms thanks to Theorem 4.2. The closed property may
fail because in the limit different branching foliations may collapse to a single
branching foliation.

However as a direct consequence of Theorem C we get the following: in the
connected component of partially hyperbolic diffeomorphisms containing some ft
we have that ft has to be a collapsed Anosov flow with respect to the same flow
and same self orbit equivalence of the flow (same in terms of the action on the
orbit spaces), for every pair of branching foliations it may have17.

Remark 10.9. The previous remark applies very well to the case of partially
hyperbolic diffeomorphisms in the connected component of the time one map
of an Anosov flow. Here, by Theorem C the whole connected component of
partially hyperbolic diffeomorphisms consists of discretized Anosov flows. This
uses the last part of the previous remark as well as Proposition 5.15. Moreover,
since the Anosov flow is generated by a C1 vector field, the center direction of
its time one map is uniquely integrable. It follows that in the whole connected
component of partially hyperbolic diffeomorphisms, if there were more than one
pair of branching foliations, these should correspond to discretized Anosov flows
´ again by the last part of the previous remark. But in [BFFP2, Lemma 7.6]
using that they are discretized Anosov flows, we showed that this implies that
there is a unique pair of branching foliations. As a consequence we obtain that
the center direction is uniquely integrable (since it integrates to a foliation) in the
whole connected component of partially hyperbolic diffeomorphisms containing
the time one map of an Anosov flow18.

10.3. C1 self orbit equivalences and collapsed Anosov flows. Thanks to
the concept of ϕ-transversality of [BGHP] and Theorem A, we can readily obtain
many collapsed Anosov flows: Finding a map ϕ for which a flow is ϕ-transverse
to itself is generally not easy (see [BGHP]). But one instance when it is easy is
when one has a map β, which is a (at least) C1 self orbit equivalence of a smooth
Anosov flow φ. Indeed, since β preserves the weak stable and unstable directions
and preserves the flow direction, the flow is trivially β-transverse to itself (see
Definition 2.8).

17Technically to get this one needs to show that having branching foliations for which f is
not a collapsed Anosov flow is also an open and closed property, but this follows directly from
the same Theorem 4.2.

18Or, maybe more generally, a discretized Anosov flow for which the center direction is
uniquely integrable.
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Hence, for such a β, the map φt ˝ β ˝ φt is a collapsed Anosov flow of φ thanks
to Theorem A, and it is clearly dynamically coherent as it preserves the weak
stable and weak unstable foliations of φ.

The first such examples were constructed in [BWi], but these examples are
such that a power is a discretized Anosov flow.

One can wonder whether different smooth self orbit equivalences could lead
to genuinely new collapsed Anosov flows (that is, ones such that no power is a
discretized Anosov flow). It turns out that, at least when the Anosov flow is
transitive, this is not the case, as we observe a form of smooth rigidity:

Proposition 10.10. Let β be a C1 self orbit equivalence of a smooth (at least
C1) transitive Anosov flow. Then there exists k such that βk is a trivial self orbit
equivalence. (Moreover there is an upper bound for k that only depends on the
flow and the manifold.)

Proof. In the proof of [Bar2, Proposition 6.6], Barbot shows that if a map rβO on
the orbit space of a smooth Anosov flow φ is a π1-equivariant, C1 diffeomorphism,
then there exist a time-change ψ of φ such that β is a conjugation of ψ with itself,

where β : M ÑM is a C1-map such that its lift to the orbit space is rβO (or rβ2
O if

rβO reverses the direction of the flow). (The flow ψ is build on the projectivized
bundle of the orbit space, see also [BF]).

In other words, β is in the centralizer of ψ. By [BaG2, Lemma 1.4], the
centralizer of ψ quotiented out by the elements of the centralizer that act as the
identity on the orbit space is finite. Hence, there exists k, which can be chosen
depending only on the flow and the manifold, such that βk is trivial. �

11. Some classification results

In this section we will present some relatively direct results giving settings
where one can use self orbit equivalences to classify all collapsed Anosov flows or
vice-versa. The three settings we will describe are: Collapsed Anosov flows that
are homotopic to the identity, Collapsed Anosov flows on T 1S, the unit tangent
bundle of a hyperbolic surface, and Collapsed Anosov flows associated with the
Franks–Williams example.

Those are not the only cases where one can obtain such a complete under-
standing, but they are among the easiest and nicely showcase the type of tools
one has to prove such results.

We emphasize that the result below gives a complete picture of self orbit equiva-
lences of certain Anosov flows, but only a classification up to isotopy for collapsed
Anosov flows, as we do not yet know how different two collapsed Anosov flows
associated with the same self orbit equivalence can be.

11.1. The homotopic to the identity case. In [BaG1], self orbit equivalences
of transitive Anosov flows that are homotopic to the identity were completely
classified. Thus, we can translate [BaG1, Theorem 1.1], using Proposition 5.15,
in terms of collapsed Anosov flow to obtain the following.

Theorem 11.1. If f is a strong collapsed Anosov flow homotopic to the identity
associated to a transitive Anosov flow φt, then f is either a discretized Anosov
flow or a double translation in the sense of [BFFP2].

Moreover, if the associated Anosov flow φt is either not R-covered, or has non
transversely-orientable weak foliations, then f must be a discretized Anosov flow.

Note that it is still unknown whether double translations exists or not outside
of Seifert manifolds, but in [FP2] the second and third authors show that any
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double translation on a hyperbolic manifold must be a collapsed Anosov flow
associated with the “one-step up” self orbit equivalence of an R-covered Anosov
flow.

Proof. Let f be a strong collapsed Anosov flow that is homotopic to the identity,
associated with a transitive Anosov flow φt. Let h and β be the associated
collapsing map and self orbit equivalence. Since f ˝ h “ h ˝ β and that both f
and h are homotopic to the identity, we deduce that β is also homotopic to the
identity. Thus we can apply [BaG1, Theorem 1.1].

If the flow φt is not R-covered or has non transversely-orientable weak folia-
tions, then item (1) and (3), respectively, of [BaG1, Theorem 1.1] implies that β
is trivial, thus f is a discretized Anosov flow thanks to Proposition 5.15.

If φt is R-covered, then item (4) of [BaG1, Theorem 1.1] gives that either β is
trivial, which gives that f is a discretized Anosov flow, or that β is a power of the
“one-step up” self orbit equivalence η. We will not recall what η is exactly, just

that a good lift of it acts as a translation on both leaf spaces of φt. Let rf be a
lift of f to the universal cover obtained from lifting an homotopy to the identity.
Since f is a strong collapsed Anosov flow, it admits center stable and center
unstable branching foliations that are the images by h of the weak stable and

weak unstable foliations of φt. Hence, a lift rh realizes a semi-conjugacy between

the action of rβ and the action of rf on the respective leaves spaces. Since rβ acts as

a translation, so does rf . So f is a double translation in the sense of [BFFP2]. �

11.2. Unit tangent bundle of surfaces. When considering unit tangent bun-
dle of surfaces, it is also possible to give a complete picture of collapsed Anosov
flows, at least up to isotopy.

Theorem 11.2. Let T 1S be the unit tangent bundle of a hyperbolic surface S.
Let f be a collapsed Anosov flow on T 1S with associated flow φ. Then the

isotopy class of f is in a lift of MCGpSq to MCGpT 1Sq. More precisely, let gt be
the geodesic flow on T 1S for a fixed hyperbolic metric and e : T 1S Ñ T 1S an orbit

equivalence between φ and gt. Let {MCGpSq Ă MCGpT 1Sq be the lift of MCGpSq

given by taking the derivative. Then the isotopy class of f is inside ires
{MCGpSq,

the conjugation of {MCGpSq by the isotopy class of e.

Moreover, any isotopy class in ires
{MCGpSq admits a collapsed Anosov flow.

The same statements hold for self orbit equivalences of φ.

Remark 11.3. Note that one can choose the orbit equivalence e above such that
it induces a map homotopic to the identity on S.

Remark 11.4. In [BGHP], it is shown that the isotopy classes of partially hyper-
bolic diffeomorphisms on T 1S do not form a subgroup of MCGpT 1Sq. However,
as we see here, this lack of a group structure is only because there are many
Anosov flows on T 1S that are orbit equivalent to the geodesic flow, but not via
an orbit equivalence that is homotopic to identity. Indeed, once an Anosov flow
φ is fixed, the isotopy classes of collapsed Anosov flow associated with φ form a
subgroup of MCGpT 1Sq.

Proof. Let φ be an Anosov flow on T 1M and e : M Ñ M an homeomorphism
such that e´1 ˝ φt ˝ e is a time-change of gt.

In [BGHP, Theorem 1.2], it was shown that any isotopy class in {MCGpSq
admits a partially hyperbolic diffeomorphism which is, according to Theorem A,

a collapsed Anosov flow associated with gt. Hence, for any class in {MCGpSq,
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there exists a self orbit equivalence β of gt. Thus, e ˝ β ˝ e´1 is a self orbit

equivalence of φt and such self orbit equivalences will cover all of ires
{MCGpSq.

We can also build a collapsed Anosov flow using the same method, but we would
need to require smoothness of e which does not a priori hold. So instead, we let
ē be a diffeomorphism in the same isotopy class as e and define φ̄t “ ē ˝ gt ˝ ē´1.
Then, for any collapsed Anosov flow f associated with gt, the map ē˝ f ˝ ē´1 is a
collapsed Anosov flow of φ̄ and the isotopy classes of such collapsed Anosov flow

cover all of ires
{MCGpSq.

The other direction can be proven for instance as in [Mat]: We can show that

the isotopy class of a self orbit equivalence of φ is necessarily in ires
{MCGpSq. This

will imply that the isotopy class of a collapsed Anosov flow must also necessarily

be in ires
{MCGpSq.

If β is a self orbit equivalence of φ, then up to conjugation by e, we can assume

that β is a self orbit equivalence of gt, and we have to show that rβs P {MCGpSq.
This follows as in the proof of [Mat, Proposition 3.6] (see also [BGHP, Theorem
3.6] or [BF]). �

11.3. Collapsed Anosov flows of the Franks–Williams example. The Franks–
Williams [FW] example is the first, most famous and simplest non-transitive
Anosov flow on a 3-manifolds. We denote the Franks–Williams flow by φFW and
by MFW the manifold supporting that flow. Note that φFW is the only non-
transitive Anosov flow up to orbit equivalence on MFW (see [YY]). We will not
recall the construction of φFW (see [FW] or, e.g., [BBY]), but instead list the
properties that we will use:

(i) The manifold MFW decomposes into two atoroidal pieces separated by a
torus T transverse to φFW (which is unique up to isotopy along the flow
lines). In particular, by Mostow’s rigidity theorem, the mapping class
group of MFW is up to finite index generated by Dehn twists along the
transverse tori19.

(ii) The stable and unstable foliations restrict to two transverse foliations on
the transverse torus with four closed leaves (two stable and two unstable
leaves) and Reeb components in between. We denote by α the element of
π1pT q representing the closed leaves;

(iii) Each periodic orbit of φFW is unique in its free homotopy class, except
for the four periodic orbits (two in each atoroidal pieces) associated with
the closed leaves of T which are pairwise freely homotopic.

Theorem 11.5. Up to finite power, any self orbit equivalence or collapsed Anosov
flow of φFW is in the isotopy class of a Dehn twist of T in the direction of α.
Moreover, up to a finite power, two self orbit equivalences of φFW in the same
isotopy class are equivalent.

Conversely, any such isotopy classes can be realized by a collapsed Anosov flow
or self orbit equivalence of φFW .

Remark 11.6. One can show that two self orbit equivalences in the same isotopy
class are equivalent without taking a finite power, but the proof is easiest when
allowing finite powers and we leave the more precise statement for a future general
study of self orbit equivalences.

Remark 11.7. A cosmetic adaptation of the following proof allows to more gen-
erally classify collapsed Anosov flows and self orbit equivalences of Anosov flows

19see e.g., [BGHP] for the definition of a Dehn twist on a torus in a 3-manifold
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that are obtained in the following way: Create any number of hyperbolic plugs
(in the sense of [BBY]) by doing a derived from Anosov construction on finitely
many orbits of a suspension of an Anosov diffeomorphism of the torus. Glue
the hyperbolic plugs together in any of the ways allowed to get a (transitive or
non-transitive) Anosov flow (see [BBY]).

Such Anosov flows will satisfy a version of each of the items (i), (ii), and
(iii) above. That is, the JSJ decomposition of the manifold has only atoroidal
pieces, each torus is transverse to the flow with two closed center leaves and Reeb
components for each of the weak foliations restricted to the torus, and every
periodic orbits aside from finitely many will be alone in their free homotopy
class.20

Proof. We start by proving the converse part of the theorem: Since α P π1pT q
represents the free homotopy class of the closed leaves of the weak stable and weak
unstable foliations restricted to T , by [BGHP, Theorem 1.3], the isotopy class of
any Dehn twist in the direction of α admits a partially hyperbolic diffeomorphism.
This diffeomorphism is a collapsed Anosov flow by Theorem A.

Now, suppose that β is a self orbit equivalence of φFW . Then up to finite
power it fixes both pieces of the torus decomposition of MFW , and, up to isotopy
along flow lines, it also fixes T .

By Mostow’s rigidity theorem, the mapping class group restricted to each
atoroidal piece is finite. Hence, a further power, say k, of β will be isotopic
to identity in each pieces.

So βk must send each periodic orbit to one freely homotopic to it. By con-
struction of the Franks–Williams example (see item (iii) above), β2k will then fix
every periodic orbit of φFW . In particular, the isotopy class of β2k must preserve
the conjugacy class of α, the element of π1pT q that is freely homotopic to the
exceptional periodic orbits of φFW . Therefore, the isotopy class of β2k must be
generated by the Dehn twist on T in the direction of α.

So all we have left to do is show that if two self orbit equivalences are in the
same isotopy class, then they are equivalent. Equivalently, it suffices to show that
if β is homotopic to the identity, then it fixes every orbit of φt.

Let rβ be a lift of β to the universal cover obtained by lifting the homotopy to

identity. Recall that by item (iii) above, rβ must fix all the lifts of periodic orbits,

except possibly the lift of the four exceptional periodic orbits. Moreover, rβ2 must
preserve each half-leaves of lifted periodic orbits. Hence, any orbit obtained as
an intersection of a weak stable and weak unstable leaf of a periodic orbit is fixed

by rβ2. That set is dense in ĂM [Fra]. Therefore, by continuity, rβ2 acts as the
identity on the orbit space of φFW , which ends the proof. �

Appendix A. Branching foliations and prefoliations revisited

In this section we obtain more information about branching foliations. We will
assume some familiarity with the constructions in [BI] and repeatedly refer to
statements or proofs in that paper.

A.1. Uniqueness of approximating leaves. The constructions of Burago and
Ivanov have a lot of inherent redundancy. What we mean is that there are a lot of
surfaces S : dompSq ÑM with the same image. Since these are not embeddings

20To show that a periodic orbit γ crossing one transverse torus T is also alone in its free
homotopy class, remark that, otherwise, it would have to be freely homotopic to the inverse
of another periodic γ1 (see, e.g., [Fen2]), but that would imply that γ1 has to cross T in the
opposite direction as γ, contradicting the transversality of T .
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one has to be more careful with the meaning of “same image”. We follow Burago–
Ivanov and say that two surfaces S1, S2 are equivalent if there is a homeomorphism
g : dompS1q Ñ dompS2q such that S1 “ S2 ˝ g. More generally if this works for
subsets of the domains we say this is a change of parameter of the subsurfaces.
This is another reason to consider dompF q to be a plane.

What we call by “leaves” of the branching foliation, are the equivalence classes
of these identifications. With this understanding one can prove:

Proposition A.1. Let A be a branching foliation. Let Bε be the approximating
foliations constructed by Burago–Ivanov. There is a one to one correspondence
between the leaves of A and the leaves of Bε for any ε ą 0.

Proof. We will use the notations and terminology of the proof of [BI, Theorem
7.2]. They construct a “push off” function F which pushes different branching
leaves through a point apart. Then given any α ą 0 they construct a foliation
AαF such that as α Ñ 0 the tangent planes to the leaves of AαF converge to
the bundle E. So Bε is AηpεqF for some function η which converges to 0 as ε
converges to 0.

We review the important points to construct F . They consider a smooth
vector field W which is almost perpendicular to the bundle E. Let φ be the flow
generated by W . They consider a finite cover tUiu of M by foliated boxes of W
and with coordinates pxi, yi, ziq such that E is almost horizontal px, yq directions)
and W is almost vertical (z direction) in each Ui.

In each Ui they consider Ai the set of pairs pS, xq where S is an element of
A, x P dompSq and Spxq P Ui. They define a non strict total order ěi on Ai as
follows: choose A1, A2 P Ai, A1 “ pS1, x1q, A2 “ pS2, x2q. There is an intrinsic
ball D “ Brpx1q Ă dompS1q such that a piece of A2 is the graph of a C1 function

f : D Ñ R as follows: the surface Sf1 : D ÑM given by

Sf1 pxq “ φfpxqpS1pxqq, x P D

coincides, up to a change of parameter sending x1 to x2, with a region in S2. Let
r be the maximum radius of such a ball (possibly r “ 8). Since the surfaces have
no topological crossing, the function f does not change sign. We set A2 ěi A1 if
f ě 0 and A1 ěi A2 if f ď 0.

Burago and Ivanov remark that it is possible that both inequalities A1 ěi A2

and A2 ěi A1 hold. This means that S1 and S2 coincide up to a parameter
change, which sends x1 to x2, in which case they write A1 – A2.

We remark that we identified surfaces of A if they have the same image up to
parameter change. Under this identification ěi is a total order in Ai, which is
denoted by ąi. So the set of equivalence classes of Ai is the same as Ai.

Then [BI, Lemma 7.2] shows that pAi,ąiq is order isomorphic to an open
interval and they pick a homeomorphism θi : Ai Ñ p0, 1q. The important point
to understand here is that θi is different for different branching leaves B1, B2:
even if the leaves B1, B2 pass through a common point y in Ui, and even if they
coincide in a pass through Ui. But if B1, B2 are not the same leaf globally, then
θipB1q ‰ θipB2q. That is θi differentiates different branching leaves, even if locally
(which can be a big set) they are the same image.

They use the functions θi to define functions Fi which are meant to “push”
leaves of A inside the foliated boxes Ui. The push off is done along flow lines of

φ. The functions Fi are summed to produce a function F “ 1{k
řk
i“1 Fi. Given

α ą 0, Burago–Ivanov push leaves of A using the function αF and they show the
pushed off leaves form an actual foliation (that is, with no branching). The map
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h in the statement of the Burago–Ivanov theorem, which sends leaves of AαF to
leaves of A is just the opposite of the push off map: the map h slides points back
along flowlines of φ.

Now we come to the property we want to prove. Suppose that two leaves B,C
of AαF project to the same leaf G of A. But if it is the same leaf G, then by
the discussion above all the functions θi are specified. Hence the functions Fi are
specified along G and there is only one push off leaf in AαF associated to G. This
shows that B,C are the same leaf of AαF .

This finishes the proof of the Proposition. �

A.2. Properties of some branching foliations. Now we go back to the spe-
cific branching foliations associated with partially hyperbolic diffeomorphisms, as
constructed by Burago and Ivanov.

The next property we want to consider is the local “highest” and “lowest”
leaves from a point. The construction of Burago and Ivanov of the branching
foliations for partially hyperbolic diffeomorphisms starts as follows. Consider
a point p in M . They fix a smooth disk D through p and transversal to the
stable foliation. The disk is small to be contained in foliated boxes of all the
bundles Ec, Es, Eu. The Ecs bundle intersects the tangent bundle to D in a
one dimensional bundle, call it G. They consider all C1 curves in D tangent to
G. Among all these tangent curves passing through p there is a lowest curve in
the forward direction. We refer to [BI, §5]. The local saturation of this is a C1

surface (see [BI, Proposition 3.1]). Locally it is the “lowest” surface tangent to
Ecs through p in the positive direction.

We prove the following:

Proposition A.2. One can do the construction of the branching foliations of
[BI] such that through every point p there is a branching leaf which is the lowest
locally in the positive Ec direction. More specifically there is a fixed size δ ą 0,
so for every p in M the locally lowest forward surface for p containing a half
disk of radius at least δ centered at p is in a leaf of the branching foliation. In
addition for the same foliation for every p there is also a branching leaf which is
the highest locally in the negative Ec direction.

Proof. In fact we prove that the branching foliations that Burago and Ivanov
construct satisfy the conclusions of the Lemma.. The main result we need is
[BI, Proposition 4.13]. This result concerns “partial” branching foliations, which
satisfy only the non topological crossing condition of branching foliations. Propo-
sition 4.13 extends this partial foliation in a particular way. This result is proved
in [BI, §6] using results in dimension 2 developed in [BI, §5].

In particular since there may be many leaves through a given point, one has
to keep track of which leaves are “above” other leaves. They introduce a total
order in the set of leaves through a point p and this has to be preserved when
one moves along paths common to both leaves being considered. To introduce a
new leaf, they have to specify where it should be located with respect to already
existing order in the set of leaves through p. A location is given by what they call
a “section” of the leaves through p, which corresponds to a cut in the ordering
of all the already existing leaves through p. The constructed surfaces are called
“upper enveloping surfaces”, see [BI, Definition 6.1]. They show that for any
section at p one can construct a new partial branched surface through p that fits
exactly in that section and that does not cross topologically any of the already
existing surfaces.
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The beginning step of the induction process is with the empty set. Through
every point the section is empty. In this case (empty section) the upper enveloping
surface (in the positive Ec direction) through a point p is locally the lowest
surface through p. This is because the surface has to be what is called an upper
enveloping surface. These surfaces are locally obtained as stable saturations of
curves tangent to the Ec bundle, which are called upper envelope curves see [BI,
page 558]. The upper envelope is the supremum of descending curves, see [BI,
page 558] and the definition of descending curves, cf. [BI, Definitions 5.2 and 5.4].
In particular in the initial step there are no surfaces so the sections are the empty
sections. In this case [BI, Definition 5.2, item (2)] says that the initial step is the
lowest forward integral curve from the point.

The local stable saturation of the lowest forward integral curve is the lowest
local surface in the forward Ec direction, tangent to Ecs and through the point
p. In addition this surface is a “patch”: the edges of the surface are separated by
at least a fixed size δ ą 0, see [BI, Definition 4.7].

This proves the first assertion of the Lemma.

To prove the second assertion of the Lemma one has to go in the negative
direction of Ec. In the construction of the branching foliations in [BI] they go
alternatively forward and backward, constructing patches of surfaces starting at
the points.

So the initial step puts in the lowest surface tangent to Ecs through any p in
M and going in the forward direction. In the second step the orientations are
reversed, so going forward now corresponds to going backwards in the original
Ec direction, and lowest is highest in the original partially constructed branching
foliation.

This step is done after we already have some partial surfaces and sections
through points. So given a point p consider the empty section of all surfaces
through p. Then [BI, Lemma 6.11] shows that there is a forward envelope surface
with p in the boundary and the section is the empty section at p. Since the
section at p is empty, then the initial step is labeled by the empty set again (see
[BI, Definition 5.2, item (3)] for descending curves). This means that locally this
is the lowest forward surface through p. But recall that we switched orientations,
so forward means backwards from p in the original orientation, and lowest means
highest in the original orientation.

This proves the second property of the Lemma and finishes the proof. �

Remark A.3. In the same way we could have switched the orientation of Eu in the
beginning ´ but not of Ec. Doing the construction in [BI] produces a branching
foliation containing the highest local surface tangent to Ecs in the forward center
direction and the lowest local surface tangent to Ecs in the backwards direction.
In particular, we see that every curve tangent to Ec must be locally contained
between both branching foliations. The reason for this is that if c is any such
local center curve in the forward direction through the point, then its local stable
saturation is a C1 surface through the point and tangent to Ecs. As proved in
[BI] this surface is locally “above” the lowest surface through the point.

Remark A.4. In general we cannot have both lowest and highest local surfaces
(of fixed size) and in both forward and backwards directions for all p in M as
part of leaves of the foliation. Here is an example one dimension lower in the
plane. Consider the differential equation dy

dx “ 3y2{3. It generates a vector field

in the direction p1, 3y2{3q. This vector field is not uniquely integrable along the x
axis. General solutions are made up of pieces of curves y “ px` cq3 or segments
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in the x axis. Outside the x axis this is uniquely integrable producing segments
of curves y “ px` cq3.

Consider first the curves that are highest forward. For any point p in the
plane the highest forward curve through that points is contained in the curve
y “ px ` cq3 through p. Since the requirement is that one has to have a fixed
sized δ ą 0 of highest forward for every point, then if p is below the x axis, but
sufficiently close to the x axis, the δ size highest forward curve through p is a part
of the cubic which crosses the x axis. But the highest backward curve of every
point in the x is the ray of the x axis ending positively at that point. One has to
have at least a size δ for every point in the x axis. These two sets of curves cross
topologically, so cannot be part of the same branching foliation.

A.3. Smooth approximation and Candel metrics. The following states that
the coarse nature of leaves of the branching foliations with the metric induced by
the manifold is good enough. We refer the reader to [BH, §III.H] for the basic
notions about Gromov hyperbolic metric spaces.

Proposition A.5. Let F be a branching foliation well approximated by foliations
Fε such that Fε are by hyperbolic leaves. Then, for every Riemannian metric in
M the pullback of the metric to the leaves of F makes them Gromov hyperbolic.

Proof. For this, we choose ε small enough so that we have nice local product
structure neighborhoods and take a (continuous) Riemannian metric on M by
considering the Candel metric (cf. [Can]) on Fε on TFε and taking a fixed vector
field transverse to an ε-cone around TF to complete an orthonormal basis. For
this metric, it is possible to verify in these local product structure neighborhoods
the CATpκq condition for some κ ă 0 which is a local condition (see [BH, §II.2]).

Now, since being Gromov hyperbolic is invariant under quasi-isometries and
M is compact, we have that changing the metric does not change the fact that
leaves are Gromov hyperbolic (see [BH, §III.H]). �

Note that in [Thu, §4] it is claimed that one can choose a smooth metric in
M which makes every leaf of Fε to have curvature arbitrarily close to ´1. and
For smooth foliations this is proved in [AY, Theorem B] and attributed to Ghys
(see also [AY, Remark 6.2]). In our case, leaves of F may be just C1, so it is
more delicate to talk about curvature but still we only look at coarse geometric
properties, so our statement suffices.

Remark A.6. This implies that there is a well defined notion of complete geodesics
in leaves, and that through each tangent vector v P TxL in a leaf L P F there is
a unique geodesic in the leaf through x with velocity v. In particular, one can
compactify each leaf with a circle and consider a visual metric in this circle in a
natural way. See also [BH, §III.H.3] for definitions valid for general metric spaces.

Appendix B. Graph transform method

Here we revisit the results in [HPS] to get Theorem 4.2. Then we comment on
Theorem 4.1 which is similar.

Let f : M ÑM be a partially hyperbolic diffeomorphism of a closed 3-manifold
M . By considering a different Riemannian metric, we can assume that the bun-
dles Es, Ec and Eu are almost pairwise orthogonal and that expansion, con-
traction and domination is seen in one iterate (see [CP, §2]). We can choose a
neighborhood U of f so that every g P U is partially hyperbolic and the invariant
bundles of g have the same property with respect to the same Riemannian metric.



60 T. BARTHELMÉ, S. FENLEY, AND R. POTRIE

We can also choose E a smooth one-dimensional subbundle of TM which is
transverse (and almost orthogonal) to Ecsg for every g P U. There exists ε0 ą 0
such that if 0 ă ε ă ε0 we have that the exponential mapping is a smooth
embedding from Epεq to M , meaning that for every x PM , if we consider Epx, εq
to be the ε-neighborhood of 0 in the space Epxq Ă TxM then the exponential
map expx : Epx, εq ÑM is an embedding with derivative close to 1.

These are the choices of U and ε that one needs to make, and if one follows
the proof in [HPS, Pages 94-107] one can see that Theorem 4.2 follows. For the
convenience of the reader, we will indicate the main points, particularly because
our setting is simpler.

Proof of Theorem 4.2. Consider g P U admitting an invariant branching foliation
Wcs
g tangent to Ecs. To avoid confusions, we will use Notation 3.7.
We can consider that the collection of immersions pϕ,Uq P Wcs

g as a unique
immersion ı : V Ñ M where V is an uncountable union of complete simply con-
nected surfaces, each connected component corresponding to a leaf of Wcs

g . The

immersion ı is clearly a C1-leaf immersion which is normally expanded with
respect to g ([HPS, §6]), that is:

(i) the connected components of V with the metric induced by ı by pullback
are complete,

(ii) there is a map ı˚g : V Ñ V such that g ˝ ı “ ı˚g ˝ ı,
(iii) for every x P V we have that DxıTxV “ Ecspıpxqq.

The only point which needs some justification is (ii) but this follows rather
easily by considering the lift of Wcs

g to the universal cover where leaves are prop-
erly embedded planes and therefore it is easy to induce a map from leaf to leaf
even when these may not be injectively immersed in M .

As in [HPS, (6.2)] we can define a plaquation of ı consisting of embeddings
tρ : D Ñ V uρPP of the unit disk D “ tv P R2 : }v} ď 1u such that the interiors
of ρpBq as ρ P P cover V and such that the family tı ˝ ρuρPP is precompact in

Emb1pD,Mq.

Claim B.1. We can choose the plaquation P with the following additional prop-
erties:

(i) For every x P V there is a plaque ρ P P centered at x, this means, ρp0q “
x.

(ii) If one considers the vector bundle Eρ induced by E over the image of ρ
(which is a trivial bundle), we have that the exponential map exp: Eρpεq Ñ
M is an embedding for every ε ă ε0.

Proof. For the second item, notice that since expx : Epx, εq ÑM is an embedding
tangent to Epxq at x there is δ ą 0 such that if a disk is tangent to a subbundle
making a definite angle with E and the disk has maximal radius smaller than δ
then the exponential map will be an embedding from the bundle E restricted to
the disk for vectors of norm less than ε. Now, we can choose a covering of V
by disks around every point which are mapped by ı into disks of maximal radius
smaller than δ but minimal radius larger than δ{10. This family will be tangent
to Ecsg which makes a uniform angle to E independently of g P U and it will be
clearly pre-compact in the space of embeddings (see [HPS, (6.2)]). �
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Now, for each g1 P U we want to construct using a graph transform argument
a C1-leaf immersion ıg1 : V ÑM producing a branching21 foliation Wcs

g1 with the
same dynamics as the one of g on Wcs

g .
To describe the strategy, let pϕ,Uq be a leaf of Wcs

g , we want to construct
a new surface pϕg1 , Uq which will be part of the branching foliation Wcs

g1 . The

surface pϕg1 , Uq will be defined as limnpg
1q´npgnpϕ,Uqq. We need to explain what

we mean by this, and this is why the plaquations play a role in the proof. As in
[HPS] we will work directly with ı and construct ıg1 since it allows to treat all
leaves of Wcs

g simultaneously.
Let us construct what we mean by the graph transform. Consider P to be the

plaquation of V as in Claim B.1. Since in U the derivative along Ecs is uniformly

bounded we can define another plaquation P̂ which consists on the restrictions
of the plaques ρ P P to D̂ “ tv P R2 : }v} ă δ̂u where δ̂ is chosen so that the

image of the plaque ρ̂ P P̂ centered at x P M by g is contained in the interior of
the plaque ρ1 P P centered at ı˚gpxq. Notice that all this is uniform in U since it
only depends on the norms of the derivatives. We will denote by ρx and ρ̂x the

plaques from P and P̂ respectively which are centered at x.
Denote Ex (resp. Êx) to be the vector bundle over D (resp. D̂) induced by E

via the map ı ˝ ρx (resp. ı ˝ ρ̂x). As before, for z P D (resp. z P D̂) we denote by

Expz, δq (resp. Êxpz, δq) to be the interval of length 2δ centered at 0 on the fiber

of Ex (resp. Êx) over z.

Given a section ξ of the bundle Expεq or Êxpεq (that is, a continuous map from
D to Expεq such that ξpzq P Expz, εq) we can define its graph as graphpξq ĂM to
be the image under the exponential map of the image of ξ. By the choice of ε this
is a topologically embedded disk, moreover, if ξ has some additional regularity
(Lipschitz, or C1) then the disk is embedded in this regularity.

By our choices of D and D̂ one can check:

Claim B.2. Let ξ be a section of the bundle Expεq then, there is a well defined

section pg1q˚ξ of the bundle Êy where y “ pı˚gq
´1pxq such that the image by g1 of

graphppg1q˚ξq is contained in graphpξq.

Using this, we will construct the graph transform of a coherent family of sec-
tions tξxuxPV by gluing together enough images under pg1q˚ of plaques. There
will be a unique fixed point of this graph transform which will provide the new
branching foliation for g1 with the desired properties.

We say that a family of sections tξxuxPV such that each ξx is a section of
Expεq is a coherent family of sections of P if whenever the images of ρx and ρy
intersect it follows that graphpξxq and graphpξyq intersect in the image under the
exponential map of the restriction of the section ξx to ρ´1

x pρypDqXρxpDqq (notice
that this is the same to say that they intersect in the image under the exponential
map of the restriction of the section ξy to ρ´1

y pρypDq X ρxpDqq). Similarly, one

can define a coherent family of sections of P̂.
Given a coherent family of sections tξxuxPV of P one can define a coherent

family of sections of P̂ by restriction. Similarly, since every plaque of P is covered

by plaques of P̂, the coherent property allows to obtain, from a coherent family of

sections tξ̂xuxPV of P̂ a coherent family of sections tξxuxPV by gluing the sections

in a cover of the image of ρxpDq by tρ̂yipD̂qui; this is independent of the choice
of the covering.

21The non topological crossing condition is not discussed in [HPS] since they work in higher
codimension, but will follow rather directly from the construction in our case.
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We thus get:

Claim B.3. Given a coherent family of sections tξxuxPV of P one can define
a new coherent family of sections tζxuxPV “ pg

1q7tξxuxPV by gluing the coherent

family of sections tpg1q˚ξxuxPV over P̂.

The map pg1q7 is what is called a graph transform and it is a standard argument
(see, e.g., [HPS, §4 and §5] or [CP, §4]) to show that one can metricize the
space of Lipschitz sections with bounded Lipschitz constant to get that pg1q7 is
a contraction and therefore has a unique fixed point. This fixed point can be
showed to consist on sections whose graphs are tangent to Ecsg1 (and therefore it

is C1). Moreover, the uniqueness of the fixed point is stronger, as every pg1q7
invariant family of coherent sections must coincide with this fixed point which
follows by the fact that Dg1 expands uniformly the direction generated by E.

This produces a new C1-leaf immersion ıg1 whose leaves are tangent to Ecsg1 and
which are permuted in the same way as g permutes the leaves of ı. The dynamics
inside each leaf differs by something that is smaller than the size of the plaques22.

We need to check that leaves do not topologically cross which follows quite
directly since by uniqueness one obtains the branching foliation by iterating by
pg1qn7 the original branching foliation (which corresponds to the family of trivial

sections corresponding to ı). Since iterates preserve the local orientation, the
limit cannot create crossings. �

Similar argument allow to get Theorem 4.1 (this is indeed totally contained in
[HPS, §6]).

Comments on the proof of Theorem 4.1. The setup of the proof of Theorem 4.1
is very similar to the one in Theorem 4.2 except that instead of normal expansion
one has normal hyperbolicity (and naturally one cannot talk about topological
crossings in higher codimension, but this is not so relevant for the proof).

Let us comment on this difference. We emphasize again that this is done in
[HPS, §6], and the only difference is the uniformity of the constants that is not
precisely stated there, so we will only sketch the argument very briefly to try to
convince the reader that the arguments do not require more than a control on
the C1-size of the partially hyperbolic map and the angles between bundles (to
be able to construct the plaques and set up the graph transform operator).

In particular, one needs to first use the stable manifold theorem to construct
stable manifolds and unstable manifolds through each plaque; this is done with
standard graph transform methods (see [HPS, Theorem 6.1(a)]). This gives fam-
ilies of two dimensional plaques that now are respectively normally expanded
and contracted. One can apply the same arguments as in Theorem 4.2 to these
families and obtain continuations of these plaques (which will now be coherent
only in the center direction). Intersecting these plaques one obtains the desired
result. See [HPS, §6], in particular [HPS, pages 94-100] for more details on how
the constants are chosen. �
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22This is how the notion of plaque expansivity arises naturally.
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[Thu] W. P. Thurston, Three-manifolds, Foliations and Circles, I, arXiv eprints (1997).

arXiv:math/9712268. 59
[YY] J. Yang and B. Yu, Classifying expanding attractors on figure eight knot complement

space and non-transitive Anosov flows on Franks-Williams manifold, arXiv eprints
(2020). arXiv:2004.08921v1. 54

Queen’s University, Kingston, ON
Email address: thomas.barthelme@queensu.ca

URL: sites.google.com/site/thomasbarthelme

Florida State University, Tallahassee, FL 32306
Email address: fenley@math.fsu.edu
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