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Abstract. Suppose a relatively elliptic representation ρ of the fundamental

group of the thrice–punctured sphere S is given. We prove that all projective
structures on S with holonomy ρ and satisfying a tameness condition at the

punctures can be obtained by grafting certain circular triangles. The specific

collection of triangles is determined by a natural framing of ρ. In the process,
we show that (on a general surface Σ of negative Euler characteristics) struc-

tures satisfying these conditions can be characterized in terms of their Möbius

completion, and in terms of certain meromorphic quadratic differentials.
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1. Introduction

This paper deals with the geometry of surfaces which are locally modelled on the
geometry of the Riemann sphere CP1, and their grafting deformations. Throughout
the paper, Σ denotes an orientable surface with finitely many punctures (and no
boundary) and Σ denotes the closed orientable surface where the punctures have
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been filled in. While the main technical core of the paper holds for a general Σ with
negative Euler-characteristic (see §3 and §4), the final chapter §5 deals specifically
with the case of a thrice–punctured sphere, which we denote by S.

The structures under consideration here are known as complex projective struc-
tures (i.e. (PSL2C,CP1)–structures, see [Dum09]). We denote respectively by T (Σ)
and P(Σ) the deformation spaces of complex and complex projective structures on
Σ. We also denote by R(Σ) the space of representations of π1(Σ) into PSL2C, up
to conjugation by PSL2C. We have natural forgetful maps

π : P(Σ)→ T (Σ) and Hol : P(Σ)→ R(Σ),

respectively recording the underlying complex structure and holonomy representa-
tion. We refer the reader to §3 for precise definitions.

Classic examples of complex projective structures are given by hyperbolic metrics
(seen as (PSL2R,H2)–structures), but a general projective structure is not defined
by a Riemannian metric, nor is it completely determined by its holonomy (not
even in the Fuchsian case, see for instance [Gol87; CDF14a]). However, under
some additional conditions Hol is known to be a local homeomorphism (see [Hej75;
Luo93; GM21]), i.e. a structure is at least locally determined by its holonomy. A
major question in the field is the description in geometric terms of all structures
having the same holonomy.

Grafting Conjecture (Problems 12.1.1-2 in [GKM00]). Two complex projective
structures have the same holonomy if and only if it is possible to obtain one from
the other by some sequence of graftings and degraftings.

Here grafting refers to a geometric surgery on Σ which consists in cutting Σ open
along a curve and inserting a domain from CP1, and degrafting is the inverse opera-
tion. For the reader familiar with grafting deformations: by grafting we will always
mean projective 2π–grafting. This construction allows one to change a structure
without changing its holonomy, and iterating this construction shows that Hol has
infinite fibers. Inspired by a specific question about punctured spheres in [GKM00,
Problem 12.2.1], we propose a study of certain structures on the thrice–punctured
sphere, and we prove the Grafting Conjecture in this setting (see part 1.2 of this
introduction for a comparison with related results available in the literature).

The study of holonomy fibers also has an analytic motivation coming from the
classical monodromy problems for ODEs, i.e. generalization of Hilbert’s XXI prob-
lem. Since the work of Poincaré [Poi08], projective structures have been known as
a geometric counterpart to second–order linear ODEs. In more recent years, some
monodromy problems for such ODEs have successfully been approached in terms of
holonomy problems for projective structures (see [GKM00; Cal+19; Gup21; GM20;
Kap20; CFG21]).

We consider structures satisfying some regularity conditions at the punctures,
which can be roughly stated as follows (see §3.1 for precise definitions):

• (tameness) each local chart has a limit along arcs going off into a puncture;
• (relative ellipticity) each peripheral holonomy (i.e. the holonomy around each

puncture) is a non-trivial elliptic element in PSL2C;
• (non-degeneracy): there is no pair of points p± ∈ CP1 such that the entire

holonomy preserves the set {p±}.
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The peripheral holonomy of a tame structure can be trivial, parabolic, or elliptic (see
Lemma 3.1.3), so the second condition should be considered as a generic condition
within the space of holonomies of tame structures. It also implies that there are no
apparent singularities (i.e. no puncture has trivial holonomy).

For an arbitrary surface Σ, we denote by P�(Σ) the subspace of P(Σ) consisting
of non-degenerate tame and relatively elliptic structures: the white disk in the
superscript represents the local invariance under a rotation, and the black dot the
possibility to extend the charts to the puncture. The tameness condition provides
a natural choice of a fix point for each peripheral holonomy, i.e. a framing for the
holonomy representation (see Corollary 3.1.5). We observe that grafting preserves
this natural framing, which suggests a more precise formulation of the Grafting
Conjecture in the non-compact case. Our main result in the case of the thrice–
punctured sphere S is the following, which confirms the conjecture, in the spirit of
Problem 12.2.1 in [GKM00].

Theorem A. Two structures in P�(S) have the same framed holonomy if and
only if it is possible to obtain one from the other by some combination of graftings
and degraftings along ideal arcs.

Here an arc is ideal if it starts and ends at a puncture. To the best of our
knowledge this is the first result in this direction for the case of non-compact surfaces
with non–trivial holonomy around the punctures.

The representations involved here are representations of the free group F2 =
π1(S) generated by elliptic elements. Representations satisfying certain rationality
conditions correspond to the classical triangle groups, but the general ones are
non-discrete. In all cases we construct an explicit list of triangular membranes
(i.e. immersions of a triangle in CP1) realizing these representations, and identify
the ones that are atomic: these can be taken as basic building blocks that can
be grafted to reconstruct all the projective structures in P�(S). Theorem A is a
consequence of the following theorem.

Theorem B. Every σ ∈ P�(S) is obtained by grafting on an atomic triangular
structure with the same framed holonomy.

Another consequence of Theorem B is a handy description of the moduli space
P�(S) with positive real coordinates, which we plan to address in a future work.

When a representation ρ : π1(S) → PSL2C is unitary (i.e. is conjugate into
PSU(2)), it preserves a spherical metric, and a structure σ ∈ P�(S) is given by
a spherical metrics with cone points. This special case of Theorem B is implicit
in the proof of [MP16, Theorem 3.8], which constructs such spherical metrics by
gluing together spherical triangles and bigons. Grafting a spherical metric results
in a spherical metric, with increased angles at the cones. However in general this
is not always the case: for example the structure obtained by grafting a hyperbolic
structure is not defined by any Riemannian metric.

While our results about the Grafting Conjecture are for the case of the thrice–
punctured sphere S, the main technical core of the paper applies to any non-
compact surface Σ of negative Euler characteristic, and is of independent interest.
It consists of a characterization of structures from P�(Σ) in terms of their Möbius
completion (see §3 and [KP94]) and in terms of meromorphic projective structures
(see §4 and [AB20]). In the remaining part of the introduction we present our main
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results in the general case (see §1.1), as well as a comparison with other work in
the literature about the Grafting Conjecture (see §1.2).

1.1. Results for general surfaces. The universal cover Σ̃ of Σ is a topological
disk. It admits a natural decoration obtained by adding ideal points at infinity
“above” the punctures. We call these ideal points ends. This gives rise to a natural

enlargement of Σ̃ that we call the end-extension, and denote by Σ̃#. Part of the
paper is concerned with understanding the behavior of the developing map in the
limit to an end.

Möbius completion. Any complex projective structure σ on Σ can be used to define

another natural extension of Σ̃, known as the Möbius completion Mσ(Σ̃), which
comes with a (non-canonical) structure of complete metric space (see [KP94]). For

instance, when σ is induced by a spherical metric with cone points, Mσ(Σ̃) coincides

with Σ̃#, while when σ is induced by a complete hyperbolic metric of finite area

Mσ(Σ̃) identifies with the closed disk model for the hyperbolic plane H2 ∪RP1 (see
Examples 3.2.3 and 3.2.4).

The topologies on Σ̃# and on Mσ(Σ̃) are not in general compatible. One of the
main technical contributions of this paper is a study of the geometry of the Möbius

completion Mσ(Σ̃) for σ ∈ P�(Σ), and of its relation with the end–extension Σ̃#

(see §3). Tameness of a structure σ implies that its developing map admits natu-

ral continuous extensions dev# to the end-extension Σ̃# and devσ to the Möbius

completion Mσ(Σ̃). We study the local properties of dev# and devσ around the
ends.

Theorem C. Let σ ∈ P(Σ) be non-degenerate and without apparent singularities.

Let j# : Σ̃ → Σ̃# and jσ : Σ̃ → Mσ(Σ̃) be the natural embeddings. Then σ ∈
P�(Σ) if and only if there exists a continuous open π1(Σ)–equivariant embedding

j#
σ : Σ̃# → Mσ(Σ̃) that makes the following diagram commute.

Σ̃ CP1

Σ̃#

Mσ(Σ̃)

j#

jσ

dev#

devσ

j#σ

In this statement, continuity is a consequence of tameness of σ, and openness is
a consequence of relative ellipticity.

In general, the developing map for a projective structure is a surjection onto
CP1, in which case it fails to be a global covering map. However, under certain
circumstances it is known to be a covering map onto a component of the domain
of discontinuity in CP1 for its holonomy representation (see for instance [Kra71b,
Theorem 1]). But in general the holonomy group is not discrete, so it has no
domain of discontinuity. The following statement shows that in our context some
local covering behavior can be guaranteed around ends.

Theorem D. Let σ ∈ P�(Σ), and let E be an end. Then there is a neighborhood

N̂E of E in Mσ(Σ̃) onto which the developing map for σ restricts to a branched
covering map, branching only at E, and with image a round disk in CP1.
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These neighborhoods should be regarded as an analogue of the round balls con-
sidered in [KP94], but “centered” at ideal points in the Möbius completion. While
Theorem D is stated as a local fact, we actually show that such a neighborhood can
be chosen to be so large as to have another ideal point on its boundary. We use the
existence of these neighborhoods to define a local geometric invariant, which we call
the index (see §3.4). This number measures the angle described by the developing
map at a puncture, and provides a notion of complexity for an inductive proof of
Theorem B.

Meromorphic projective structures. A second major ingredient (once again valid for
an arbitrary non-compact surface Σ) consists of an analytic description of structures
in P�(Σ) as meromorphic projective structures in the sense of [AB20]. These are
projective structures whose developing map is defined by solving certain differential
equations with coefficients given by meromorphic quadratic differentials on the
closed surface Σ (with poles corresponding to the punctures of Σ, see §4.1 for
precise definitions). The local control from Theorem D allows us to obtain the
following result.

Theorem E. Let σ ∈ P(Σ) and let X ∈ T (Σ) be the underlying complex structure.
Then σ ∈ P�(Σ) if and only if X is a punctured Riemann surface and σ is repre-
sented by a meromorphic quadratic differential on X with double poles and reduced
exponents in R \ Z.

Here the parametrization of projective structures by quadratic differentials is the
classical one in terms of the Schwarz derivative, which here is taken with respect to
any compatible holomorphic structure on the closed Riemann surface obtained by
filling the punctures (e.g. the constant curvature uniformization). From this point
of view, the index of a structure at a puncture corresponds to the absolute value
of the exponents of the quadratic differential, so it can be computed in terms of its
residues.

It should also be noted that work of Luo in [Luo93] guarantees that Hol is a
local homeomorphism for this class of meromorphic projective structures, as there
are no apparent singularities. Therefore fibers of Hol in P�(Σ) are discrete, and
in particular it makes sense to seek a description of them in terms of a discrete
geometric surgery such as the type of grafting that we consider in this paper.

Outline of the proof of Theorem B. Let S be the thrice–punctured sphere, and let
σ ∈ P�(S), with developing map dev and holonomy ρ. By Theorems C and D,
dev extends continuously and equivariantly to the ends, and restricts to a branched
covering map on a suitable neighborhood of each end. This allows to define the
index of σ at each puncture. Then we construct a circular triangle such that the
pillowcase obtained by doubling it provides a structure σ0 ∈ P�(S) with holonomy
ρ. Note that such a triangle is not unique in general. A careful analysis of the fram-
ing of ρ defined by σ shows that such a triangle can be found with the same framing
for ρ. On such a triangle, we find a suitable combination of disjoint ideal arcs that
are graftable, and we show that if sufficiently many grafting regions are inserted,
the resulting structure σ′ ∈ P�(S) has the same indices as σ. By Theorem E, σ
and σ′ can be represented by two meromorphic differentials on the Riemann sphere
CP1 with double poles at 0, 1,∞. Two such differentials on CP1 are completely
determined by their residues, and in this case residues can be computed directly
from the indices, hence are the same. So we conclude that σ = σ′. �
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1.2. Relation to other work about the Grafting Conjecture. Following sem-
inal work of Thurston (see [KT92; Dum09; Bab20] and references therein), grafting
(in its general version) has been successfully used as a tool to explore the deforma-
tion space of CP1–structures. The grafting we consider here preserves the holonomy
representation, hence can be used to explore holonomy fibers. The classical case is
that of structures on a closed surface with Fuchsian holonomy, which was consid-
ered by Goldman (see [Gol87]). Our work displays some technical differences, that
we summarize here for the expert reader.

Framing. The main results for closed surfaces in [Gol87; Bab12; Bab15; Bab17;
CDF14b] confirm the Grafting Conjecture, i.e. that two structures with the same
holonomy differ by grafting. In our non-compact case there is a natural framing
for the holonomy which needs to be taken into consideration, as it is preserved by
grafting (see Lemma 3.1.7). We prove that having the same framed holonomy is
not only necessary, but also sufficient, for two structures on the thrice–punctured
sphere to differ by grafting.

Basepoints for holonomy fibers. When ρ : π1(Σ) → PSL2C is Fuchsian, the holo-
nomy fiber Hol−1(ρ) contains a preferred structure, namely the hyperbolic struc-
ture H2/ρ(π1(Σ)). This structure serves as a basepoint, i.e. any other structure in
Hol−1(ρ) can be obtained by grafting it (see [Gol87]). In this paper, we show that
every representation coming from P�(S) is generated by reflections in the sides of
a circular triangle in CP1. Even when such a representation ρ is non-discrete, the
pillowcase obtained by doubling the triangle provides a basepoint in the holonomy
fiber Hol−1(ρ). A first guess is that every structure in Hol−1(ρ) is obtained by
grafting this pillowcase. However, this is not the case, because of the aforemen-
tioned framing, which is given by the vertices of the triangle. In §2.3 we identify
the list of the structures that can be taken as basepoints in the above sense, which
we call atomic. Interestingly, they are not all embedded geodesic triangles for some
invariant metric.

Type of grafting curves. In the classical Fuchsian case it is enough to perform graft-
ing along simple closed geodesics on the hyperbolic basepoint (see [Gol87]). Here
we consider grafting along ideal arcs, i.e. arcs that start and end at punctures.
Grafting along open arcs is also known as bubbling in the literature (see [GKM00;
CDF14a; Ruf19a; Ruf19b; FR21]). Most structures considered here are not metric,
but they still have a well-defined notion of circular arc. We show that in most cases
grafting arcs can be chosen to be circular.

Uniqueness of grafting curves. In the classical Fuchsian case grafting curves are
homotopically non-trivial, and are uniquely determined by the structure itself (see
[Gol87]). Here grafting regions do not carry any topology (they are disks), hence
they should not be expected to be canonically associated with the structure. Indeed
it is quite common for a structure to arise from different graftings on different atomic
structures.

Outline of the paper. Section 2 contains background material about the geom-
etry of circles and circular triangles in CP1 (see §2.1 and §2.2). In §2.3 we provide
a classification of certain triangular immersions that will serve as the atomic struc-
tures for our main grafting results. This classification is referred to in different
parts of the paper, and it is summarized in Tables 1, 2 and 3.
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Section 3 introduces the main geometric definitions, i.e. that of tameness and
relative ellipticity. In §3.2 we study the geometry of the Möbius completion for
a general surface and address Theorem C. The proof of Theorem D is in §3.3,
where we show that the developing map restricts to a nice branched cover around
each end. This is used in §3.4 to define the index of a puncture, and in Section
§4 to obtain a characterization of tame and relatively elliptic structures in terms
of quadratic differentials on a general Riemann surface. In particular we show
that the geometric notion of index can be also defined and computed analytically.
Theorem E is contained in §4.2.

Finally, in Section 5 we restrict our attention to the case of the thrice–punctured
sphere S. In §5.1 we define the class of triangular structures on S, based on §2.3,
and in §5.2 we prove the main grafting results of Theorems A and B.

Acknowledgements. We thank Gabriele Mondello for some useful conversations.

2. Basics on complex projective geometry

In this chapter we collect some background about the geometry of the Riemann
sphere, on which our geometric structures will be modelled, mainly to fix notation
and terminology. Let CP1 denote the the set of complex lines through the origin
in C2, i.e. the quotient of C2 \ {0} by scalar complex multiplication. We fix
identifications of CP1 with the extended complex plane C∪{∞} and the unit sphere
S2. Through them, CP1 inherits a natural complex structure, an orientation, and
a spherical metric. A circle in CP1 is a circle or a line in C ∪ {∞}. Every circle
divides CP1 into two disks, each of which has a standard identification with the
hyperbolic plane which respects the underlying complex structure. We denote by
PSL2C the group of projective classes of 2–by–2 complex matrices of determinant
1. This group acts on CP1 by Möbius transformations:

PSL2C× CP1 → CP1,

[
a b
c d

]
, z 7→ az + b

cz + d
.

For elements in PSL2C, traces and determinants are not well defined. How-
ever there is a two-to-one map SL2C → PSL2C such that ±A 7→ [A]. Therefore,
given an element G ∈ PSL2C, we can always assume it to be in SL2C modulo a
sign. It follows that det(G), | tr(G)| and tr(G)2 are well defined quantities. The
action of PSL2C on CP1 is faithful, and simply transitive on triples of pairwise
distinct points. In particular, we can always map three distinct points (p1, p2, p3)
to (0, 1,∞). Möbius transformations are conformal, preserve cross ratios and pre-
serve circles. Three distinct points in CP1 determine a unique circle through them.
Great circles are geodesic circles in the underlying spherical metric. However, ele-
ments of PSL2C are generally not isometries, and so the set of great circles is not
PSL2C–invariant.

A non-trivial element G ∈ PSL2C is classified as follows:

• Parabolic if tr(G)2 = 4.
• Elliptic if tr(G)2 is real and tr(G)2 < 4.
• Loxodromic otherwise.

2.1. Configurations of circles. Let C = (C1, C2, C3) be an (ordered) configuration
of three distinct circles in CP1. The configuration C is non-degenerate if every pair
Ci,Cj intersects in exactly two points {xij , yij}, and the set of pairwise intersection
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Figure 1. A Euclidean, spherical and hyperbolic configuration of
circles, from left to right.

points has at least four elements. Henceforth, all configurations will be assumed to
be non-degenerate. Also notice that by definition C is an ordered triple.

A configuration of circles is Euclidean if the circles have a common intersection
point. In this case there are exactly four intersection points. If the configuration
is not Euclidean, since every circle divides CP1 into two disjoint regions, then C1
separates {x23, y23} if and only if C2 separates {x13, y13} if and only if C3 separates
{x12, y12}. In that case, we say that the configuration C is spherical. Otherwise, it
is hyperbolic (cf. Figure 1).

Remark 2.1.1. A configuration of circles induces a CW-structure on CP1, in which
the 2–cells are either bigons, triangles or quadrilaterals; in the spherical case the
structure is simplicial and isomorphic to an octahedron. Given two configurations of
circles Ci = (Ci1, Ci2, Ci3) of the same kind (Euclidean, spherical or hyperbolic), there
is always (at least) one CW–isomorphism of CP1 mapping C1

k to C2
k. For spherical

and hyperbolic configurations, it is enough to consider orientation preserving CW–
isomorphisms. On the other hand, if C = (C1, C2, C3) is a Euclidean configuration
of circles, there is no orientation preserving CW–isomorphism mapping (C1, C2, C3)
to (C1, C3, C2): the obstruction being the cyclic order of the circles at the common
intersection point.

The connection between a configuration of circles and the corresponding geome-
tries is well known. We recall it in the next result (cf. Figure 2).

Lemma 2.1.2. Let C be a configuration of three circles.

• If C is Euclidean, let y be the common intersection point. Then CP1 \ {y}
admits a Euclidean metric for which the circles in C are geodesics.
• If C is spherical, then there is a Möbius transformation G ∈ PSL2C such

that G · C are great circles for the underlying spherical metric.
• If C is hyperbolic, then there is a unique circle CH orthogonal to every circle

in C. In particular, each connected component DH of CP1 \ CH admits a
hyperbolic metric for which the intersections of C with DH are geodesics.

Any two distinct circles C1, C2 in a configuration C intersect in two points. If x
is a point of intersection, then we can use the orientation of CP1 to determine the
anticlockwise angle ∠xC1C2 from C1 to C2 at x (cf. Figure 3). We have that

∠xC2C1 = π − ∠xC1C2 = ∠yC1C2,
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Figure 2. Euclidean, hyperbolic and spherical configurations are
related to the corresponding geometries.

Figure 3. The anticlockwise angle between two circles at a point
of intersection.

where y is the other point of intersection of C1 and C2. It is a simple exercise
in complex projective geometry to show that a configuration of circles is uniquely
determined (up to Möbius transformations) by the ordered triple of angles at three
points.

Lemma 2.1.3. For i ∈ {1, 2}, let Ci = (Ci1, Ci2, Ci3) be a configuration of circles.
For every pair of circles in Ci let xijk ∈ Cij ∩ Cik be an intersection point such that

∠x1
12
C1

1C1
2 = ∠x2

12
C2

1C2
2 , ∠x1

23
C1

2C1
3 = ∠x2

23
C2

2C2
3 , and ∠x1

13
C1

1C1
3 = ∠x2

13
C2

1C2
3 .

Then there is a Möbius transformation M ∈ PSL2C such that M · C1 = C2 with
M · x1

jk = x2
jk.

2.2. Elliptic Möbius transformations. In this section we prove a correspon-
dence between configurations of circles and certain triples of elliptic Möbius trans-
formations (see Corollary 2.2.7).

As defined above, a non-trivial Möbius transformation G ∈ PSL2C is said to be
elliptic if tr(G)2 is real and tr(G)2 < 4. An elliptic transformation fixes exactly two
points of CP1. Let G ∈ PSL2C be elliptic. The rotation angle Rot(G, x) ∈ (0, 2π) of
G at a fixed point x is the angle of anticlockwise rotation of G at x (more precisely of
dGx on TxCP1). If x, y are the fixed points of G, a Möbius transformation mapping
x, y to 0,∞ conjugates G to the element of PSL2C

(2.2.1)

[
ei

Rot(G,x)
2 0

0 e−i
Rot(G,x)

2

]
.

The definition of rotation angle implies the following result.
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Lemma 2.2.1. Let G ∈ PSL2C be elliptic with fixed points {x, y}. Then

Rot(G, y) = 2π − Rot(G, x) = Rot(G−1, x).

The rotation invariant of an elliptic transformation G is the unordered pair
Rot(G) := {Rot(G, x),Rot(G, y)}.

Lemma 2.2.2. Let G ∈ PSL2C be elliptic, and let θ ∈ (0, 2π). Then θ ∈ Rot(G)
if and only if 4 cos2( θ2 ) = tr2(G).

Proof. Both the rotation angle and the trace operator are invariant under con-
jugation, thus we may assume that G is normalised as in (2.2.1). The equation
4 cos2( θ2 ) = tr2(G) has precisely two solutions in (0, 2π), of the form

θ1 = 2 arccos

(
| tr(G)|

2

)
and θ2 = 2π − 2 arccos

(
| tr(G)|

2

)
,

where we fix a determination of arccos in [0, π]. A direct computation shows that
Rot(G) = {θ1, θ2} concluding the proof. �

Given the fixed points of G, the rotation invariant is enough to determine G up
to inversion, while the rotation angle is a complete invariant.

Lemma 2.2.3. Let G,H ∈ PSL2C be two elliptic transformations. Then

(1) Rot(G) = Rot(H) ⇐⇒ tr2(G) = tr2(H) ⇐⇒ G,H are conjugate.
(2) If G,H have the same fixed points {x, y}, then

Rot(G) = Rot(H) ⇐⇒ G = H±1,

and in particular

Rot(G, x) = Rot(H,x) ⇐⇒ G = H.

Proof.

(1) Two elliptics with the same rotation invariants must have the same trace
squared by the previous Lemma 2.2.2. But this is a complete invariant of
conjugacy classes for semisimple elements of PSL2C.

(2) SinceG andH share the same fixed points, we can simultaneously normalise
them as in (2.2.1). Both statements follow from comparing the two normal
forms.

�

Next we analyse the connection between elliptic transformations, whose product
is elliptic, and configurations of circles in CP1. First, we recall the following result
from [GKM00, lemma 3.4.1].

Lemma 2.2.4. Let G,H ∈ PSL2C be elliptic transformations with at most one
common fixed point, and such that the product GH is elliptic. Then the fixed points
of G and H are contained in a unique circle CG,H .

We recall that given any two distinct circles C1, C2 intersecting at a point x, the
(anticlockwise) angle from C1 to C2 at x is denoted by ∠xC1C2 (cf. §2.1).

Lemma 2.2.5. Let C1, C2 be distinct circles in CP1 meeting exactly at two points
x, y. Let Ji denote the reflection in Ci. Then the product G = J2J1 is an elliptic
transformation fixing x, y with

Rot(G, x) = 2∠xC1C2, and Rot(G, y) = 2∠yC1C2.



CP1–STRUCTURES ON THE THRICE–PUNCTURED SPHERE 11

Proof. Since Möbius transformations are conformal, we can normalise so that x = 0
and y = ∞. Under the standard identification CP1 = C ∪ {∞}, we can further
normalise so that C1 = R∪ {∞}. Then C2 is a Euclidean line through 0 and ∞. In
this setting

J1(z) = z̄, and J2(z) = ei2(∠xC1C2)z̄,

and the statement follows from a direct computation. �

Henceforth we fix the following notation. Given G,H distinct elliptic transfor-
mations whose product GH is elliptic, we denote by {pG, qG} (resp. {pH , qH}) the
fixed points of G (resp. H), by CG,H the unique circle through {pG, qG, pH , qH}
(cf. Lemma 2.2.4), and by JG,H the reflection about CG,H .

Lemma 2.2.6. Let (A,B,C) be an ordered triple of elliptic transformations with
at most one common fixed point, and such that ABC = 1. Then

(1) CA,C ∩ CA,B = {pA, qA}.
(2) 2∠pACA,BCA,C = Rot(A, pA) and 2∠qACA,BCA,C = Rot(A, qA).
(3) A = JA,CJA,B.

Proof. We begin by noticing that two of the three elliptic transformations share a
common fixed point p if and only if p is fixed by all three of them. Hence there are
either four or six distinct fixed points. Then the first statement (1) follows from
Lemma 2.2.4.

Next, we recall that Möbius transformations are conformal, thus without loss
of generality we can simultaneously normalize (A,B,C) so that (pA, qA, pB) =

(0,∞, 1). It follows that CA,B = R ∪ {∞}. If we let θ := Rot(A,0)
2 , then the three

elliptic transformations take the following forms

A =

[
eiθ 0
0 e−iθ

]
, B =

[
a b
c a

]
, and C−1 = AB =

[
aeiθ beiθ

ce−iθ ae−iθ

]
,

where | trB| = 2|Re(a)| < 2 (the relation between the diagonal elements of B is
implied by the fact that C is elliptic). We remind the reader that we are always
taking representatives in SL2C modulo a sign. Using that det(B) = 1 and that B
fixes 1, it follows that b, c are purely imaginary. In particular, there are choices of
signs for which

b = −iIm(a)±
√

Re2(a)− 1, and c = iIm(a)±
√

Re2(a)− 1.

We claim that C−1 has fixed points of the form teiθ for t ∈ R \ {0}. Since C and

C−1 have the same fixed points, this will imply that ∠0CA,BCA,C = θ = Rot(A,0)
2 .

To this end, we look for real solutions of the equation

teiθ = AB · teiθ =
ate2iθ + beiθ

ct+ ae−iθ
⇐⇒ ct2 − 2iIm(aeiθ)t− b = 0.

Since b, c are purely imaginary, this polynomial has real roots if and only if its
discriminant −4Im(aeiθ)2 + 4bc is negative. But that follows from

1 = det(AB) = ‖a‖2 − bc = ‖aeiθ‖2 − bc = Re(aeiα)2 + Im(aeiθ)2 − bc,

and

2 > | tr(AB)| = |2Re(aeiθ)|.
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This concludes the proof of the first part of (2), while the rest follows from the
definition of the anticlockwise angle between two circles and Lemma 2.2.1.

For the last statement of the lemma, recall that G := JA,CJA,B is an elliptic
Möbius transformation with fixed points {pA, qA} (cf. Lemma 2.2.5). Then G has
the same fixed points and rotation angles as A, thus G = A by Lemma 2.2.3. �

Lemmas 2.2.4, 2.2.5 and 2.2.6 have the following straightforward consequence.

Corollary 2.2.7. There is a bijection{
Configurations of

three circles.

}
←→

 Ordered triples of elliptic
transformations with at most one

common fixed point and product 1.

 ,

where (C1, C2, C3) 7→ (J3J1, J1J2, J2J3) and (A,B,C) 7→ (CA,B , CB,C , CA,C).

2.3. Triangular immersions. In this section we define certain immersions of the
standard 2–simplex in CP1. Lemmas 2.3.1, 2.3.3 and 2.3.4 prove the existence of
immersions with certain requirements on the angles at the vertices. These are the
ones we call atomic, and are listed in Table 1, 2 and 3. Then we study some invari-
ants of such immersions, and conclude in Corollary 2.3.7 that they are essentially
determined by the image of the vertices, up to a minor ambiguity.

Let 4 := {(x1, x2, x3) ∈ R3
≥0 | x1 + x2 + x3 = 1} be the standard 2–dimensional

simplex. Let {V1, V2, V3} ⊂ 4 be its set of vertices so that V1 = (1, 0, 0), V2 =
(0, 1, 0), V3 = (0, 0, 1), and let eij ⊂ 4 be the edge between Vi and Vj . We endow
4 with the orientation induced form the ordering (V1, V2, V3) of its vertices.

A triangular immersion is an orientation preserving immersion τ : 4 → CP1

such that each τ(eij) is contained in a circle. In particular, we require τ to be
locally injective everywhere except at the vertices. When every τ(eij) is contained
in a great circle, the triangle 4 inherits a spherical metric with geodesic boundary
and cone angles at the vertices. This is usually referred to as a spherical triangular
membrane in the literature [Ere04; MP16]. Triangular immersions are relevant
to this paper as they produce natural examples of CP1–structures on the thrice–
punctured sphere (cf. §5.1 for details.)

Henceforth, we will often make the abuse of notation of referring by τ both the
triangular immersion and its image in CP1, when it is not necessary to make a
distinction. The image of the vertices (resp. edges) of 4 are the vertices (resp.
edges) of τ . Since edges of τ are arcs of circles, τ has well defined angles at the
vertices. When τ is not locally injective at a vertex, the angle is larger than 2π,
and τ should be thought as “spreading over” CP1. The orientation of 4 and the
ordering of its vertices induce an orientation on τ , and an ordering of its vertices
and of its angles (which agree with the orientation and ordering induced by the
orientation of CP1).

Configurations of circles and triangular immersions are related to one another.
If τ is a triangular immersion, each one of its edges extends to a unique circle giving
a (possibly degenerate) configuration Cτ of three circles. In this case we say that
Cτ supports τ . When Cτ is non-degenerate, we say that τ is non-degenerate. When
the interior of the image of τ is disjoint from Cτ , we say that τ is enclosed in Cτ .
These are exactly those triangular immersions whose (interior of the) images are
the connected components of CP1 \ Cτ . Necessary and sufficient conditions on the
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Figure 4. Two Euclidean configurations. Both support an en-
closed triangular immersion with angles (a, b, c) ∈ (0, π)3, such
that either a+ b+ c = π (left) or −a+ b+ c = π (right).

angles of τ for it to be enclosed in Cτ are well known, but we provide a short proof
as we could not find a direct reference.

Lemma 2.3.1. Let (a, b, c) be an ordered triple of angles in (0, π)3.

(1) (Euclidean Triangles.) There is a Euclidean configuration of circles C and
a triangular immersion τ enclosed in C with angles (a, b, c) if and only if
one of the following conditions is satisfied:

(2.3.1) a+ b+ c = π, −a+ b+ c = π, a− b+ c = π, a+ b− c = π.

(2) (Hyperbolic Triangles.) There is a hyperbolic configuration of circles C and
a triangular immersion τ enclosed in C with angles (a, b, c) if and only if:

(2.3.2) a+ b+ c < π.

(3) (Spherical Triangles.) There is a spherical configuration of circles C and
a triangular immersion T enclosed in C with angles (a, b, c) if and only if
(a, b, c) satisfies:

(2.3.3) a+ b+ c > π, and


a+ π > b+ c,

b+ π > c+ a,

c+ π > a+ b.

Proof.

(1) Let τ be a triangular immersion enclosed in a Euclidean configuration of
circles Cτ . Then there is a common intersection point y, and CP1 \ {y}
admits a Euclidean metric for which the circles in Cτ are geodesics (cf.
Lemma 2.1.2). In this setting, it is easy to check that each one of the four
triangular immersions that are enclosed in Cτ have angles

(0) (a, b, c), (1) (a, π− c, π− b), (2) (π− c, b, π− a), and (3) (π− b, π− a, c),
each one satisfying exactly one of the equalities in (2.3.1) (cf. Figure 4).

The converse implication is well known for a+b+c = π. If −a+b+c = π,

we consider the angles â = a, b̂ = π − c and ĉ = π − b. Clearly (â, b̂, ĉ) ∈
(0, π)3 and â + b̂ + ĉ = π, therefore there is a Euclidean triangle with
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Figure 5. A hyperbolic configuration and a spherical configura-
tion. They both support an enclosed triangular immersion with
angles (a, b, c) ∈ (0, π)3, such that either a + b + c = π (left) or
(2.3.3) is satisfied (right).

angles (â, b̂, ĉ) supported by some configuration of circles. One of the other
enclosed triangular immersions has angles (a, b, c) (cf. Figure 4). The same
strategy applies to the other cases.

(2) Let τ be a triangular immersion enclosed in a hyperbolic configuration of
circles Cτ . Let CH be the circle that is orthogonal to the family Cτ (cf.
Lemma 2.1.2). In this case there are precisely two triangular immersions
that are enclosed in Cτ , and they are both disjoint from CH. It follows
that τ is a hyperbolic triangle in one of the two connected components
of CP1 \ CH, thus the inequality (2.3.2) is a consequence of the formula
for hyperbolic area of triangles (cf. Figure 5). The converse implication
is [Rat06, Theorem 3.5.9].

(3) Finally, let τ be a triangular immersion enclosed in a spherical configuration
of circles Cτ . By Lemma 2.1.2, we can realize this configuration of circles
by great circles. So every triangular region τ enclosed in Cτ is a geodesic
triangle for the standard spherical metric. By the area formula for spherical
triangles, we have that

a+ b+ c = π + Area(τ) > π.

The other inequalities (2.3.3) are obtained by applying Gauss-Bonnet to
the enclosed triangular regions adjacent to τ (cf. Figure 5), whose angles
are

(1) (a, π − c, π − b), (2) (π − c, b, π − a), and (3) (π − b, π − a, c).
The converse implication is a simple adaptation of [Rat06, Theorem

3.5.9] using the law of cosines in spherical geometry (cf. [Rat06, Exercise
2.5.8])

�

Remark 2.3.2. For convenience, Lemma 2.3.1 is stated just in terms of the ex-
istence of a triangular immersion τ . Despite we will not need it, we remark that
it is a simple consequence of Lemma 2.1.3 that τ is also unique up to Möbius
transformations. The same is true for the following results.
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Figure 6. A triangular immersion can be manipulated to new
triangular immersions by adding an entire disk, or by taking a full
turn around a vertex.

Given an enclosed triangular immersion τ , there are two simple operations that
one can perform to construct new triangular immersions supported by the same
configuration of circles. The first one consists in extending τ by a full disk, by
“pushing” an edge of τ to its complement in its supporting circle (Figure 6). This
operation increases the two angles adjacent to the pushed edge by π. The sec-
ond manipulation involves making a full turn around a vertex, by extending the
opposite edge to cover its entire supporting circle (Figure 6). This operation in-
creases the angle at the highlighted vertex by 2π. It will be remarked later on
how these operations are related to grafting the associated triangular structure (cf.
Example 5.1.2).

On the other hand, there are triangular immersions that do not arise from these
operations, whose existence we prove now.

Lemma 2.3.3. Let (a, b, c) be an ordered triple of angles such that

a ∈ (0, π) ∪ (π, 2π), and b, c ∈ (0, π).

Then there is a configuration of circles C and a triangular immersion τ supported
by C with angles (a, b, c).

Proof. First suppose a ∈ (0, π). Those cases where (a, b, c) satisfies one of the
conditions (2.3.1), (2.3.2) or (2.3.3) from Lemma 2.3.1 are covered by that lemma.
Hence suppose a+ b+ c > π, but at least one of the other inequalities in (2.3.3) is
not satisfied. Up to permuting a, b, c we may assume that a+ π < b+ c. Let

â = a, and b̂ = π − b, and ĉ = π − c.

Then â+ b̂+ ĉ = a+ (π− b) + (π− c) < π by assumption, therefore by Lemma 2.3.1
there is a hyperbolic configuration of circles C and a triangular immersion τ̂ enclosed

in C with angles (â, b̂, ĉ). Figure 7 (on the left) shows that the same configuration
of circles supports a triangular immersion with angles (a, b, c).

Now suppose a ∈ (π, 2π). Consider the following relations:

(1)
(i) a+ b+ c > 3π,
(ii) a+ b+ c = 3π,

, (2)
(i) a− b− c > π,
(ii) a− b− c = π,

(3i) a− b+ c ≤ π,
(3ii) a+ b− c ≤ π.



16 SAMUEL A. BALLAS, PHILIP L. BOWERS, ALEX CASELLA, AND LORENZO RUFFONI

Figure 7. On the left, a triangular immersion on a hyperbolic
configuration with angles (a, b, c) ∈ (0, π)3 such that a+ b+ c > π
but a+ π < b+ c. On the right, a triangular immersion supported
by a spherical configuration.

We observe that these three groups of inequalities are mutually exclusive, as any
two of them imply the following contradictions:

(1) + (2) =⇒ a ≥ 2π,
(3i) + (3ii) =⇒ a ≤ π,

(1) + (3i) =⇒ b ≥ π,
(1) + (3ii) =⇒ c ≥ π,

(2) + (3i) =⇒ c ≤ 0,
(2) + (3ii) =⇒ b ≤ 0.

If one of those inequalities is satisfied, we define

â = 2π − a, b̂ = π − b, and ĉ = π − c, if (1)(i) is satisfied,

â = 2π − a, b̂ = π − c, and ĉ = π − b, if (1)(ii) is satisfied,

â = 2π − a, b̂ = b, and ĉ = c, if (2)(i) is satisfied,

â = 2π − a, b̂ = c, and ĉ = b, if (2)(ii) is satisfied,

â = a− π, b̂ = π − b, and ĉ = c, if (3i) is satisfied,

â = a− π, b̂ = b, and ĉ = π − c, if (3ii) is satisfied.

In each case, the assumption implies that â + b̂ + ĉ ≤ π, therefore Lemma 2.3.1
applies to give a Euclidean or hyperbolic configuration of circles C and a triangular

immersion τ̂ enclosed in C with angles (â, b̂, ĉ). Figures 8 and 9 show that the same
configuration of circles supports a triangular immersion with angles (a, b, c).

Finally, let (¬1), (¬2), (¬3i), (¬3ii) be the opposite of the inequalities (1), (2), (3i), (3ii),
and suppose (a, b, c) satisfies all of (¬1), (¬2), (¬3i), (¬3ii). We define

â = 2π − a, and b̂ = π − b, and ĉ = π − c.

This time â+ b̂+ ĉ = 4π − a− b− c > π because of (¬1). Moreover,

â+ π = 3π − a > 2π − b− c = b̂+ ĉ, by (¬2),

b̂+ π = 2π − b > 3π − a− c = â+ ĉ, by (¬3i),

ĉ+ π = 2π − c > 3π − a− b = â+ b̂, by (¬3ii).

By Lemma 2.3.1, there is a spherical configuration of circles C and a triangular im-

mersion τ̂ enclosed in C with angles (â, b̂, ĉ). See Figure 7 for a triangular immersion
with angles (a, b, c) supported by the same configuration C.
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Figure 8. Different triangular immersions with angles (a, b, c),
supported by hyperbolic configurations. We remark that the one
depicted in (2) covers the darker triangle twice.

�

Due to the degenerate nature of Euclidean configurations, there is one additional
case that needs to be considered, which we address in the next lemma.

Lemma 2.3.4. Let (a, b, c) be an ordered triple of angles such that

a ∈ (2π, 3π), b, c ∈ (0, π) and a− b− c = π.

Then there is a configuration of circles C and a triangular immersion τ supported
by C with angles (a, b, c).

Proof. Let

â = a− 2π, and b̂ = π − b, and ĉ = π − c.

Then â, b̂, ĉ ∈ (0, π) and â+b̂+ĉ = a−2π+π−b+π−c = π, therefore by Lemma 2.3.1
there is a Euclidean configuration of circles C and a triangular immersion τ̂ enclosed

in C with angles (â, b̂, ĉ). Figure 10 shows that the same configuration of circles
supports a triangular immersion with angles (a, b, c).

�
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Figure 9. Different triangular immersions with angles (a, b, c),
supported by Euclidean configurations.

The triangular immersions constructed in the proofs of Lemmas 2.3.1, 2.3.3
and 2.3.4, which are depicted in Figures 7, 8, 9, and 10, are the starting point
to construct all complex projective structures of interest in this paper. For this
reason, we will refer to them as the atomic triangular immersions. They are Eu-
clidean/hyperbolic/spherical depending on the type of the underlying configuration
of circles. In Lemmas 2.3.3 and 2.3.4 exactly one angle is allowed to be larger than
π, and we have assumed that to be the first one for simplicity. This normalization
is inessential, and the same statements and proofs hold if one chooses a different
angle to be the large one. This should be regarded as a change of marking (i.e.
a permutation of the vertices of the simplex on which the triangular immersions
are defined), and we call atomic triangular immersion any triangular immersion ob-
tained in this way. Theorem B and Corollary 5.2.3 will show that, in a precise sense,
this is indeed the minimal collection of triangular immersions to be considered.

We remark that the proofs of these lemmas are explicit, and construct a concrete
collection of triangular immersions. Notice that for every triple of real numbers
(a, b, c), two of which are in (0, π) and one is (0, π) ∪ (π, 2π) ∪ (2π, 3π), there is a
unique atomic triangular immersion with those angles. This allows us to organize
the atomic triangular immersions in Tables 1, 2 and 3. We now define the other
features listed in those tables.
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Figure 10. The additional triangular immersion mentioned in
Lemma 2.3.4. Notice that a > 2π, hence the darker bigon is cov-
ered twice.

Let τ : 4 → CP1 be an atomic triangular immersion, and let Cτ be the con-
figuration of circles that supports it. The configuration Cτ is either of spherical,

Euclidean or hyperbolic type. The target angles of τ are the numbers (â, b̂, ĉ) defined
as follows.

• If (a, b, c) satisfies the hypothesis of Lemma 2.3.1 then (â, b̂, ĉ) = (a, b, c).

• If (a, b, c) does not satisfy the hypothesis of Lemma 2.3.1 then (â, b̂, ĉ) is
defined as in the proofs of Lemmas 2.3.3 and 2.3.4, depending on what
conditions are satisfied, and up to permuting the angles as appropriate.

The target angles of τ satisfy the hypothesis of Lemma 2.3.1. Therefore there is

a triangular immersion τ̂ with angles (â, b̂, ĉ), which we call the target triangular
immersion. If Cτ := (C12, C23, C13), it follows from the construction that τ̂ is sup-
ported either by Cτ or by C∗τ := (C12, C13, C23), but the latter only happens in the
Euclidean cases of Figure 4 (right) and Figures 9 (1) and (2). In addition, τ̂ is al-
ways enclosed (while τ may not be). All the above pictures representing the atomic
triangular immersions have been normalized so that τ̂(4) contains the point at
infinity in its interior.

For pairwise distinct i, j, k ∈ {1, 2, 3}, consider the circle Cij ∈ Cτ supporting
τ̂(eij); the intersection Cij ∩ Cjk consists of two points: one is τ̂(Vj), and we define
τ̂(Vj)

′ to be the other one. The collection {τ̂(Vj), τ̂(Vj)
′ | j = 1, 2, 3} accounts for

all the points of intersection of the circles in Cτ , which are the possible vertices for
τ . Note that by construction we always have {τ(V1), τ̂(V1)} ⊆ C12 ∩ C13. We say
a vertex τ(Vj) of τ is positive if there exists k such that τ(Vj) = τ̂(Vk), i.e. if it
coincides with a vertex of τ̂ , and we say it is negative otherwise. This defines a
triple of signs (s1(τ), s2(τ), s3(τ)) ∈ {±}3 associated to τ . In the Euclidean case,
we additionally decorate this triple: we define it to be (s1(τ), s2(τ), s3(τ)) when τ̂
is supported by Cτ , and to be (s1(τ), s2(τ), s3(τ))∗ when τ̂ is supported by C∗τ .

Remark 2.3.5. The Euclidean case (see Table 3) displays all possible cases for
the triple of signs, including the extra ∗ decoration, with the only exception of
the cases in which all vertices are negative. This cannot happen as it would mean
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that τ maps all vertices to the common intersection point of the configuration of
circles, but this never happens for an atomic triangular immersion. The extra ∗
decoration is not needed for the hyperbolic and spherical cases as they are less
degenerate than the Euclidean ones, in the sense that circles in C have six distinct
intersection points, which allows for more flexibility in the definition of the atomic
immersions. See Tables 1 and 2. In the hyperbolic case we find all possible cases for
the signs. In the spherical case we only see the triples (±,±,±). This is because a
spherical configuration of circles has only triangular complementary regions (while
the complement of a hyperbolic configuration has different shapes, with only two
triangles). As a result it is much easier for a spherical atomic triangular immersion
to be enclosed, and equal to its own target triangular immersion.

Lemma 2.3.6. Let τ be an atomic triangular immersions supported by a configu-
ration of circles C. Then τ̂ is uniquely determined by C and the vertices of τ .

Proof. Let C = (C12, C23, C13) and recall that we have τ(ejk) ⊆ Cjk for j, k = 1, 2, 3,
by definition of what it means for a triangular immersion to be supported by a
configuration of circles. Moreover by construction {τ(V1), τ̂(V1)} ⊆ C12 ∩ C13.

Suppose that C is Euclidean. Then τ̂ is the unique enclosed triangular immersion
mapping to the Euclidean triangle such that τ̂(V1) = (C12 ∩ C13) \ {∞}.

Next, if C is hyperbolic, then let C = CH be the dual circle from Lemma 2.1.2.
If C is spherical, then let C be a circle which separates the vertices of τ from the
other intersection points of circles in C. In either case τ̂ is the unique enclosed
triangular immersion which has image disjoint from C, is supported by C, and such
that {τ(V1), τ̂(V1)} ⊆ C12 ∩ C13. We additionally remark that τ̂ is always on the
left of C with respect to the orientation induced by C. �

Corollary 2.3.7. Let C be a configuration of circles. Let τ1, τ2 be two atomic
triangular immersions supported by C, such that τ1(Vj) = τ2(Vj) for all j ∈ {1, 2, 3}.
Then τ̂1 = τ̂2. Moreover, if (ai, bi, ci) are the angles of τi, then exactly one of the
following happens:

(1) (a1, b1, c1) = (a2, b2, c2) and τ1 = τ2;
(2) (a1 − a2, b1 − b2, c1 − c2) = (π,−π, 0) up to permutation.

Proof. The first assertion follows directly from Lemma 2.3.6. As a direct conse-
quence, τ1, τ2 have the same target angles and the same triple of signs. A di-
rect inspection of Tables 1, 2, 3 proves the desired relations between the angles,
just by imposing equalities of the respective target angles. In particular, recall
that atomic triangular immersions are uniquely determined by their angles, hence
(a1, b1, c1) = (a2, b2, c2) implies τ1 = τ2. �

Example 2.3.8. Let τ1, τ2 be two atomic triangular immersions with angles

(a1, b1, c1) =

(
3π

2
,
π

3
,
π

4

)
and (a2, b2, c2) =

(
π

2
,

4π

3
,
π

4

)
.

These immersions correspond to the second and third row of Table 2, respectively.
They are supported by the same spherical configuration of circles C, with target

angles (â, b̂, ĉ) =
(
π
2 ,

2π
3 ,

3π
4

)
, and share the same signs (−,−,−). In particular,

τ̂1 = τ̂2. Furthermore, τ1 can be transformed into τ2 by first adding a disk and then
removing another disk (cf. Figure 11).
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Figure 11. Two atomic triangular immersions supported by the
same (spherical) configuration of circles, and with the same signs
(−,−,−).

Remark 2.3.9. Some of the sign invariants in each of the Tables 1, 2, 3 occur
exactly once. If two triangular immersions have same such signs, then they are
equal by Corollary 2.3.7 case (1). This applies for instance to atomic triangular
immersions arising from Lemma 2.3.4, depicted in Figure 10.

3. Tame and relatively elliptic CP1-structures

In this chapter we define the geometric structures of interest in this paper, and
study the geometry they induce on the universal cover. The reader can find the
proofs of Theorems C and D in §3.2 and §3.3 respectively.

Let Σ be a closed oriented surface and let {x1, . . . , xn} ⊂ Σ be n distinct points
such that the punctured surface Σ := Σ \ {x1, . . . , xn} has negative Euler charac-
teristic. If g is the genus of Σ, this is equivalent to 2g + n > 2, and it implies that
Σ admits a complete hyperbolic metric of finite area. The points {x1, . . . , xn} are
the punctures of Σ.

A complex projective structure (CP1–structure in short) on Σ is a maximal atlas
of charts into CP1 with transition maps in PSL2C (see [Gun67; Dum09]). A CP1–
structure can be described by a developing pair (dev, ρ) consisting of a developing
map and a holonomy representation

dev : Σ̃→ CP1, ρ : π1(Σ)→ PSL2C,

satisfying the equivariance condition

dev(γ · x) = ρ(x) · dev(x), for all x ∈ Σ̃, γ ∈ π1(Σ).

There is a natural equivalence relation on the set of complex projective structures
on a surfaces for which two pairs (dev, ρ) and (dev′, ρ′) are equivalent if there is
A ∈ PSL2C so that dev′ = A ◦ dev and ρ′ = AρA−1 (up to isotopy of Σ). The
deformation space of marked CP1–structures on Σ is the space of equivalence classes
of complex projective structures and it is denoted by P(Σ). We denote by R(Σ)
the space of conjugacy classes of representations of π1(Σ) into PSL2C. We prefer
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not to use the GIT quotient because some of the representations of interest in this
paper are reducible. The holonomy map is the forgetful map

Hol : P(Σ)→ R(Σ), [(dev, ρ)] 7→ [ρ].

Every CP1–structure has a natural underlying complex structure (or equivalently
a conformal structure). We define P•(Σ) ⊂ P(Σ) to be the subset of CP1–structures
on Σ whose underlying conformal structure around every puncture is the complex
punctured disk D∗ := {z ∈ C | 0 < |z| < 1}.

The space of interest in this paper is the subspace P�(Σ) of P•(Σ) of those
structures whose developing map is tame and whose holonomy representation is
relatively elliptic. We will define these terms in §3.1.

3.1. Ends, framing, and grafting. Let Σ̃ be the topological universal cover of

Σ, and choose an identification Σ̃ ∼= H2 coming from a uniformization of Σ as a

complete hyperbolic surface of finite area. An end E of Σ̃ is defined to be the fixed
point of a parabolic deck transformation in the boundary of H2 in the closed disk

model. For every puncture x of Σ, we denote by Ex(Σ̃) the set of ends covering x
(see Remark 3.1.1 for more details), and by

E(Σ̃) := ∪xEx(Σ̃),

the set of all ends. The end-extension of Σ̃ is the topological space Σ̃# = Σ̃∪E(Σ̃),

equipped with the topology generated by all open sets of Σ̃ together with the
horocyclic neighborhoods of the ends, i.e. sets of the form N = N0 ∪ {E} where N0

is an open disk in the closed disk model for H2 which is tangent to the boundary

at E. The action of π1(Σ) on Σ̃ naturally extends to a continuous (neither free nor

proper) action on Σ̃#. The quotient of E(Σ̃) by this action is precisely the set of
punctures of Σ.

Remark 3.1.1. Ends cover the punctures of Σ in the sense that the universal cover

projection Σ̃→ Σ admits a continuous extension to a map Σ̃# → Σ. In particular, a

sequence of points xn ∈ Σ̃ converges to an end E ∈ E(Σ̃) if and only if its projection
to Σ is a sequence of points converging (in Σ) to the puncture covered by E. This
happens if and only if xn eventually enters every horocyclic neighborhood of E.

Remark 3.1.2. Notice that Σ̃ is open and dense in Σ̃#, but this is not the same
topology as the one induced from the closed disk model for H2. Indeed the topology

of Σ̃# is strictly finer; the natural inclusion of Σ̃# into the closed disk is continuous
but not open. Furthermore, the topology induced on the collection of ends is

discrete, so Σ̃# is not compact. Actually not even locally compact, as ends do not
have compact neighborhoods.

Recall that a peripheral element δx ∈ π1(Σ) is the homotopy class of a peripheral
loop (also denoted by δx) around the puncture x. If Ex is an end covering x, then
δx is a generator of the stabilizer of Ex in π1(Σ). We make the convention that δx
is the positive peripheral element if the corresponding peripheral loop is positively
oriented, namely it turns anticlockwise around x (with respect to the orientation
of Σ). This convention is chosen to match the convention that the angle between
two circles is also taken in the anticlockwise direction.

Let σ ∈ P(Σ) be represented by a developing pair (dev, ρ). We say that σ is:
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• Tame at a puncture x: if dev admits a continuous extension

(dev#)x : Σ̃ ∪ Ex(Σ̃)→ CP1.

• Tame: if dev admits a continuous extension

dev# : Σ̃ ∪ E(Σ̃)→ CP1.

Note that this is equivalent to σ being tame at each puncture.
• Relatively elliptic: if the holonomy representation is relatively elliptic, i.e.

the holonomy of every peripheral element is an elliptic Möbius transforma-
tion.
• Degenerate: if the holonomy representation is degenerate in the sense of

[Gup21, Definition 2.4], i.e. if either one of the following happens:
– there are two points p± ∈ CP1 such that the entire holonomy preserves

the set {p±} and the holonomy of every peripheral element fixes p±
individually;

– there exists a point p ∈ CP1 such that the entire holonomy fixes p and
the holonomy of every peripheral element is parabolic or identity.

The property of being degenerate is related (but not equivalent) to the more classical
notions of reducible or elementary representations. In the case of punctured spheres,
a degenerate representation is always reducible; on the other hand a representation
generated by rotations of the Euclidean plane around different points is reducible
but non-degenerate (see [Gup21, §2.4] for a discussion).

The above notions are invariant under conjugation of representations in PSL2C
and post-composition of developing maps by Möbius transformations, thus they do
not depend on the choice of representative pair (dev, ρ). The deformation space
of CP1–structure on Σ which are tame, relatively elliptic and non-degenerate is
P�(Σ). The image of P�(Σ) under the holonomy map is R�(Σ) := Hol(P�(Σ)).

Lemma 3.1.3. Let σ ∈ P(Σ) and let (dev, ρ) be a developing pair. Let x be a
puncture and suppose that σ is tame at x. Let Ex be an end covering x and let
δx ∈ π1(S) be a peripheral element fixing it. Then:

(1) the map (dev#)x is ρ–equivariant. In particular, the transformation ρ(δx)
fixes dev#(Ex);

(2) the transformation ρ(δx) is either trivial, parabolic or elliptic.

Proof.

(1) Follows by equivariance of dev and continuity of the extension dev#.
(2) Let p := (dev#)x(Ex) be one of the fixed points of ρ(δx), and assume by

contradiction that ρ(δx) is hyperbolic or loxodromic. Then it has another
fixed point q and there is a ρ(δx)–invariant simple arc ` joining them. Let η
be an initial segment of ` starting at p and ending at some other point y on `,
and lift it to an arc η̃ starting at Ex. Consider the family of arcs η̃n := δnx ·η̃,
for n ∈ Z. Up to replacing δx with its inverse, the sequence {(dev#)x(η̃n)}
converges to the whole curve ` as n→ +∞, and shrinks to p as n→ −∞.
Hence for all n ∈ Z there is a point xn ∈ η̃n developing to y. Then we

have xn → Ex in the topology of Σ̃#, but also (dev#)x(xn) = y 6= p, which
contradicts the continuity of (dev#)x at Ex.

�
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We will see in §4 that if σ ∈ P�(Σ) then σ ∈ P•(Σ), i.e. the underlying complex
structure is that of a punctured Riemann surface. More precisely, σ can be defined
by a suitable meromorphic quadratic differential with double poles (cf. Theorem E).
However P�(Σ) is strictly contained in P•(Σ), as the following examples show.

Example 3.1.4. We now collect examples of structures in P•(Σ) which are or are
not in P�(Σ). These examples show that being tame and having relatively elliptic
holonomy are independent concepts.

• All structures induced by Euclidean or hyperbolic metrics with cone points
of angles 2πθ are in P�(Σ), when θ 6∈ N. For spherical metrics one has to
additionally require that they do not have coaxial holonomy (see [MP16]).

• The structure induced by a complete hyperbolic metric of finite area is tame,
but its holonomy is not relatively elliptic because peripherals have parabolic
holonomy. Hence it is in P•(S) but not in P�(Σ).

• Let σ0 be the structure induced by a constant curvature metric with cone points
of angles 2πθ, for θ 6∈ N. Remove disks centered at the cones, turn them
into crowns and perform infinitely many graftings along arcs joining the crown
tips. The resulting structure is in P•(Σ) and has relative elliptic holonomy,
but it is not tame, hence it is not in P�(Σ). This construction is described
in [GM21], where it is shown that these structures arise from meromorphic
quadratic differentials with poles of order at least 3 on punctured Riemann
surfaces. Compare Example 3.2.10.

• Let σ0 ∈ P(Σ) be the complex projective structure induced by a hyperbolic
metric on the closed surface Σ. Pick a simple closed geodesic and let σn be
the structure obtained by grafting along it n times. For n → ∞ we obtain a
punctured surface Σ with two punctures (possibly disconnected if the geodesic is
separating) which is endowed with a complex projective structure in P•(S) (see
[Hen11]). However it is not tame, and peripherals have hyperbolic holonomy, so
it is not in P�(Σ). Compare Example 3.2.11.

We conclude this section by observing that structures in P� carry some addi-
tional piece of information which can be regarded as a decoration of the holonomy
representation. A framing for a representation ρ : π1(Σ) → PSL2C consists of a
choice of a fixed point in CP1 for the holonomy about each puncture (compare
[AB20; Gup21]). When considering representations up to conjugacy (as we do), a

framing can equivalently be defined as a ρ–equivariant map F : E(Σ̃)→ CP1 from
the space of ends to CP1. A framing is said to be degenerate if one of the following
occurs (compare [Gup21, §2.5]):

• F(E(Σ̃)) consists of two points, preserved as a set by every element, and
fixed individually by the holonomy at every puncture;

• F(E(Σ̃)) consists of one point, fixed by every element, and the holonomy
at every puncture is either parabolic or the identity.

Every framing of a every non-degenerate representation is non-degenerate (cf. [Gup21,
Prop.3.1]). In general, a CP1–structure can be framed in different ways, by arbi-
trarily picking the fixed point for each peripheral curve. However, tame structures
can be canonically framed.

Corollary 3.1.5. Let σ ∈ P�(Σ). Then the extension of a developing map provides
a non-degenerate canonical framing for the holonomy.
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Figure 12. The structure on Σ̃ induced by grafting a structure
along a curve η.

Proof. Let (dev, ρ) be a developing pair defining σ. By Lemma 3.1.3 we know
dev extends naturally to a map dev# on the space of ends. The restriction F =
dev#

∣∣
E(Σ̃)

provides the desired framing. The framing is non-degenerated because

ρ itself is a non-degenerate representation. �

In the following, whenever dealing with a structure σ ∈ P�(Σ), we assume that
this natural framing F has been chosen for its holonomy representation, and refer
to the pair (ρ,F) as its framed holonomy.

In this paper we are mostly interested in a surgery that can be used to deform
CP1–structures and explore their moduli space. It was introduced by Maskit (see
[Mas69]) and later developed in unpublished work of Thurston (see [KT92; Dum09;
Bab20] and references therein for some accounts). The specific version we are
interested in is designed to create new structures from old ones without changing
their holonomy. For convenience we define it just in the setting of CP1–structures
in P�(Σ).

Let σ ∈ P�(Σ), and let η : I → Σ be an ideal arc (i.e. with endpoints in the set
of punctures). We say η is graftable if it is simple and injectively developed, i.e dev#

is injective on some (every) lift of η to Σ̃#, all the way to the ends. In particular, the
two endpoints develop to two distinct points. When η is graftable, the developed
image of any of its lifts dev#(η̃) is a simple arc in CP1, hence CP1 \ dev#(η̃) is a
topological disk, endowed with a natural CP1–structure, which we call a grafting
region.

Let σ ∈ P�(Σ) and let η : I → Σ be a graftable arc. The grafting of σ along η is
the CP1–structure Gr(σ, η) obtained by the following procedure: for each lift η̃ of η

to the universal cover, cut Σ̃ along η̃ and glue in a copy of the disk CP1 \ dev#(η̃)
using dev# as a gluing map. The obvious inverse operation is called degrafting.

The structure on Σ̃ induced by Gr(σ, η) looks like the union of the one induced by
σ together with an equivariant collection of grafting regions, glued along all the
possible lifts of η (cf. Figure 12).

Remark 3.1.6. If two graftable arcs η, η′ have the same endpoints and are isotopic
through graftable curves, then Gr(σ, η) = Gr(σ, η′), and Gr(σ, η) is graftable again
along η (see [CDF14a, Lemma 2.8] or [Ruf19a, §2] for details). On the other hand,



26 SAMUEL A. BALLAS, PHILIP L. BOWERS, ALEX CASELLA, AND LORENZO RUFFONI

if η, η′ are disjoint, then Gr(σ, η) (resp. Gr(σ, η′)) is graftable along η′ (resp. η),
and Gr(Gr(σ, η), η′) = Gr(Gr(σ, η′), η).

More generally, a grafting surgery can be defined along any graftable measured
lamination on a CP1–structure, and the reader familiar with grafting deformations
will identify the type of grafting introduced here as a type of projective 2π–grafting
(see [KT92; Dum09; Bab20] for details). We record the following statement for
future reference.

Lemma 3.1.7. Let σ ∈ P�(Σ) and η : I → Σ be a graftable arc. Then

(1) Hol(Gr(σ, η)) = Hol(σ) (i.e. grafting preserves the holonomy),
(2) Gr(σ, η) ∈ P�(Σ),
(3) grafting does not change the developed images of the punctures (i.e. grafting

preserves the framed holonomy).

Proof. The first statement is well-known in the literature for this type of grafting
(see for instance [Bab20] and references therein). The statements about tameness
and framing follow by pasting together the developing map for σ and the natural
embedding of the grafting regions in CP1. �

3.2. The Möbius completion. In this section we prove Theorem C. Henceforth
we fix a complex projective structure σ ∈ P(Σ) with developing pair (dev, ρ). First

of all we recall the definition of a natural projective completion of Σ̃ defined in
terms of σ (see [KP94] for details). Let g0 be a conformal Riemannian metric on

CP1 (e.g. the standard spherical metric). Let g := dev∗(g0) be the metric on Σ̃
obtained by pullback, and let d be the associated distance function, i.e.

d(x, y) := inf{`g(η) | η : [0, 1]→ Σ̃ is a rectifiable arc from x to y}
where `g(η) denotes the length of γ with respect to the metric g. Notice that g

is generally not invariant under deck transformations. By construction (Σ̃, d) is
a path-connected length space. It is locally path-connected, but not necessarily
geodesic. Moreover it is locally compact, but in general not proper, nor complete.

The Möbius completion Mσ(Σ̃) of Σ̃ with respect to σ is defined to be the metric

completion of (Σ̃, d). The subspace ∂σ∞(Σ̃) := Mσ(Σ̃)\Σ̃ is called the ideal boundary

of Σ̃ with respect to σ. We collect the following facts from [KP94, §2]:

(1) Different choices of the metric g0 on CP1 or of the developing map for σ

result in metrics on Σ̃ having the same underlying uniform structure. So

Mσ(Σ̃) does not depend (up to homeomorphism) on these choices.

(2) dev : Σ̃→ CP1 extends continuously to a map devσ : Mσ(Σ̃)→ CP1.
(3) The action of π1(Σ) by deck transformations extends to an action by home-

omorphisms on the Möbius completion.

Lemma 3.2.1. The map devσ is ρ–equivariant.

Proof. Let ξ ∈ ∂σ∞(Σ̃) and let xn ∈ Σ̃ a Cauchy sequence converging to ξ. Then by
continuity of devσ

devσ(γ · ξ) = devσ(γ · lim
n→∞

xn) = lim
n→∞

devσ(γ · xn)

= ρ(γ) · lim
n→∞

devσ(xn) = ρ(γ) · devσ(ξ).

�
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Lemma 3.2.2. Mσ(Σ̃) is a complete, path-connected and locally path-connected
length space.

Proof. Completeness is trivial by construction. The completion of a length space

is a length space (see for instance [BH99, I.3.6(3)]). Since Σ̃ is path-connected and

Mσ(Σ̃) is a length space, it follows that Mσ(Σ̃) is path-connected. Analogously one

can obtain that Mσ(Σ̃) is locally path-connected. �

The following examples describe more explicitly the Möbius completion for pro-
jective structures defined by certain constant curvature metrics. Notice they are
both examples of hyperbolic Möbius structures with respect to the terminology
introduced in [KP94, §2].

Example 3.2.3. Let σ = (dev, ρ) be defined by a complete hyperbolic metric of

finite area on Σ. In this case Mσ(Σ̃) is homeomorphic to a closed disk, and ∂σ∞(Σ̃)
to a circle. Ideal points are either ends, or limit points of complete lifts of closed
geodesics. Indeed, ρ : π1(Σ)→ PSL2R is an isomorphism onto Fuchsian group, and

dev : Σ̃→ CP1 is a ρ–equivariant diffeomorphism with an open hemisphere.

Example 3.2.4. Let σ = (dev, ρ) be defined by a spherical metric on Σ, with cone

singularities at the punctures. In this case Mσ(Σ̃) = Σ̃# is homeomorphic to the

end-extension, and ∂σ∞(Σ̃) = E(Σ̃). Indeed, the action of π1(Σ) on Σ̃ preserves a
spherical metric and admits a fundamental domain D given by a geodesic spherical
polygon having finite area A and all the vertices in the set of ends. Notice that
each pair of non-intersecting edges of this polygon has positive finite distance, and

let L > 0 be the minimum of such distances. Pick ξ ∈ ∂σ∞(Σ̃), and a rectifiable

curve of finite length γ : [0, 1)→ Mσ(Σ̃) tending to ξ. If γ intersects finitely many
fundamental domains, then it is eventually contained in a single one, hence ξ must
be an end. If γ intersects infinitely many domains Dn, then the length of the arcs
γ ∩Dn converges to zero, so is eventually less than L. In particular, eventually all
the domains Dn share a common vertex. By construction this vertex is an end and
γ converges to it, which forces ξ to be an end.

Lemma 3.2.5. For all x ∈ Σ̃, ξ ∈ ∂σ∞(Σ̃) and c > 0 there is a continuous curve ηc :

[0, 1)→ Σ̃ such that ηc(0) = x, limt→1 ηc(t) = ξ and d(x, ξ) ≤ `(ηc) ≤ d(x, ξ) + c.

Proof. By definition d(x, ξ) = limn→∞ d(x, yn) for any Cauchy sequence {yn} con-

verging to ξ. Let {yn} be a Cauchy sequence in Σ̃ converging to ξ such that

d(x, yi) ≤ d(x, ξ) +
1

i
, and d(yi, yi+1) ≤ 1

i2
.

Such sequence can be easily constructed from any Cauchy sequence by taking an

appropriate subsequence. Since Σ̃ is a length space, for all k there is a continuous

curve γk : [0, 1]→ Σ̃ such that γk(0) = yk, γk(1) = yk+1 and

`(γk) ≤ d(yk, yk+1) +
1

k2
=

2

k2
.

By concatenating these curves, for every i, we obtain a continuous curve γi : [0, 1)→
Σ̃ such that γi(0) = yi, limt→1 γi(t) = ξ, and

`(γi) ≤
∞∑
k=i

2

k2
=: Ti.
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In particular, limi→∞ `(γi) = limi→∞ Ti = 0. Finally, let ηi : [0, 1) → Σ̃ be a
continuous curve such that ηi(0) = x, ηi(1) = yi, and

`(ηi) ≤ d(x, yi) +
1

i2
.

Let fi : [0, 1) → Σ̃ be the continuous curve obtained by concatenating ηi with γi.
Then fi is a continuous curve such that fi(0) = x, limt→1 fi(t) = ξ and

d(x, ξ) ≤ `(fi) = `(ηi) + `(γi) ≤ d(x, yi) +
1

i2
+ Ti ≤ d(x, ξ) +

1

i
+

1

i2
+ Ti.

Now let i such that 1
i + 1

i2 + Ti < c and take fc := fi. �

Lemma 3.2.6. Let ξ ∈ ∂σ∞(Σ̃) and ε > 0. Then Bσ(ξ, ε) ∩ Σ̃ is path-connected.

Proof. First of all let us show that each path-component N of Bσ(ξ, ε)∩ Σ̃ contains
points arbitrarily close to ξ. Pick a base point x ∈ N , and let R = d(x, ξ); notice

R < ε. By Lemma 3.2.5 for all c > 0 we can pick a continuous curve ηc : [0, 1)→ Σ̃
such that ηc(0) = x, limt→1 ηc(t) = ξ and R ≤ `(ηc) ≤ R+ c. For each t ∈ [0, 1) we
have

d(ηc(t), ξ) ≤ `(ηc([t, 1))) ≤ `(ηc([0, 1))) ≤ R+ c.

In particular, for c < 1
2 (ε−R) we get that d(ηc(t), ξ) < ε, i.e. ηc is entirely contained

in Bσ(ξ, ε) ∩ Σ̃. Since it is a curve starting at x, it is then entirely contained in N ;
since it converges to ξ we get limt→1 d(ηc(t), ξ) = 0.

Suppose by contradiction that Bσ(ξ, ε) ∩ Σ̃ admits at least two different path-
components N1, N2. Let xk ∈ Nk be two points such that d(xk, ξ) <

ε
4 . In partic-

ular, d(x1, x2) < ε
2 . Since (Σ̃, d) is a length space, for every δ > 0 we can find a

continuous curve γδ : [0, 1]→ Σ̃ joining x1 to x2 of length at most ε
2 + δ. Let now

z ∈ γδ. Without loss of generality let us assume that d(z, x1) ≤ d(z, x2), so that by
triangle inequality we get

d(z, ξ) ≤ d(z, x1) + d(x1, ξ) ≤
1

2

(ε
2

+ δ
)

+
ε

4
=
ε

2
+
δ

4
.

In particular, for each δ < ε we get that the curve ηδ is at distance at most ε from

ξ. In particular, it is entirely contained in Bσ(ξ, ε) ∩ Σ̃, which contradicts the fact
that x1, x2 are in distinct path-components.

�

Our next goal is to define a cyclic order on ∂σ∞(Σ̃), which will induce a total

order on ∂σ∞(Σ̃) \ {ξ}, for any ξ ∈ E(Σ̃).

Lemma 3.2.7. For any pair of distinct points (ξ0, ξ1) ∈ ∂σ∞(Σ̃) there exists a simple

continuous curve γ : (0, 1)→ Σ̃ such that limt→0 γ(t) = ξ0, limt→1 γ(t) = ξ1.

Moreover, for any such curve γ, the space Mσ(Σ̃) \ Cl(γ) has exactly two path-
components, which we call the left and right components CL(γ), CR(γ) with respect

to the orientation of γ. The induced partition of ∂σ∞(Σ̃) as

{ξ0, ξ1} ∪ (∂σ∞(Σ̃) ∩ CL(γ)) ∪ (∂σ∞(Σ̃) ∩ CR(γ))

only depends on the ordered pair (ξ0, ξ1) and not on γ.
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Proof. Existence of γ is clear, for instance by Lemma 3.2.5. Let us show that its

complement consists of exactly two path-components. Σ̃ \ γ clearly has exactly

two path components, so Mσ(Σ̃) \ Cl(γ) has at most two components (again by
Lemma 3.2.5). We need to show that no ideal point can be joined by an arc to
both components. This follows from Lemma 3.2.6.

To show that the induced decomposition of ∂σ∞(Σ̃) does not depend on the choice
of γ, just notice that any two such curves are isotopic relatively to their endpoints

in Σ̃. �

Hence we denote by CL(ξ0, ξ1) := ∂σ∞(Σ̃)∩CL(γ) and CR(ζ, ξ) = ∂σ∞(Σ̃)∩CR(γ)
for any curve γ as in Lemma 3.2.7. We define the following ternary relation on

∂σ∞(Σ̃). If ξ0, ξ1, ζ ∈ ∂σ∞(Σ̃) then we say they are in relation (denoted [ξ0, ζ, ξ1]) if
ζ ∈ CR(ξ0, ξ1), i.e. ζ is on the right of γ.

Remark 3.2.8. This relation defines a π1(Σ)–invariant cyclic order on ∂σ∞(Σ̃).

The goal of the rest of this section is to explore the features of the Möbius
completion and the ideal boundary in the case of structures from P�(Σ).

Proposition 3.2.9. A structure σ is tame if and only if the natural embedding

jσ : Σ̃ ↪→ Mσ(Σ̃) extends to a π1(Σ)–equivariant continuous embedding j#
σ : Σ̃# ↪→

Mσ(Σ̃). Moreover in this case dev# = devσ ◦j#
σ .

Proof. First assume the existence of a π1(Σ)–equivariant continuous embedding

j#
σ : Σ̃# ↪→ Mσ(Σ̃). As remarked above there exists a continuous extension devσ of

dev to Mσ(Σ̃). Then devσ ◦jσ provides a continuous extension of dev to Σ̃#, i.e. σ
is tame.

Conversely let σ be tame, let E ∈ E(Σ̃) and pE = dev#(E). Since dev extends
continuously to E, for all ε > 0 the set Nε = (dev#)−1(B(pE , ε)) is an open

neighborhood of E in Σ̃#, containing points at distance at most ε from E. Therefore

we can construct a Cauchy sequence xn in Σ̃ converging to E (in Σ̃#). We can

associate to E the limit of xn in the completion Mσ(Σ̃). Suppose yn is another

Cauchy sequence in Σ̃ converging to E (in Σ̃#). By definition of the topology on Σ̃,
continuity of dev# at E implies that dev#(xn) and dev#(yn) both converge to pE .
Hence yn eventually enters each neighborhoodNε. As a result we get d(xn, yn) ≤ 2ε,
which implies that the two sequences give rise to the same point in the completion.
This defines the desired extension, which is (sequentially) continuous. Injectivity
follows from the fact that any two ends are at a positive distance from each other.

Moreover dev# = devσ ◦j#
σ because they agree on the dense subset Σ̃ and CP1 is

Hausdorff. �

In particular, tame structures have infinitely many ideal points, hence they are
of hyperbolic type with respect to the classification in [KP94]. Moreover it should
be noticed that ends do not have compact neighborhoods, so that the completion
fails to be locally compact or proper.

Example 3.2.10. Gupta and Mj in [GM21] consider structures obtained by graft-
ing crowned hyperbolic surfaces, and show that the local structure at the crown
can be modeled by a meromorphic differential with a pole of sufficiently high order.
For such a structure, every sequence going off to a puncture gives rise to an ideal



30 SAMUEL A. BALLAS, PHILIP L. BOWERS, ALEX CASELLA, AND LORENZO RUFFONI

point in the Möbius completion, but sequences converging in different Stokes sec-
tors develop to sequences converging to different limit points in CP1, hence give rise
to different ideal points in the Möbius completion. They are not tame structures
(as observed in Example 3.1.4), and the space of ends does not embed continuously
in their ideal boundary. Notice that Lemma 3.2.6 applies to each individual ideal

point, while the intersection of Σ̃ with the neighborhood of an end can fail to be
connected.

Example 3.2.11. For a more extreme behavior, take a closed hyperbolic surface,
and graft it along a geodesic pants decomposition infinitely many times. The un-
derlying complex structure is being pinched along each pants curve, and in the
limit the structure decomposes into a collection of thrice–punctured spheres (see
[Hen11, §6]). There, punctures do not give rise to well-defined ideal points; in-
deed, the structure has hyperbolic peripheral holonomy, hence it is not tame (by
Lemma 3.1.3).

Remark 3.2.12. In general the embedding j#
σ in Proposition 3.2.9 is not open.

For instance consider the tame relatively parabolic structure induced by a complete
finite area hyperbolic metric. In this case the completion is the closed disk, and we
have already observed in Remark 3.1.2 that inclusion of the space of ends in it is
not open. We will show below in Proposition 3.2.15 that having relatively parabolic
holonomy is actually the only obstruction to the openness of j#

σ .

For a point p ∈ Mσ(Σ̃) we define the balls

B(p, r) := {z ∈ Σ̃ | d(p, z) < r},

B#(p, r) := {z ∈ Σ̃# | d(p, z) < r},

Bσ(p, r) := {z ∈ Mσ(Σ̃) | d(p, z) < r}.
By Proposition 3.2.9, B(p, r) ⊆ B#(p, r) ⊆ Bσ(p, r) for any p and r, and these balls
are open. For small values of r they also enjoy extra properties.

By Proposition 3.2.9 we know we can embed the space of ends in the ideal bound-

ary ∂σ∞(Σ̃) of the Möbius completion Mσ(Σ̃). So it makes sense for a given subset

Z of Σ̃ to consider its closure Cl#(Z) in Σ̃# or Clσ(Z) in Mσ(Σ̃); by complete-

ness of Mσ(Σ̃), the latter is the same as the metric completion of Z with respect
to some choice of metric as in the previous sections. In either case, the (topolog-
ical) boundary of a subset Z is the difference between its closure and its interior
∂Z := Cl(Z) \ Int(Z).

Lemma 3.2.13. For each p ∈ Σ̃ let R = d(p, ∂σ∞(Σ̃)). Then for all r < R the
following hold.

(1) B(p, r) = B#(p, r) = Bσ(p, r),
(2) Cl(B(p, r)) = Cl#(B#(p, r)) = Clσ(Bσ(p, r)) is complete.

Proof. Since the metric structure on Σ̃ is induced by the Riemannian metric gE , for
sufficiently small radius, the metric balls are just balls for the Riemannian metric
gE . In particular, they are all disjoint from the ideal boundary, hence they coincide

and their closure is complete and contained in Σ̃. �

Lemma 3.2.14. For each p ∈ Σ̃ let R = d(p, ∂σ∞(Σ̃)); then for all r ≤ R the
developing map induces an isometry between Clσ(Bσ(p, r)) and Cl(B(dev(p), r)).
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Proof. Let I be the set of r ∈ [0, R] such that the developing map induces an
isometry between Clσ(Bσ(p, r)) and Cl(B(dev(p), r)). We are going to show that I
is not empty, open on the right and closed on the right to conclude that I = [0, R].

• [0, ε) ⊂ I for ε > 0 small enough. This is because dev is a local isometry at
p.
• If [0, r) ⊂ I then [0, r] ⊂ I. Notice that the developing map induces an

isometry between Clσ(Bσ(p, r− 1
n )) and Cl(B(dev(p), r− 1

n )) for all n > 0.
This is enough to deduce that the developing map induces an isometry
between Bσ(p, r) and B(dev(p), r). Since Clσ(Bσ(p, r)) is complete, and
the metric completion is unique, the developing map induces an isometry
between Clσ(Bσ(p, r)) and Cl(B(dev(p), r)).
• If [0, r] ⊂ I, r < R then [0, r + ε] ⊂ I for ε > 0 small enough. Given that
r ∈ I, then the developing map induces an isometry between Clσ(Bσ(p, r))
and Cl(B(dev(p), r)). In particular, ∂ Bσ(p, r) is compact. Since r <

d(p, ∂σ∞(Σ̃)), there is an ε–neighborhood of ∂ Bσ(p, r) on which dev is an
isometry and r + ε ∈ I.

�

We call Clσ(Bσ(p,R)) the maximal ball centered at p. It is a maximal round
ball containing p, in the sense of [KP94]. Our goal in §3.3 is to construct analogous
“round neighborhoods” of all the ends, in the case of elliptic holonomy. We will
need the following preliminary results.

Proposition 3.2.15. Let E ∈ E(Σ̃), let σ be tame at E, and let N be an open
horocyclic neighborhood of E. Then j#

σ (N) is open if and only if E has non-
parabolic holonomy.

Proof. Let δE be the peripheral element fixing E, let RE := ρ(δE), and let pE =

dev#(E). By Lemma 3.2.13, every point in j#
σ (N) ∩ Σ̃ is in the interior of j#

σ (N),
so we only need to check whether E is in the interior of j#

σ (N).
First, consider the case RE is parabolic. Pick a point x ∈ ∂j#

σ (N) that does
not develop to pE , e.g. on the image via j#

σ (N) of a horocycle bounding N . Then

d(E, δnE(x))→ 0, i.e. δnE(x)→ E in Mσ(Σ̃). So the sequence δnE(x) must eventually

enter in every open neighborhood of E in Mσ(Σ̃). However it clearly does not enter
in j#

σ (N) by construction, which shows j#
σ (N) is not open.

So let us now assume RE is non–parabolic; by Lemma 3.1.3 we know that since
σ is tame at E, RE is either the identity or elliptic. Since δE acts cocompactly
on the boundary ∂N of N and dev# is a local diffeomorphism along ∂N , we have

that dev−1
# (pE) ∩ ∂N is finite in any δE–fundamental domain. In particular, we

can equivariantly modify N to a δE–invariant neighborhood W ⊂ N of E, such
that ∂W stays at finite distance from ∂N . By construction E is the only end in
the closure of W .

When RE is trivial or elliptic, the set dev#(∂W ) has compact closure in CP1 \
{pE}. In particular, it sits in the annulus {z ∈ CP1 | R1 ≤ d0(pE , z) ≤ R2}, for
some suitable radii 0 < R1 ≤ R2. For r < R1 consider the open RE–invariant ball
Dr ⊆ CP1 of radius r around pE , as well as the open ball Bσ(E, r). Observe that
devσ(Bσ(E, r)) is contained in Dr, and so is disjoint from dev#(∂W ). We claim
Bσ(E, r) ⊆ j#

σ (W ) ⊂ j#
σ (N). By contradiction let x ∈ Bσ(E, r) \ j#

σ (W ). Then
connect x to E by a continuous arc γ contained in Bσ(E, r) (which is possible since
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Figure 13. A horocycle containing a ball, in the elliptic case.

we are in a length space). Then γ has to cross ∂j#
σ (W ), since ∂W separates E from

the complement of W in Σ̃#. Then devσ(γ) meets dev#(∂W ) = devσ(∂j#
σ (W )),

which leads to the desired contradiction. �

We summarize the results of this section in the following statement.

Theorem C. Let σ ∈ P(Σ) be non-degenerate and without apparent singularities.

Let j# : Σ̃ → Σ̃# and jσ : Σ̃ → Mσ(Σ̃) be the natural embeddings. Then σ ∈
P�(Σ) if and only if there exists a continuous open π1(Σ)–equivariant embedding

j#
σ : Σ̃# → Mσ(Σ̃) that makes the following diagram commute

Σ̃ CP1

Σ̃#

Mσ(Σ̃)

j#

jσ

dev#

devσ

j#σ

Proof. First assume σ ∈ P�(Σ). Since σ is tame, by Proposition 3.2.9 we know

that jσ : Σ̃ ↪→ Mσ(Σ̃) extends to a π1(Σ)–equivariant continuous embedding j#
σ :

Σ̃# ↪→ Mσ(Σ̃), and that dev# = devσ ◦j#
σ . To check that j#

σ is open we argue as

follows. Observe that the restriction of j#
σ to Σ̃ is just the natural embedding of Σ̃

in its completion, which is open. So we only need to check the ends. Let E be an
end; without loss of generality we can assume that an open neighborhood of E in

Σ̃# is an open horocycle N . Since σ is relatively elliptic, Proposition 3.2.15 implies

that j#
σ (N) is an open neighborhood of j#

σ (E) in Mσ(Σ̃).
Conversely, assume the existence of the extension j#

σ as in the statement. Its
continuity implies tameness of σ by Proposition 3.2.9. Let E be an end. By
Lemma 3.1.3 we know that the holonomy of σ at E is either trivial, parabolic
or elliptic. The first case is excluded by the hypothesis that σ has no apparent
singularities, and the second case by the hypothesis that j#

σ is open, together with
Proposition 3.2.15. Therefore σ is relatively elliptic. It is also assumed to be non-
degenerate, hence we can conclude that σ ∈ P�(Σ). �

Corollary 3.2.16. If σ ∈ P(Σ), then E(Σ̃) is a discrete subspace of ∂σ∞(Σ̃).

Proof. Let E be an end. By Theorem C any horocyclic neighborhood N of E is

open for the topology of Mσ(Σ̃), under the natural embedding j#
σ . By definition,

N does not contain any other point of ∂σ∞(Σ̃), hence E is an open point. �
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Corollary 3.2.17. Let σ be tame and relatively elliptic. For every end E ∈ E(Σ̃),

the action of the peripheral subgroup 〈δE〉 on Mσ(Σ̃) \ {E} is proper and free.

Proof. The action on the Möbius completion extends the action by deck transfor-

mations, so the statement is trivial for points in Σ̃. By Proposition 3.2.15, both
metric balls and horocyclic neighborhoods provide fundamental systems of neigh-
borhoods of the ends in the completion. So one can see that the action of δE on

the subspace E(Σ̃) \E is proper and free. The case of a general ideal point follows
from this fact together with the existence of an δE–invariant cyclic order on the
ideal boundary (cf. Remark 3.2.8). �

3.3. Local properties of the developing map at an end. The main goal of this
section is to prove Theorem D, about the behavior of developing maps around E for

a structure σ ∈ P�(Σ). If σ has developing pair (dev, ρ), and if E ∈ E(Σ̃), then let
pE := dev#(E) ∈ CP1 and let δE ∈ π1(Σ) be a peripheral element fixing E. Then
RE := ρ(δE) is an elliptic Möbius transformation fixing pE (cf. Lemma 3.1.3); let
qE denote the other fixed point of RE . We will construct a family of δE–invariant
neighborhoods of E which develop to RE–invariant round disks in CP1, and on
which dev# restricts to a branched covering (branching only at E).

While the results of the previous sections relied (but did not depend), on the
choice of the background metric g0 on CP1, we now want to exploit the fact that
the peripheral holonomy is elliptic to pick a convenient metric. The topological
structure of the Möbius completion is not affected by this (e.g. ideal points, etc),
but finer metric statements (e.g. the shape and properties of individual metric balls)
are. Let g0 be the unique RE–invariant spherical round metric on CP1 for which
pE , qE of RE are antipodal points at distance 1. Let us denote by gE = dev∗(g0) the

Riemannian metric and by dE the distance function induced on Σ̃. By construction,

the Möbius completion is the metric completion of (Σ̃, dE).

Lemma 3.3.1. Let U ⊆ Mσ(Σ̃) be a δE–invariant neighborhood of E. Then the
distance between δE–orbits defines a metric on U/〈δE〉 with respect to which the
quotient map

πE : U \ {E} → (U \ {E})/〈δE〉
is a locally isometric covering map.

Proof. Let πE(u), πE(v) ∈ U/〈δE〉. Then their distance is defined to be

d(πE(u), πE(v)) := inf{d(δnE(u), δmE (v)) | m,n ∈ Z}.

Since the action on U \ {E} is isometric, free and proper (cf. Corollary 3.2.17), by
[BH99, Proposition I.8.5] we get our statement in the complement of the end. To
include the end it is enough to notice that it is an isolated fix point and that no
orbit accumulates to it, since the holonomy is elliptic. �

Lemma 3.3.2. Let U ⊆ Mσ(Σ̃) be a δE–invariant neighborhood of E on which δE
acts cocompactly. Then the following holds.

(1) U is complete.
(2) If V ⊆ U is closed and δE–invariant, then V is complete and δE acts on V

cocompactly.

Proof.
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(1) Let xn ∈ U be a Cauchy sequence. Let us denote by Fn a (coarse) compact
fundamental domain for the action 〈δE〉y U containing xn. If the sequence
of Fn eventually stabilizes to some F , then eventually the sequence xn lies
entirely in F , hence converges in it by compactness. So let us assume that
the sequence Fn does not stabilize. We claim that since xn is a Cauchy
sequence this forces dE(xn, E) to decrease to zero, i.e. xn converges to E.
Indeed, since the holonomy is elliptic and the metric invariant, if |n−m| is
large enough then the shortest curve between a point in Fn and a point in
Fm goes through E.

(2) If V is closed then it is complete by completeness of U . Let F be a (coarse)
compact fundamental domain for the action 〈δE〉y U . Since V is invariant
we get V/〈δE〉 = (V ∩ F )/〈δE〉, and this is compact because V ∩ F is.

�

We have seen in Proposition 3.2.15 that, when the holonomy is elliptic, horocycles
contain metric balls (cf. Figure 13). We now describe a sufficient condition on a
metric ball to be fully contained in a horocycle. Notice that the following statement
fails in the case of parabolic holonomy (see Remark 3.2.12).

Lemma 3.3.3. For each E ∈ E(Σ̃) let ρE := dE(E, ∂σ∞(Σ̃) \ {E}). Then ρE > 0
and for all 0 < r < ρE, there is a proper horocyclic neighborhood of E containing
Bσ(E, r).

Henceforth we call ρE := dE(E, ∂σ∞(Σ̃) \ {E}) the critical radius of E.

Proof. For the first part of the lemma, let V be a proper (i.e. Cl#(V ) ( Σ ∪ {E})
horocycle based at E. By Proposition 3.2.15 part (1), V is open, so there is r > 0
such that Bσ(E, r) ⊆ V . We claim that Bσ(E, r) ⊂ Σ ∪ {E}, from which it follows
that ρE ≥ r > 0. Recall that δE acts cocompactly on Cl#(V ), therefore Cl#(V ) is
complete by Lemma 3.3.2. It follows that

Clσ(Bσ(E, r)) ⊆ Clσ(V ) = Cl#(V ) ( Σ ∪ {E}.
Next, let r < ρE . Suppose by contradiction that, for every proper horocyclic

neighborhood N of E, there was a point x ∈ Bσ(E, r) \N . Fix {Nk} a sequence of

proper horocyclic neighborhoods of E such that Nk ⊂ Nk+1 and ∪Nk = Σ̃ ∪ {E}.
Let xk ∈ Bσ(E, r)\Nk. For every k, let rk := dE(E, ∂Nk). As δE acts cocompactly
and by isometries on ∂Nk, there is some point on ∂Nk at distance rk from E. The
fact that E /∈ ∂Nk and the sequence {Nk} is nested further implies that:

rk > 0, rk ≤ rk+1 and lim
k→∞

rk = ρE .

Notice that the second inequality is due to the fact that ∂Nk separates E from
∂Nk+1. Similarly, ∂Nk separates E from xk, therefore rk ≤ dE(E, xk) < r, hence
in the limit we get ρE = limk→∞ rk ≤ r, in contradiction with the choice of r.

�

Corollary 3.3.4. For each E ∈ E(Σ̃) and 0 < r < ρE, B#(E, r) = Bσ(E, r) and
Cl#(B#(E, r)) is complete. Moreover, Cl#(B#(E, r)) = Clσ(Bσ(E, r)).

Proof. By Lemma 3.3.3, the ball B#(E, r) is contained in a proper horocyclic neigh-

borhood V of E. It follows that Bσ(E, r) ⊂ Σ̃ ∪ {E} and so B#(E, r) = Bσ(E, r).
By Lemma 3.3.2, the closed ball Cl#(B#(E, r)) is complete.
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Finally, since Cl#(B#(E, r)) contains B#(E, r) and is complete, it must contain

the completion of B#(E, r). Since Mσ(Σ̃) is complete we have that Clσ(Bσ(E, r))
coincides with the completion of Bσ(E, r). But we also know that Bσ(E, r) =
B#(E, r). So Clσ(Bσ(E, r)) coincides with the completion of B#(E, r), and it is
therefore contained in Cl#(B#(E, r)). �

Recall that a metric space Z is star-shaped at a point x ∈ Z if, for every y ∈ Z
there is a geodesic in Z connecting x to y.

Lemma 3.3.5. For each E ∈ E(Σ̃) and 0 < r < ρE, the open ball Bσ(E, r) is
star-shaped at E.

Proof. Let x ∈ Bσ(E, r) and let r′ := dE(x,E) < r. By Lemma 3.2.5, for all c > 0

we can pick a continuous curve ηc : [0, 1)→ Σ̃ such that ηc(0) = x, limt→1 ηc(t) = E
and r′ ≤ `(ηc) ≤ r′ + c. For each t ∈ [0, 1) we have

d(ηc(t), E) ≤ `(ηc([t, 1))) ≤ `(ηc([0, 1))) ≤ r′ + c.

In particular, for c < r−r′ we get that dE(ηc(t), E) < r, i.e. ηc is entirely contained

in Bσ(E, r) ∩ Σ̃. Let γn : [0, 1)→ Bσ(E, r) be the curve obtained for c = 1
n .

Consider the quotient πE : Clσ(Bσ(E, r)) → Clσ(Bσ(E, r))/〈δE〉 =: Y . It fol-
lows from Lemma 3.3.1 that πE is a branched covering map onto a metric space,
branching only at E; let us denote by dY the distance in Y . Moreover by Lem-
mas 3.3.3 the ball Bσ(E, r) is properly contained in a horocycle. Since δE acts
cocompactly on horocycles, it follows that Y is compact by Lemma 3.3.2. Notice
that since δE acts by isometries and E is the only fixed point, we also have that
r′ = dE(x,E) = dY (πE(x), πE(E)).

Projecting the curves γn to the quotient we obtain curves πE ◦ γn : [0, 1) → Y
such that πE ◦ γn(0) = πE(x), limt→1 πE ◦ γn(t) = πE(E) and

dY (πE(E), πE(x)) = r′ ≤ `(πE ◦ γn) ≤ r′ + 1

n
.

In particular, by Arzelà-Ascoli we can extract a uniform limit γ : [0, 1] → Y . By
the above length inequality we obtain

dY (πE(E), πE(x)) = r′ = `(γ) = lim
n→∞

`(πE ◦ γn)

i.e. γ is a geodesic from πE(x) to πE(E). Notice that it goes through πE(E) only
at one endpoint; so we can lift it to a curve γ : [0, 1)→ Clσ(Bσ(E, r)) starting at x
and limiting to E, of the same length r′. By the same argument as the beginning, γ
is completely contained in the open ball Bσ(E, r), so this is the desired geodesic. �

We now consider the restriction of devσ to a ball around an end E ∈ E(Σ̃), i.e.

devσ : Bσ(E, r)→ B(pE , r),

and we find the values of r for which it is a covering map, branching only at E. The
proof is reminiscent of (and based on) the classical fact that a local isometry from
a complete Riemannian manifold to a connected one is a covering map. Notice that
in our setting devσ is not locally isometric at E (not even locally injective), and on
the other hand Clσ(Bσ(E, r)) \ {E} is not complete. The proof shows how to deal
with this, and also provides quantitative control on the critical radius.

Proposition 3.3.6. For each E ∈ E(Σ̃) we have that ρE ≤ 1. Moreover:
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(1) for each 0 < r ≤ ρE, devσ maps ∂ Bσ(E, r) to ∂ B(pE , r);
(2) for each 0 < r ≤ ρE, devσ : Bσ(E, r) → B(pE , r) is a branched covering

map, branching only at E.

Proof. We are first going to prove statements (1) and (2) for r ≤ min{ρE , 1}, and
then we will show that ρE ≤ 1.

We begin with the following observation. Suppose r < ρE and let x ∈ ∂ Bσ(E, r).
Then dE(E, x) = r and d0(pE ,devσ(x)) ≤ r. Let r′ > 0 such that r < r′ < ρE .
Then x ∈ Bσ(E, r′) and by Lemma 3.3.5 there exists a geodesic γr from x to E
contained in Bσ(E, r′). Observe that r = `(γr) = `(devσ(γr)). Notice dev is a local

isometry on Σ̃, so γr maps to a geodesic in CP1.
Next, additionally assume that r < 1, the diameter of CP1. Then the curve

γr maps to a simple geodesic arc, starting from pE and avoiding qE , of length
r < 1. Since the choice of x above was arbitrary, it follows that devσ(∂ Bσ(E, r)) ⊆
∂ B(pE , r). In particular, it avoids qE . This concludes the proof of (1) in the case
where r < min{ρE , 1}. The limiting case r = min{ρE , 1} follows by continuity of
the developing map.

We now start the proof of (2). To begin with, we claim that when r < min{ρE , 1},
each component of ∂ Bσ(E, r) is isometric to a complete line. Since r < 1, ∂ B(pE , r)

is a circle in CP1. Since r < ρE , we have that ∂ Bσ(E, r) ⊂ Σ̃ and devσ is a local
homeomorphism on it. In particular, ∂ Bσ(E, r) is a 1–dimensional submanifold

of Σ̃; moreover it is closed in Clσ(Bσ(E, r)), hence complete by Corollary 3.3.4.
Then devσ induces a local isometry from the complete manifold ∂ Bσ(E, r) to the
connected manifold ∂ B(pE , r); it follows that it is a Riemannian covering map.
Notice that 〈δE〉 is an infinite cyclic group acting on ∂ Bσ(E, r) properly and freely
by Corollary 3.2.17, hence each component of ∂ Bσ(E, r) must be isometric to a
complete line.

Now we claim that, for all 0 < r ≤ min{ρE , 1}, devσ : Bσ(E, r) → B(pE , r) is a
branched covering map, branching only at E. First notice that

(3.3.1) Bσ(E, r) \ {E} = Bσ(E, r) \ {dev−1
σ (pE)}.

Indeed suppose z ∈ Bσ(E, r) is another point developing to pE , then there is
r′ < r ≤ ρE such that z ∈ Bσ(E, r′), and a geodesic γ from z to E contained in
Bσ(E, r′). Since devσ(E) = devσ(z) = pE , this geodesic γ has to cover at least a
great circle through pE in CP1, hence dE(E, z) ≥ 2. But r′ < r ≤ 1 forbids this.
In particular, we get a well defined local homeomorphism

ϕ := devσ
∣∣
Bσ(E,r)\{E} : Bσ(E, r) \ {E} → B(pE , r) \ {pE}.

It is enough to show that this is a covering map. We are going to show that
every point in B(pE , r) \ {pE} is evenly covered. Let y ∈ B(pE , r) \ {pE} and let
ry := d0(pE , y). Notice that 0 < ry < r. Since devσ is a covering map between
∂ Bσ(E, ry) and ∂ B(pE , ry), there is εy > 0, such that B(y, εy) ∩ ∂ B(pE , ry) is
evenly covered. Let

δy := min{εy, r − ry, ry}.
Notice that the ball B(y, δy) is entirely contained in B(pE , r)\{pE}. Then we claim

that B(y, δy) is evenly covered. Let z ∈ dev−1
σ (y) ∩ Bσ(E, r). By definition of δy,

Bσ(z, δy) is entirely contained in Bσ(E, r) \ {E}. In particular, it is smaller than
the maximal ball centered at z, so it is isometrically mapped to B(y, δy) by devσ
(cf. Lemma 3.2.14). This implies that if z′ ∈ dev−1

σ (y) ∩ Bσ(E, r) is different from
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z, then Bσ(z, δy) ∩ Bσ(z′, δy) = ∅. This concludes the proof of (2) in the case
r ≤ min{ρE , 1}.

Now suppose by contradiction that ρE > 1. Then there is r such that 1 < r < ρE ,
and the open ball Bσ(E, r) is star-shaped at E (cf. Lemma 3.3.5). Moreover, the
developing map maps ∂ Bσ(E, 1) to qE , the only point at distance 1 from pE in CP1.

Since the open ball Bσ(E, r) is entirely contained in Σ̃, and contains ∂ Bσ(E, 1), the
developing map is a local homeomorphism on ∂ Bσ(E, 1). In particular ∂ Bσ(E, 1)
is discrete. On the other hand, for every r′ < 1 = min{ρE , 1} we can apply the first
part of the proof where we proved that devσ maps ∂ Bσ(E, r′) to ∂ B(pE , r

′), and

lim
r′→1−

∂ B(pE , r
′) = {qE}.

This implies that, for radii r′ < 1 = min{ρE , 1} sufficiently close to 1, ∂ Bσ(E, r′) is
a disjoint union of circles, contradicting that each connected component is isometric
to a complete line. �

Theorem D. Let σ ∈ P�(Σ), and let E be an end. Then there is a neighborhood

N̂E of E in Mσ(Σ̃) onto which the developing map for σ restricts to a branched
covering map, branching only at E, and with image a round disk in CP1.

Proof. We can just take N̂E to be any ball Bσ(E, r) satisfying the conditions of
Proposition 3.3.6. �

Let E ∈ E(Σ̃), and let ρE be its critical radius. The open metric ball N̂E =
Bσ(E, ρE) plays the role of a canonical maximal neighborhood of E, similar to the
maximal round balls in [KP94]. Indeed, it develops to a round ball in CP1, and by

definition of ρE , the boundary of N̂E contains an ideal point. However, note that
we have normalized things “locally” at E, by fixing the RE–invariant round metric
on CP1 for which the fixed points pE , qE of the holonomy at E are antipodal points
of distance 1 (here RE = ρ(δE) denotes the peripheral holonomy at E). Then N̂E
is defined as a metric ball for the induced metric gE on Mσ(Σ̃). If E′ is a different
end, then the metric ball around E′ (with respect to gE) does not necessarily agree

with N̂E′ , which would be defined as a metric ball for the metric gE′ .
Moreover one can observe that when r < ρE the ball ∂ Bσ(E, r) contains a horo-

cycle and is contained in a horocycle. Therefore each component of its boundary is
contained in the lune between two horocycles. Since Bσ(E, r) is star-shaped at the
end, and ∂ Bσ(E, r) is invariant under the action of the peripheral δE , we can see
that ∂ Bσ(E, r) is actually connected and isometric to a complete line. In particu-
lar, ∂ Bσ(E, r) is the universal cover of ∂ B(pE , r), and Bσ(E, r) \ {E} is isometric
to the universal cover of B(pE , r) \ {pE}.

Remark 3.3.7. If σ is the tame and relatively parabolic structure induced by
complete hyperbolic metric of finite area, then dev is a global diffeomorphism,
and horocycles develop to round disks. In particular, Theorem D holds for such a
structure. However, there is no analogue of Theorem D in the general parabolic
case. For example, consider the structure obtained by grafting σ along an ideal arc,
and let E be an end covering one of the endpoints of the grafting arc. If U is any
δE–invariant neighborhood of E, then V = devσ(U) is invariant under a parabolic
transformation and contains its fixed point pE = dev#(E) in its interior. This
forces V = CP1. In particular, we see that the local homeomorphism (analogous to
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the one considered in the proof of Proposition 3.3.6)

ϕ := devσ
∣∣
U\dev−1

σ (pE)
: U \ dev−1

σ (pE)→ V \ {pE} = C

cannot be a covering map, because it is not injective and the image is simply
connected.

We conclude this chapter by discussing what happens when a tame structure σ
has an end E with elliptic holonomy and ρE = 1. By the above discussion, all the
points on the boundary of N̂E must develop to qE . It follows from the proof of
Proposition 3.3.6 that in this case the boundary of N̂E cannot contain any isolated

points in Σ̃. As a result, N̂E = Σ̃. By tameness, this forces all the ends different
from E to develop to qE . We claim that in this case Σ must be a twice-punctured
sphere, and σ is the structure associated to a power map z 7→ zα for some α ∈ R\Z.
To see this, let γ ∈ π1(Σ) be a peripheral element distinct from any power of the
peripheral element δE which fixes E. Then γ moves E to another end γE 6= E. By
equivariance and tameness of the developing map (see Lemma 3.1.3) we see that

qE = dev#(γE) = ρ(γ) dev#(E) = ρ(γ)pE

On the other hand, γ fixes an end E′ 6= E. It follows that dev#(E′) = qE = ρ(γ)qE .
We get ρ(γ)pE = ρ(γ)qE , which is absurd. Therefore all peripheral elements are
powers of a fixed one. But the only orientable surface in which this happens is a
sphere with two punctures. Notice that this surface has zero Euler characteristic,

Σ̃ identifies with C, and we can normalize things so that dev(z) = eaz, pE = 0 and
qE =∞. Deck transformations are generated by z 7→ z+2πi, and the holonomy by
w 7→ e2πiaw; ellipticity of the holonomy means a ∈ R\Z. The Möbius completion is
obtained by adding just two ideal points, for Re(z)→ ±∞, mapping to qE =∞ and
pE = 0 respectively. Structures of this type can be defined by a spherical metric
with two cone points and coaxial holonomy. Spherical metrics with cone points
and coaxial holonomy exist also on a surface of negative Euler characteristic (see
[Ere04; MP16]), and provide examples of structures with degenerate holonomy.
However such a structure must have some apparent singularities (i.e. punctures
with trivial holonomy, see [Gup21]), whose presence forces the critical radius to be
strictly less than 1 at every end with elliptic holonomy. Indeed, if E is an end with
elliptic holonomy, then the family of neighborhoods Bσ(E, r) must hit another end
(possibly one covering an apparent singularity) before r = 1. As an illustrative
example, consider the structure obtained by puncturing an additional point on a
sphere endowed with a spherical metric with two cone points.

3.4. The index of a puncture. Using the neighborhoods constructed in the pre-
vious section (namely Theorem D), we can define a numerical invariant of the
complex projective structure for each puncture, which we call the index. This is
essentially the angle that the developed image of a peripheral curve makes around
the image of a corresponding end.

Let σ ∈ P�(Σ) be a structure represented by a pair (dev, ρ). Let x be a puncture
of Σ, and let η be a positive peripheral curve in Σ around x. This can be chosen
so that for any end E covering x (in the sense of Remark 3.1.1), the lift of η which
is asymptotic to E is entirely contained in a neighborhood VE of E on which dev
is a branched covering map, branching only at E (see Theorem D).
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Let us fix an end E, and let δE ∈ π1(Σ) be the positive peripheral deck trans-
formation fixing E. We recall that pE := dev#(E) is one of the two fixed points
for the elliptic transformation ρ(δE) (see Lemma 3.1.3). Let us normalize so that
ρ(δE) fixes 0 and ∞. Let η̃ ⊂ VE be the lift of η in VE , and choose η̃0 ⊂ η̃ to be
a fundamental domain for the action 〈δE〉y η̃. Let ζ := dev(η̃0) ⊂ dev(VE) \ {0}.
Notice that freely homotoping η deeper into the puncture results in a homotopy of
ζ in the complement of pE = 0, because there are no other preimages of pE in VE
(cf. (3.3.1) in Proposition 3.3.6).

The index of the structure σ at the puncture x is defined to be the number

Iσ(x) := Im

(∫
ζ

dz

z

)
.

When clear from the context, we will usually drop the σ and write I(x) = Iσ(x).
We remark explicitly that this definition does not depend on any of the choices

involved. Indeed, let us choose a parametrization ζ : [0, 1] → C \ {0}, ζ(s) =
r(s)eiθ(s), where θ : [0, 1] → R is a determination of the argument function on
C \ {0}, and r : [0, 1]→ R. A direct computation in local coordinates shows that∫

ζ

dz

z
= log

(
r(1)

r(0)

)
+ i(θ(1)− θ(0)).

Notice that since η is chosen to be a peripheral curve, its holonomy is elliptic.
Therefore we get r(1)eiθ(1) = eiϕr(0)eiθ(0), where ϕ is such that ρ(δE)z = eiϕz. It
follows that

Iσ(x) = 2πk + ϕ,

where k ∈ Z counts the number of times ζ turns around 0 counterclockwise. Notice
that the index is always positive, since δE was chosen to be a positive peripheral.

Remark 3.4.1. Let σ ∈ P�(Σ), and let x and y be punctures. If η is a graftable
arc joining x to y, then the following holds:

• if x 6= y then IGr(σ,η)(x) = Iσ(x) + 2π and IGr(σ,η)(y) = Iσ(y) + 2π,
• if x = y then IGr(σ,η)(x) = Iσ(x) + 4π.

4. The complex analytic point of view

The theory of CP1–structures enjoys fundamental interactions with the study
of second–order linear ODEs on complex domains, namely through the use of the
Schwarzian derivative. The purpose of this chapter is to describe the complex ana-
lytic counterpart to the structures in P�(Σ) (see Theorem E). These are described
by meromorphic quadratic differentials satisfying certain conditions on their Lau-
rent expansion around poles.

4.1. Local theory at regular singularities. We start by reviewing the classical
theory for the convenience of the reader, with a particular focus to the behavior
around singularities of the coefficients (see [Inc44; Hil69]). This will provide the
local model for our structures around the punctures.

Let us consider a holomorphic function q : D∗ → C on the punctured unit disk
D∗ = {z ∈ C | 0 < |z| < 1} with a double pole at the origin with leading coefficient
a, i.e. a function of the form q(z) = a

z2 +O
(

1
z

)
. We will consider the second–order

linear ODE

(4.1.1) u′′ +
1

2
qu = 0, for u : D∗ → C,
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as well as the Schwarz equation

(4.1.2) Sf = q, for f : D∗ → CP1,

where the operator

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

is the Schwarzian derivative. The main properties of S are the following:

(1) (invariance) Sf = 0 if and only if f is the restriction of some Möbius
transformation.

(2) (cocycle) if f, g are locally injective holomorphic functions for which the
composition is defined, then S(f ◦ g) = g∗(Sf) + Sg.

The relationship between the two equations above is well known (see [Hil69,
Appendix D]), and can be summarized as follows: if u1, u2 are linearly independent
solutions for (4.1.1), then f = u1

u2
is a solution for (4.1.2); conversely, any solution for

(4.1.2) is obtained in this way. In both cases, since the domain of the equation is not
simply-connected, these equations can have non trivial monodromy, i.e. solutions
are to be considered as multi-valued functions, or as single-valued functions on a
suitable covering domain.

The classical theory of linear ODEs (see [Inc44, §15.3], or [AB20, §5] for a more
recent treatment) provides an explicit description of the local solutions of (4.1.1).
Firstly, the indicial equation of (4.1.1) is given by

r(r − 1) +
a

2
= 0.

Let r1, r2 ∈ C be its solutions; then one has two cases:

(1) if r1−r2 6∈ Z then (4.1.1) has two linearly independent solutions of the form
uk(z) = zrkhk(z) for k = 1, 2, where hk is holomorphic on D, hk(0) 6= 0;

(2) if r1 − r2 ∈ Z then (4.1.1) has two linearly independent solutions of the
form u1(z) = zr1h1(z) and u2(z) = zr2h2(z) + Cu1(z) log(z) where C ∈ C,
and hk is holomorphic on D, hk(0) 6= 0 for k = 1, 2.

An analogous dichotomy for solutions of (4.1.2) is easier to state if we write the

leading coefficient in the form a = 1−θ2
2 , where θ = ±

√
1− 2a will be called the

reduced exponent of q at z = 0. With respect to the terminology used in [AB20], the
exponent of q at z = 0 is r = ±2πi

√
1− 2a = 2πiθ. For the reader’s convenience,

we remark that in [AB20] a slightly different form of the Schwarzian derivative
is used, leading to a different normalization for constants in the correspondence
between differentials and monodromy of solutions. Observing that ±θ = r1 − r2,
and recalling the relation f = u1

u2
, one has the following:

(1) if θ 6∈ Z then (4.1.2) has a solution of the form f(z) = zθM(z), where M is
holomorphic at z = 0, M(0) 6= 0;

(2) if θ ∈ Z then (4.1.2) has a solution of the form f(z) = zθM(z) + C log(z),
where C ∈ C, and M is holomorphic at z = 0, M(0) 6= 0.

For each q one can regard a solution to (4.1.2) as a developing map for a projective
structure on D∗, equivariant with respect to the monodromy group of the equation.
Notice that the holonomy of this structure (i.e. the monodromy of (4.1.2)) is
a representation ρ : π1(D∗) → PSL2C which is just the projectivization of the
monodromy ρ̃ : π1(D∗) → SL2C of (4.1.1). If γ denotes a simple loop in D∗
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around z = 0, then the action of the monodromy is given by the linear fractional
transformation ρ(γ) · z = e2πiθz + 2πiC.

A direct computation using the above description of solutions to (4.1.2) leads
to the following statement. Here continuous extensions to the origin should be
thought in the sense of the end-extension topology introduced in §3.1.

Lemma 4.1.1. In the above notation, a solution f of (4.1.2) extends continuously
to z = 0 if and only if the reduced exponent θ is real. Moreover the following hold:

(1) if θ = 0 then ρ(γ) is parabolic (necessarily C 6= 0);
(2) if θ ∈ Z \ {0}, then ρ(γ) is trivial (if C = 0) or parabolic (if C 6= 0);
(3) if θ ∈ R \ Z, then ρ(γ) is elliptic;
(4) if θ ∈ Z⊕ iR, then ρ(γ) is hyperbolic;
(5) if θ ∈ C \ (Z⊕ iR), then ρ(γ) is purely loxodromic.

As the reader might expect, projective structures in P�(Σ) relate to the elliptic
case in the above statement.

4.2. Meromorphic projective structures. We now recall how to construct pro-
jective structures in terms of meromorphic quadratic differentials, and discuss its
relationship with our space P�(Σ) of tame, relatively elliptic, and non-degenerate
structures, introduced in §3.1. This is analogous to the classical parametrization of
complex projective structures on closed surfaces by holomorphic quadratic differ-
entials (see [Dum09, §3] for an expository account). This section includes the proof
of Theorem E.

Let us fix a complex structure X on the closed surface Σ, and let σ0 be the CP1–
structure on X defined by the Poincaré uniformization, i.e. the unique conformal
metric of constant curvature −1, 0 or 1, the exact value depending on the genus g
of X. Let X be the induced complex structure on Σ = Σ \ {x1, . . . , xn}; notice X
is a punctured Riemann surface, i.e. each xj has a neighborhood biholomorphic to
D∗. We consider the space Q2(X) of meromorphic quadratic differentials with at
worst double poles at the punctures of X; these are meromorphic sections of the
line bundle K2

X , where KX denotes the canonical bundle of X. More concretely, by
slight abuse of notation, in suitable local complex coordinates around the puncture
these differentials can be written as

q(z) =

(
a

z2
+O

(
1

z

))
dz2.

The leading coefficient at a double pole is a well-defined invariant of a quadratic
differential, i.e. does not depend on the chosen coordinates (see [Str84, §4.2]). In
particular, the local analysis developed in §4.1 applies, and provides a definition of
exponents and reduced exponents of q at a puncture.

Moreover the properties of the Schwarzian derivative ensure that the Schwarz
equation Sf = q is well-defined on X, as soon as a background projective structure
has been fixed, and we choose the Poincaré uniformization σ0. Local solutions are
in general multi-valued, i.e. they should be considered as functions on the universal
cover, equivariant with respect to some representation ρq : π(X)→ PSL2C, which
is called the monodromy of q. We say a puncture is an apparent singularity if ρq(γ)
is trivial for a peripheral loop γ around the puncture. It is a theorem of Luo (see
[Luo93]) that differentials without apparent singularities are locally determined by
their monodromy. The analogous results for holomorphic quadratic differentials is
due to Hejhal (see [Hej75]).
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Following [AB20, §3] and [GM21, §3.1] we define a meromorphic projective
structure to be the structure σq induced by a meromorphic quadratic differen-
tials q ∈ Q2(X) as follows: a developing map devq for σq is given by taking a local
solution to Sf = q and considering its analytic continuation as a function on the
universal cover; the monodromy of the differential provides the holonomy ρq of the
structure. The differential q is recovered from σq by computing the Schwarzian
derivative of devq with respect to the background projective structure σ0.

For the sake of clarity, we emphasize that this correspondence between meromor-
phic quadratic differentials and meromorphic projective structures is not canonical,
and does depend on the choice of a background projective structure. Changing this
choice only translates the differentials by the vector space of holomorphic differen-
tials, hence orders and leading coefficients of poles are well-defined invariant for the
projective structure.

We are now ready to provide a proof of the following correspondence. Here
P�(Σ) is the space of tame, relatively elliptic and non-degenerate structures intro-
duced in §3.1.

Theorem E. Let σ ∈ P(Σ) and let X ∈ T (Σ) be the underlying complex structure.
Then σ ∈ P�(Σ) if and only if X is a punctured Riemann surface and σ is repre-
sented by a meromorphic quadratic differential on X with double poles and reduced
exponents in R \ Z.

Proof. We prove the backward direction first. Let X be a punctured Riemann
surface structure on Σ, and let σ = σq for some meromorphic quadratic differential
q ∈ Q2(X) with reduced exponents θi ∈ R \ Z. By Lemma 4.1.1, since θi’s are
real, the developing map for σ extends continuously to the punctures, i.e. σ is
tame. Moreover since θi are not integers the peripheral holonomy of σ is elliptic
at every puncture. In particular, the holonomy representation is known to be
non-degenerate by [AB20, Theorem 6.1], as there are no apparent singularities.
Therefore σ ∈ P�(Σ).

We now prove the forward direction. Let σ ∈ P�(Σ), and let U be a neighbor-
hood of a puncture x, which is some conformal annulus. We claim that its modulus

is infinite. Let E ∈ E(Σ̃) be an end covering x, and let Ũ be the lift of U around

E. By Theorem D we can choose U so that dev : Ũ → D∗ = dev(Ũ) is a conformal
covering map onto a punctured disk. The family of curves Γ in D∗ joining the
boundary to the puncture has infinite extremal length, lifts to a family of curves in

Ũ joining ∂Ũ to E, and projects to a family of curves in U joining the boundary
to the puncture x. Since extremal length is conformally invariant, this family has
infinite extremal length in U , hence the modulus of U is infinite. This shows that
the complex structure X underlying σ is that of a punctured Riemann surface.

Finally let us check the conditions on the differential are satisfied. Let q̃ =
S(dev); recall we have fixed the Poincaré uniformization σ0 as a reference projective
structure on Σ, and we are taking Schwarzian derivatives with respect to the induced
structure on Σ. Since dev is a conformal immersion, possibly branching only at

the ends, q̃ is holomorphic on Σ̃, possibly with double poles at the ends. By the
classical cocycle property of the Schwarzian, q̃ descends to a meromorphic quadratic
differential q with at worst double poles on Σ. By Lemma 4.1.1, since the peripheral
holonomy is elliptic, the reduced exponents must be in R \ Z. �
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For completeness, with respect to the list of cases in Lemma 4.1.1, we observe
the following. Differentials with zero reduced exponents at all punctures correspond
to parabolic projective structures (see [Kra69; Kra71b; Kra71a; DD17; HD19]).
Differentials with integer non-zero reduced exponents and trivial holonomy at the
punctures (apparent singularities) correspond to branched projective structures (see
[Man72; CDF14a; Cal+19; FR21]). The next lemma implies that for structures in
P�(Σ) the absolute value of the exponent at a puncture coincides with the value
of the index, as defined in §3.4.

Lemma 4.2.1. If q ∈ Q2(X) has reduced exponent ±θ ∈ R \ Z at a puncture x,
then the index of σq at that puncture is Iσ(x) = 2π|θ|.

Proof. Let z be a coordinate around the puncture, let η be a simple closed positively
oriented peripheral loop around the puncture. Up to normalizing by a Möbius
transformation, we can assume that a local determination of the developing map is
given by w = f(z) = devqσ (z) = zθM(z), for θ > 0 and for some M holomorphic
and non-zero at z = 0 (see §4.1). Then the statement follows from the following
computation in local coordinates:∫

f(η)

dw

w
=

∫
η

θzθ−1M(z) + zθM ′(z)

zθM(z)
dz = θ

∫
η

dz

z
+

∫
η

M ′(z)

M(z)
dz = 2πiθ.

where the second integral vanishes, because M is holomorphic, and η can be chosen
to be small enough to enclose z = 0 but no zero of M . �

Remark 4.2.2. When the exponent (equivalently the reduced exponent) is not
zero, a choice of a sign is called a signing of the projective structure at that punc-
ture, and can be used to define a framing from the holonomy representation (cf.
[AB20; Gup21]). This is in general an arbitrary choice. However, as observed in
Corollary 3.1.5, continuously extending the developing map to the punctures always
provides a canonical framing for structures in P�(Σ).

5. Structures on the thrice–punctured sphere

In this chapter we prove Theorems A and B about grafting structures on the
thrice–punctured sphere S := S2 \ {xα, xβ , xγ}. This is the oriented topological
space obtained from the 2–dimensional unit sphere S2 by removing three distinct
points {xα, xβ , xγ} ⊂ S2. The points {xα, xβ , xγ} are the punctures of S. The
fundamental group π1(S) of S is isomorphic to the free group on two generators F2.
Once and for all we fix the presentation

π1(S) = 〈α, β, γ | αβγ = 1〉 ∼= F2,

where each generator δ ∈ {α, β, γ} can be represented by a peripheral loop (also
denoted by δ) around xδ, oriented to travel around the puncture in the anticlockwise

direction. Furthermore, we denote by Eδ ∈ E(S̃) the end in the end-extended

universal cover S̃# of S, that is fixed by δ.
In this setting, we observe that P•(S) is the space of complex projective struc-

tures whose underlying conformal structure is that of CP1 \{0, 1,∞}. The PSL2C–
character variety can be explicitly described (see [HP04, Remark 4.4] for details).
A conjugacy class of representations is said to be non-degenerate relatively elliptic
if it is the class of a non-degenerate relatively elliptic representation. It follows from
Theorem E and [Gup21, Theorem 1.1] that any non-degenerate relatively elliptic
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Figure 14. The ideal triangulation T of the thrice–punctured

sphere S, and its lift to the end-extended universal cover S̃#.

conjugacy class arises from the holonomy of a structure in P�(S). We will see that
the structure can be chosen to be of a special type (cf. Corollary 5.1.4).

Remark 5.0.1. A relatively elliptic representation of π1(S) is degenerate if and
only if its image is a subgroup of rotations around two fixed points, i.e. a group of
coaxial rotations (cf. [Gup21, §2.4]).

The main result of this chapter is a complete description of P�(S). We begin in
§5.1 by constructing some structures in P�(S), called triangular structures, which
will be our key examples. Then in §5.2 we show that P�(S) is precisely the space
of complex projective structures obtained by grafting triangular structures.

5.1. Triangular structures. In this section we construct a family of structures
in P�(S) which will be the main reference example for the rest of the paper.

First, we fix the following ideal triangulation T of S (cf. Figure 14). For every
distinct pair δ, δ′ ∈ {α, β, γ}, let eδδ′ be a simple arc on S from xδ to xδ′ . The
collection of arcs {eαβ , eβγ , eαγ} are the ideal edges of T, and subdivide S into
two ideal triangles tS and tS . The orientation of S induces an orientation on tS
(resp. tS) so that the punctures are ordered as (xα, xβ , xγ) (resp. (xα, xγ , xβ))

on its boundary. The ideal triangulation T lifts to a triangulation T̃ of S̃#. We

notice that the restriction of T̃ to S̃ is an ideal triangulation of S̃. We denote by t̃S
the unique triangle in T̃ with vertices {Eα, Eβ , Eγ}, and by t̃δS the unique triangle

adjacent to t̃S that does not have Eδ as its vertex. It is easy to check that t̃S

projects onto tS , while
{
t̃αS , t̃

β
S , t̃

γ
S

}
all project onto tS .

Recall that 4 ⊂ R3 is the standard 2–simplex (cf. §2.3). Let τ : 4 → CP1 be a
non-degenerate triangular immersion, with vertices (Va, Vb, Vc) and angles (a, b, c).
Let Cτ = (Cab, Cbc, Cac) be the configuration of circles determined by τ , defined such
that Vx, Vy ∈ Cxy, for all distinct pairs x, y ∈ {a, b, c}. From Corollary 2.2.7 we have
a relatively elliptic representation associated to Cτ given by

ρτ := ρCτ : π1(S)→ PSL2C,

ρτ (α) := JacJab, ρτ (β) := JabJbc, ρτ (γ) := JbcJac,

where Jxy denotes the reflection of CP1 in Cxy. Notice that, if τ embeds onto a
Euclidean, hyperbolic or spherical triangle with angles rational multiples of π, then
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Figure 15. An edge-grafting and a core-grafting on a structure
σ.

the image of this representation is a discrete Euclidean, hyperbolic or spherical
group; however a generic choice of τ results in a non-discrete subgroup of PSL2C.

The triangular structure στ ∈ P(S) associated to the triangular immersion τ :
4 → CP1 is the structure defined by the developing pair (devτ , ρτ ), where the
developing map is constructed as follows. Recall that (V1, V2, V3) are the vertices
of 4. Consider the following maps:

(1) ϕ : t̃S →4: the unique simplicial map mapping (Eα, Eβ , Eγ) to (V1, V2, V3);

(2) ϕγ : t̃γS → 4: the unique simplicial map mapping (Eβ , Eα, Eβγβ−1) to
(V1, V2, V3);

(3) ι : 4 → 4: the unique (orientation reversing) simplicial map mapping
(V1, V2, V3) to (V2, V1, V3);

(4) τγ := Jab ◦ τ ◦ ι be the triangular immersion conjugate to τ , mapping
(V1, V2, V3) to (Vb, Va, Jab(Vc)).

Then we define

(dev#)τ
∣∣
t̃S

:= τ ◦ ϕ, and (dev#)τ
∣∣
t̃γS

:= τγ ◦ ϕγ .

Since this defines (dev#)τ on a fundamental domain for the action of π1(S) on

S̃#, we can then extend it by equivariance with respect to the representation ρτ to

obtain a global (dev#)τ : S̃# → CP1. The developing map devτ is the restriction of

(dev#)τ to S̃. Notice that, when τ is an embedding, this is the pillowcase structure
obtained by doubling τ(4).

By construction, triangular structures are non-degenerate, tame and their holo-
nomy representations are relatively elliptic. We record this in the following lemma.

Lemma 5.1.1. Let τ be a non-degenerate triangular immersion and let στ be the
associated triangular structure. Then στ ∈ P�(S).

Triangular immersions that are especially simple, e.g. embeddings, carry some
obvious curves that one can graft along, namely the edges eδδ′ of the triangulation
T. Other graftable curves are those joining one puncture to itself by crossing the
triangle. We introduce the following terminology, motivated by these observations
(see §3.1 for the general definition of this surgery). Let σ ∈ P�(S) and let η : I → S
be a graftable curve. The grafting along η will be called an edge-grafting if η
joins two different punctures, and a core-grafting if it starts and ends at the same
puncture and separates S into two punctured disks. The inverse surgery will be
called edge-degrafting and core-degrafting respectively (cf. Figure 15).
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Figure 16. An edge-grafting on an embedded structure σ.

Example 5.1.2. Some embedded triangular structures allow for an easy descrip-
tion of edge-grafting. Let τ, τ ′ : 4 → CP1 be two triangular embeddings such
that στ ′ differs from στ by the insertion of a disk D along one of the edges (cf.
Figure 16, first two pictures). Then στ ′ is isomorphic to the structure obtained by
edge-grafting στ along that edge. Indeed reflecting in the edges of τ ′(4) we obtain
a copy of CP1 obtained by the union of D and its complement. Since D is included
in τ ′(4), its complement is contained in a suitable reflection of it; the union of D
and its complement gives precisely a grafting region on στ ′ . This grafting procedure
can be iterated by thinking of immersions as membranes spread over CP1, obtained
by including additional disks across the edges that are being grafted. This is a
particularly concrete way of thinking about edge-grafting triangular structures.

A triangular structure is said to be Euclidean/hyperbolic/spherical atomic if it
comes from a Euclidean/hyperbolic/spherical atomic triangular immersion (cf. end
of §2.3). The terminology is motivated by the main theorem (cf. Theorem B),
which states that every tame and relatively elliptic CP1–structure is obtained by
grafting an atomic structure.

Lemma 5.1.3. Let σ be an atomic triangular structure with indices Iσ := (2a, 2b, 2c).
Let eδδ′ be the edge of the triangle of T in S connecting the two distinct punctures
xδ and xδ′ . Let eδ be a simple ideal arc in S connecting the puncture xδ to itself by
crossing the edge opposite to xδ. For Gαβ , Gαγ , Gα, Gβγ ∈ N, consider the formal
sums

η := Gαβeαβ +Gαγeαγ +Gαeα, and η′ := Gαβeαβ +Gαγeαγ +Gβγeβγ .

If σ is spherical or hyperbolic, then σ is graftable along both η and η′, up to small
deformations. If σ is Euclidean and we further assume that that a ∈ (0, 3π) while
b, c ∈ (0, π). Then

(1) If a ∈ (0, π) and −a+ b+ c = π, then σ is graftable along η′, but not along
any arc isotopic to eα.

(2) If a ∈ (π, 2π) and a− b− c = π, then σ is graftable along η, but not along
any arc isotopic to eβγ .

(3) If a ∈ (2π, 3π), then σ is graftable along η, but not along any arc isotopic
to eβγ .

(4) Otherwise σ is graftable along both η and η′.
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Figure 17. The multi-curves η (on the left), and η′ (on the right).

Figure 18. An edge-grafting on the hyperbolic atomic structure
coming from a hyperbolic atomic triangular immersion as in Fig-
ure 8 (2)(i).

Proof. We begin by noticing that η (resp. η′) can be realized as a group of pairwise
disjoint arcs in S (cf. Figure 17), therefore we only need to check that σ is graftable
once along each arc (cf. Remark 3.1.6).

If σ comes from a triangular immersion τ supported by a spherical configuration,
then σ is graftable along both η and η′ because the triangular immersion τ is an
embedding (cf. Figures 5 (right) and 7 (right)), hence each simple ideal arc develops
injectively into CP1.

Similarly, if τ is supported by a hyperbolic configuration, then τ is an embedding
unless it is as in Figure 8 (2)(i). These are immersions where one angle is in (π, 2π),
say for example a, and a− b− c > π. In these situations, the edge eβγ (opposite to
the large angle a) is not graftable on the nose, as the developing map develops it
surjectively to a circle. However any arbitrarily small deformation of it is graftable
(cf. Figure 18).

Finally, suppose that τ is supported by a Euclidean configuration. Here we
further assume a ∈ (0, 3π) while b, c ∈ (0, π), namely that if there is an angle
larger than π, then it is a. Here we have an issue only when a puncture is mapped
to the common intersection point y of the Euclidean configuration. If a ∈ (0, π)
and −a + b + c = π (case (1)), then the puncture xα develops to y and it is not
possible to core-graft along any arc isotopic to eα (cf. Figure 4 (right)). On the
other hand, every edge is injectively developed, and therefore σ is graftable along
η′. If a ∈ (π, 2π) and a − b − c = π (case (1) and Figure 9 (2) (ii)), then both
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xβ , xγ are mapped to y, thus σ is not graftable along any arc isotopic to eβγ , and
in particular along η′. However, eα is injectively developed, hence σ is graftable
along η. Case (3) is similar to the previous one (cf. Figure 10). The remaining
Euclidean cases are embeddings where xα never maps to y, hence all relevant arcs
are injectively developed. �

We conclude this section with a simple consequence of Lemma 5.1.1, namely that
almost every non-degenerate framed relatively elliptic representation is the framed
holonomy representation of an atomic triangular structure. Recall that a framing

of a representation ρ is a ρ–equivariant map F : E(Σ̃) → CP1 from the space of
ends to CP1, and that for structures in P�(S) there is a canonical framing given
by a continuous extensions of the developing map (cf. Corollary 3.1.5). We remark
that [Gup21, Theorem 1.2] states that a non-degenerate framed representation is
the holonomy of a signed meromorphic projective structure with respect to some
framing, while here we realize these framed representations with respect to this
canonical framing (compare the discussion in Remark 4.2.2). To simplify the state-
ment of the following result, we say that a framing F is pathological if F maps the
entire set of ends to a single point. In our context, the holonomy representation of
a triangular structure is pathological if and only if the underlying configuration of
circles is Euclidean and the framing consists only of the point at infinity. Therefore
the holonomy representation of an atomic triangular structure is never pathologi-
cal. Note that a pathological framing is not considered degenerate according to the
definition in §3.1.

Corollary 5.1.4. Every non-degenerate framed relatively elliptic representation
that is not pathological is the framed holonomy representation of an atomic trian-
gular structure. In particular, R�(S) = Hol(P�(S)).

Proof. Suppose ρ is a non-degenerate relatively elliptic representation, with a non-
pathological framing F . Then (ρ(α), ρ(β), ρ(γ)) is an ordered triple of elliptic trans-
formations with trivial product. As ρ is non-degenerate, (ρ(α), ρ(β), ρ(γ)) share at
most one common fixed point. By Corollary 2.2.7, there is a unique non-degenerate
configuration of circles C := (Cab, Cbc, Cac) associated to (ρ(α), ρ(β), ρ(γ)). By con-
struction

pα := F(Eα) ∈ Cab∩Cac, pβ := F(Eβ) ∈ Cab∩Cbc, and pγ := F(Eγ) ∈ Cbc∩Cac.

We are going to show that there is an atomic triangular immersion τ supported by C,
with vertices (pα, pβ , pγ). As a consequence, the framed holonomy representation of
its associated triangular structure στ is (ρ,F), proving the first part of the corollary.
If C is a spherical configuration, the points (pα, pβ , pγ) are the vertices of a unique
triangular region R in CP1 \C. Depending on the cyclic order of (pα, pβ , pγ) on the
boundary of R, we either take τ to map onto R, or to map onto the complement of
R in a disk (cf. Figure 7 on the right). If C is a hyperbolic configuration, we refer to
Table 1 to check that any framing is realized by at least one triangular immersion τ .
Finally, Table 3 shows that any framing that is not pathological, namely (−,−,−)
and (−,−,−)∗, can be realized by at least one triangular immersion τ .

The last statement of the corollary follows from the observation that every non-
degenerate relatively elliptic conjugacy class [ρ] has a class representative ρ that
can be framed with a non-degenerate and non-pathological framing. �
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5.2. Grafting Theorems A and B. We are now ready to prove the main results
about the Grafting Conjecture. A key step will be being able to recognize structures
based on their indices, which we are able to do thanks to the description of P�(S)
in terms of meromorphic differentials (cf. Theorem E).

Up to isomorphism, there is a unique complex structure on the thrice–punctured
sphere, namely that of CP1 \ {0, 1,∞}. The space of meromorphic quadratic dif-
ferentials with double poles at 0, 1 and ∞ can be described as follows:{

qΘ =

(
1− θ2

1

2z2
+

1− θ2
2

2(z − 1)2
+
θ2

1 + θ2
2 − θ2

3 − 1

2z(1− z)

)
dz2 | Θ = (θ1, θ2, θ3) ∈ C3

}
.

A direct computation shows that qΘ has double poles at 0, 1,∞ with reduced ex-
ponents θ1, θ2, θ3, respectively. In particular, the indices of the structure defined
by the differential qΘ are (2π |θ1| , 2π |θ2| , 2π |θ3|) (cf. Lemma 4.2.1). Therefore we
obtain the following statement.

Proposition 5.2.1. If σ, σ′ ∈ P�(S) have the same indices, then σ = σ′.

Proof. By Theorem E we know that σ = σq, σ
′ = σq′ for some meromorphic dif-

ferentials q, q′ ∈ Q2(S), with real non-integer reduced exponents at each puncture.
Since the index at each puncture is the same, by Lemma 4.2.1 the exponent at each
puncture is also the same (up to sign). So q, q′ have the same leading coefficient at
each puncture, but this determines them completely, so q = q′. �

Notice that the developing maps of structures obtained with θi ∈ (0, 1) cor-
respond to Schwarz triangle maps. The special cases in which θi = 1

pi
, pi ∈ Z

correspond to the classic uniform tilings of the sphere, Euclidean or hyperbolic
plane. In the general case θi ∈ R \ Z, the associated holonomy representations are
not discrete, and the groups are not isomorphic to triangle groups.

A direct application of Proposition 5.2.1 to Lemmas 2.3.3 and 2.3.4 allows us to
easily characterize atomic structures through their indices.

Lemma 5.2.2. Let σ ∈ P�(S) with indices (2a, 2b, 2c). Then σ is atomic if and
only if (up to relabelling the punctures):

(1) either a ∈ (0, 2π) and b, c ∈ (0, π);
(2) or a ∈ (2π, 3π) and b, c ∈ (0, π) and a− b− c = π.

Proof. Atomic structures are defined in such a way that their indices satisfy the
above conditions (cf. Lemmas 2.3.3 and 2.3.4). But more importantly, every triple
of numbers (2a, 2b, 2c) satisfying those conditions is the triple of indices of an atomic
structure, see for example Tables 1, 2 and 3. The fact that there are no other
structures with those indices follows by Proposition 5.2.1. �

As observed in Corollary 3.1.5, the holonomy representation of a structure in
P�(S) carries a natural framing, given by the extension of the developing map
to the punctures. Edge-grafting and core-grafting do not change the holonomy
representation, nor this framing (see Lemma 3.1.7).

Theorem B. Every σ ∈ P�(S) is obtained by a sequence of edge- and core-graftings
on an atomic triangular structure with the same framed holonomy.

Proof. Let σ ∈ P�(S), let 2a := Iσ(xα), 2b := Iσ(xβ), 2c := Iσ(xγ) be its indices.
Without loss of generality we can assume that a ≥ b ≥ c. Indeed we can rename
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the punctures so that Iσ(xα) is the largest index, and the case where a ≥ c ≥ b
follows by a similar argument.

Let ka =
⌊
a
π

⌋
, kb =

⌊
b
π

⌋
, kc =

⌊
c
π

⌋
∈ N. We are going to reduce the triple (a, b, c)

to a triple (a′, b′, c′) by subtracting as many integer multiple of π as possible in a
certain controlled way, until (a′, b′, c′) satisfies the conditions of Lemma 2.3.3, that
is

(5.2.1) a′ ∈ (0, π) ∪ (π, 2π), and b′, c′ ∈ (0, π).

We distinguish two cases:

(i) If ka ≥ kb + kc, let

Gαγ := kc, Gαβ := kb, Gα :=

⌊
ka − (kb + kc)

2

⌋
, Gβγ := 0.

(ii) If ka < kb + kc, let L := ka − kb, L′ := kc + kb − ka and

Gαγ := L+

⌊
L′

2

⌋
, Gαβ := kb −

⌈
L′

2

⌉
, Gα := 0, Gβγ :=

⌈
L′

2

⌉
.

Either way, let

a′ := a− π(Gαγ +Gαβ + 2Gα), b′ := b− π(Gβγ +Gαβ), c′ := c− π(Gαγ +Gβγ).

It is easy to check that Gαγ , Gαβ , Gα, Gβγ ≥ 0, and

Gβγ +Gαβ = kb, Gαγ +Gβγ = kc, Gαγ +Gαβ + 2Gα ∈ {ka, ka − 1},
therefore (5.2.1) is satisfied, and by Lemma 2.3.3 there is a triangular immersion τ
with angles (a′, b′, c′). Let στ be the associated triangular structure. By construc-
tion στ is atomic with indices (2a′, 2b′, 2c′), thus it is left to check if στ grafts to
σ.

Recall we have fixed an ideal triangulation T of S. Let eδδ′ be the edges of T
connecting the two distinct punctures xδ and xδ′ . Let eδ be a simple ideal arc in S
connecting the puncture xδ to itself by crossing the edge opposite to xδ. Consider
the multi-curve

µ := Gαβeαβ +Gαγeαγ +Gαeα +Gβγeβγ .

If µ is graftable then grafting στ along µ would yield a structure with indices
(2a, 2b, 2c) and the same framed holonomy as στ (cf. Lemma 3.1.7). It follows from
Proposition 5.2.1 that σ = Gr(στ , µ), so it is left to check if στ is graftable along µ.

Depending on the above cases, we remark that at least one of Gβγ , Gα is 0, hence
µ is either η or η′ in the notation of Lemma 5.1.3.

If Gβγ = Gα = 0 then µ = η = η′ and every atomic triangular structure στ is
graftable along µ.

If Gα > 0 then Gβγ = 0 and µ = η. Lemma 5.1.3 covers every case except the
Euclidean case where a′ ∈ (0, π) and −a′+b′+c′ = π. In this case we must consider
a different atomic structure σ′τ and curve µ′, as στ is not graftable along eα. Let

a′′ := a′ + 2π, b′′ := b′, c′′ := c′,

G′α := Gα − 1, and µ′ := Gαβeαβ +Gαγeαγ +G′αeα.

By construction a′′ ∈ (2π, 3π), b′′, c′′ ∈ (0, π) and a′′ − b′′ − c′′ = π, therefore there
is an atomic triangular structure σ′τ with indices (2a′′, 2b′′, 2c′′) (cf. Lemma 2.3.4).
Furthermore, the structure σ′τ is graftable along µ′ (cf. Lemma 5.1.3). Grafting σ′τ
yields a structure with indices (2a, 2b, 2c), which must be σ by Proposition 5.2.1,
concluding this case.
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Lastly, suppose that Gβγ > 0. This time Gα = 0 and µ = η′. Recall that
a′ < 2π, hence the only case that is not covered by Lemma 5.1.3 is the Euclidean
case where a′ ∈ (π, 2π) and a′ − b′ − c′ = π. We are once again forced to consider
a different atomic structure as στ is not graftable along eβγ . Let

a′′ := a′ − π, b′′ := b′ + π, c′′ := c′,

G′αγ := Gαγ + 1, G′βγ := Gβγ − 1, and µ′ := Gαβeαβ +G′αγeαγ +G′βγeβγ .

By construction b′′ ∈ (π, 2π), a′′, c′′ ∈ (0, π) and −a′′+ b′′+ c′′ = π, therefore there
is an atomic triangular structure σ′τ with indices (2a′′, 2b′′, 2c′′) (cf. Lemma 2.3.3).
The structure σ′τ is graftable along µ′ according to Lemma 5.1.3 part (5) applied
to the triple (b′′, c′′, a′′). Once again, grafting σ′τ along µ′ yields a structure with
indices (2a, 2b, 2c), which must be σ by Proposition 5.2.1, concluding the proof.

�

Theorem B has two interesting consequences. The first is the promised charac-
terization of atomic structures in terms of grafting.

Corollary 5.2.3. A structure σ ∈ P�(S) is atomic if and only if it is not de-
graftable.

Proof. For one implication, let σ be a structure which cannot be degrafted. Then
by Theorem B it must be atomic.

For the reverse implication, let σ be atomic. Suppose by contradiction that σ
was degraftable to some structure σ′. Recall that core-grafting increases one index
by 4π and edge-grafting increases two indices by 2π. Then σ cannot be one of the
atomic structures coming from the atomic triangular immersions of Lemma 2.3.3,
as its indices would be too small. It follows that σ is the atomic triangular structure
associated to an atomic triangular immersion τ from Lemma 2.3.4. Without loss
of generality we may assume that the largest index of σ is at xα, while the other
two are less than 2π, so that

Iσ(xα) ∈ (4π, 6π), Iσ(xβ), Iσ(xγ) ∈ (0, 2π), and Iσ(xα)−Iσ(xβ)−Iσ(xγ) = 2π.

Then σ cannot be obtained by edge-grafting σ′, and the only option is that σ′ is a
core-degrafting at xα on σ. In particular Iσ′(xα) = Iσ(xα)− 4π ∈ (0, 2π) and

Iσ′(xα), Iσ′(xβ), Iσ′(xγ) ∈ (0, 2π), and − Iσ′(xα) + Iσ′(xβ) + Iσ′(xγ) = 2π.

It follows that σ′ is an atomic triangular structure (cf. Lemma 5.2.2), coming from
a triangular immersion τ ′ enclosed in a Euclidean configuration (cf. Lemma 2.3.1).
But this is impossible because σ′ is not core-graftable at xα (cf. Lemma 5.1.3
part (1)), giving the desired contradiction. �

Next, we obtain that edge-grafting and core-grafting (together with the inverse
operations) account for all the possible deformations that preserve the holonomy
as a framed representation.

Theorem A. Two structures in P�(S) have the same framed holonomy if and
only if it is possible to obtain one from the other by some combination of graftings
and degraftings along ideal arcs.

Proof. One direction is clear by Lemma 3.1.7. For the reverse implication, suppose
σ, σ′ ∈ P�(S) have the same framed holonomy. By Theorem B, the structure σ
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Figure 19. To prove Theorem A we find a path of graftings and
degraftings from σ to σ′, passing through atomic structures.

(resp. σ′) can be degrafted to an atomic structure σ0 (resp. σ′0) having the same
framed holonomy.

Let τ0, τ
′
0 be the atomic triangular immersions defining σ0, σ

′
0, with angles (a0, b0, c0)

and (a′0, b
′
0, c
′
0), respectively. Since these structures have the same framed holonomy,

up to conjugation we can assume that τ0, τ
′
0 are supported by the same configura-

tion of circles C (cf. Corollary 2.2.7), and that τ0(Vj) = τ ′0(Vj), for j = 1, 2, 3. By
Corollary 2.3.7 we are in one of the following two cases:

(1) (a0, b0, c0) = (a′0, b
′
0, c
′
0);

(2) (a0 − a′0, b0 − b′0, c0 − c′0) = (π,−π, 0) up to permutation.

In the first case σ0 and σ′0 have the same indices, hence σ0 = σ′0 by Proposition 5.2.1,
and we are done. For the second case, let us fix the permutation

(a0 − a′0, b0 − b′0, c0 − c′0) = (π,−π, 0),

as the other cases are similar. Then in particular a0, b
′
0 ∈ (π, 2π) while a′0, b0, c0, c

′
0 ∈

(0, π). Let σ1 (resp. σ′1) be the triangular structure obtained by grafting σ0 along
eβγ (resp. σ′0 along eαγ). These structures exist by Lemma 5.1.3 (with respect to
η′), and they both have indices

(2a0, 2b0 + 2π, 2c0 + 2π) = (2a′0 + 2π, 2b′0, 2c
′
0 + 2π).

We explicitly observe that Lemma 5.1.3 has only two cases in which η′ is not
graftable, and a direct inspection of Table 3 shows that those two structures are
covered by the case (a0, b0, c0) = (a′0, b

′
0, c
′
0) above (see Remark 2.3.9). It follows

that σ1 = σ′1 by Proposition 5.2.1, completing the proof. �
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Appendix A. Tables of atomic triangular immersions

Angles Range Target angles

a b c Conditions Type (â, b̂, ĉ) Signs Figure

(0, π) (0, π) (0, π) a+ b+ c < π H (a, b, c) (+,+,+) Figure 5 (left)

(0, π) (0, π) (0, π) a+ π < b+ c H (a, π − b, π − c) (+,−,−) Figure 7 (left)
(0, π) (0, π) (0, π) b+ π < a+ c H (π − a, b, π − c) (−,+,−) Figure 7 (left)
(0, π) (0, π) (0, π) c+ π < a+ b H (π − a, π − b, c) (−,−,+) Figure 7 (left)

(π, 2π) (0, π) (0, π) a+ b+ c > 3π H (2π − a, π − b, π − c) (−,−,−) Figure 8 (1)
(0, π) (π, 2π) (0, π) a+ b+ c > 3π H (π − a, 2π − b, π − c) (−,−,−) Figure 8 (1)
(0, π) (0, π) (π, 2π) a+ b+ c > 3π H (π − a, π − b, 2π − c) (−,−,−) Figure 8 (1)

(π, 2π) (0, π) (0, π) a− b− c > π H (2π − a, b, c) (−,+,+) Figure 8 (2)
(0, π) (π, 2π) (0, π) −a+ b− c > π H (a, 2π − b, c) (+,−,+) Figure 8 (2)
(0, π) (0, π) (π, 2π) −a− b+ c > π H (a, b, 2π − c) (+,+,−) Figure 8 (2)

(π, 2π) (0, π) (0, π) a− b+ c < π H (a− π, π − b, c) (+,−,+) Figure 8 (3i)
(0, π) (π, 2π) (0, π) a+ b− c < π H (a, b− π, π − c) (+,+,−) Figure 8 (3i)
(0, π) (0, π) (π, 2π) −a+ b+ c < π H (π − a, b, c− π) (−,+,+) Figure 8 (3i)

(π, 2π) (0, π) (0, π) a+ b− c < π H (a− π, b, π − c) (+,+,−) Figure 8 (3ii)
(0, π) (π, 2π) (0, π) −a+ b+ c < π H (π − a, b− π, c) (−,+,+) Figure 8 (3ii)
(0, π) (0, π) (π, 2π) a− b+ c < π H (a, π − b, c− π) (+,−,+) Figure 8 (3ii)

Table 1. Table of atomic triangular immersions of hyperbolic
type.
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Angles Range Target angles

a b c Conditions Type (â, b̂, ĉ) Signs Figure

(0, π) (0, π) (0, π) a+ b+ c > π S (a, b, c) (+,+,+) Figure 5 (right)
a+ π > b+ c
b+ π > a+ c
c+ π > a+ b

(π, 2π) (0, π) (0, π) 3π > a+ b+ c S (2π − a, π − b, π − c) (−,−,−) Figure 7 (right)
a+ b > π + c
a+ c > π + b
π > a− b− c

(0, π) (π, 2π) (0, π) 3π > a+ b+ c S (π − a, 2π − b, π − c) (−,−,−) Figure 7 (right)
a+ b > π + c
b+ c > π + a
π > −a+ b− c

(0, π) (0, π) (π, 2π) 3π > a+ b+ c S (π − a, π − b, 2π − c) (−,−,−) Figure 7 (right)
b+ c > π + a
a+ c > π + b
π > −a− b+ c

Table 2. Table of atomic triangular immersions of spherical type.
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Angles Range Target angles

a b c Conditions Type (â, b̂, ĉ) Signs Figure

(0, π) (0, π) (0, π) a+ b+ c = π E (a, b, c) (+,+,+) Figure 4 (left)

(0, π) (0, π) (0, π) −a+ b+ c = π E (a, π − c, π − b) (−,+,+)∗ Figure 4 (right)
(0, π) (0, π) (0, π) a− b+ c = π E (π − a, π − c, b) (+,−,+)∗ Figure 4 (right)
(0, π) (0, π) (0, π) a+ b− c = π E (π − a, c, π − b) (+,+,−)∗ Figure 4 (right)

(π, 2π) (0, π) (0, π) a+ b+ c = 3π E (2π − a, π − c, π − b) (+,+,+)∗ Figure 9 (1)
(0, π) (π, 2π) (0, π) a+ b+ c = 3π E (π − a, π − c, 2π − b) (+,+,+)∗ Figure 9 (1)
(0, π) (0, π) (π, 2π) a+ b+ c = 3π E (π − a, 2π − c, π − b) (+,+,+)∗ Figure 9 (1)

(π, 2π) (0, π) (0, π) a− b− c = π E (2π − a, c, b) (+,−,−)∗ Figure 9 (2)
(0, π) (π, 2π) (0, π) −a+ b− c = π E (a, c, 2π − b) (−,+,−)∗ Figure 9 (2)
(0, π) (0, π) (π, 2π) −a− b+ c = π E (a, 2π − c, b) (−,−,+)∗ Figure 9 (2)

(π, 2π) (0, π) (0, π) a− b+ c = π E (a− π, π − b, c) (+,−,+) Figure 9 (3i)
(0, π) (π, 2π) (0, π) a+ b− c = π E (a, b− π, π − c) (+,+,−) Figure 9 (3i)
(0, π) (0, π) (π, 2π) −a+ b+ c = π E (π − a, b, c− π) (−,+,+) Figure 9 (3i)

(π, 2π) (0, π) (0, π) a+ b− c = π E (a− π, b, π − c) (+,+,−) Figure 9 (3ii)
(0, π) (π, 2π) (0, π) −a+ b+ c = π E (π − a, b− π, c) (−,+,+) Figure 9 (3ii)
(0, π) (0, π) (π, 2π) a− b+ c = π E (a, π − b, c− π) (+,−,+) Figure 9 (3ii)

(2π, 3π) (0, π) (0, π) a− b− c = π E (a− 2π, π − b, π − c) (+,−,−) Figure 10
(0, π) (2π, 3π) (0, π) −a+ b− c = π E (π − a, b− 2π, π − c) (−,+,−) Figure 10
(0, π) (0, π) (2π, 3π) −a− b+ c = π E (π − a, π − b, c− 2π) (−,−,+) Figure 10

Table 3. Table of atomic triangular immersions of Euclidean
type.
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