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ABSTRACT
We replicate and price European options on stocks modeled by time-changed ge-
ometric Brownian motion. The time change is obtained as the integrated intensity
of random arrival times of price changes of the underlier over the life of the op-
tion. For European call options we obtain explicit hedging and pricing formulas.
This approach is motivated by the need to connect option prices directly to the
microstructure properties of the limit order book that determines tick-by-tick stock
price changes. The continuous time model is obtained as an appropriate limit of
discrete time random walks with random jump times, in the limit of infinitely many
independent representative agents.
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1. Introduction

In this paper we derive unique European option prices and hedging strategies in a
Black-Scholes-style market for which the underlying stock process is time-changed by a
measure of market activity. The time change is the compensator of an arrival process,
and the option prices are conditional on the integrated intensity of the arrival process
over the life of the option. In particular, options, such as call options, that depend
only on the terminal price of the underlier may be perfectly replicated as a function of
the terminal value of the compensator. In the case of European call options, we obtain
an explicit hedging and price formulas as functions of the integrated intensity.

We are motivated by efforts to model the dynamics of the limit order book that
underlies stock price formation. From this perspective, stock price movements are the
result of limit and market order arrivals collected in an electronic limit order book.
Order arrival times are random and described by point processes, most notably by
“self-exciting” Hawkes processes, e.g. [1], [2], [3], [4], [5], [6], [7]. It is these order
arrivals that explain movements of the quoted market price. In this view, price het-
eroscedasticity is explained endogenously by the variability in arrival rates of orders
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to the order book, which determines the rate of price changes.

1.1. The model

As a model for the high frequency limit order book microstructure, we consider price
changes as the limit of generalized random walks for which the i.i.d. space increments
(e.g. log price changes) occur at random times given by a simple point process and
associated counting process. Considering the effect on market price to be the summed
contribution of many small such changes, we obtain as a scaled limiting price process
a time-changed Brownian motion, where the time change is the compensator of the
original counting process. With mild assumptions, the resulting time-changed Brow-
nian motion is a continuous square integrable martingale with uncorrelated, but not
necessarily independent, increments, as is consistent with stylized facts about equity
prices.

The limiting process serves as the basis for a Black-Scholes style option pricing
model that we call “activity-driven Black-Scholes”, to emphasize its connection to the
market microstructure. It incorporates the characteristics of the chosen point process
describing the “excitability” of order arrivals causing price changes in the underlying
limit order book. This affords a perspective on a heteroscedastic stock price model for
option pricing in which the fluctuating volatility can be intrinsically connected to a
calibrated model of the underlying order book. When the point process is a homoge-
neous Poisson process with unit intensity, we recover the usual Brownian motion and
Black-Scholes model.

When there is a second source of randomness – such as market activity – affecting the
stock price, replication of an option in the ordinary Black-Scholes sense is not possible
using only the underlying stock and a numeraire. But we can still obtain conditional
pricing and replication. This is the content of our main theorem and corollaries in
section 4.

We mention two ways that this kind of conditional pricing and hedging can be use-
ful. First, if there is an underlying calibrated limit order book model defining a market
activity process, this will define a distribution of integrated intensities, and hence a
calibrated distribution of options prices, distributed over the range of market activity
outcomes. The width of this distribution is a way to measure the “volatility risk” of
the option price. Second, the possible trajectories of market activity intensity can be
considered a way to parametrize “scenarios” for use by banks in stress-testing options
portfolios, as required by banking regulators. A single underlying market activity sce-
nario Λ(t) can be used to underly the prices of a basket of different options that share
the same scenario.

1.2. Summary of results

We next briefly summarize our results. We say that a simple counting process N is
regular if the compensator Λ of N is continuous, strictly increasing, and Λ(∞) = ∞.
This is a mild assumption including most examples of interest.

For any regular counting process N with compensator Λ and for any integer n ≥ 1
there is a natural regular counting process Nn with compensator Λn = nΛ, which
we use as follows. Given an i.i.d. sequence {εi : i ≥ 1} of random variables with
E[εi] = 0, V ar(εi) = σ2 < ∞, and independent of Nn for all n, we define a sequence
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{SnN : n = 1, 2, 3, . . . } of rescaled random walks over N by

SnN (t) =
1√
n

Nn(t)∑
i=1

εi.

These random walks over N can be compared to the standard sequence of rescaled
random walks over deterministic (integer) times

Wn(t) =
1√
n

bntc∑
i=1

εi,

that are well-known (Donsker’s Theorem [8]) to converge weakly in the Skorokhod
topology to the process σB, where B is standard Brownian motion.

A similar fact is true for the random walks SnN over N : the sequence {SnN : n ≥ 1}
of stochastic processes defined above converges weakly to the scaled, time-changed
Brownian motion σB ◦ Λ.

Since the time change Λ need only be regular, we do not require it to be a Levy
subordinator, or even Markov. This opens the door to “self-exciting” point processes
such as those often used to model order arrivals in the high-frequency limit order book.

In general, B(Λ(t)) is a continuous square integrable martingale; its quadratic vari-
ation is Λ; it is a standard Brownian motion if and only if N is Poisson with unit
intensity; it has uncorrelated increments, but independent increments if and only if Λ
is deterministic.

Our activity-driven Black-Scholes model for the stock price is

S(t) = S0 exp(σB(Λ(t)) + µΛ(t)), (1)

where B is a standard Brownian motion, along with the numeraire

Bt = exp(rt).

This is flexible enough to display most of the stylized facts of stock price returns. For
certain contingent claims X paying off at the maturity time T , and conditional on the
value of Λ(T ), we show X is attainable (may be replicated by a self-financing strategy),
find an equivalent martingale measure Q for the discounted stock, and obtain a no-
arbitrage pricing formula of the form

Vt(X) = EQ[
Bt
BT

X | Ft].

This is stated in detail in Theorem 4.1, where we formalize conditioning on Λ(T ) by
the condition that Λ is “pinned” at T (section 3.2).

As an application, we can give explicit conditional hedging and pricing formulas
(Corollary 4.4) for a vanilla European call option, conditional on the integrated inten-
sity Λ(T ) = T ′. The price formula at t = 0 turns out to be the classical Black-Scholes
formula, but with the strike price K replaced by er(T

′−T )K, and the maturity T re-
placed by T ′. The resulting call price is an increasing function of T ′, which can be
considered a “market activity” or “market clock” parameter similar in effect to the
volatility.
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1.3. Related literature

Financial applications of time-changed Lévy processes have been extensively studied,
most significantly in the work of Peter Carr and collaborators, for example in [9], [10],
[11], [12], and also others such as [13], and goes back to [14] and [15]. In most of this
work the time change process and pricing measure are a priori ingredients in the model,
whereas here we view the time change and pricing measure as derived features arising
out of (a limit of) statistical behavior of traders, and we are focused on attainable
claims.

Often in the literature attention is directed toward particular Markov time change
processes such as integrated affine processes ([9], [12], [13]) due to the need to com-
pute the Laplace transform of the time change. In [10], Carr and Lee can consider
an arbitrary continuous time change process because the swap price they study is
independent of the time change. In this paper we restrict attention to independent
continuous time changes, but in a general setting in which they need not be Markov.
We are particularly interested in time changes corresponding to self-exciting processes
like the Hawkes process. (However, none of our results assume any process is Hawkes.)

The work of [16] is closely related to this paper. Although not explicitly considering
time-changed processes, Bick values trading strategies depending on the “cumulative
squared volatility” [Y, Y ]t of the stock price St, where typically Yt = log(St/S0). In
our activity-driven Black-Scholes model (1) this cumulative squared volatility is none
other than a multiple σ2 of our market activity parameter Λ(t). Bick defines a dynamic
trading strategy in St and Bt that depends on [Y, Y ]t and which replicates a payoff of
the form h(Sτ ) to be paid at the stopping time τ defined by [Y, Y ]τ = q, for a fixed
threshold q. With proper restatement our corollaries 4.3 and 4.4 can be viewed as
variations of Bick’s results. However, neither the main proposition in [16] nor Theorem
4.1 implies the other. Bick’s main result rests on Ito’s Lemma and thus applies to
general semi-martingale stock processes, while Theorem 4.1 is limited to time-changed
Brownian motion. However, the latter is more general in the sense that it covers a
larger class of payoffs, for example that might depend on the history of S. This level
of generality significantly complicates the proof, which requires techniques beyond Ito’s
Lemma to confront the lack of a predictable representation property for time changed
Brownian motion. See section 6.

Some extensions of [16] appear in [17], which focuses on the topic of model-free
options on realized variance.

A related direction in the literature has been the study of option pricing for discrete
time models motivated by the binomial tree model, e.g. [18], [19], [20]. In [21] the
authors examine the weak convergence of discrete models where the jumps are general
Bernoulli random variables, and study the corresponding convergence of option prices.

The comprehensive book [22] touches on this and also surveys a variety of papers
examining various versions of binomial models with special forms of randomized time
steps, such as [23] in which the time steps are derived from Poisson processes. Ja-
cod and Shiryaev [24] develop some quite general convergence theorems that imply
Donsker’s theorem, but restrict attention to semi-martingales with independent incre-
ments. The book [22] is primarily focused on the general question of whether option
prices for discrete models converge to corresponding prices for the continuous-time
weak limits. This is a subtle topic we have not addressed in this paper.

The remainder of the paper is organized as follows. In section 2 we describe random
walks over continuous time point processes and their rescalings and limits. Sections 3
and 4 describe our activity-driven Black-Scholes model, and the pricing and hedging of
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terminal-time-payoff options. It contains the main theorem, corollaries, and discussion.
Section 5 summarizes, and the proof of the main theorem appears in section 6.

2. Random walks for many agents

2.1. Discrete time

In this section we define some terms and describe a class of random walks over counting
processes suited to our purposes. For background, see for example [25], [22], and [26].

We consider only simple, non-explosive point processes on [0,∞), i.e. sequences {Tn}
of [0,∞)-valued random variables on a probability space (Ω,F, P ) such that T0 = 0,
Tn < Tn+1 a.s. for all n, and limn→∞ Tn = +∞. For such a point process {Tn}, the
corresponding counting process is

N(t) =
∑
n≥1

1(Tn≤t)

with N(0) = 0. The natural filtration FNt = σ(Ns : s ≤ t) of N is automatically right
continuous ([27], I.25). Assuming E[N(t)] < ∞ for all t, the Doob-Meyer decomposi-
tion (e.g. [28]) gives us a unique, cadlag FN -predictable process Λ, the compensator
of N , such that Λ(0) = 0 a.s., E

[
Λ(t)

]
< ∞ for all t, and N(t) − Λ(t) is a cadlag

FN -martingale.
In this paper we restrict attention to the (large) class of regular counting processes

as defined in the introduction.
To set notation, we denote the classical one-dimensional random walk W(t) to be

a piecewise constant cadlag stochastic process defined by

W(t) =

btc∑
i=1

εi,

where {εi : i ≥ 1} is an i.i.d. sequence of random variables, and we assume E[εi] = 0
and V ar(εi) = σ2 <∞.

Motivated by the interpretation of W as a log-price process, we can think of W as
the running sum of a sequence εi of random contributions, or price shocks, delivered at
times i = 1, 2, 3, . . . by a representative agent at unit frequency as a result of trading.

Now instead of a single agent contributing at unit frequency, we can imagine n
smaller agents also contributing at unit frequency, but contributing only εi/

√
n each

independently, and where the deterministic contribution times are spread out uni-
formly, yielding

Wn(t) =
1√
n
W(nt) =

1√
n

bntc∑
i=1

εi.

This process converges weakly as n → ∞ to the multiple σB(t) of a standard
Brownian motion B(t) (Donsker’s Theorem). It can be interpreted, in the limit, as
the running total of the contributions of infinitely many infinitesimal agents all con-
tributing independently with unit frequency, and forms the basis of the Black-Scholes
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model.
Now we would like to imagine a different representative agent for which the contri-

bution times are the random jump times of a regular counting process N(t), instead
of the deterministic times t = 1, 2, 3, . . . . The counting process may be quite general,
including a Hawkes process or another self-exciting, non-Markov process. We assume
it is independent of the i.i.d. sequence {εi}. The corresponding random walk is denoted

SN (t) =W(N(t)) =

N(t)∑
i=1

εi.

If we denote by Λ(t) the compensator of N , then Λ may be interpreted as the time
integral of an arrival rate intensity λ(t), if Λ is absolutely continuous with respect to
t.

Corresponding to the scaling of the unit frequency agent, we may also imagine we
have n smaller agents, each contributing an independent amount εi/

√
n with the same

arrival intensity. The integrated arrival intensity of n such agents will be nΛ(t). It is
straightforward to show that the corresponding counting process Nn with compensator
nΛ may be defined by

Nn(t) = N(Λ−1(nΛ(t))).

(Here Λ−1(t) denotes the functional inverse of Λ(t), well-defined since Λ is strictly
increasing.)

We may then define the scaled random walk defined by a regular counting process
N(t) to be

SnN (t) =
1√
n
W(Nn(t)) =

1√
n

Nn(t)∑
i=1

εi.

As before, we can interpret this as the running total of the independent contributions
of n small agents, each with rate described by the compensator Λ of N .

We note that, like the rescaled classical random walk, the random walk SnN is a
martingale with respect to the natural filtration and there are explicit expressions for
the variance and covariances in terms of N [29].

2.2. The rescaled limit of infinitely many agents

Just as the classical random walksWn(t) converge weakly to σB(t), so also the random
walks Sn converge to a time-changed Brownian motion. A general reference on weak
convergence in this context is [22], and a detailed treatment of the following theorem
is given in [29].

Theorem 2.1. Let εi be an i.i.d. sequence of random variables with mean 0 and
variance σ2. Given a regular counting process N with compensator Λ, the sequence
{SnN : n ≥ 1} of rescaled random walks over N converges weakly, in the Skorokhod
metric, to the time-changed Brownian motion σB ◦ Λ. Moreover, B and Λ are inde-
pendent.

The strategy of proof is to establish that (Wn, 1
nN

n) converges weakly to (σB,Λ)
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in the product space, and then apply the composition operator to both sides, using
the Continuous Mapping Theorem and the continuity of composition.

Since we do not assume that Λ is a subordinator, the limit σB◦Λ, while continuous,
need not be a Lévy process, or even Markov. Theorem 2.1 is, in spirit, a generalization
of Donsker’s theorem. The Donsker case is recovered when N is chosen to be a homo-
geneous Poisson process with unit intensity, in which case the compensator is Λ(t) = t
and the weak limit becomes σB(t), a multiple of standard Brownian motion.

The process B ◦ Λ depends on N because Λ depends on N . To emphasize that
dependence, we will use the notation

BN = B ◦ Λ, i.e. BN (t) = B(Λ(t)).

To put this into words:

The limiting random walk BN is a time-changed Brownian motion, where the time
change is the compensator of the point process describing the trading times of a
representative infinitesimal agent.

Let {Ht} be the filtration defined by

Ht = σ(B(r),Λ−1(u) : r ≤ t, u ≤ t).

By the usual augmentation if necessary, we assume that these filtrations satisfy the
usual conditions.

It is shown in [29] that Λ(t) is an H-stopping time for each t, BN is a continuous
square integrable martingale with respect to the filtration HΛ, and (BN )2 − Λ is a
continuous martingale with respect to the same filtration.

Furthermore:

(1) [BN ,BN ]t = Λ(t),
(2) E[BN (t)] = 0,
(3) cov(BN (s),BN (t)) = E[N(s ∧ t)] for all s, t ≥ 0,
(4) BN has uncorrelated increments, and
(5) BN has independent increments if and only if Λ is deterministic.

These properties make BN useful as a model for financial price processes. Financial
returns time series can have close to zero autocorrelation, but squared returns show
positive autocorrelation due to typically observed heteroscedasticity and the corre-
sponding failure of independence of returns. Choice of a non-deterministic Λ naturally
provides us with a stock price model consistent with these stylized facts of uncorrelated
but dependent increments.

3. Preliminary topics

Here we introduce some brief preliminaries prior to stating our main results.

3.1. Hawkes processes

The Hawkes process (e.g. [1], [2], [30], [5], [4] among many references) is a popular
counting process to model the arrival rates of orders to the limit order book, and
hence the jump times of the stock price process. We may take N to be a regular

7



Hawkes process with intensity

λt = α+ β

∫ t

0
µ(t− s)N(ds) > 0,

where α > 0 and the response function µ(t) is a positive function satisfying∫∞
0 µ(t) dt < ∞. The (non-Markov) compensator is Λ(t) =

∫ t
0 λt dt. Then the ran-

dom walks SnN , n ≥ 1, can be the basis of a model for the log stock price that will
reflect the self-exciting nature of the Hawkes process.

Modelers who use this approach to describe the activity of the high-frequency limit
order book then have access to the option price model described below if they have a
parametrized distribution for a terminal value Λ(T ).

3.2. Pinned processes

Definition 3.1. A continuous random process Λ(t) with Λ(0) = 0 is pinned at time
T if Λ(T ) = T ′ for some deterministic T ′.

The Brownian bridge is a familiar example. Absolutely continuous, increasing, even
self-exciting pinned processes are not hard to come by. For example, let rt be any
positive adapted RCLL process, such as the intensity of a Hawkes process. Let Rt =
e−rt < 1. For any T ′, c > 0 with c < T ′/T 2, define

Λ(t) =
T ′

T
t− c(T − t)

∫ t

0
Rs ds.

Then Λ(0) = 0, Λ(T ) = T ′, Λ(∞) = ∞, Λ is absolutely continuous, adapted to the
natural filtration of r, and is increasing on [0,∞) because

Λ′(t) =
T ′

T
+ c

∫ t

0
Rs ds− c(T − t)Rt >

T ′

T
− c(T − t) > 0.

The following proposition demonstrates that regular counting processes with pinned
compensators are easily constructed.

Proposition 3.2. Denote by P (t) the homogeneous Poisson process with rate 1, and
let Λ be any absolutely continuous, strictly increasing process pinned at time T . For
each t, denote by Ft the sigma-algebra FPt ∨ FΛ−1

t = σ(P (s),Λ−1(s) : s ≤ t). Then
Λ(t) is an F-stopping time for each t, and

N(t) = P (Λ(t))

is a regular counting process on [0, T ] with compensator Λ with respect to FΛ.

Proof. Given s < t ≤ T , apply the optional stopping theorem (e.g. [31], II.3.2) to
the F-stopping times Λ(s) and Λ(t), bounded by T ′ = Λ(T ), to the F-martingale
P (t)− t.
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3.3. Activity-driven Black-Scholes

The familiar Black-Scholes option pricing framework for a bond and stock price process
Bt and S(BS)(t), given by

Bt = exp(rt), S(BS)(t) = S0 exp(σB(t) + µt),

is often motivated as a limit of the exponential of a binomial random walk of the
form Wn(t) discussed above. At short time scales, however, we tend to observe non-
independent increments and some level of self-exciting behavior in the limit order book
driving the price.

When N is any regular point process describing the arrival of orders to the order
book, we can call the corresponding limiting market model an “activity-driven Black-
Scholes model”, given by

Bt = exp(rt), S(t) = S(BS)(Λ(t)) = S0 exp(σBN (t) + µΛ(t)), (2)

where r, σ, µ are positive constants. Our interpretation of the time change Λ is the
compensator of the arrival point process N of trades for a representative infinitesimal
agent in the market.

This turns out to be a suitable framework for option pricing that can incorporate
heteroscedasticity and other non-stationary stylized facts of stock price behavior. The
goal of this section is to show that in certain cases, conditional on Λ(T ), we can also
obtain a no-arbitrage pricing formula analogous to the standard Black-Scholes formula.

4. Main Results

Recall the filtration Ht = σ(B(r),Λ−1(u) : r, u ≤ t) with respect to which Λ(t) is a
stopping time for each t. If we define

Gt = HΛt
,

then both BN and Λ, hence S(t), are G-adapted processes on (Ω,F, P ).
It’s convenient to define the additional filtrations, assumed complete:

FBt = σ(B(s) : s ≤ t) ⊂ Ht,

FΛ−1

t = σ(Λ−1(s) : s ≤ t) ⊂ Ht,

FΛ
t = σ(Λ(s) : s ≤ t),

FSt = σ(S(s) : s ≤ t) ⊂ Gt.

To discuss the problem of option pricing, we review some standard terminology. We
will say that a pair (φt, ψt) is a self-financing strategy if φ and ψ are G-predictable
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processes such that if Vt = φtS(t)+ψtBt, then dVt = φtdS(t)+ψtdBt. Here we interpret
φt as the number of shares of stock held in a portfolio at time t, ψt the same for the
bond, and so Vt is the time-t portfolio value.

If we fix a deterministic maturity time T , we call a random payoff X ∈ GT at time
T a claim. A claim X is an attainable claim if there exists a self-financing strategy
(φ, ψ) with

X = VT = φTS(T ) + ψTBT ,

i.e. the self-financing strategy replicates the claim at the terminal time. When this is
the case, (φ, ψ) is a replicating portfolio for X, and Vt will be the no-arbitrage price of
the claim X at any time t < T .

In the classical Black-Scholes model with a stock and a bond, every claim is at-
tainable (the market is complete) due to the martingale representation property for
Brownian motion. In the context of the market model (2), a suitable representation
property for the time-changed Brownian motion BN is not available. Instead, we will
show that certain classes of claims are attainable, and establish a familiar-looking
conditional expectation formula for the claim price, with respect to a suitably defined
measure. The remainder of this section spells out the details.

Market Assumptions:

(1) (Ω,F, P ) is a probability space supporting a Brownian motion B(t) and an inde-
pendent regular point process N with absolutely continuous compensator Λ, with
Λ(t) =

∫ t
0 λu du, where λ is left-continuous with right limits and for some ε > 0,

for all u, λu > ε a.s.; and
(2) there are two tradable assets, a stock S(t) and bond Bt given by

Bt = ert, S(t) = S0 exp(σBN (t) + µΛ(t)), σ, µ > 0, r ≥ 0. (3)

(3) X ∈ GT ∩ L1(Ω,F, P ) is a European option contract payoff at a fixed maturity
T > 0.

Theorem 4.1 (Pricing and Hedging a European option). Under the Market Assump-
tions above, suppose further that the compensator Λ of N is pinned at T . Let Q be the
equivalent martingale measure defined by

dQ

dP
= exp(−

∫ Λ(T )

0
γt dB(t)− 1

2

∫ Λ(T )

0
γ2
t dt), (4)

where

γt =
1

σ
(µ+ σ2/2− r

λΛ−1(t)
), 0 ≤ t ≤ Λ(T ). (5)

Then the discounted stock price Zt = B−1
t S(t) (stopped at T ) is a (Q,G)-martingale,

and B̃(t) = B(t) +
∫ t

0 γs ds is a standard Brownian motion with respect to (Q,H).

Moreover, suppose in addition that the payoff X is Q-independent of FΛ
T .

Then
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(a) X is attainable and its replicating portfolio is (φ, ψ), with value

Vt = φtS(t) + ψtBt,

where

φt = ηΛ(t), ψt = ξΛ(t),

and (η, ξ) is the replicating portfolio for the payoff X at time Λ(T ) in the standard
risk-neutral Black-Scholes model with stock Y (t) and bond Bt given by

Bt = ert, Y (t) = S0 exp(σB̃(t)− 1

2
σ2t), t ≤ Λ(T ). (6)

(b) The unique no-arbitrage price Vt of X at time t < T is

Vt = (Bt/BT )EQ[X|Gt]. (7)

The proof is postponed to the Appendix. We remark that the Theorem provides
explicit hedging and pricing, conditional on Λ(T ), of a general class of European
option payoffs that might potentially depend on the whole history of S(t). Moreover,
the hedging strategy is attainable at any time t as long as Λ(t) is observable at time
t. The hypothesis that Λ is pinned at T is equivalent to pricing that is conditional on
the value Λ(T ). The additional assumption that the payoff X is Q-independent of FΛ

T
is made more concrete in the following Corollaries describing some interesting special
cases.

Corollary 4.2. Under the Market Assumptions above, if N is an inhomogeneous
Poisson process with positive intensity, then X is attainable and its unique no-arbitrage
price at time t < T is

Vt = (Bt/BT )EQ[X|Gt],

where the equivalent martingale measure is defined in equation (4).

Proof. An inhomogeneous Poisson process has a deterministic intensity, hence de-
terministic compensator Λ. The conclusion is immediate from Theorem 4.1.

Corollary 4.3. Under the Market Assumptions above, suppose that the compensator
Λ of the regular point process N is pinned at time T . Let X ∈ L1 be the payoff of a
European option of the form X = f(S(T )) for some function f .

Then X is attainable and the unique no-arbitrage price Vt of X at time t < T is

Vt = (Bt/BT )EQ[X|Gt], (8)

where the measure Q is the equivalent martingale measure defined by equation (4).
Moreover, the time 0 price of the option X = f(S(T )) is given by

V0 = e−rT
∫ ∞
−∞

f(S0e
−σ2T ′/2+rT eσy)p(y;σ2T ′)dy, (9)
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where T ′ = Λ(T ) and p(y;σ2T ′) is the pdf of a normal distribution in y with mean
zero and variance σ2T ′.

Proof of Corollary 4.3. Let Λ(T ) = T ′. Since S(T ) = exp(σB(Λ(T )) + mΛ(T )) =
exp(σB(T ′) +mT ′), it follows that S(T ), hence X, is independent of Λ and Λ−1. The
first part then follows from Theorem 4.1.

The second part follows straightforwardly from (8) and the fact, as shown in the
proof of Theorem 4.1, that

S(T ) = S0 exp(σB̃(Λ(T ))− (1/2)σ2Λ(T ) + rT )

= S0 exp(σB̃(T ′)− (1/2)σ2T ′ + rT ),

where B̃(T ′) is normally distributed with respect to Q with mean zero and variance
T ′.

Corollary 4.4. Under the same assumptions of Corollary 4.3, if X = (ST −K)+ is
a European call option with strike K and maturity T , then its time-0 price is

V0 = CBS(σ, r, S0, e
r(T ′−T )K,T ′), (10)

where T ′ = Λ(T ) and CBS(σ, r, S0,K, T ) denotes the standard Black-Scholes call price
at strike K and maturity T .

Furthermore, the hedging portfolio (φt, ψt) is given explicitly by

φt = N(dΛ
1 (t)) and ψt = −Ke−rT ′N(dΛ

2 (t)), (11)

where N is the standard normal cumulative distribution function, and

dΛ
1 (t) =

1

σ
√
T ′ − Λ(t)

[
ln
(St
K

+ (r + σ2/2)(T ′ − Λ(t))
)]
, (12)

dΛ
2 (t) = dΛ

1 (t)− σ
√
T ′ − Λ(t), (13)

and the time-t price of the option is

Vt = φtSt + ψte
rt.

Corollary 4.4 follows from Corollary 4.3, part (a) of Theorem 4.1, and the standard
Black-Scholes formulas for the replicating portfolio (η, ξ) of a European call in the
market (6).

Notice that in the above results the quantity Λ(t) is observable at time t, as it is
the quadratic variation of (logS)/σ up to time t. Therefore the price formulas and
replicating portfolios depend only on the random variable T ′ = Λ(T ). We can view
equations (9) and (10) as the price conditional on Λ(T ), and therefore a scenario-based
price, where the scenarios are parametrized by Λ(T ). These results would be relevant
to stress-testing portfolio values under different possible future regimes of accumulated
market activity over the life of the option.

Alternatively, if we have a separately calibrated limit order book model with arrival
process N leading to a parametrized distribution for Λ(T ), we can take a further
expectation of equation (10) to obtain an unconditional option price.
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Figure 1. Call price comparison. On the left is the call price in the activity-driven model as a function of
Λ(T ), for parameters stock price S = 10, interest rate r = .03, volatility σ = 0.5, strike K = 11, and maturity

T = 0.2. On the right is the standard Black-Scholes call price for these parameters, but variable σ.

It is straightforward to check that the expression in equation (10) is increasing in
T ′ = Λ(T ) when the other parameters are held constant. Therefore one can think of
the accumulated intensity (or realized quadratic variation) Λ(T ) over the life of the
option as playing a similar role as the volatility parameter σ in affecting the option
price. The parameter Λ(T ) is a “trading activity” parameter separate from volatility
but having a similar qualitative effect on the option price. This model is therefore an
alternative to a stochastic volatility model.

For a numerical illustration comparing Black-Scholes volatility σ as a parameter
to the integrated arrival intensity Λ(T ), see figure 1. There we compare the effect of
varying Λ(T ) in the activity-driven model to the effect of varying volatility σ in the
standard Black-Scholes model. We can see that Λ(T ) has characteristics similar to the
Black-Scholes σ, and therefore is a reasonable alternative (random) measure of overall
volatility.

In figure 2, we look at how implied volatility depends on Λ(T ) for a fixed set of
parameters. We also compare that to the implied volatilities referenced to a fixed
maturity T = 0.2 (years), for ordinary Black-Scholes call prices computed for variable
T as a proxy. Here we observe that Λ(T ) is non-linearly related to implied volatility,
and similar to, but not captured by, varying the maturity parameter T in the Black-
Scholes formula.

5. Conclusion

Motivated by the random jump times in the limit order book for a stock price and The-
orem 2.1, we consider a generalized Black-Scholes model with a bond or cash account
Bt = ert and a stock S(t) = S0 exp(σBN (t)+µΛ(t)). This market can be thought of as
a continuous limit of a discrete stock price model where price changes are driven by the
action of many small agents acting with integrated intensity Λ, reflecting underlying
limit order book activity. In this sense the market model’s heteroskedastic features are
derived from market-clock variations rather than imposed by an exogenously estimated
stochastic volatility.

For certain classes of option payoffs X, and conditional on Λ(T ), we establish an

13



Figure 2. Black-Scholes implied volatility as a function of the maturity parameter T , and in the activity-
driven model as a function of Λ(T ). The two should agree when Λ(T ) = T = 0.2. The parameters are stock

price S = 10, interest rate r = .03, volatility σ = 0.5, strike K = 11, and base maturity T = 0.2.

option pricing formula in a familiar form

Vt = (Bt/BT )EQ[X|HΛ(t)],

where Q is the explicitly defined risk-neutral measure and H = FB ∨ FΛ−1

. As an
application, we can price a European call option with strike K and maturity T , con-
ditional on the value Λ(T ) = T ′ of the integrated intensity of the counting process N
over the life of the option, as

CBS(σ, r, S0, e
r(T ′−T )K,T ′),

where CBS is the usual Black-Scholes call option price formula. A separately calibrated
risk-neutral distribution of Λ(T ) could provide an unconditional call option price as a
function of parameters of a limit order book model.

6. Proof of theorem 4.1

Given X, our goal is to construct a self-financing strategy in the stock and bond with
time-t value given by Vt of Equation (7).

In this proof we use the convention that when we call a process M(t) a martingale
that is only defined on an interval [0, t0], we mean that the process stopped at t0 is a
martingale.

Since Λ is absolutely continuous with derivative λ bounded below by ε > 0, the
inverse function theorem tells us that

Λ−1(t) =

∫ t

0
λ̄u du,

where

λ̄u =
1

λΛ−1(u)

14



is positive and bounded above by 1/ε. It follows that

γt =
1

σ
(µ+ σ2/2− rλ̄t)

is bounded and left continuous with right limits. By Girsanov’s Theorem ([27], theorem
III.42), the equivalent measure Q on (Ω,F) defined by equation 4 is such that, for
0 ≤ t ≤ Λ(T ),

B̃(t) = B(t) +

∫ t

0
γs ds = B(t) +

µ+ σ2/2

σ
t− r

σ

∫ t

0
λ̄u du

= B(t) +
µ+ σ2/2

σ
t− r

σ
Λ−1(t)

is a standard Brownian motion with respect to (Q,H). Following our convention,
we write

B̃N (t) = B̃(Λ(t)) = BN (t) +
µ+ σ2/2

σ
Λ(t)− r

σ
t.

B̃N (t) is a square integrable (Q,G)-martingale, and since [B̃N , B̃N ] = Λ, therefore
so is the discounted stock price

Zt ≡ B−1
t S(t) = S0 exp(σBN (t) + µΛ(t)− rt) = S0 exp(σB̃N (t)− 1

2
σ2Λ(t)).

We are assuming that the option payoff X is independent of FΛ
T . This is equivalent

to the independence of X from FΛ−1

Λ(T ), since these two sigma-algebras are equal.

To construct a self-financing replicating portfolio, the difficulty is that the Pre-
dictable Representation Property (PRP, [31], V.4) enjoyed by Brownian motion does
not necessarily hold for arbitrary continuous square integrable martingales like BN .
The PRP for Brownian motion is what makes the Black-Scholes option pricing theory
work.

Our strategy is to apply the PRP to the Brownian motion model, and then change
variables by means of the time change Λ and the optional stopping theorem.

Recall that BN , Λ, and S are adapted to the filtration Gt = HΛt
, and B, Λ−1 are

adapted to Ht.
Let

Y (t) = Z(Λ−1(t)) = S0 exp(σB̃(t)− 1

2
σ2t).

Evidently Y is a (Q,F B̃) martingale.
Now define

E(t) = EQ[B−1
T X|Ht].

Since

H = FB ∨ FΛ−1

= F B̃ ∨ FΛ−1

,
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the independence of X from FΛ−1

Λ(T ) implies X ∈ F B̃Λ(T ) and E(t) = EQ[B−1
T X|F B̃t ] for

t ≤ Λ(T ).

Since EQ[B−1
T X|F B̃t ] is a (Q,F B̃)-martingale, by the Brownian martingale repre-

sentation property (e.g. [31], V.3), there is an F B̃-predictable, hence H-predictable,
process ηt such that

dE(t) = ηtdY (t). (14)

Next we wish to compose this equation with Λ, which is justified by the following
lemma.

Lemma 6.1 ([32], lemma 2.3). Let H be a filtration satisfying the usual conditions and
X be an H-semimartingale that is C-continuous, where C is a finite H-time-change.
Let L(X,H) denote the class of H-predictable processes H for which the stochastic

integral
∫ t

0 Hs dXs can be constructed.
If H ∈ L(X,H), then HCt−

∈ L(XC ,HC) for all t. Moreover, with probability one,
for all t ≥ 0, ∫ Ct

0
Hs dXs =

∫ t

0
HCs−

dXCs
.

Since Λ is a finite time-change with respect to H, and letting φt = ηΛ(t), then φt is
HΛ-predictable and we obtain from Equation (14) that

dE(Λ(t)) = φtdZ(t). (15)

We may now consider a portfolio holding φt shares of stock and ψt = E(Λ(t)) −
φtZ(t) shares of the bond at time t.

The portfolio value process

Vt = φtS(t) + ψtBt = BtE(Λ(t))

is self-financing by virtue of an easy computation using (15).
To complete the argument, the optional stopping theorem (e.g. [31], II.3) tells us

that for any t ∈ [0, T ]:

E(Λ(t)) = EQ[B−1
T X|HΛ(t)]. (16)

Our portfolio strategy is therefore a replicating strategy because

VT = BTE(Λ(T )) = BTEQ[B−1
T X|HΛ(T )] = X.

Therefore the no-arbitrage price of X at any earlier time t must be the value of the
replicating portfolio

Vt = BtE(Λ(t)) = (Bt/BT )EQ[X|HΛ(t)]

as desired. This completes the proof of Theorem 4.1.
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