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Abstract.5
Estimation of the covariance of a high-dimensional returns vector is well-known to be impeded by the lack6

of long data history. We extend the work of Goldberg, Papanicolaou, and Shkolnik (GPS) [14] on shrinkage7
estimates for the leading eigenvector of the covariance matrix in the high dimensional, low sample-size regime,8
which has immediate application to estimating minimum variance portfolios. We introduce a more general9
framework of shrinkage targets – multiple anchor point shrinkage – that allows the practitioner to incorporate10
additional information – such as sector separation of equity betas, or prior beta estimates from the recent past11
– to the estimation. We prove some asymptotic statements and illustrate our results with some numerical12
experiments.13
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1. Introduction. This paper is about the problem of estimating covariance matrices for16

large random vectors, when the data for estimation is a relatively small sample. We discuss a17

shrinkage approach to reducing the estimation error asymptotically in the high dimensional,18

bounded sample size regime, denoted HL. We note at the outset that this context differs from19

that of the more well-known random matrix theory of the asymptotic “HH regime” in which20

the sample size grows in proportion to the dimension (e.g. [8]). See [19] for earlier discussion21

of the HL regime, and [9] for a discussion of the estimation problem for factor models in high22

dimension.23

Our interest in the HL asymptotic regime comes from the problem of portfolio optimization24

in financial markets. There, a portfolio manager is likely to confront a large number of assets,25

like stocks, in a universe of hundreds or thousands of individual issues. However, typical26

return periods of days, weeks, or months, combined with the irrelevance of the distant past,27

mean that the useful length of data time series is usually much shorter than the dimension of28

the returns vectors being estimated.29

In this paper we extend the successful shrinkage approach introduced in [14] (GPS) to a30

framework that allows the user to incorporate additional information into the shrinkage target31

and improve results. Our “multiple anchor point shrinkage” (MAPS) approach includes the32

GPS method as a special case.33

The problem of sampling error for portfolio optimization has been widely studied ever34

since Markowitz [25] introduced the approach of mean-variance optimization. That paper35
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2 H. GURDOGAN AND A. KERCHEVAL

immediately gave rise to the importance of estimating the covariance matrix Σ of asset returns,36

as the risk, measured by variance of returns, is given by wTΣw, where w is the vector of weights37

defining the portfolio.38

For a survey of various approaches over the years, see [14] and references therein. Reducing39

the number of parameters via factor models has long been standard; see for example [26]40

and [27]. The applicability of factor models in a very general HL setting is justified by [3].41

Discussion of consistent estimation of factors in the HL and HH regimes is contained in [5]42

and [6]. There, the HH regime in which both p and n tend to infinity is required for exact43

consistency. In comparison, Theorem 2.3 below attains a consistent estimator of a single factor44

in the HL setting for a bounded number of observations.45

[30] and [12] initiated a Bayesian approach to portfolio estimation and the efficient frontier.46

Practitioners are frequently interested in estimating the sensitivity (called “beta”) of asset47

returns to the overall market return. Vasicek used a prior cross-sectional distribution for48

betas to produce an empirical Bayes estimator for beta that amounts to shrinking the least-49

squares estimator toward the prior in an optimal way. This is one of a number of “shrinkage”50

approaches in which initial sample estimates of the covariance matrix are “shrunk” toward51

a prior e.g. [21], [2], [22], [23], [10]. [24] describes a nonlinear shrinkage estimator of the52

covariance matrix focused on correcting the eigenvalues, set in the HH asymptotic regime.53

A number of results in the HL and HH regimes related to correcting biases in the spiked54

covariance setting of factor models are described in [31].55

The key insight of [14] was to identify the PCA leading eigenvector of the sample covari-56

ance matrix as the primary culprit contributing to sampling error for the minimum variance57

portfolio problem in the HL asymptotic regime. Their approach to eigenvector shrinkage is58

not explicitly Bayesian, but can be viewed in that spirit (see section 2.5). This is the starting59

point for the present work.60

It is worth pointing out that shrinkage approaches to estimation are far broader than61

estimating covariance matrices. The books [11] and [16] discusses an array of shrinkage esti-62

mators, mainly centered on the famous James-Stein (JS) estimator [20], [7]. The JS estimator63

as a prototype is not merely incidental to this work: it turns out that there are close structural64

parallels between JS and GPS/MAPS, as described in the recent works [29] and [13].65

1.1. Mathematical setting and background. Next we describe the mathematical setting,66

motivation, and results in more detail. We restrict attention to a familiar and well-studied67

(e.g. [28]) baseline model for financial returns: the one-factor, “single-index” or “market”,68

model69

(1.1) r = βx+ z,70

where r ∈ Rp is a p-dimensional random vector of asset (excess) returns in a universe of p71

assets, β ∈ Rp is an unobserved non-zero vector of parameters to be estimated, x ∈ R is72

an unobserved random variable representing the common factor return, and z ∈ Rp is an73

unobserved random vector of residual returns specific to the individual assets.74

With the assumption that the components of z are uncorrelated with x and each other, the75

returns of different assets are correlated only through β, and therefore the covariance matrix76
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MULTIPLE ANCHOR POINT SHRINKAGE 3

of r is77

Σ = σ2ββT +∆,78

where σ2 denotes the variance of x, and ∆ is the diagonal covariance matrix of z. Typical79

models in practice use multiple drivers of correlation, so this model represents a base case in80

which to set our results. However, to the extent that we will measure success below by the81

performance of the estimated minimum variance portfolio, to a good approximation only a82

single market factor is relevant ([4], [15]).83

Under the further simplifying model assumption1 that each component of z has a common84

variance δ2 (also not observed), we obtain the covariance matrix of returns85

(1.2) Σ = σ2ββT + δ2I,86

where I denotes the p× p identity matrix.87

This means that β, or its normalization b = β/||β||, is the leading eigenvector of Σ,88

corresponding to the largest eigenvalue σ2||β||2 + δ2. As estimating b becomes the most89

significant part of the estimation problem for Σ, a natural approach is to take as an estimate90

the first principal component (leading unit eigenvector) hPCA of the sample covariance of91

returns data generated by the model. This principal component analysis (PCA) estimate is92

our starting point.93

Consider the optimization problem94

min
w∈Rp

wTΣw95

eTw = 196

where e = (1, 1, . . . , 1), the vector of all ones.97

The solution, the “minimum variance portfolio”, is the unique fully invested portfolio98

minimizing the variance of returns. Of course the true covariance matrix Σ is not observable99

and must be estimated from data. Denote an estimate by100

(1.3) Σ̂ = σ̂2β̂β̂T + δ̂2I101

corresponding to estimated parameters σ̂, β̂, and δ̂.102

Let ŵ denote the solution of the optimization problem103

min
w∈Rp

wT Σ̂w104

eTw = 1.105

It is interesting to compare the estimated minimum variance106

V̂ 2 = ŵT Σ̂ŵ107

1The assumption of homogeneous residual variance δ2 is a mathematical convenience. If the diagonal
covariance matrix ∆ of residual returns can be reasonably estimated, then the problem can be rescaled as
∆−1/2r = ∆−1/2βx+∆−1/2z, which has covariance matrix σ2β∆βT

∆ + I, where β∆ = ∆−1/2β.
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4 H. GURDOGAN AND A. KERCHEVAL

with the actual variance of ŵ:108

V 2 = ŵTΣŵ,109

and consider the variance forecast ratio V 2/V̂ 2 as one measure of the error made in the110

estimation of minimum variance, hence of the covariance matrix Σ.111

The remarkable fact proved in [14] is that, asymptotically as p tends to infinity with n112

fixed, the true variance of the estimated portfolio doesn’t depend on σ̂, δ̂, or ||β̂||, but only113

on the unit eigenvector β̂/||β̂||. Under some mild assumptions stated later, they show the114

following.115

Definition 1.1. For a p-vector β = (β(1), . . . , β(p)), define the mean µ(β) and dispersion116

d2(β) of β by117

(1.4) µ(β) =
1

p

p∑
i=1

β(i) and d2(β) =
1

p

p∑
i=1

( β(i)
µ(β)

− 1
)2
.118

We use the notation for normalized vectors119

b =
β

||β||
, q =

e
√
p
, and h =

β̂

||β̂||
.120

121

Proposition 1.1 ([14]). The true variance of the estimated portfolio ŵ is given by122

V 2 = ŵTΣŵ = σ2µ2(β)(1 + d2(β))E2(h) + op123

where E(h) is defined by124

E(h) = (b, q)− (b, h)(h, q)

1− (h, q)2
,125

and where the remainder op is such that for some constants c, C, c/p ≤ op ≤ C/p for all p.126

In addition, the variance forecast ratio V 2/V̂ 2 is asymptotically equal to pE2(h).127

Goldberg, Papanicolaou and Shkolnik call the quantity E(h) the optimization bias associated128

to an estimate h of the true vector b. They note that the optimization bias E(hPCA) is asymp-129

totically bounded above zero almost surely, and hence the variance forecast ratio explodes as130

p→ ∞.131

With this background, the estimation problem becomes focused on finding a better esti-132

mate h of b from an observed time series of returns. GPS [14] introduces a shrinkage estimate133

for b – the GPS estimator hGPS – obtained by “shrinking” the PCA eigenvector hPCA along134

the unit sphere toward q, to reduce excess dispersion. That is, hGPS is obtained by moving a135

specified distance (computed only from observed data) toward q along the spherical geodesic136

connecting hPCA and q. “Shrinkage” refers to the reduced geodesic distance to the “shrinkage137

target” q.138

The GPS estimator hGPS is a significant improvement on hPCA. First, E(hGPS) tends139

to zero with p, and in fact pE2(hGPS)/ log log(p) is bounded (proved in [17]). In [14] it140

is conjectured, with numerical support, that E[pE2(hGPS)] is bounded in p, and hence the141

expected variance forecast ratio remains bounded. Moreover, asymptotically hGPS is closer142

than hPCA to the true value b in the ℓ2 norm, and it yields a portfolio with better tracking143

error against the true minimum variance portfolio.144
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MULTIPLE ANCHOR POINT SHRINKAGE 5

1.2. Our contributions. The purpose of this paper is to generalize the GPS estimator by145

introducing a way to use additional information about beta to adjust the shrinkage target q146

in order to improve the estimate.147

We can consider the space of all possible shrinkage targets τ as determined by the family148

of all nontrivial proper linear subspaces L of Rp as follows. Given L (assumed not orthogonal149

to h), let the unit vector τ(L) be the normalized orthogonal projection of h onto L. τ(L) is150

then a shrinkage target for h determined by L (and h). We will describe such a subspace L as151

the linear span of a set of unit vectors called “anchor points”. In the case of a single anchor152

point q, note that τ(span{q}) = q, so this case corresponds to the GPS shrinkage target.153

The “MAPS” estimator is a shrinkage estimator with a shrinkage target defined by an154

arbitrary collection of anchor points, usually including q. When q is the only anchor point,155

the MAPS estimator reduces to the GPS estimator. We can therefore think of the MAPS156

approach as allowing for the incorporation of additional anchor points when this provides157

additional information.158

In Theorem 2.2, we show that expanding span{q} by adding additional anchor points at159

random asymptotically does no harm, but makes no improvement.160

In Theorem 2.3, we show that if the user has certain mild a priori rank ordering infor-161

mation about groups of components of β, even with no information about magnitudes, an162

appropriately constructed MAPS estimator is a consistent estimator in the sense that it con-163

verges exactly to the true vector b in the asymptotic limit, even though the sample size is held164

fixed.165

Theorem 2.4 shows that if the betas have positive serial correlation over recent history, then166

adding the prior PCA estimator h as an anchor point improves the ℓ2 error in comparison167

with the GPS estimator, even if the GPS estimator is computed with the same total data168

history.169

The benefit of improving the ℓ2 error in addition to the optimization bias is that it also al-170

lows us to reduce the tracking error of the estimated minimum variance fully invested portfolio,171

discussed in Section 3 and Theorem 3.1.172

In the next sections we present the main results. The framework, assumptions, and state-173

ments of the main theorems are presented in Sections 2 and 3. Some simulation experiments174

are presented in Section 4 to illustrate the impact of the main results for some specific situ-175

ations. Proofs of the theorems of Section 2 are organized in Section 5, followed by Section 6176

describing some open questions for further work.177

To limit the length of this article, the proofs of some of the needed technical propositions178

and lemmas appear in a separate document [18], available online. Additional details and179

computations may be found in [17].180

2. Main Theorems.181

2.1. Assumptions and Definitions. We consider a simple random sample history gener-182

ated from the basic model (1.1). The sample data can be summarized as183

(2.1) R = βXT + Z184

where R ∈ Rp×n holds the observed individual (excess) returns of p assets for a time window185

that is set by n ≥ 2 consecutive observations. We may consider the observables R to be186

This manuscript is for review purposes only.



6 H. GURDOGAN AND A. KERCHEVAL

generated by non-observable random variables β ∈ Rp, X ∈ Rn and Z ∈ Rp×n.187

The entries of X are the market factor returns for each observation time; the entries188

of Z are the specific returns for each asset at each time; the entries of β are the exposure189

of each asset to the market factor, and we interpret β as random but fixed at the start of190

the observation window of times 1, 2, 3, ..., n and remaining constant throughout the window.191

Only R is observable.192

In this paper we are interested in asymptotic results as p tends to infinity with n fixed.193

Therefore we consider equation (2.1) as defining an infinite sequence of models, one for each194

p.195

To specify the relationship between models with different values of p, we need a more196

precise notation. We’ll let β refer to an infinite sequence (β(1), β(2), . . . ) ∈ R∞, and βp =197

(β(1), . . . , β(p)) ∈ Rp the vector obtained by truncation after p entries. When the value p is198

understood or implied, we will frequently drop the superscript and write β for βp.199

Similarly, Z ∈ R∞×n is a vector of n sequences (the columns), and Zp ∈ Rp×n is obtained200

by truncating the sequences at p.201

With this setup, passing from p to p+ 1 amounts to simply adding an additional asset to202

the model without changing the existing p assets. The pth model is denoted203

Rp = βpXT + Zp,204

but for convenience we will often drop the superscript p in our notation when there is no205

ambiguity, in favor of equation (2.1).206

Let µp(β) and dp(β) ≥ 0 denote the mean and dispersion of βp, given by207

(2.2) µp(β) =
1

p

p∑
i=1

β(i) and dp(β)
2 =

1

p

p∑
i=1

(
β(i)− µp(β)

µp(β)
)2.208

We make the following assumptions regarding β, X and Z:209

A1. (Regularity of beta) The entries β(i) of β are uniformly bounded, independent random210

variables, fixed prior to time 1. The mean µp(β) and dispersion dp(β) converge to limits211

µ∞(β) ∈ (0,∞) and d∞(β) ∈ (0,∞).212

A2. (Independence of beta, X, Z) β, X and Z are jointly independent.213

A3. (Regularity of X) The entriesXi ofX are iid random variables with mean zero, variance214

σ2 .215

A4. (Regularity of Z) The entries Zij of Z have mean zero, finite variance δ2, and uniformly216

bounded fourth moment. In addition, the n-dimensional rows of Z are mutually217

independent, and within each row the entries are pairwise uncorrelated.2218

The assumptions above are for the sake of convenience and to simplify the statements219

of results, but in practice are non-binding or can be partly relaxed. In assumption A1,220

boundedness is automatic in a finite market, and the betas can be viewed as constants as a221

special case if desired (until section 2.4). Once β is determined, it is held fixed during the222

observation window of length n. In contrast, X and the columns of Z are drawn independently223

2Note we do not assume β,X, or Z are Normal or belong to any specific family of distributions.
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MULTIPLE ANCHOR POINT SHRINKAGE 7

at each of the n observations times. The existence of the limits µ∞(β) and d∞(β) could be224

relaxed by considering the limit superior and inferior of the sequence at the cost of more225

complicated theorem statements, so long as lim inf µp(β) ̸= 0, with a change of sign if needed226

to make it positive.227

Assumptions A2 and A3 are conveniences that simplify the analysis and statements of228

results. In [14] X and Z are only assumed uncorrelated, so the stronger independence as-229

sumption, used in our proofs, is not necessary in all cases. Assumption A4 is one of a few230

alternatives that serve the proofs. The fourth moment condition can be dropped in favor231

of the additional assumption that the rows of Z are identically distributed, but we prefer232

boundedness conditions as they are always satisfied in finite markets.233

With the given assumptions the covariance matrix Σβ of R, conditional on β, is234

(2.3) Σβ = σ2ββT + δ2I.235

Since β stays constant over the n observations, the sample covariance matrix 1
nRR

T converges236

to Σβ almost surely if n is taken to ∞, and is the maximum likelihood estimator of Σβ.237

We will work with normalized vectors on the unit sphere Sp−1 ⊂ Rp. To that end we238

define239

(2.4) b =
β

||β||
, q =

e
√
p
,240

where e = ep = (1, 1, . . . , 1) ∈ Rp, and ||.|| denotes the usual Euclidean norm.241

The vector b is the leading eigenvector of Σβ (corresponding to the largest eigenvalue). We242

denote by h the PCA estimator of b, i.e. h is the first principal component, or the unit leading243

eigenvector, of the sample covariance matrix 1
nRR

T . For convenience we always select the244

sign of the unit eigenvector h such that the inner product (h, q) > 0, ignoring the probability245

zero case (h, q) = 0.246

Since β and X appear in the model R = βX + Z only as a product, there is a scale247

ambiguity that we can resolve by combining their scales into a single parameter η:248

ηp =
1

p
|βp|2σ2.249

It is easy to verify that250

ηp = µp(β)
2(dp(β)

2 + 1)σ2,251

and therefore by our assumptions ηp tends to a positive, finite limit η∞ as p→ ∞.252

Our covariance matrix becomes253

(2.5) Σβ ≡ Σb = pηbbT + δ2I,254

where we drop the superscript p when convenient. The scalars η, δ and the unit vector b are255

to be estimated by η̂, δ̂, and h. As described above, asymptotically only the estimate h of b256

will be significant. Improving this estimate is the main technical goal of this paper.257

In [14] the PCA estimate h is replaced by an estimate hGPS that is “data driven”, meaning258

that it is computable solely from the observed data R. We henceforth use the notation259
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8 H. GURDOGAN AND A. KERCHEVAL

hGPS = ĥq, for a reason that will be clear shortly. As an intermediate step we also consider a260

non-observable “oracle” version hq, defined as the point on the short Sp−1-geodesic joining h261

to q that is closest to b. (Recall that both b and h are chosen to lie in the half-sphere centered262

at q.) The oracle version is not data driven because it requires knowledge of the unobserved263

vector b that we are trying to estimate, but it is a useful concept in the definition and analysis264

of the data driven version. Both the data driven estimate ĥq and the oracle estimate hq can be265

thought of as obtained from the eigenvector h via “shrinkage” along the geodesic connecting266

h to the anchor point, q.267

The GPS data-driven estimator ĥq is successful in improving the variance forecast ratio,268

and in arriving at a better estimate of the true variance of the minimum variance portfolio.269

In this paper we have the additional goal of reducing the ℓ2 error of the estimator, which, for270

example, is helpful in reducing tracking error. To that end, we introduce the following new271

data driven estimator, denoted ĥL.272

Let L = Lp ⊂ Rp denote a nontrivial proper linear subspace of Rp. If v is any vector in273

Rp, we write274

proj
L

(v)275

for the Euclidean orthogonal projection of v onto L. Denote by kp the dimension of Lp, with276

1 ≤ kp ≤ p− 1.277

Let h = hp denote our normalized leading eigenvector of 1
nR

p(Rp)T , s2p its largest eigen-278

value, and l2p the average of the remaining non-zero eigenvalues. Then we define the data279

driven “MAPS” (Multiple Anchor Point Shrinkage) estimator by280

(2.6) ĥL =

τph+ proj
L

(h)

||τph+ proj
L

(h)||
281

where282

(2.7) τp =

ψ2
p − ||proj

L
(h)||2

1− ψ2
p

and ψp =

√
s2p − l2p
s2p

.283

Here ψp measures the relative gap between s2p and l2p. The MAPS estimator can be viewed284

as obtained by “shrinking” the PCA estimator h toward the target proj
L

(h) along the sphere285

Sp−1 by a specified amount.286

Recall that we sometimes use a superscript to emphasize the dimension of a vector, and287

the notation (·, ·) for the Euclidean inner product of two vectors. The next lemma from [14]288

describes the asymptotic limit of ψp and inner products (hp, bp), (hp, qp), and (bp, qp) as the289

dimension p tends to infinity.290

Lemma 2.1 ([14]). The limits ψ∞ = limp→∞ ψp, (h, b)∞ = limp→∞(hp, bp), (h, q)∞ =291

limp→∞(hp, qp), and (b, q)∞ = limp→∞(bp, qp) exist almost surely. Moreover,292

ψ∞ = (h, b)∞ ∈ (0, 1),293

and294

(h, q)∞ = (h, b)∞(b, q)∞ ∈ (0, 1).295
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MULTIPLE ANCHOR POINT SHRINKAGE 9

When L is the one-dimensional subspace spanned by the vector q, then ĥL is precisely the296

GPS estimator ĥq, located along the short spherical geodesic connecting h to q. The phrase297

“multiple anchor point” comes from thinking of q as an “anchor point” shrinkage target in298

the GPS paper, and L as a subspace spanned one or more anchor points. The new shrinkage299

target determined by L is the normalized orthogonal projection of h onto L. When L is the300

one-dimensional subspace spanned by q, the normalized projection of h onto L is just q itself.301

In the event that L is orthogonal to h, the MAPS estimator ĥL reverts to h itself.302

2.2. The MAPS estimator with random extra anchor points. Does adding anchor points303

to create a MAPS estimator from a higher-dimensional subspace improve the estimation? The304

answer depends on whether there is any relevant information about b in the added anchor305

points. In the case where there is no added information and we simply add new anchor points306

at random, the next theorem says this doesn’t help.307

First some terminology. We say that Lp is a random linear subspace of Rp if it is non-308

trivial, proper, and the span of a collection of random, linearly independent unit vectors. The309

random linear subspace Hp is a uniform random subspace of Rp if, in addition, it has spanning310

vectors are uniformly distributed on the sphere Sp−1.3 We say Lp is independent of a random311

variable Ψ if it has spanning vectors that are independent of Ψ.312

Definition 2.1. A non-decreasing sequence {kp} of positive integers is square root domi-313

nated if314
∞∑
p=1

k2p
p2

<∞.315

For example, any non-decreasing sequence satisfying kp ≤ Cpα for some C > 0 and α < 1/2316

is square root dominated. Roughly speaking, a square-root dominated sequence is one that317

grows more slowly than
√
p. In particular, any constant sequence qualifies.318

Theorem 2.2. Let the assumptions 1,2,3 and 4 hold. Suppose, for each p, Lp is a random319

linear subspace and Hp is a uniform random subspace of Rp. Suppose also that Lp is inde-320

pendent of Z, and Hp is independent of both Z and β. Assume also the sequences dimLp and321

dimHp are square root dominated.322

Let L′
p = span{Lp, q

p} and H ′
p = span{Hp, q

p}.323

Then, almost surely,324

(2.8) lim sup
p→∞

||ĥL′ − b|| ≤ lim
p→∞

||ĥq − b||,325

326

(2.9) lim
p→∞

||ĥH′ − b|| = lim
p→∞

||ĥq − b||,327

and328

(2.10) lim
p→∞

||ĥH − b|| = lim
p→∞

||h− b||.329

3Uniform random subspaces are called Haar random subspaces in [18] because they can be defined alterna-
tively in terms of the Haar (uniform) measure on the orthogonal group.
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10 H. GURDOGAN AND A. KERCHEVAL

The limits on the right hand sides of (2.8), (2.9), and (2.10) exist by an easy application330

of Lemma 2.1. The need for some upper bounds, such as square root domination, for the331

dimensions of L and H can be understood by considering the extreme case of maximum332

dimension p. In that case, the MAPS estimators all reduce to h itself, so (2.8) and (2.9) fail.333

Theorem 2.2 says adding random anchor points to form a MAPS estimator does no harm334

asymptotically, but also makes no improvement asymptotically. Inequality (2.8) says that335

adding anchor points to q that are independent of Z creates a MAPS estimator that is asymp-336

totically never worse, in the Euclidean distance, than the GPS estimator ĥq, though it might337

be better (intuitively, if the MAPS estimator incorporates some addtional information about338

β).339

Equation (2.9) says that the GPS estimator is asymptotically neither improved nor harmed340

by adding extra anchor points uniformly at random when they are independent of β and Z.341

Therefore the goal will be to find useful anchor points that take advantage of additional342

information about β that might be available. Necessarily those anchor points will not be343

independent of β, but can be thought of as creating choices of L′
p to create a strict inequality344

in (2.8).345

Equation (2.10) confirms that the anchor point q used by the GPS estimator has value:346

without it, a random selection of anchor points independent of β and Z will define a MAPS347

estimator that is asymptotically no better than the PCA estimator h. While q is not random,348

it has an implicit relationship to β coming from Assumption A1, which is motivated by the fact349

that equity betas are empirically observed to cluster around 1. In this sense, the non-random350

anchor point q contains baseline information about β. This is one of the central intuitions351

behind the GPS estimator in [14].352

As a final remark, notice that in Theorem 2.2 we do not require L or H to be independent353

ofX (butX, Z, and β are mutually independent by Assumption A2). The asymptotic analysis354

in the proof requires independence from Z in order to apply a version of the strong law of355

large numbers as p→ ∞. In contrast, X does not depend on p and so its contribution can be356

controlled a priori uniformly in p.357

2.3. The MAPS estimator with rank order information about the entries of beta. We358

now wish to consider what kind of information about β could be added in the form of anchor359

points to create an improved MAPS estimator.360

In this section we consider rank order information. Use of estimated rank ordering of361

unknown quantities is not new in finance, but has mostly been applied to estimated ordering362

of returns rather than betas, such as in [1]. Here we consider order information about betas,363

used in connection with shrinkage estimation.364

It so happens that if a well-informed observer somehow knows the rank-ordering of the365

components of βp for each p – that is, which entry is the largest, which second largest, etc.,366

then that information alone, without knowing the actual magnitudes, is sufficient to determine367

b asymptotically with zero error almost surely, using an appropriate MAPS estimator. The368

resulting consistent estimator is unexpected because the asymptotics are not with regard to369

sample size n tending to infinty, but rather dimension p→ ∞ with fixed n.370

In fact, significantly less information than this is needed to create a consistent MAPS371

estimator in this sense. It suffices to be able to separate the components of beta into ordered372

This manuscript is for review purposes only.



MULTIPLE ANCHOR POINT SHRINKAGE 11

groups, where the rank ordering of the groups is known, but not the ordering within groups.373

The meaning of ordered groups and the constraints on group sizes are explained below.374

Definition 2.2. For any p ∈ N, let P = P(p) be a partition of the index set {1, 2, .., p} (i.e. a375

collection of pairwise disjoint non-empty subsets, called atoms, whose union is {1, 2, .., p}).376

The number of atoms of P is denoted by |P|.377

We say the sequence of partitions P(p) is semi-uniform if there exists M > 0 such that378

for all p,379

(2.11) max
I∈P(p)

|I| ≤M
p

|P(p)|
.380

In other words, no atom is larger than a fixed multiple M of the average atom size.381

Given β ∈ Rp, we say P is β-ordered if, for each distinct I, J ∈ P, either max
i∈I

βi ≤ min
j∈J

βj382

or max
j∈J

βj ≤ min
j∈I

βi.383

Intuitively, a semi-uniform β-ordered partition P(p) defines a way to organize the elements384

βpi of βp into disjoint groups (atoms) that are of similar size, and such that for each group,385

no element outside the group lies strictly in between two elements of the group.386

It is easy to see that many such semi-uniform β-ordered partitions always exist, and are387

easily constructed if a rank ordering if the betas is known. For example, for each p, first388

rank order the elements of βp, then divide the elements into deciles by taking the largest ten389

percent, then the next ten percent, etc., rounding as needed. The result is ten atoms, and390

each atom is approximately p/10 in size. If in addition we want the number of atoms to391

tend to infinity with p, we can replace “ten percent” by a percentage that declines toward392

zero as p → ∞. If instead of ten percent we choose 0 < α < 1/2 and let the atoms be of393

size approximately p1−α, there will be approximately pα atoms in the resulting semi-uniform,394

β-ordered partition P(p), and the sequence |P(p)| will be square root dominated.395

Once we have such a partition, each atom A ⊂ {1, 2, . . . , p} defines an anchor point as396

follows.397

Definition 2.3. For any A ⊂ {1, 2, ..., p} let 1A ∈ Rp denote the vector defined by the398

indicator function of A: 1A(i) = 0 if i ∈ A, and otherwise 1A(i) = 0. We may then define,399

for any partition P = P(p), an induced linear subspace L(P) of Rp by400

(2.12) L(P) = spanp{1A
∣∣A ∈ P} ≡< 1A

∣∣A ∈ P > .401

Theorem 2.3. Let the assumptions 1,2,3 and 4 hold. Consider a semi-uniform sequence402

{P(p) : p = 1, 2, 3, . . . } of β-ordered partitions such that the sequence {|P(p)|} tends to infinity403

and is square root dominated. Then404

(2.13) lim
p→∞

||ĥL(P(p)) − b|| = 0 almost surely.405

Theorem 2.3 says that if we have certain prior information about the ordering of the β406

elements in the sense of finding an ordered partition (but with no other prior information407

about the actual magnitudes of the elements or their ordering within partition atoms), then408

asymptotically we can estimate b exactly.409
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12 H. GURDOGAN AND A. KERCHEVAL

Having in hand a true β-ordered partition a priori will usually not be possible because410

even the ordering of the betas is not likely to be known in practice. However, Theorem 2.3411

suggests the hypothesis that partial grouped order information about the betas can still be412

helpful in improving our estimate of β.413

We test this hypothesis in Section 4.2 by considering industry sectors as a proposed way414

to form a partition of asset betas. To the extent that betas for equities belonging to the415

same sector are similar, and separated from those of other sectors, the partition will be416

approximately β-ordered. The experiments of Section 4.2 illustrate, as least in that case, that417

these approximations can suffice to create a MAPS estimator that improves on the PCA and418

GPS versions.419

2.4. A data-driven dynamic MAPS estimator. Theorem 2.4 of this section shows that420

even with no a priori information about betas beyond the observed time series of returns, we421

can still use the MAPS framework to improve the GPS estimator by making more efficient422

use of the data history.423

In the analysis above we have treated β as a constant throughout the sampling period,424

but in reality we expect β to vary slowly over time. To capture this in a simple way, let’s425

now assume that we have access to returns observations for p assets over a fixed number of426

2n periods. The first n periods we call the first (or previous) time block, and the second n427

periods the second (or current) time block. We then have returns matrices R1, R2 ∈ Rp×n428

corresponding to the two time blocks, and R = [R1R2] ∈ Rp×2n the full returns matrix over429

the full set of 2n observation times.430

Define the sample covariance matrices S, S1, S2 as 1
2nRR

T , 1
nR1R

T
1 , and

1
nR2R

T
2 , respec-431

tively. Let h, h1, h2 denote the respective (normalized) leading eigenvectors (PCA estimators)432

of S, S1, S2. (Of the two choices of eigenvector, we always select the one having non-negative433

inner product with q.)434

Instead of a single β for the entire observation period, we suppose there are random vectors435

β1 and β2 that enter the model during the first and second time blocks, respectively, and are436

fixed during their respective blocks. We assume both β1 and β2 satisfy assumptions (1) and437

(2) above, and denote by b1 and b2 the corresponding normalized vectors. The vectors β1 and438

β2 should not be too dissimilar in the mild sense that (β1, β2) ≥ 0.439

Definition 2.4. Define the co-dispersion dp(β1, β2) and pointwise correlation ρp(β1, β2) of
β1 and β2 by

dp(β1, β2) =
1

p

p∑
i=1

( β1(i)
µp(β1)

− 1
)( β2(i)
µp(β2)

− 1
)

and

ρp(β1, β2) =
dp(β1, β2)

dp(β1)dp(β2)
.

The Cauchy-Schwartz inequality shows −1 ≤ ρp(β1, β2) ≤ 1. Furthermore, it is straight-440

forward to verify that441

(2.14) (b1, b2)− (b1, q)(b2, q) =
dp(β1, β2)√

1 + dp(β1)2
√

1 + dp(β2)2
.442
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and hence dp(β1, β2), and ρp(β1, β2) have limits d∞(β1, β2), and ρ∞(β1, β2) as p→ ∞.443

The motivation for this model is our expectation that estimated betas are not fixed, but444

nevertheless recent betas still provide some useful information about current betas. To make445

this precise in support of the following theorem, we make the following additional assumptions.446

A5. [Relation between β1 and β2] Almost surely, (β1, β2) > 0, µ∞(β1) = µ∞(β2), d∞(β1) =447

d∞(β2), and limp→∞ dp(β1, β2) = d∞(β1, β2) exists.448

Theorem 2.4. Assume β1, β2, R,X,Z satisfy assumptions 1-5. Denote by ĥsq and ĥdq the449

GPS estimators for R2 and R, respectively, i.e. the current (single) and previous plus current450

(double) time blocks. Let h1 and h2 be the PCA estimators for R1 and R2, respectively.451

Let Lp =< h1, q > and define a MAPS estimator for the current time block as452

(2.15) ĥL =

τph2 + proj
L

(h2)

||τph2 + proj
L

(h2)||
where τp =

ψ2
p − ||proj

L
(h2)||2

1− ψ2
p

,453

where ψp is computed from the eigenvalues of the sample covariance matrix corresponding to454

the current time block R2. Then, almost surely,455

(2.16) lim
p→∞

(
||ĥL − b2|| − ||ĥsq − b2||]

)
≤ 0 and lim

p→∞

(
||ĥL − b2|| − ||ĥdq − b2||]

)
≤ 0,456

and, if 0 < |ρ∞(β1, β2)| < 1,457

(2.17) lim
p→∞

(
||ĥL − b2|| − ||ĥsq − b2||

)
< 0 and lim

p→∞

(
||ĥL − b2|| − ||ĥdq − b2||

)
< 0.458

Theorem 2.4 says that the MAPS estimator obtained by adding the PCA estimator h from459

the previous time block as a second anchor point outperforms the GPS estimator asymptoti-460

cally, as measured by ℓ2 error, whether the latter is estimated with the most recent time block461

R2 or with the full 2n (double) data set. This works when the previous time block carries some462

information about the current beta (non-zero correlation). In the case of perfect correlation463

ρ∞(β1, β2) = 1 the two betas are equal, and we then return to the GPS setting where beta is464

assumed constant across the entire 2n observations, so no improved performance is expected.465

The cost of implementing this “dynamic MAPS” estimator is comparable to that of the466

GPS estimator, so should generally be preferred when no rank order information is available467

for beta.468

In this analysis we have chosen to use two historical time blocks of equal length n for the469

sake of a definite statement and to illustrate the idea. It is likely that the idea also works470

when the time blocks have different lengths, or when there are multiple historical time blocks471

in use. Theoretical or experimental analysis could determine rules for making such choices,472

but we do not do so here.473

2.5. Remarks and connections. The theorems above illustrate a general theme of the474

MAPS framework: the performance of a shrinkage estimator like GPS can be improved when475

additional information can be added in the form of additional anchor points. For Theorem 2.3,476

that means a certain amount of prior ordering information about the betas can be converted477
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to anchor points that are good enough to make a bona fide consistent estimator of b. For478

Theorem 2.4, the use of a PCA estimator from a prior interval in time as an additional anchor479

point improves the estimator if betas are correlated across time. The general point is that480

when there is some prior information about the betas that is independent of the time interval481

used for the estimation, the investigator should formulate that information as one or more482

anchor points and use the MAPS technique.483

This discussion has close connections to Bayesian decision theory (BDT), which makes484

use of a prior distribution of a parameter to be estimated. One could view the addition of an485

anchor point in the MAPS framework as an adjustment to a prior distribution for beta.486

We think it likely that the MAPS approach can be reformulated in BDT terms, although487

our results in the current form don’t conform to them. We don’t formulate the prior informa-488

tion in terms of a prior distribution of the parameters. And since our setting is asymptotic as489

p→ ∞, our conclusions are almost sure statements, rather than statements about minimizing490

posterior expected loss. However, the structural connections between GPS/MAPS and the491

James-Stein estimator mentioned in the introduction provides a link. The JS estimator is a492

kind of empirical Bayes estimator, for example see [11]. Similarly, the GPS/MAPS estimator493

is an empirical version of an “oracle” estimator – see Section 5.494

Another connection, especially for Theorem 2.4, is to the setting of machine learning.495

Although Theorem 2.4 itself is not about machine learning because there is no training process,496

one could imagine the use of prior time intervals as input to a training process that finds497

optimal anchor points as a function of the prior data. This is likely to improve on our default498

use of the PCA leading eigenvector as additional anchor point.499

3. Tracking Error. Our task has been to estimate the covariance matrix of returns for a500

large number p of assets but a short time series of n returns observations.501

Recall that for the returns model (1.1), under the given assumptions, we have the true502

covariance matrix503

Σb = pηbbT + δ2I,504

where η and δ are positive constants and b is a unit p-vector, and we are interested in corre-505

sponding estimates η̂, δ̂, and h that define an estimator506

Σh = pη̂hhT + δ̂2I.507

Our focus on the estimator h and relative neglect of η̂ and δ̂ is justified by Proposition508

1.1, showing that the true variance of the estimated minimum variance portfolio ŵ, and the509

variance forecast ratio, are asymptotically controlled by h alone through the optimization bias510

E(h) = (b, q)− (b, h)(h, q)

1− (h, q)2
.511

The preceding theorems have focused on a particular measure of estimation error for h:512

the ℓ2 error (Euclidean distance) ||h − b|| = 2(1 − (h, b)). By comparison, [14, 15] focus on513

the variance forecast ratio of the minimum variance portfolio. This error measure has the514

benefit of demonstrating improvement of a quantity of direct interest to practitioners, with515

the drawback of focusing on a single type of portfolio. The ℓ2 error is not a familiar financial516
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quantity, but is an ingredient in the optimization bias above, and also in estimating tracking517

error, as we describe next.518

We turn to a third important measure of covariance estimation quality: the tracking error519

for the minimum variance portfolio, which is controlled in part by the ℓ2 error of h. Tracking520

error is a term conventionally used in the finance industry as a measure of the distance between521

a portfolio and its benchmark. Here, we adopt the same idea to measure the distance between522

an estimated minimum variance portfolio and the true portfolio, as follows.523

Recall that w denotes the true minimum variance portfolio using Σ, and ŵ is the minimum524

variance portfolio using the estimated covariance matrix Σ̂.525

Definition 3.1. The (true) tracking error T (h) associated to ŵ is defined by526

(3.1) T 2(h) = (ŵ − w)TΣ(ŵ − w).527

Definition 3.2. Given the notation above, define the eigenvector bias D(h) associated to a528

unit leading eigenvector estimate h as529

D(h) =
(h, q)2(1− (h, b)2)

(1− (h, q)2)(1− (b, q)2)
=

(h, q)2||h− b||2

||h− q||2||b− q||2
.530

Theorem 3.1. Let h be an estimator of b such that E(h) → 0 as p→ ∞ (such as a GPS or531

MAPS estimator). Then the tracking error of h is asymptotically (neglecting terms of higher532

order in 1/p) given by533

(3.2) T 2(h) = ηE2(h) +
δ2

p
D(h) +

C

p
E(h),534

where535

C =
2

ξ(1 + d2∞(β))
(δ2 +

η

η̂
δ̂2)536

and ξ > 0 is a constant depending only on ψ∞, µ∞(β), and d∞(β).537

We consider what this theorem means for various estimators h. For the PCA estimate, it538

was already shown in [14] that E(hPCA) is asymptotically bounded below, and hence so is the539

tracking error.540

On the other hand, E(hGPS) tends to zero as p→ ∞. In addition [14] shows that541

lim sup
p→∞

p E2(hGPS) = ∞542

almost surely, while [17] shows543

lim sup
p→∞

p E2(hGPS)

log log p
<∞,544

and we conjecture the same is true for the more general estimator hMAPS .545

This implies the leading terms, asymptotically, are546

T 2(hMAPS) ≤ ηE2(hMAPS) + (δ2/p)D(hMAPS)547
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Note here the estimated parameters η̂ and δ̂ have dropped out, with the tracking error548

asymptotically controlled by the eigenvector estimate h alone.549

Theorem 3.1 helps justify our interest in the ℓ2 error results of Theorems 2.3 and 2.4.550

Reducing the ℓ2 error ||h−b|| of the h estimate controls the second term D(h) of the asymptotic551

estimate for tracking error. We therefore expect to see improved total tracking error when552

we are able to make an informed choice of additional anchor points in forming the MAPS553

estimator. This is borne out in our numerical experiments described in Section 4.554

Proof of Theorem 3.1555

Lemma 3.2. There exists ξ > 0, depending only on ψ∞, µ∞(β), and d∞(β), such that for556

any p sufficiently large, and any linear subspace L of Rp that contains q,557

||hL − q||2 > ξ > 0,558

where hL is the MAPS estimator determined by L.559

The Lemma follows from the fact that (hL, q) ≤ (hGPS , q), and is proved for the case hGPS560

using the definitions and the known limits561

(hPCA, q)∞ = (b, q)∞(hPCA, b)∞(3.3)562

(b, q)2∞ =
1

1 + d2∞(β)
∈ (0, 1)(3.4)563

(hPCA, b)∞ = ψ∞ > 0.(3.5)564

From the Lemma and equation (3.4), we may assume without loss of generality that ξ > 0565

is an asymptotic lower bound for both ||hL − q||2 = 1− (hL, q)
2 and ||b− q||2 = 1− (b, q)2.566

Next, we recall it is straightforward to find explicit formulas for the minimum variance567

portfolios w and ŵ:568

(3.6) w =
1
√
p

ρq − b

ρ− (b, q)
, where ρ =

1 + k2

(b, q)
, k2 =

δ2

pη
569

and570

(3.7) ŵ =
1
√
p

ρ̂q − h

ρ̂− (h, q)
, where ρ̂ =

1 + k̂2

(h, q)
, k̂2 =

δ̂2

pη̂
.571

We may use these expressions to obtain an explicit formula for the tracking error:572

T 2(h) = (ŵ − w)TΣ(ŵ − w) = (ŵ − w)T (pηbbT + δ2I)(ŵ − w)573

= pη(ŵ − w, b)2 + δ2||ŵ − w||2.574

We now estimate the two terms on the right hand side separately.575

(1) For the first term pη(ŵ − w, b)2, it is convenient to introduce the notation576

Γ =
k2

1 + k2 − (b, q)2
and Γ̂ =

k̂2

1 + k̂2 − (h, q)2
,577
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and since578

Γ ≤ k2

ξ
and Γ̂ ≤ k̂2

ξ
579

both Γ and Γ̂ are of order 1/p.580

A straightforward computation verifies that581

(w, b) =
1
√
p
Γ(b, q)(3.8)582

(ŵ, b) =
1
√
p

(
E(h) + Γ̂[(b, q)− E(h)]

)
.(3.9)583

We then obtain584

p(ŵ − w, b)2 = p[(ŵ, b)− (w, b)]2(3.10)585

= E(h)2 + 2E(h)G+G2,(3.11)586

where G = Γ̂((b, q)− E(h))− Γ(b, q).587

Since asymptotically (b, q) is bounded below and E(h) → 0, the third term G2 is of order588

1/p2 and can be dropped. We thus obtain the asymptotic estimate589

p(ŵ − w, b)2 ≤ E2 + 2E(h)(Γ̂− Γ)(b, q).590

Multiplying by η and using the bounds on Γ, Γ̂ and the limit of (b, q), we obtain591

pη(ŵ − w, b)2 ≤ E2 +
C

p
E(h),592

where C is the constant defined in the statement of the theorem.593

(2) We now turn to the second term ||ŵ − w||2 = ||ŵ||2 + ||w||2 − 2(ŵ, w).594

Using the definitions of ŵ and w and the fact that k2, k̂2 are of order 1/p, after a calculation595

we obtain, to lowest order in 1/p,596

(3.12) p||ŵ − w||2 = (h, q)2[1− (h, b)2]

(1− (h, q)2)(1− (b, q)2)
+

1− (h, q)2

1− (b, q)2
E2(h).597

Since E(h) → 0, we may neglect the second term, and putting (1) and (2) together yields598

T 2(h) ≤ E2 +
C

p
E(h) + δ2

p
D(h).599

4. Simulation Experiments. To illustrate the previous theorems and test whether the600

MAPS estimators can be successful for realistic finite values of p, we present the results of two601

numerical experiments. In section 4.1, we draw two correlated random vectors β1 and β2 in602

Rp, p = 500, with a variable correlation that we control. Returns are generated using β1 for a603

first block of observations, then using β2 for a second block of equal length. These are used to604

test whether the dynamic MAPS estimator of Theorem 2.4 is successful against GPS (which605
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assumes β1 = β2). In addition, since we know the exact ordering of the beta components,606

we can compare results with a MAPS estimator defined with a beta-ordered partition as in607

Theorem 2.3.608

In section 4.2, we turn to the use of historical CAPM betas for stocks in the S&P500,609

rather than simulated betas. This allows us to test a MAPS estimator defined by a partition610

determined by the 11 sectors of the familiar Global Industry Classification Standard of MSCI611

and S&P. Under the hypothesis that betas for stocks in the same industry sector tend to612

have similar magnitudes, classification by sector represents a potential approximation to a613

true (but usually not observable) beta-ordered partition. We test this data-driven MAPS614

estimator against PCA, GPS, and the consistent MAPS estimator defined with a true beta-615

ordered partition.616

These simple experiments are only proof-of-concept examples illustrating the potential617

for success. We have not attempted the worthwhile project of systematically studying the618

possible choices of history length or sector divisions in order to optimize outcomes in real619

markets.620

The Python code used to run these experiments and create the figures is available at621

https://github.com/hugurdog/MAPS NumericalExperiments.622

4.1. Simulated betas with correlation. To model the possibility that the true betas may623

vary slowly during the time window used for estimation, and as a test for Theorems 2.3 and624

2.4, we create a simple two-block simulation model with p = 500 stocks in which the true625

betas are held constant with value β1 ∈ Rp during one block of time, and then shift to a626

second but correlated value β2 for a subsequent block of time.627

Each block has n = 25 observations, so the total observation window is of size 2n = 50628

for each of our p = 500 stocks. The p×n returns matrix for the first block is denoted R1 and629

for the second R2, and630

(4.1) Rt = βtXt + Zt, t = 1, 2,631

whereXt ∈ Rn is a vector of the n unobserved common factor returns in block t, and Zt ∈ Rp×n632

is the matrix of specific returns in block t.633

We generate the p × n matrices R1 and R2 from Equation (4.1) by randomly generating634

β,X, and Z:635

• the market returns Xt(j), j = 1, . . . , n, are an iid random sample drawn from a normal636

distribution with mean 0 and variance σ2 = 0.16,637

• all components of the asset specific returns {Zt(i, j), i = 1, . . . , p; j = 1, . . . , n} are638

i.i.d. normal with mean 0 and variance δ2 = (.5)2, and639

• the p-vectors β1 and β2 are defined by drawing β, η ∈ Rp independently from a Normal
distribution with mean 1 and variance (.5)2Ip×p, and setting

β1 = β and β2 = ρβ +
√

1− ρ2η,

where the correlation ρ ranges through values in {0, 0.3, 0.6, 1.0}.640

With this simulated returns data, we compare performance for the following four choices641

of h:642
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1. the PCA estimator on the double block R = [R1, R2] (PCA)643

2. the GPS estimator on the double block R = [R1, R2] (GPS)644

3. the dynamic MAPS estimator defined on the double block R = [R1, R2] by equation645

(2.15) (Dynamic MAPS)646

4. the MAPS estimator on the single block R2 incorporating knowledge of a beta ordered647

partition P as in Theorem 2.3. The partition is constructed by rank ordering the betas648

and then grouping them into 7 ordered groups of 71, and a small eighth group of the649

lowest three. (Beta Ordered MAPS)650

We report the performance of each of these estimators according to the following two651

metrics:652

• The ℓ2 error ||b − h|| between the true normalized beta b = β
|β| of the current data653

block R2 and the estimated unit vector h.654

• The tracking error between the true and estimated minimum variance portfolios w655

and ŵ:656

(4.2) T 2(ŵ) = (ŵ − w)TΣ(ŵ − w).657

In our double-block context, this tracking error is specified as follows. Σ in (4.2) is the658

true covariance matrix of the most recent data block R2:659

(4.3) Σ = σ2β2β2
T + δ2I,660

which then also determines the true fully invested minimum variance portfolio w. The esti-661

mated minimum variance portfolio ŵ is determined by the estimated covariance matrix662

(4.4) Σ̂ = σ̂2β̂β̂T + δ̂2I = (σ̂2|β̂|2)hhT + δ̂2I.663

For our comparison, and following the lead of [14], we fix the asymptotically correct values664

(4.5) σ̂2|β̂|2 = s2p − l2p and δ̂2 =
n

p
l2p665

(notation as in equation 2.7) across each of the four cases, and vary only the estimator666

h = β̂/|β̂| as described above. The motivation for this choice is that in our simulation667

the parameters σ2 and δ2 remain constant across the double time window. Hence the best668

data-driven estimates for σ̂2 and δ̂2 will be obtained by using s2p and l2p computed from the669

full double block of data R. This puts all the methods compared on the same footing and670

isolates h as the sole variable in the experiment.671

Results of the comparison are displayed below. For each choice of ρ, the experiment was672

run 100 times, resulting in 100 ℓ2 error and tracking error values each. These values are673

summarized using standard box-and-whisker plots generated in Python using the package674

matplotlib.pyplot.boxplot.675

Figure 1 shows the squared ℓ2 error ||h− b||2 for different estimators h (in the same order,676

left to right, as listed above) for the cases ρ = 0, 0.3, 0.6, 1.0. Throughout the range, the677

dynamical MAPS estimator outperforms the other two data-driven estimators, but the beta-678

ordered MAPS estimator remains in the lead. The case ρ = 0 could be compared to the case679
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of a Bayesian estimator where the additional anchor point is providing information only about680

the distribution of the components of β. As the correlation ρ tends toward one, the GPS and681

Dynamic MAPS errors become equal. At ρ = 1, β1 = β2 and the GPS assumption of constant682

β over the 2n period is satisfied.683

Figure 2 displays the scaled tracking error pT 2(h) outcomes across a range of correlation684

values ρ(β1, β2). Dynamic MAPS does best among all data-driven methods, and beta ordered685

MAPS is significantly better than all others. As before, the Dynamic MAPS lead disappears686

as ρ tends to 1, when β1 = β2.687

(a) ρ = 0 (b) ρ = 0.3

(c) ρ = 0.6 (d) ρ = 1

Figure 1: Results of simulation experiments measuring ℓ2 error for different estimators: PCA,
GPS, Dynamic MAPS, and Beta Ordered, and varying correlation ρ between betas in the
two different time blocks. When beta correlation between time blocks is low, dynamic MAPS
outperforms GPS. The non-empirical beta-ordered MAPS outperforms all others.

4.2. Simulations with historical betas. In this section we use historical rather than ran-688

domly generated betas to test the quality of MAPS estimators defined using a sector partition689

and a beta-ordered partition. We use 24 historical monthly CAPM betas for each of the690
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(a) ρ = 0 (b) ρ = 0.3

(c) ρ = 0.6 (d) ρ = 1

Figure 2: Tracking error results of simulation experiments for different estimators PCA, GPS,
Dynamic MAPS, and Beta Ordered. The pointwise correlation ρ is the correlation between
betas in the two different time blocks. Results are similar to the ℓ2 error plots.

p = 488 S&P500 firms provided by WRDS4 between the dates 01/01/2018 and 11/30/2020.691

We denote these betas by β1, . . . , β24 ∈ Rp.692

The WRDS beta suite estimates beta each month from the prior 12 monthly returns.693

Therefore in this experiment we set n = 12 months, and using these betas simulate 24 different694

sets of monthly asset returns Rt ∈ Rp×n, each for n = 12 months.695

For each t = 1, . . . , 24, we generate the returns matrix Rt according to696

(4.6) Rt = βtXt + Zt,697

where the unobserved market return Xt ∈ Rn and the asset specific return Zt ∈ Rp×n are698

generated using the same settings as in the previous section.699

For each t we also form partitions Ptrue
t and Psector

t of the beta indices {1, 2, . . . , p}. Ptrue
t700

is a true beta-ordered partition with 11 atoms constructed from the true rank ordering of701

4Wharton Research Data Services, wrds-www.wharton.upenn.edu
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βt. Psector
t is a partition defined by the 11 industry sectors5, which we adopt as a possible702

data-driven proxy for Ptrue
t .703

For each t, we then compute the following four estimators of bt = βt/|βt|:704

1. The PCA estimator. (PCA)705

2. The GPS estimator. (GPS)706

3. The MAPS estimator defined as in Theorem 2.3 using the partition Psector
t . (Sector707

Separated)708

4. The MAPS estimator defined using Ptrue
t . (Beta Ordered)709

For each of these four choices of estimator ht, we examine three different measures of710

error: the squared ℓ2 error ||ht − bt||2, the scaled squared tracking error pT 2(ht), and the711

scaled optimization bias pE2
p (ht).712

Since we are interested in expected outcomes, we repeat the above experiment 100 times,713

and take the average of the errors as a monte carlo estimate of the expectations714

E[||ht − bt||2], E[pT 2(ht)], E[pE2
p (ht)],715

once for each t. We then display box plots in Figure 3 for the resulting distribution of 24716

expected errors of each type, corresponding to the 24 historical betas. Outcomes are similar717

to the simulated beta experiments, where PCA has the poorest performance, Beta Ordered718

MAPS the best, and in between are the GPS and empirical MAPS.719

Using sectors to partition the stocks evidently has some value, as the sector separated720

MAPS estimator outperforms GPS by a small but significant amount in both ℓ2 and tracking721

error. Its success is owed to the tendency for betas of stocks in a common sector to be closer722

to each other than to betas in other sectors. The Sector Separated MAPS estimator does not723

require any information not easily available to the practitioner, and so represents a costless724

improvement on the GPS estimation method.725

We also note that further experiments are reported in [17] and [18], in which a dynamic726

double-block experiment using the historical betas is also carried out, with similar results.727

5. Proofs of the Main Theorems. The proofs of the main theorems proceed by means728

of some intermediate results involving an “oracle estimator”, defined in terms of the unob-729

servable b but equal to the MAPS estimator in the asymptotic limit (Theorem 5.1 below).730

Several technical supporting propositions and lemmas are needed; to save space their proofs731

are collected in a separate document, [18], available online.732

5.1. Oracle Theorems. A key tool in the proofs is the oracle estimator hL, which is a733

version of ĥL but defined in terms of b, our estimation target.734

Given a subspace L = Lp of Rp, we define735

(5.1) hL =

proj
<h,L>

(b)

|| proj
<h,L>

(b)||
.736

5The 11 sectors of the Global Industry Classification Standard are: Information Technology, Health Care,
Financials, Consumer Discretionary, Communication Services, Industrials, Consumer Staples, Energy, Utilities,
Real Estate, and Materials.

This manuscript is for review purposes only.



MULTIPLE ANCHOR POINT SHRINKAGE 23

(a) ℓ2 error (b) tracking error (c) optimization bias

Figure 3: Box plots summarizing the distribution of 24 monte carlo-estimated expected errors
for the PCA, GPS, Sector Separated, and Beta Ordered estimators (left to right in each
figure). The experiment is conducted over 488 S&P 500 companies. This experiment reveals
that the Sector Separated estimator is able to capture some of the ordering information and
therefore outperforms the GPS estimator. The Beta Ordered estimator performs best.

Here < h,L > denotes the span of h and L, and note that if L = {0} we get hL = h,737

the PCA estimator. A nontrivial example for the selection would be Lp =< q >, which738

generates hq, the oracle version of the GPS estimator in [14]. The following theorem says that739

asymptotically the oracle estimator (5.1) converges to the MAPS estimator (2.6).740

Theorem 5.1. Let the assumptions 1,2,3 and 4 hold. Suppose {Lp} be any sequence of741

random linear subspaces that is independent of the entries of Z, such that dim(Lp) is a square742

root dominated sequence. Then743

(5.2) lim
p→∞

||ĥL − hL|| = 0.744

The proof of Theorem 5.1 requires the following proposition, proved in [18].745

Proposition 5.2. Under the assumptions of Theorem 5.1, let h = hPCA be the PCA esti-746

mator, equal to the unit leading eigenvector of the sample covariance matrix. Then, almost747

surely:748

1. lim
p→∞

(
(h,proj

L
(h))− (h, b)2(b,proj

L
(b))

)
= 0,749

2. lim
p→∞

(
(b,proj

L
(h))− (h, b)(b,proj

L
(b)))

)
= 0, and750

3. lim
p→∞

||proj
L

(h)− (h, b)proj
L

(b)|| = 0.751

In particular,
proj
L

(h)

||proj
L

(h)|| converges asymptotically to
proj
L

(b)

||proj
L

(b)|| .752

Proof of the Theorem 5.1:. Recall from (2.6) that,753

ĥL =

τph+ proj
L

(h)

||τph+ proj
L

(h)||
where τp =

ψ2
p − ||proj

L
(h)||2

1− ψ2
p

.754

By Lemma 2.1, ψp has an almost sure limit ψ∞ = (h, b)∞ ∈ (0, 1), and hence τp is bounded755

in p almost surely.756
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Let Ω1 ⊂ Ω be the almost sure set for which the conclusions of Proposition 5.2 hold.757

Define the notation758

ap(ω) = ||ĥLp − hLp ||759

and760

γp =

(h, b)− (b,proj
L

(h))

1− ||proj
L

(h)||2
.761

The proof will follow steps 1-4 below:762

1. For every ω ∈ Ω1 and sub-sequence {pk}∞k=1 ⊂ {p}∞1 satisfying

lim sup
k→∞

||proj
Lpk

(b)||(ω) < 1

we prove763

0 < lim inf
k→∞

γpk(ω) ≤ lim sup
k→∞

γpk(ω) <∞764

and765

0 < lim inf
k→∞

τpk(ω) ≤ lim sup
k→∞

τpk(ω) <∞.766

2. For every ω ∈ Ω1 and sub-sequence {pk}∞k=1 ⊂ {p}∞1 satisfying

lim sup
k→∞

||proj
Lpk

(b)||(ω) < 1

we use step 1 to prove lim
k→∞

apk(w)=0767

3. Set Ω0 = {ω ∈ Ω
∣∣ lim sup

p→∞
||proj

Lp

(b)||2 = 1}. Fix ω ∈ Ω0 ∩ Ω1 and prove using step 2 that768

lim
p→∞

ap(ω) = 0769

4. Finish the proof by applying step 2 for all ω ∈ Ωc
0 ∩ Ω1 when {pk} is set to {p}.770

Step 1: Since ω ∈ Ω1 we have the following immediate implications of Proposition 5.2,771

(5.3) lim sup
k→∞

||proj
Lpk

(h)||2 = (h, b)2∞ lim sup
k→∞

||proj
Lpk

(b)||2.772

773

(5.4) lim sup
k→∞

(b,proj
Lpk

(h)) = (h, b)∞ lim sup
k→∞

||proj
Lpk

(b)||2.774

Using the assumption lim sup
k→∞

||proj
Lpk

(b)||2 < 1, we update (5.3) and (5.4) as,775

(5.5) lim sup
k→∞

||proj
Lpk

(h)||2 < (h, b)2∞ < 1776

This manuscript is for review purposes only.



MULTIPLE ANCHOR POINT SHRINKAGE 25

777

(5.6) lim sup
k→∞

(b,proj
Lpk

(h)) < (h, b)∞778

for the given ω ∈ Ω1. We can use (5.5) on the numerator of τpk to show,779

lim inf
k→∞

(
ψ2
pk

− ||proj
Lpk

(h)||
)
≥ lim inf

k→∞
ψ2
pk

− lim sup
k→∞

||proj
Lpk

(h)||2780

= (h, b)2∞ − lim sup
k→∞

||proj
Lpk

(h)||2 > 0.781

782

That together with the fact that the denominator of τpk has a limit in (0,∞) implies,783

(5.7) 0 < lim inf
k→∞

τpk(ω) ≤ lim sup
k→∞

τpk(ω) <∞784

Similarly we can use (5.6) on the numerator of γpk as,785

(5.8) lim inf
k→∞

(
(h, b)− (b,proj

Lpk

(h))
)
≥ (h, b)∞ − lim sup

k→∞
(b,proj

Lpk

(h)) > 0.786

Also (5.5) can be used on the denominator of γpk as,787

(5.9) lim inf
k→∞

1− ||proj
Lpk

(h)||2 > 1− lim sup
k→∞

||proj
Lpk

(h)||2 > 0788

Using (5.8) and (5.9) we get,789

(5.10) 0 < lim inf
k→∞

γpk(ω) ≤ lim sup
k→∞

γpk(ω) <∞790

for the given ω ∈ Ω1. This completes the step 1.791

792

Step 2: We have the following initial observation,793

(5.11) 1 ≥ || proj
<h,Lpk

>
(b)|| ≥ ||proj

<h>
(b)|| = (h, b)794

and using that we get

1 ≥ lim sup
p→

|| proj
<h,Lpk

>
(b)|| ≥ lim inf

p→
|| proj
<h,Lpk

>
(b)|| ≥ (h, b)∞ > 0.

Given that, in order to show lim
k→∞

apk(ω) = 0, it suffices to show τpkh + proj
Lpk

(h) converges795

to a scalar multiple of proj
<h,Lpk

>
(b) since that scalar clears after normalizing the vectors. To796
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motivate that lets re-write proj
<h,Lpk

>
(b) as,797

proj
<h,Lpk

>
(b) = proj

<h−proj
Lpk

(h),Lpk
>
(b)798

= proj
Lpk

(b) +

( h− proj
Lpk

(h)

||h− proj
Lpk

(h)||
, b

) h− proj
Lpk

(h)

||h− proj
Lpk

(h)||
799

= proj
Lpk

(b) + γpk(h− proj
Lpk

(h))(5.12)800

= γpk(h+
1

γpk
proj
Lpk

(b)− proj
Lpk

(h)).(5.13)801

802

We also have,803

(5.14) τpkh+ proj
Lpk

(h) = τpk(h+
1

τpk
proj
Lpk

(h)).804

Since we have τpk and γpk satisfying (5.7) and (5.10) respectively, we have the equations (5.13)805

and (5.14) well defined asymptotically, which is sufficient for our purpose. Hence, from the806

above argument it is sufficient to show the convergence of h+ 1
τpk

proj
Lpk

(h) to h+ 1
γpk

proj
Lpk

(b)−807

proj
Lpk

(h). That is equivalent to showing 1
τpk

proj
Lpk

(h) converges to 1
γpk

proj
Lpk

(b)− proj
Lpk

(h). We can808

re-write the associated quantity as,809

(5.15)
∣∣ 1

τpk
proj
Lpk

(h)−
( 1

γpk
proj
Lpk

(b)− proj
Lpk

(h)
)∣∣ = ∣∣(1 + 1

τpk
)proj
Lpk

(h)− 1

γpk
proj
Lpk

(b)
∣∣810

Using Proposition 5.2 part 3 in (5.15), it is equivalent to prove811 ∣∣(1 + 1
τpk

)(h, b)− 1
γpk

∣∣ converges to 0. We re-write it as812

|( 1

τpk
+ 1)(h, b)− 1

γpk
| =

∣∣∣∣
(h, b)(1− ||proj

Lpk

(h)||2

ψ2
pk

− ||proj
Lpk

(h)||2
−

1− ||proj
Lpk

(h)||2

(h, b)− (proj
Lpk

(h), b)

∣∣∣∣813

= |1− ||proj
Lpk

(h)||2|
∣∣∣∣ (h, b)

ψ2
pk

− ||proj
Lpk

(h)||2
− 1

(h, b)− (proj
Lpk

(h), b)

∣∣∣∣(5.16)814

815

Using parts (1) and (2) of Proposition 5.2 and the fact that ψ2
pk

converges to (h, b)2∞ shows816

that (5.16) converges to 0 for the given ω ∈ Ω1. This completes step 2.817

Step 3: Fix ω ∈ Ω0∩Ω1. To show that limp→∞ ap(ω) = 0, it suffices to show that for any sub-818

sequence {pk}∞k=1 ⊂ {p}∞1 there exist a further sub-sequence {st}∞t=1 such that lim
t→∞

ast(ω) = 0.819
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Let {pk}∞k=1 be a subsequence. We have one of the following cases,820

lim sup
k→∞

||proj
Lpk

(b)||(ω)2 < 1821

or822

lim sup
k→∞

||proj
Lpk

(b)||(ω)2 = 1823

If it is strictly less than 1, then we get from the step 2 that lim
k→∞

apk(ω) = 0. In that case824

we take the further sub-sequence of equal to {pk}.825

If it is equal to 1, then we get a further sub-sequence {st} s.t826

lim
t→∞

||proj
Lst

(b)||2 = 1. Using this and Proposition 5.2 we get the following,827

lim
t→∞

||proj
Lst

(h)||2 = (h, b)2∞ and lim
t→∞

(b,proj
Lst

(h)) = (h, b)∞828

which implies lim
t→∞

τst(ω) = lim
t→∞

γst(ω) = 0. Using this on the definition of ĥL and the829

equation (5.12) we get,830

(5.17) lim
t→∞

∣∣∣∣ĥLst
−

proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣ = 0 and lim

t→∞

∣∣∣∣hLst
−

proj
Lst

(b)

||proj
Lst

(b)||
∣∣∣∣ = 0831

We can now decompose ast = ||ĥLst
−hLst

|| into familiar components via the triangle inequality832

as follows,833

ast = ||ĥLst
− hLst

|| ≤
∣∣∣∣ĥLst

−
proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣+ ∣∣∣∣hLst

−
proj
Lst

(b)

||proj
Lst

(b)||
∣∣∣∣834

+
∣∣∣∣ proj

Lst

(b)

||proj
Lst

(b)||
−

proj
Lst

(h)

||proj
Lst

(h)||
∣∣∣∣835

836

Using (5.17), we know that the first and the second terms on the right hand side converge to837

0 for the given ω ∈ Ω0∩Ω1. Since we have lim
t→∞

||proj
Lst

(h)||2 = (h, b)2∞ and lim
t→∞

||proj
Lst

(b)||2 = 1,838

proving the third term on the right hand side converges to 0 is equivalent to proving839

lim
t→∞

∣∣∣∣proj
Lst

(h)− (h, b)proj
Lst

(b)
∣∣∣∣ = 0,840

which is true by Proposition 5.2. This completes the step 3.841

842

Step 4: In step 3 we proved the theorem for every ω ∈ Ω0 ∩ Ω1. Replacing {pk} in step843
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2 by the whole sequence of indices {p}, we get the theorem for every ω ∈ Ωc
0 ∩ Ω1. These844

together shows that we have,845

lim
p→∞

ap(w) = 0 for all ω ∈ Ω1846

which completes the proof of Theorem 5.1.847

5.2. Proof of Theorem 2.2. The proof of the first part of Theorem 2.2 is an immediate848

application of Theorem 5.1.849

Proof of the Theorem 2.2(2.8):. From the definitions of hL and hq, and as long as q ∈ Lp,850

we have851

||hLp − b|| ≤ ||hq − b||852

and therefore853

||ĥLp − b|| ≤ ||ĥLp − hLp ||+ ||hLp − b||854

≤ ||ĥLp − hLp ||+ ||hq − b||855

≤ ||ĥLp − hLp ||+ ||ĥq − b||856

since ||hq − b|| ≤ ||ĥq − b|| for all p. Applying Theorem 5.1 gives857

lim sup ||ĥLp − b|| ≤ lim
p→∞

||ĥq − b||.858

To prove the remainder of Theorem 2.2 we need the following intermediate result concern-859

ing uniform random subspaces, proved in [18].860

Proposition 5.3. Suppose, for each p, zp is a (possibly random) point in Sp−1 and Hp is a861

uniform random subspace of Rp that is independent of zp. Assume the sequence {dimHp} is862

square root dominated.863

Then864

lim
p→∞

||proj
Hp

(zp)||2 = 0 almost surely.865

Proof of the Theorem 2.2 (2.9 and 2.10). Theorem 5.1 is applicable. Hence, it suffices to866

prove the results for the oracle version of the MAPS estimator.867

Since the scalars clear after normalization, it suffices to prove the following assertions,868

(5.18) lim
p→∞

|| proj
<h,H>

(b)− proj
<h>

(b)||2 = 0869

and870

(5.19) lim
p→∞

|| proj
<h,q,H>

(b)− proj
<h,q>

(b)||2 = 0.871
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We first consider (5.18), rewriting the left hand side as872

lim
p→∞

||proj
H

(b) + proj
h−proj

H
(h)

(b)− proj
<h>

(b)||2873

≤ ||proj
H

(b)||2 + || proj
h−proj

H
(h)

(b)− proj
<h>

(b)||2(5.20)874

875

The first term of (5.20) converges to 0 by setting z = b in Proposition 5.3. Moreover, Propo-876

sitions 5.3 and 5.2 imply proj
H

(h) converges to the origin in the ℓ2 norm. Hence we have877

h − proj
H

(h) is converging to h in ℓ2 norm. That implies the second term in (5.20) converges878

to 0, which in turn proves (5.18).879

Next, rewrite the expression in the assertion (5.19) as,880

||proj
H

(b) + proj
<h−proj

H
(h),q−proj

H
(q)>

(b)− proj
<h,q>

(b)||881

≤ ||proj
H

(b)||+ || proj
<h−proj

H
(h),q−proj

H
(q)>

(b)− proj
<h,q>

(b)||(5.21)882

883

Similarly the first term of (5.21) converges to 0 by Proposition 5.3. Note that 5.3 also applies884

when we set z = q, and hence proj
H

(q) converges to the origin in the ℓ2 norm. Hence the basis885

elements of < h − proj
H

(h), q − proj
H

(q) > converge to the basis elements of < h, q >, which886

implies the second term of (5.21) converges to 0 as well. That completes the proof.887

5.3. Proof of Theorem 2.3. We need the following lemma.888

Lemma 5.4. Let P(p) be a sequence of uniform β-ordered partitions such that lim
p→∞

|P(p)| =889

∞. Then for Lp = L(P(p)) we have,890

(5.22) lim
p→∞

||proj
L

(b)|| = 1891

almost surely.892

Proof. To be more precise about L = L(P), set P(p) = {I1, I2, ..., Ikp} and denote the893

defining basis of the corresponding subspace Lp = L(P) by the orthonormal set {v1, v2, ..., vkp}.894

Then895
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1− ||proj
L

(b)||2 = 1− lim
p→∞

kp∑
i=1

(b, vi)
2

896

=

p∑
i=1

b2i − lim
p→∞

kp∑
i=1

(b, vi)
2

897

= lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

β2j −
1

|Ii|
(
∑
j∈Ii

βi)
2)898

= lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

(βj −
1

|Ii|
(
∑
j∈Ii

βi))
2(5.23)899

900

Now define the random variables ai = max
j∈Ii

(βj), ci = min
j∈Ii

(βj) for all 1 ≤ i ≤ kp. Without901

loss of generality, ckp ≤ akp ≤ ... ≤ c1 ≤ a1. Since the sequence {P(p)} is uniform, there exists902

M > 0 such that903

(5.24) max
I∈P(p)

|I| ≤ Mp

|P(p)|
.904

Then905

lim
p→∞

1

||β||2

kp∑
i=1

(
∑
j∈Ii

(βj −
1

|Ii|
(
∑
j∈Ii

βi))
2 ≤ lim

p→∞

1

||β||2

kp∑
i=1

|Ii|(ai − ci)
2

906

≤ lim
p→∞

Mp
kp

||β||2

kp∑
i=1

(ai − ci)
2(5.25)907

= lim
p→∞

M
||β||2
p

1

kp
(a1 − ckp)

2(5.26)908

909

The term a1 − ckp appearing in (5.26) is uniformly bounded since the β’s are uniformly910

bounded. Also, ||β||2
p is finite and away from zero asymptotically. Using those together with911

the fact that lim
p→∞

kp = ∞ we get the limit in (5.26) equal to 0 for any realization of the912

random variables β. Note that this is stronger than almost sure convergence.913

Proof of the Theorem 2.3:. By an application of Theorem 5.1 it suffices to prove the the-914

orem for the oracle version of the MAPS estimator. Now915

(5.27) ||b− proj
<h,L>

(b)||2 ≤ ||b− proj
L

(b)||2 = 1− ||proj
L

(b)||2916

and note that application of Lemma 5.4 shows that ||proj
L

(b)|| converges to 1 as p tends to917

∞.918
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5.4. Proof of Theorem 2.4. The proof of Theorem 2.4 requires the following proposition,919

from which the first part (2.16) of the theorem easily follows. The proof of the proposition,920

along with the more difficult proof of the the strict inequality (2.17), appears in [18].921

Recall that h1, h2 and h are the PCA leading eigenvectors of the sample covariance matrices922

of the returns R1, R2 and R, respectively.923

Proposition 5.5. For each p there is a vector h̃ in the linear subspace L ⊂ Rp generated by924

h1 and h2 such that lim
p→∞

||h̃− h|| = 0 almost surely.925

Proof of (2.16) of Theorem 2.4. Since dim(Lp) = 2 and Lp = span(h1, q) is independent926

of the asset specific portion Z2 of the current block, Theorem 2.1 implies that ĥL converges927

to hL almost surely in ℓ2 norm. Hence it suffices to establish the result for the oracle versions928

of the MAPS and the GPS estimators.929

Note930

(5.28) (hL, b) = || proj
span(q,h1,h2)

(b)||931

932

(5.29) (hsq, b) = || proj
span(q,h2)

(b)||933

934

(5.30) (hdq , b) = || proj
span(q,h)

(b)||935

Using Proposition 5.5 we know there exist h̃ ∈ span(h1, h2) such that h̃ converges to h in l2
almost surely. Since span(q, h̃) ⊂ span(q, h1, h2),

|| proj
span(q,h1,h2)

(b)|| ≥ || proj
span(q,h̃)

(b)||.

Taking the limits of both sides we get936

(5.31) lim
p→∞

(hL, b) = lim
p→∞

|| proj
span(q,h1,h2)

(b)|| ≥ lim
p→∞

|| proj
span(q,h)

(b)|| = lim
p→∞

(hdq , b).937

Similarly, since span(q, h1) ⊂ span(q, h1, h2),938

(5.32) lim
p→∞

(hL, b) = lim
p→∞

|| proj
span(q,h1,h2)

(b)|| ≥ lim
p→∞

|| proj
span(q,h1)

(b)|| = lim
p→∞

(hdq , b).939

Inequalities (5.31) and (5.32) complete the proof of Theorem 2.4(a).940

6. Open Questions. The MAPS approach to estimation of eigenvectors in a factor model941

setting is flexible because it allows for a general way to inject additional information, in942

the form of additional anchor points, to improve the estimate. Yet in this paper we have943

focused on a very simple setting in order to highlight the ideas: a one-factor model with944

homogeneous specific risk. Moreover, our error measures related to portfolio optimization –945

tracking error and variance forecast ratio – have focused on the performance of the minimum946

variance portfolio (motivated by [14]).947

Here are a few directions for ongoing and future research.948
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• How effective can MAPS estimators be in the context of multifactor models, and with949

variable specific risk? In that setting what are more general connections between ℓ2950

error of betas and tracking error of optimal portfolios?951

• What is the general relationship between optimal MAPS shrinkage targets and the952

linear constraints in a portfolio optimization problem?953

• What appropriate systematic empirical tests would be most useful in evaluating MAPS954

for practical implementation?955

• The MAPS approach is general and does not depend on the specific choices of anchor956

points analyzed here. Are there other useful sets of anchor points, for example possibly957

excluding the vector q? What other sources of observable information in the market958

translate into useful anchor points for a successful MAPS estimation of beta? A simple959

extension of Theorem 2.4 would involve the use of multiple past time blocks to create960

multiple anchor points, for example.961

• The experiments of Section 4.2 involving historical betas and partitions defined by962

industry sectors had the advantage that sectors define an a priori partition that doesn’t963

require unobservable information. This is only one way that a β-ordered partition964

might be approximated. Another possibility could be to use historical volatilities to965

form a rank ordering and subsequent partition and anchor points. However, since966

volatilities are correlated with historical betas, adding volatility anchor points and967

then computing ℓ2 error against historical betas would be an unfair test. Instead, a968

different experiment could be designed using some out-of-sample measure of success969

in place of the ℓ2 error.970

• The selection of a shrinkage target from observable data may be suited to a machine971

learning approach to covariance estimation. One or more anchor points could be the972

output of a trained neural network that could in principle be fed with a much larger973

universe of observable data than simply the history of returns. This could potentially974

take the eigenvector shrinkage approach into a much wider realm of applicability.975
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