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Abstract

We describe a method for counting the number of 1-connected triva-
lent 2-stratifolds with a given number of singular curves and 2-manifold
components.
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1 Introduction

Observations in data analysis suggest that the points in a naturally-occurring
dataset tend to cluster near a manifold with singularities. In particular, for
dimension 2, these manifolds with singularities are 2-stratifolds and occur
in the study of the energy landscape of cyclo-octane [7], with a system-
atic application of local topological methods described in [10], the study of
boundary singularities produced by the motion of soap films [2], and in or-
ganizing data [1]. A systematic study of trivalent 2-stratifolds was begun in
[3]. Whereas closed 2-manifolds are classified by their fundamental groups,
this is far from true for 2-stratifolds. In fact, for any given 2-stratifold there
are infinitely many others with the same fundamental group. The question
arises whether one can effectively construct all of the 2-stratifolds that have
a given fundamental group.

A 2-stratifold is essentially determined by its associated bi-colored la-
beled graph and a presentation for its fundamental group can be read off
from the labeled graph. Thus the question arises when a labeled graph de-
termines a simply connected 2-stratifold. In [3] an algorithm on the labeled
graph was developed for determining whether the graph determines a simply
connected 2-stratifold and in [4] we obtained a complete classification of all
trivalent labeled graphs that represent simply connected 2-stratifolds. Then
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in [5] we developed three operations on labeled graphs that will construct re-
cursively from a single vertex all trivalent graphs that represent 1-connected
2-stratifolds. A referee of that paper asked whether it is possible to com-
pute the number of all such labeled graphs for a given number of vertices.
The purpose of the present paper is to describe a method that leads to such
computations. Our approach is based on the classification theorem in [4].

A different approach, based on the operations developed in [5] is used by
M. Hernández-Ketchul and J. Rodriguez-Viorato [6], who wrote a Python
program that is capable of computing and printing in linear time all the
distinct trivalent graphs associated to 1-connected 2-stratifolds up to 11
white vertices.

In section 2 we recall the definitions of a 2-stratifold and its associated
linear graph, providing the necessary details needed for the statement of
the classification theorem for trivalent 1-connected graphs. In section 3 we
describe the general method for constructing the graphs corresponding to 1-
connected trivalent 2-stratifolds from generating trees and skeletons, which
leads to a method for counting the number of these graphs in terms of the
number of black vertices of degree 3 and the number of white vertices. In
section 4 we use this approach to give explicit formulas for the case of 1
black vertex of degree 3. Finally in section 5 we give a specific example
to show how to compute the number of all graphs with 7 white vertices
corresponding to trivalent 1-connected 2-stratifolds.

2 2-stratifolds and 2-stratifold graphs.

A 2-stratifold is a compact, Hausdorff space X that contains a closed (pos-
sibly disconnected) 1-manifold X(1) as a closed subspace with the following
property: Each point x ∈ X(1) has a neighborhood U(x) homeomorphic to
CL×R, where CL is the open cone on L for some finite set L = {p1, . . . , pd}
of cardinality d > 2 and X −X(1) is a (possibly disconnected) 2-manifold.
By identifying U(x) with CL×R, we call Cp1×R, . . . , Cpd×R the sheets at x.

X can be obtained as a quotient space of a disjoint collection of circles
X(1) and a disjoint collection W of compact 2-manifolds by attaching W to
X(1) under the attaching map ψ, where ψ : ∂W → X(1) is a covering map
such that |ψ−1(x)| > 2 for every x ∈ X(1) as in figure 1. With suitable ori-
entations, for a component C of ∂W the covering map ψ|C : C → B ⊂ X(1)

is of the form ψ(z) = zr, for some r > 0.

We associate to a given 2- stratifold (X,X(1)) an associated bi-colored
labeled graph Γ = Γ(X,X(1)) as follows:

For each component B of X(1) choose a black vertex b, for each compo-
nent Wi of W choose a white vertex wi, for each component C of ∂W choose
an edge c. Connect wi to b by the edge c if ψ(C) ⊂ B.

We label the white vertices of the graph Γ by assigning to w the genus
g of W (here we use Neumann’s [8] convention of assigning negative genus
g to nonorientable surfaces). We label an edge c by r, where r is the degree
of the covering map ψ|C : C → B.
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We say that a white vertex w has genus 0, instead of saying that the
component W corresponding to w has genus 0. To simplify our figures of
graphs Γ, if there is no label displayed on a white vertex w, it is understood
that the label is 0.

Thus every 2-stratifoldX determines uniquely a bi-colored labeled graph.
Conversely, a given bi-colored labeled tree Γ determines uniquely a 2-stratifold
X.

The association of the graph ΓX to the stratifold XΓ transforms geo-
metrical and algebraic properties of XΓ into combinatorial properties of the
bi-colored graph.

Notation. If Γ is a bi-colored labeled graph corresponding to the 2-stratifold
X we let XΓ = X and ΓX = Γ. An example is given in Figure 1.

Figure 1: XΓ and ΓX

The fundamental group π1(XΓ) can be computed from the bicolored
graph ΓX (see [5]). In particular, if ΓX is a tree and all white vertices of
ΓX have genus 0 (i.e. correspond to punctured 2-spheres of XΓ), then a
presentation of π1(XΓ) is obtained as follows:
Each black vertex b of ΓX contributes a generator, also denoted by b, of
π1(X).
Each white vertex w incident to edges c1, . . . , cp yields generators, also de-
noted by c1, . . . , cp and a relation c1 · · · cp = 1.
Each edge ci of ΓX between w and b with label m ≥ 1 yiels a relation bm = ci.

The 2-stratifold X is called trivalent if every point x ∈ X(1) has a neigh-
borhood consisting of three sheets. We do not call a 2-manifold (i.e when
X(1) = ∅) trivalent. In terms of the associated graph Γ = ΓX this means
that every black vertex is incident to either one edge of label 3, or two edges
one of label 1 and one of label 2, or three edges, each of label 1.

In [4] we obtained a classification theorem of simply connected trivalent
2-stratifolds. We first review the terms used in this theorem.

(1) A (2, 1)-collapsible tree is a bi-colored tree constructed as follows:
Start with a rooted tree T (which may consist of only one vertex) with root
r (a vertex of T ), color with white and label 0 the vertices of T , take the
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barycentric subdivision sd(T ) of T , color with black the new vertices (the
barycenters of the edges of T ) and finally label an edge e of sd(T ) with 2
(resp. 1) if the distance from e to the root r is even (resp. odd). (We allow
a one-vertex tree (with white vertex) as a (2, 1)- collapsible tree).

(2) The reduced subgraph R(Γ) is defined for a bi-colored labeled tree Γ
for which the components of Γ − st(B) are (2, 1)-collapsible trees. Here B
denotes the union of all the black vertices of degree 3 of Γ and st(B) denotes
the open star of B in Γ. The reduced subgraph R(Γ) is the graph obtained
from St(B) (the closed star of B) by attaching to each white vertex w of
St(B) that is not a root, a b12-tree as in Figure 2, such that the terminal
edge has label 2.

Figure 2: Attaching b12 trees

(3) A horned tree is a bi-colored tree constructed as follows:
Start with a tree T that has at least two edges and all of whose nonterminal
vertices have degree 3. Color a vertex of T white (resp. black) if it has de-
gree 1 (resp. 3). Trisect the terminal edges of T and bisect the nonterminal
edges, obtaining the graph HT . Color the additional vertices v so that HT

is bi-colored, that is, v is colored black if v is a neighbor of a terminal vertex
of HT and white otherwise. Then label the edges such that every terminal
edge has label 2, every nonterminal edge has label 1.

We can now state the classification theorem of [4]:

Theorem 1. Let XΓ be a trivalent 2-stratifold with associated graph ΓX .
Let B denote the union of all the black vertices of degree 3 of Γ and st(B)
denote the open star of B in Γ.
Then XΓ is simply connected if and only if ΓX is a tree with all white vertices
of genus 0 and all terminal vertices white. such that the components of
Γ− st(B) are (2, 1)-collapsible trees and the reduced graph R(Γ) contains no
horned tree.

3 Skeletons

Let XΓ be a 2-stratifold whose associated graph ΓX has n white vertices
and b black vertices of degree 3. We say that ΓX is trivalent 1-connected if
XΓ is trivalent 1-connected.

We count the number of trivalent 1-connected graphs ΓX for a given
number n of white vertices by first counting those for a given number b of
black vertices of degree 3. For such given b, the possible ΓX are obtained
from the “skeleton graphs” (defined below) that correspond to the reduced
subgraphs in Theorem 1.

4



Generating trees. For a given b ≥ 0, a generating tree is an unlabeled
tree with exactly b black vertices and all white vertices (if any) of degree ≥ 3.

Skeletons. To a generating tree T we assign a skeleton TS as follows:
Subdivide each edge that is incident to two black vertices and color the new
vertices white. Attach edges to each black vertex such that in the resulting
tree TS each black vertex has degree 3 and all terminal vertices are white.
To the white vertices w1, . . . , wk of TS assign labels T (a1), . . . , T (ak), where
ai is an integer ≥ 1 (1 ≤ i ≤ k)
.

Figure 3 (resp. Figure 4) shows all generating trees and their skeletons
for b = 0, 1, 2, 3 (resp. b = 4).

Figure 3: generating trees and skeletons for b=1,2,3

Rooted trees. A rooted tree (T, r) is a tree T with one distinguished vertex
r, called the root of T .

Bi-rooted trees. A bi-rooted tree (T,m, r) is a tree T with two distin-
guished vertices; one called the mark m and the other one called the root r.
We allow m = r, in which case one has a rooted tree.

d-rooted trees. For d ≥ 3, a d-rooted tree (T,m1, . . . ,md−1; r) is a tree T
with d distinguished vertices: d−1 marks m1, . . . ,md−1 and one root r. We
allow mi = r, for some i, 1 ≤ i ≤ d− 1, but mi 6= mj for i 6= j.
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Figure 4: generating trees and skeletons for b=4

An isomorphism between bi-rooted trees (T,m, r), (T ′,m′, r′) (resp. d-
rooted trees (T,m1, . . . ,md−1; r), (T ′,m′1, . . . ,m

′
d−1; r′)) s a tree isomor-

phism f : T → T ′ such that f(r) = r′ and f(m) = m′ (resp. f(mi) = m′i
for i = 1, . . . d− 1)

Lemma 1. There is a 1 − 1-correspondence between (2, 1)-collapsible trees
and rooted trees.

Proof. Color the vertices of the rooted tree white and bisect all edges. The
new vertices are colored black. In the resulting tree Γ assign label 2 (resp.
label 1) to an edge that has even (resp. odd) distance to the root. Then Γ
is a (2, 1)-collapsible tree.

We now use the term rooted tree also for the associated (2, 1)-collapsible
tree.

By Theorem 1 every 1-connected trivalent graph Γ = ΓX is obtained from
St(B) by attaching (2, 1)-collapsible trees to the white vertices of St(B).

If St(B) is connected and Γ has b black vertices of degree 3 and n white
vertices, then Γ is obtained from a skeleton (with b black vertices) by at-
taching to each white vertex labeled T (ai) a (2, 1)-collapsible tree having ai
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white vertices such that the attachment is along the mark of the correspond-
ing bi-rooted tree. Furthermore n = a1 + · · ·+ ak, where k is the number of
white vertices of the skeleton. (If the generating tree has no white vertices,
then k = 2b + 1). The symmetry group of the skeleton acts on the set of
all these Γ’s and to avoid repetitions we must only count the elements in
the orbits of this action. This needs to be done in such a way so that the
resulting bi-colored trees do not contain horned trees.

If St(B) is not connected then Γ is obtained from a skeleton by first
splitting some white non-terminal vertices. For example, if b = 2, the
skeleton splits into two cases, depending on whether St(B) is connected
or disconnected, see Figure 5. In the disconnected case the vertex of degree
2 splits into two vertices and we must also consider, for a given partition
n = a1 + a2 + a3 + a4, the number of attachments of tri-rooted trees with
a1 white vertices to these two vertices along two marks.

Figure 5: case b = 2 disconnected

Similarly for b ≥ 2 the skeleton splits into several cases and one must
count the number of possible attachments of k-rooted trees for 1 ≤ k ≤ d+1.

4 Number of trivalent graphs with at most one
black vertex of degree 3

In this section we develop explicit formulas for the number of 1-connected
trivalent graphs with n white vertices and one black vertex of degree 3.

Definition 1. Rn is the number of (unlabeled) rooted trees with n (white)
vertices.
Ma is the number of (isomorphism classes of) bi-rooted trees with exactly a
vertices.
Ua = Ma − Ra is the number of bi-rooted trees with a vertices where the
mark m is different from the root r.

The values of Rn for n ≤ 30 can be found [9].

Case b = 0. Here ΓX is a (2, 1)-collapsible tree. By lemma 1 the number
of distinct 1-connected trivalent graphs ΓX is Rn.

Case b = 1. Here ΓX is obtained from a b111-tree (a tree with one black
vertex of degree 3 and 3 white vertices and all edges labeled 1) by identifying
each white vertex vi of b111 with a white vertex of a (2, 1)-collapsible tree
Ti (i = 1, 2, 3) such that the reduced subgraph R(Γ) of ΓX is not a horned
tree. This is the case if and only if at at least one of the vi’s is attached to
a root of Ti.
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In the skeleton graph for b = 1 let vi be the white vertex with label
T (ai). Here T (ai) is a bi-rooted tree with ai vertices and the vertex of T (ai)
marked mi is identified with the vertex vi of the b111-graph. The (white)
edges of the bi-rooted tree T (ai) are then bisected, with the resulting ver-
tices colored black. An edge in the bisected tree receives label 2 (resp. 1) if
its distance to the corresponding root ri is even (resp. odd).

If ΓX has n white vertices we have a1 +a2 +a3 = n and in order to count
all non-isomorphic graphs with n white vertices we have, by symmetry of
b111, exactly one of the three cases S, I, E, below:

(i) S (scalene): a1 > a2 > a3

(ii) I (isosceles): a1 6= a2, a2 = a3

(iii) E (equilateral): a1 = a2 = a3. (This occurs only when n = 3k for
some integer k)

In each of the three cases let n = a1 + a2 + a3 be a given partition.
We count the number of distinct trivalent 1-connected graphs with 1 black
vertex of degree 3 and n white vertices.

(i) Sn: There are Mai ways of attaching a birooted tree T (ai) with ai ver-
tices to vi, so there are Ma1Ma2Ma3 ways of producing ”scalene (a1, a2, a3)”
trivalent trees. However, some of these are not 1-connected because they
contain horned subtrees. So we need to subtract the number of attachments
where all three vertices vi are attached to Ti’s along non-roots i.e. along
marks mi different from the roots ri. The number of these is Ua1Ua2Ua3 .
Therefore:

(i) The number of distinct trivalent 1-connected graphs is
Ma1Ma2Ma3 − Ua1Ua2Ua3 .

An example is shown in Figure 6 for the case (a1, a2, a3) = (3, 2, 1).

Figure 6: Obtaining a ΓX from the skeleton for b = 1

(ii) In: Let a1 6= a := a2 = a3. There are Ma1 ways to attach a bi-
rooted tree T (a1) with a1 vertices to v1. Let S1, . . . , SMa be the distinct
birooted trees with a vertices. By symmetry, attaching Si to v2 and Sj to
v3 produces the same (isomorphic) result as attaching Si to v3 and Sj to v2.
Therefore the number of distinct graphs obtained is the number of triples
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{T (a1), Si, Sj} with Ma ≥ i ≥ j ≥ 1. To obtain the graphs corresponding
to 1-connected 2-stratifolds we need to disregard the cases that give horned
subtrees. Therefore from Lemma 2 below we obtain

(ii) The number of distinct isosceles trivalent 1-connected graphs is
Ma1C(Ma + 1, 2)− Ua1C(Ua + 1, 2).

(iii) En: Let a := a1 = a2 = a3. Let S1, . . . , SMa be the distinct bi-
rooted trees with a vertices. By symmetry, an attachment of (Si, Sj , Sk)
to (v1, v2, v3) yields isomorphic graphs if the indices i, j, k are permuted.
Therefore the number of distinct graphs obtained is the number of attach-
ments of (Si, Sj , Sk) to (v1, v2, v3) with Ma ≥ i ≥ j ≥ k ≥ 1. Subtracting
the cases that lead to horned subtrees and using Lemma 2 we obtain:

(iii) The number of distinct equilateral trivalent 1-connected graphs with
1 black vertex of degree 3 and n white vertices is{

C(Ma + 2, 3)− C(Ua + 2, 3) if n is divisible by 3,

0 otherwise.

Summing up we obtain the following Theorem.

Theorem 2. The number of distinct trivalent 1-connected 2-stratifold graphs
with 1 black vertex of degree 3 and n white vertices is Sn + In + En.
Here Sn =

∑
(Ma1Ma2Ma3−Ua1Ua2Ua3), where the sum is over a1 > a2 > a3

and a1 + a2 + a3 = n
In =

∑
(Ma1C(Ma + 1, 2)−Ua1C(Ua + 1, 2)), where the sum is over a1 6= a,

a1 + 2a = n

En =

{
C(Ma + 2, 3)− C(Ua + 2, 3) if 3 divides n and 3a = n,

0 otherwise.

Lemma 2. Let m ≥ 1 and let K = {(k1, . . . , kr) ∈ Zr |m ≥ kr · · · ≥ k2 ≥
k1 ≥ 1}. Then the cardinality of K is C(m+ r − 1, r).

Here C(p, q) is the binomial coefficient p!/q!(p− q)!.

Proof. An element of K is a non-increasing function k : {1, 2, . . . , r} →
{1, 2, . . . ,m}, where k(i) = ki. Let #k−1(i) be the cardinality k−1(i) and
denote the m-vector k−1 = (#k−1(1),#k−1(2), . . . ,#k−1(m)) by
#k−1(1) |#k−1(2) | . . . |#k−1(m) (with m− 1 dividing bars).
From this m-vector delete #k−1(i) if #k−1(i) = 0 and replace #k−1(i) by
n asterisks ∗ if #k−1(i) = n to get a string of |’s and ∗’s.
For example if m = 8, r = 6 and k = (k1, . . . , k6) = (1, 4, 4, 7, 7, 7), k−1 =
1 | 0 | 0 | 2 | 0 | 0 | 3 | 0↔ ∗ | | | ∗ ∗ | | | ∗ ∗ ∗ |.

This gives a bijection from the set of non-increasing functions k : {1, 2, . . . , r} →
{1, 2, . . . ,m} to the set of all strings of length m + r − 1 on the symbols |
and ∗ with exactly r asterisks ∗.

5 An example for n = 7

In this example we show how to compute the number of 1-connected 2-
stratifold graphs with n = 7 white vertices. First we list a few values of Rn,
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Mn, Un.

n Rn Mn Un

1 1 1 0
2 1 2 1
3 2 5 3
4 4 13 9
5 9 35 26
6 20 95 75
7 48 256 208

Rn = number of rooted trees with n vertices

Mn = number of bi-rooted trees with n ver-
tices

Un = number of bi-rooted trees with n vertices
and root different from the mark

The table below shows how to compute the number of 1-connected ΓX

with n = 7 white vertices. Here b denotes the number of black vertices
of degree 3. The total number of non-homeomorphic XΓ corresponding to
graphs with n = 7 vertices is 167.

total number cases

b = 0 R7 = 48 48

b = 1 S7 = M4M2M1 − U4U2U1 26
I7 = M5C(M1 + 1, 2)− U5C(U1 + 1, 2) =35 · 1− 25 · 0 35

+M3C(M2 + 1, 2)− U3C(U2 + 1, 2) +5 · 3− 3 · 1 12
+M1C(M3 + 1, 2)− U1C(U3 + 1, 2) +1 · 15− 0 · 6 15

E7 = 0

b = 2 St(B) connected: v0, v1, v2 vertices of St(B1)
v0, v3, v4 vertices of St(B2)

3 cases for middle vertex v0: a0 = 3, 2, 1:
a0 = 3 a1 = a2 = a3 = a4 = 1 M3 5
a0 = 2 a1 = 2, a2 = a3 = a4 = 1 M2M2 4
a0 = 1 a1 = 3, a2 = a3 = a4 = 1 M3 5

a1 = 2, a2 = 2, a3 = a4 = 1 C(M2 + 1, 2) 3
a1 = 2, a3 = 2, a2 = a4 = 1 C(M2 + 1, 2) 3

St(B) disconnected: v0, v1, v2 vertices of St(B1)
v′0, v3, v4 vertices of St(B2)

may assume tri-rooted tree is attached
between v0 and v′0. Let a = a0 + a′0 ≥ 2

a = 2, a1 = 2, a3 = a4 = 1 M2M2 4
a = 3, a1 = a3 = a4 = 1 5 5

b = 3 linear case 1 1
star case 1 1

Total cases for b = 0, 1, 2, 3 167
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