
J. Group Theory, Ahead of Print
DOI 10.1515/ jgth-2022-0010 © de Gruyter 2022

Property R1 for some spherical
and affine Artin–Tits groups
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Abstract. Let n > 2. In this note, we give a short uniform proof of property R1 for the
Artin–Tits groups of spherical types An, Bn, D4, I2.m/ (m > 3), their pure subgroups,
and for the Artin–Tits groups of affine types QAn�1 and QCn. In particular, we provide an
alternative proof of a recent result of Dekimpe, Gonçalves and Ocampo, who established
property R1 for pure Artin braid groups.

1 Introduction

Let G be a group and ' an automorphism of G. An equivalence relation on G
is defined by saying that g; h 2 G are '-twisted conjugate if and only if there
exists x 2 G such that h D xg'.x/�1. The number of its equivalence classes is
the Reidemeister number of ', denoted by R.'/. We say that G has property R1
if R.'/ D1 for all ' 2 Aut.G/.

The notion of twisted conjugacy classes arises in Nielsen fixed point theory,
where under certain natural conditions the Reidemeister number serves as an upper
bound for a homotopy invariant called the Nielsen number. Also, the twisted con-
jugacy classes appear naturally in Selberg theory and in some topics of algebraic
geometry. See the introduction sections in [21, 24] and references therein.

PropertyR1 has been proved for a number of groups (see [13,14] for a detailed
list) among which are Artin braid groups [12], some classes of large Artin–Tits
groups [15], and, very recently, pure Artin braid groups [8] and some right-angled
Artin–Tits groups [9].

Recall that a Coxeter matrix over a finite set S is a symmetric matrix .mst /s;t2S

with entries in ¹1; 2; : : : ;1º such that mss D 1 for all s 2 S and mst D mts > 2

if s ¤ t . A Coxeter matrix can be encoded by the corresponding Coxeter graph X
having S as the set of vertices. Two distinct vertices s; t 2 S are connected with an
edge in X ifmst > 3, and this edge is labeled withmst ifmst > 4. The Artin–Tits
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Figure 1. The defining Coxeter graphs for the Artin–Tits groups under consideration.

group of type X is the group A.X/ given by the presentation

A.X/ D hS j prod.s; t; mst / D prod.t; s;mts/ for all s ¤ t; mst ¤1i;

where prod.s; t; mst / is the word stst : : : of length mst > 2. The Coxeter group
W.X/ of typeX is the quotient ofA.X/ by all relations of the form s2 D 1, s 2 S .
The most famous example is the Artin braid group on n strands, or Artin–Tits
group A.An�1/, whose corresponding Coxeter group is the symmetric group on
n elements.

The groups A.X/ and W.X/ are said to be irreducible if X is connected. An
Artin–Tits group A.X/ is of spherical type if the corresponding Coxeter group
W.X/ is finite, and of affine type ifW.X/ acts geometrically (i.e. properly discon-
tinuously and cocompactly by isometries) on a euclidean space.

We denote by P.X/ the kernel of the natural epimorphism A.X/! W.X/. It
is called the pure Artin–Tits group of type X . If X is of spherical type, the group
P.X/ has finite index in A.X/. The group P.An�1/ is also called the pure Artin
braid group on n strands.

In this note, we focus on irreducible Artin–Tits groups associated to the Cox-
eter graphs depicted in Figure 1 and on the pure Artin–Tits groups correspond-
ing to those of them which are of spherical type. For a group G, we denote by
G D G=Z.G/ its quotient by the center. We prove the following theorem.

Theorem 1. Let n > 2.

(1) Let X 2 ¹An; Bn;D4; I2.m/ .m > 3; m ¤1/º. Then the Artin–Tits group
A.X/, the pure Artin–Tits group P.X/, and their central quotients A.X/ and
P.X/ have property R1.

(2) Let X 2 ¹ QAn�1; QCnº. Then the Artin–Tits group A.X/ has property R1.

As is well known (see for example [21]), free abelian groups do not have prop-
ertyR1; therefore,A.A1/ ' P.A1/ ' Z andA.I2.2// ' P.I2.2// ' Z2 do not
have property R1.
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Our proof is uniform and is an application of the strategy implemented in [12]
for A.An/ to all other groups of Theorem 1 (except A.I2.m//; P.I2.m//, and
A. QA1/, which are virtually free). Let G be one of these groups and � D G=Z.G/.
We use the fact that the groups � and Aut.�/ are finite index subgroups of the
extended mapping class group of a suitable punctured surface to deduce that the
“mapping torus” of any automorphism ' of � acts non-elementarily on the curve
complex of that surface. This, combined with a result of Delzant (Lemma 5) and
Proposition 4, allows us to distinguish infinitely many twisted conjugacy classes
of '.

In particular, we obtain a short independent proof of a recent theorem of De-
kimpe–Gonçalves–Ocampo [8] who established property R1 for the pure Artin
braid groups P.An/. For all other groups in Theorem 1 (except A.An/, P.An/),
our result is new, to the best of our knowledge.

2 Preliminary results

In this section, we collect preliminary results which we will use to prove Theo-
rem 1 in Section 3.

Recall that the center of an irreducible Artin–Tits group A.X/ (and its corre-
sponding pure Artin–Tits group P.X/) of spherical type is cyclic; see [2, Satz 7.2]
(and [7, Corollary 7], respectively). On the other hand, the center of an irreducible
Artin–Tits group of affine type is trivial; see [18, Proposition 11.9]. It is known
(and is easy to prove) that the central quotient A.X/ has trivial center itself, which
is also true for P.X/ (see [7, Corollary 7]).

The following proposition allows us to reduce the proof of Theorem 1 about
A.X/ and P.X/ to proving a similar statement for their central quotients A.X/
and P.X/, respectively.

Proposition 2 (See e.g. [12, (2.2)]). Let G be a group, ' an automorphism of G,
and H a normal '-invariant subgroup of G. Denote by N' the automorphism in-
duced by ' on G=H . Then the condition R. N'/ D1 implies R.'/ D1. In par-
ticular, if G=Z.G/ has property R1, then so does G.

Recall that, for a group G, Inn.G/ denotes the subgroup of Aut.G/ consisting
of all inner automorphisms. For g 2 G, we denote by �g the inner automorphism
x 7! gxg�1. The map �Wg 7! �g identifies Inn.G/ with G=Z.G/, and Inn.G/ is
a normal subgroup of Aut.G/. The outer automorphism group ofG is the quotient
Out.G/ D Aut.G/=Inn.G/.

Now let us review an interesting relationship between the twisted conjugacy
classes of automorphisms of a centerless groupG and the actual conjugacy classes
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in an extension of G. Let ' be an automorphism of a centerless group G, and let
m 2 ¹1; 2; 3; : : : ;1º be the order of ' in Out.G/; if m <1, let p 2 G be the
unique element such that 'm D �p. Consider the group

G' D

´
G � hti=htgt�1 D '.g/ for all g 2 Gi if m D1;
G � hti=htgt�1 D '.g/ for all g 2 G; tm D pi if m <1:

Note that if m D1, G' is the semidirect product G Ì' Z and if m D 1, G' is
isomorphic to G.

Lemma 3. Let G be a centerless group, ' 2 Aut.G/, and let G' be defined as
above. Then G is a normal subgroup of G' , the quotient G=G' is cyclic, and
the assignments g 7! �g and t 7! ' define an injective homomorphism from G'

to Aut.G/.

Proof. We prove the second statement first. Indeed, the given assignments g 7! �g
and t 7! ' define a homomorphism since relations in G' hold in Aut.G/: the
conjugation by ' in Aut.G/ sends the inner automorphism �g for g 2 G to

'�g'
�1
D �'.g/:

Every element of G' can be written as tkg for some g 2 G and k 2 Z if m D1
and k 2 ¹0; : : : ; m � 1º if m <1. Then the element tkg is sent to 'k�g , and if
'k�g D idG , we deduce first 'k D �g

�1 D �g�1 , which forces k D 0 by definition
ofm. Then, since G is assumed to be centerless, �g D idG implies that g D 1, and
hence the homomorphism in question is injective.

If m D1, then G' is the semidirect product G Ì' hti; hence G is a sub-
group ofG' . Ifm <1, we note that the injective homomorphism �WG ! Aut.G/,
g 7! �g , factors through the compositionG ! G' ! Aut.G/, and hence the map
G ! G' is itself injective. In either case, G is a normal subgroup and G'=G is
generated by the coset tG.

Proposition 4 (cf. [12, Lemma 6.2]). Let G be a centerless group, ' 2 Aut.G/,
and let G' be defined as above. Two elements g; h 2 G are '-twisted conjugate
if and only if the elements gt and ht of G' are conjugate in G' . In particular,
R.'/ D1 if and only if the coset Gt in G' contains infinitely many conjugacy
classes.

Proof. Suppose that g; h 2 G are '-twisted conjugate. Then there exists some
x 2 G such that h D xg'.x/�1. In G' , we then have h D xgtx�1t�1, which
is to say that ht D x.gt/x�1. Conversely, suppose that gt and ht are conjugate
in G' . Then there is some element tkx, with x 2 G and k 2 Z if m D1, and
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k 2 ¹0; : : : ; m � 1º if m <1, such that

ht D tkx � gt � x�1t�k or htkC1x D tkxgt:

Using the relation tk
 D 'k.
/tk for 
 2 G, we obtain

h'kC1.x/tkC1
D 'k.xg/tkC1:

Canceling tkC1 on the right and setting y D 'k.x/, we obtain h'.y/ D y'k.g/

or h D y'k.g/'.y/�1. This is to say that h and 'k.g/ are '-twisted conjugate.
To conclude, it suffices to know that 'k.g/ is '-twisted conjugate to g: in general,
for every automorphism  , any 
 2 G is  -twisted conjugate to its image  .
/
according to the equality 
 D 
 .
/ .
/�1.

In particular, we recover from Proposition 4 the well-known fact that, for any
inner automorphism ', the number of '-twisted conjugacy classes R.'/ is equal
to the number of conjugacy classes in G (see e.g. [25, Lemma 1.3] for ' D id).

Let G be a group acting on a Gromov hyperbolic space S . For any s 2 S , con-
sider the set ƒ.G/ of accumulation points of the orbit Gs on the boundary @S .
The action of G on S is said to be non-elementary if ƒ.G/ contains at least three
points; see [20, Section 3].

The main tool for our proof is the following result due to Delzant.

Lemma 5 ([12, Lemma 6.3], [16, Lemma 3.4]). Let � be a group acting non-
elementarily on a Gromov hyperbolic space, and letK be a normal subgroup of �
such that the quotient �=K is abelian. Then any coset of K contains infinitely
many conjugacy classes.

This lemma will be used as follows. Let G be a centerless group, ' 2 Aut.G/
andG' as above; then ifG' acts non-elementarily on a Gromov hyperbolic space,
Lemma 5 (with � D G' and K D G) and Proposition 4 show that R.'/ D1.
We will also make use of the following result of Fel’shtyn.

Theorem 6 ([11, Theorem 3]). Every non-elementary hyperbolic group has prop-
erty R1.

3 Proof of Theorem 1

Proposition 7. Let n > 3 and let X 2 ¹An; Bn;D4; QAn�1; QCn�1º. Let G be either
the Artin–Tits group A.X/, or the pure Artin–Tits group P.An/, P.Bn/, P.D4/,
and denote � D G=Z.G/. Then there exists a surface †� with punctures such
that both � and Aut.�/ can be embedded as nested subgroups of finite index in
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the extended mapping class group of †� ,

� 6 Aut.�/ 6 Mod˙.†�/:

Here � is identified with the subgroup Inn.�/ of inner automorphisms. If g and
p denote the genus and the number of punctures of †� , respectively, then they
satisfy the inequality 3g C p � 4 > 0.

Proof. It is shown in [4, Section 2] that, for

G D A.X/ with X 2 ¹An; Bn; QAn�1; QCn�1º;

the group � D G=Z.G/ is a subgroup of finite index in the extended mapping class
group of a sphere with nC 2 punctures †� D SnC2. Namely, A.An/, A.Bn/,
and A. QCn�1/ are the subgroups of all orientation-preserving mapping classes of
SnC2 that fix 1, 2, and 3 punctures of SnC2, respectively. Similarly, A. QAn�1/

is a subgroup of index n in A.Bn/. For G D P.An/, it is briefly mentioned in
[4, p. 324] and discussed in detail in [10, Section 9.3] that � D G=Z.G/ is the
group of all orientation-preserving mapping classes of SnC2 that fix all punctures
pointwise, i.e. it is the pure orientation-preserving mapping class group of the
sphere with nC 2 punctures, which has index 2.nC 2/Š in Mod˙.SnC2/. In gen-
eral, if G D P.X/ is the pure Artin–Tits group for a connected Coxeter graph X
of spherical type, it was proven in [7, Corollary 7] that G=Z.G/ is isomorphic
to a subgroup of finite index in A.X/. In particular, for G D P.Bn/, the group
� D G=Z.G/ is isomorphic to a subgroup of finite index in A.Bn/, and hence to
a subgroup of finite index in Mod˙.SnC2/. Note that, for †� D SnC2, we have
g D 0, p D nC 2, so the required inequality becomes 3g C p � 4 D n � 2 > 0,
which is true if n > 3.

Now we invoke the corollary to the Ivanov–Korkmaz theorem [4, Corollary 4]
and conclude that, in all the above cases, the group Aut.�/ is isomorphic to the
normalizer of � in Mod˙.SnC2/. Since Aut.�/ contains � as a subgroup (identi-
fied with the subgroup Inn.�/ of all inner automorphisms), and � has finite index
in Mod˙.SnC2/, we conclude that Aut.�/ has itself finite index in Mod˙.SnC2/.

If G D A.D4/, let � D A.D4/ and let †� be the torus with three punctures.
It was shown in [22, Theorem 1] that � is isomorphic to the pure orientation-
preserving mapping class group of †� and in [23, Corollary 6] that Aut.�/ is
isomorphic to the extended mapping class group Mod˙.†�/, which contains �
as a subgroup of index 12. For G D P.D4/, we refer to [7, Corollary 7] again to
conclude that � D G=Z.G/ is isomorphic to a subgroup of finite index in A.D4/,
and hence to a subgroup of finite index in Mod˙.†�/, with †� being the torus
with three punctures. Clearly, the required inequality is satisfied for †� in this
case as well: 3g C p � 4 D 3C 3 � 4 > 0.
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let G be any of the groups from the theorem; we are going
to prove that its central quotient G=Z.G/ has property R1. Then Proposition 2
will yield the desired conclusion for G.

First, let X D I2.m/, m > 3, m ¤1. It is known that A.X/ is isomorphic
to Cm ? C2 if m is odd, and to Cm=2 ? Z if m is even, where Cn denotes the
cyclic group of order n; see e.g. [5, Section 5]. In any case, A.X/ contains a finite
index nonabelian free subgroup and hence is non-elementary hyperbolic. By [7,
Corollary 7], the central quotient P.X/ is isomorphic to a subgroup of finite index
inA.X/, hence also contains a nonabelian free subgroup of finite index, and thus is
also non-elementary hyperbolic. (One can actually prove that P.I2.m// Š Fm�1,
the free group of rankm � 1; see [7, Proof of Lemma 6.2].) Theorem 6 now shows
that A.X/ and P.X/ have property R1, and hence, by Proposition 2, A.X/ and
P.X/ have property R1 as well.

In view of the isomorphisms A.A2/ ' A.I2.3// and A.B2/ ' A.I2.4//, the
above reasoning covers the groups A.A2/, A.B2/, P.A2/, P.B2/; the result for
A. QA1/ ' F2 also follows from Theorem 6.

Suppose now that n > 3 and G D A.X/ for X 2 ¹An; Bn;D4; QAn�1; QCn�1º,
or G D P.An/, P.Bn/, or P.D4/. Denote � D G=Z.G/ (recall that � is iso-
morphic to G for G D A. QAn�1/ or A. QCn�1/). Let ' 2 Aut.�/, and consider the
group �' as defined in Section 2. Then, by Lemma 3 and Proposition 7, there exist
a surface with punctures†� and a tower of inclusions of finite index subgroups of
the extended mapping class group of †� ,

� 6 �' 6 Aut.�/ 6 Mod˙.†�/:

Now recall that Mod˙.†�/, and hence in particular its subgroup �' , acts by
isometries on the curve complex C.†�/ of the surface †� . This curve complex
is Gromov hyperbolic by the result of Masur–Minsky [17, Theorem 1.1] when
3g C p � 4 > 0, where g denotes the genus of the surface†� and p is the number
of punctures. We claim that the action of �' on C.†�/ is non-elementary. Indeed,
it is known (see for instance [1] and [20, Theorem 1.1]) that Mod˙.†�/ contains
infinitely many independent elements acting loxodromically on C.†�/. (Recall
that an element acts loxodromically if its orbit has two accumulation points on the
boundary, and two such elements are independent if the sets of accumulation points
of their orbits are disjoint.) Note that if an element acts loxodromically, so do all
of its powers. Since �' has finite index in Mod˙.†�/, this implies that �' itself
contains infinitely many independent elements acting loxodromically on C.†�/.
Therefore, the action of �' on C.†�/ is non-elementary, and by Proposition 4 and
Lemma 5, R.'/ D1. As ' was arbitrary, this implies that � has property R1,
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and from Proposition 2, we deduce thatG has propertyR1. This finishes the proof
of Theorem 1.

Remark 8. Given an Artin–Tits group A.X/, there is another (in most cases, con-
jecturally) hyperbolic space with an action of the central quotient A.X/. This is
the graph of irreducible parabolic subgroups Cparab.A.X// introduced in [6] and
also studied in [3,19]. Hyperbolicity of Cparab.A.X// was established for X being
An (n > 3),Bn (n > 3), QAn (n > 2), and QCn (n > 2); see [3]. Also, it can be shown
using results from [23] that Cparab.A.D4// is isomorphic to the curve graph of the
three-times punctured torus, and hence it is also hyperbolic by Masur–Minsky’s
theorem. Given a non-inner automorphism ' of A.X/, we found that, in some
cases, the action of A.X/ extends to an action of A.X/' on Cparab.A.X//; this is
for instance the case when ' is a parabolic-preserving automorphism. However,
we also found that, for some non-parabolic-preserving automorphisms of A. QCn/,
there is no action of A. QCn/' on Cparab.A. QCn//, so this approach does not yield
a uniform proof of Theorem 1 as the one above.
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would also like to thank the anonymous referee for his or her valuable suggestions
which improved the quality of the paper.
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