
RESEARCH ARTICLE APPLIED MATHEMATICS OPEN ACCESS

James–Stein for the leading eigenvector
Lisa R. Goldberga,b,1 ID and Alec N. Kerchevalc,1,2 ID

Edited by David Donoho, Stanford University, Stanford, CA; received April 22, 2022; accepted November 22, 2022

Recent research identifies and corrects bias, such as excess dispersion, in the leading
sample eigenvector of a factor-based covariance matrix estimated from a high-
dimension low sample size (HL) data set. We show that eigenvector bias can have a
substantial impact on variance-minimizing optimization in the HL regime, while bias
in estimated eigenvalues may have little effect. We describe a data-driven eigenvector
shrinkage estimator in the HL regime called “James–Stein for eigenvectors” (JSE) and
its close relationship with the James–Stein (JS) estimator for a collection of averages.
We show, both theoretically and with numerical experiments, that, for certain variance-
minimizing problems of practical importance, efforts to correct eigenvalues have little
value in comparison to the JSE correction of the leading eigenvector. When certain
extra information is present, JSE is a consistent estimator of the leading eigenvector.

asymptotic regime | shrinkage | factor model | optimization | covariance matrix

Averaging is the most important tool for distilling information from data. To name just
two of countless examples, batting average is a standard measure of the likelihood that a
baseball player will get on base, and an average of squared security returns is commonly
used to estimate the variance of a portfolio of stocks.

The average can be the best estimator of a mean in the sense of having the smallest
mean squared error. But a strange thing happens when considering a collection of
many averages simultaneously. The aggregate sum of mean squared errors is no longer
minimized by the collection of averages. Instead, the error can be reduced by shrinking
the averages toward a common target, even if, paradoxically, there is no underlying
relation among the quantities.

For baseball players, since an individual batting average incorporates both the true
mean and estimation error from sampling, the largest observed batting average is prone
to be overestimated and the smallest underestimated. That is why the aggregate mean
squared error is reduced when the collection of observed averages are all moved toward
their center.

This line of thinking has been available at least since Sir Francis Galton introduced
“regression towards mediocrity” in 1886. Still, Charles Stein surprised the community of
statisticians with a sequence of papers about this phenomenon beginning in the 1950s.
Stein showed that it is always possible to lower the aggregate squared error of a collection
of three or more averages by explicitly shrinking them toward their collective average. In
1961, Stein improved and simplified the analysis in collaboration with Willard James.
The resulting empirical James–Stein shrinkage estimator (JS) launched a new era of
statistics.

This article describes “James–Stein for eigenvectors” (JSE), a recently discovered
shrinkage estimator for the leading eigenvector of an unknown covariance matrix. A
leading eigenvector is a direction in a multidimensional data set that maximizes explained
variance. The variance explained by the leading eigenvector is the leading eigenvalue.

Like a collection of averages, a sample eigenvector is a collection of values that may be
overly dispersed. This can happen in the high-dimension low sample size (HL) regime
when the number of variables is much greater than the number of observations. In this
situation, the JSE estimator reduces excess dispersion in the entries of the leading sample
eigenvector. The HL regime arises when a relatively small number of observations are
used to explain or predict complex high-dimensional phenomena, and it falls outside the
realm of classical statistics. Examples of such settings include genome-wide association
studies (GWAS), such as (1) and (2), in which characteristics of a relatively small number
of individuals might be explained by millions of single nucleotide polymorphisms (SNPs);
machine learning in domains with a limited number of high-dimensional observations,
such as in (3); and finance, in which the number of assets in a portfolio can greatly exceed
the number of useful observations.

We work in the context of factor models and principal component analysis, which
are used throughout the physical and social sciences to reduce dimension and identify
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the most important drivers of complex outcomes. Principal
component analysis (PCA) is a statistical technique that uses
eigenvectors as factors. The results in this article are set in the
context of a one-factor model that generates a covariance matrix
with a single spike. This means that the leading eigenvalue is
substantially larger than the others. We do not provide a recipe
for practitioners working in higher-rank contexts; our goal is
to describe these ideas in a setting in which we can report the
current state of the theory. However, similar results are reported
experimentally for multifactor models by Goldberg et al. (4),
and continuing theoretical work indicates that the success of this
approach is not limited to the one-factor case.

We begin this article by describing the JS and JSE shrink-
age estimators side by side, in order to highlight their close
relationship. We then describe three asymptotic regimes, low-
dimension high sample size (LH), high-dimension high sample
size (HH), and high-dimension low sample size (HL), in order
to clarify the relationship between our work and the literature.
Subsequently, we describe an optimization-based context in
which a high-dimensional covariance matrix estimated with
the JSE estimator performs substantially better than eigenvalue
correction estimators coming from the HH literature. We
describe both theoretical and numerical supporting results for
performance metrics relevant to minimum variance optimization.

This article focuses on high-dimensional covariance matrix
estimation via shrinkage of eigenvectors, rather than eigenvalues
or the entire covariance matrix. It relies on results from the HL
regime and emphasizes optimization-based performance metrics.
The bulk of the existing high-dimensional covariance estimation
literature concerns correction of biased eigenvalues or provides
results only in the HH regime or focuses on metrics that do not
take account of the use of covariance matrices in optimization.

James–Stein for Averages

Suppose there are p > 3 unknown means µ = (µ1,µ2, . . . ,µp)
to be estimated. We observe a fixed number of samples and
compute the corresponding sample averages z = (z1, z2, . . . , zp).

It is common practice to use zi as an estimate for the
unobserved mean value µi, and this may be the best one can
do if only a single mean is estimated. The discovery of Stein (5)
and James and Stein (6) is that a better estimate is obtained by
shrinking the sample averages toward their collective average.

Let m(z) =
∑p

i=1 zi/p denote the collective average, and
1 = (1, 1, . . . , 1), the p-dimensional vector of 1s. With certain
normality assumptions, James and Stein define:

µ̂JS = m(z)1 + c JS(z − m(z)1). [1]

The shrinkage constant c JS is given by

c JS = 1−
ν2

s2(z)
, [2]

where

s2(z) =
1

p− 3

p∑
i=1

(zi − m(z))2 [3]

is a measure of the variation of the sample averages zi around their
collective average m(z), and ν2 is an estimate of the conditional
variance of each sample average around its unknown mean. The
value of ν2, a measure of the noise affecting each observed average,

must be either assumed or estimated independently of s 2(z), and
is sometimes tacitly taken to be 1.

The observable quantity s 2(z) incorporates both the unob-
served variation of the means and the noise ν2. The term ν2/s2(z)
in Eq. 2 can be thought of as an estimated ratio of noise to
the sum of signal and noise. Eq. 1 calls for a lot of shrinkage
when the noise dominates the variation of the sample averages
around their collective average and only a little shrinkage when
the reverse is true. Readers may consult Efron and Morris (7),
(8), and Efron (9) for more complete discussion and motivation
behind formula [1] as an empirical Bayes estimator.

James and Stein showed that the JS estimator µ̂JS is superior
to z in the sense of expected mean squared error,

Eµ,ν

[
|µ̂JS
− µ|2

]
< Eµ,ν

[
|z − µ|2

]
. [4]

For any fixed µ and ν, the conditional expected mean squared
error is improved when using µ̂JS instead of z. This result comes
with an unavoidable caveat: z remains the optimal estimate when
p = 1 and p = 2 and sometimes when p = 3.

Suppose we have p > 3 baseball players, and, for i =
1, 2, . . . , p, player i has true batting average µi, meaning that
in any at-bat, the player has a probability µi of getting a hit. This
probability is not observable, but we do observe, say over the
first 50 at-bats of the season, the realized proportion zi of hits.
Assuming we know ν2 or have an independent way to estimate
it, Eq. 1 improves on the zi as estimates of the true means µi.

This example lends intuition to the role of the noise to signal-
plus-noise ratio ν2/s 2(z) in the JS shrinkage constant. If the true
batting averages differ widely, but the sample averages tend to be
close to the true values, then Eq. 1 calls for little shrinkage, as
appropriate. Alternatively, if the true averages are close together,
but the sampling error is large, a lot of shrinkage makes sense. The
JS estimator properly quantifies the shrinkage and interpolates
between these extremes.

James–Stein for Eigenvectors

Consider a sequence of n independent observations of a variable
of dimension p, drawn from a population with unknown
covariance matrix 6. The p × p sample covariance matrix S
has the spectral decomposition:

S = λ2hh> + λ2
2v2v>2 + λ2

3v 3v>3 · · ·+ λ2
pvpv>p . [5]

in terms of the nonnegative eigenvaluesλ2
≥ λ2

2 ≥ · · · ≥ λ
2
p ≥ 0

and orthonormal eigenvectors {h, v2, . . . , vp} of S. Our interest
is primarily in the leading eigenvalue λ2 and its corresponding
eigenvector h when p >> n. In what follows, the sample
eigenvector h plays the role of the collection of sample averages z
in the previous discussion.

In classical statistics with fixed p, the sample eigenvalues
and eigenvectors are consistent estimators of their population
counterparts when the population eigenvalues are distinct. This
means that the sample estimates converge to the population values
as n tends to infinity. However, this may fail when the dimension
tends to infinity. The purpose of JSE is to provide an empirical
estimator improving on the sample eigenvector h in the HL
setting.

JSE is a shrinkage estimator, analogous to JS, that improves
on h by having a lower squared error with high probability
and leading to better estimates of covariance matrices for use in
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quadratic optimization. Goldberg, Papanicolaou, and Shkolnik
introduced and analyzed the JSE estimator in (10) as a means
to improve the output of quadratic optimization. It is further
developed and extended by Goldberg et al. (4) and Gurdogan and
Kercheval (11). The connection between JSE and JS first appears
in Shkolnik (12) in the context of a single spiked covariance
model.

The JSE estimator h JSE is defined by shrinking the entries of
h toward their average m(h), just as in Eq. 1:

h JSE = m(h)1 + c JSE(h− m(h)1), [6]

where the shrinkage constant c JSE is

c JSE = 1−
ν2

s2(h)
, [7]

where

s2(h) =
1
p

p∑
i=1

(λhi − λm(h))2 [8]

is a measure of the variation of the entries of λh around their
average λm(h), and ν2 is equal to the average of the nonzero
smaller eigenvalues of S, scaled by 1/p,

ν2 =
tr(S)− λ2

p · (n− 1)
. [9]

As with JS, JSE calls for a lot of shrinkage when the average of
the nonzero smaller eigenvalues dominates the variation of the
entries of λh around their average and only a little shrinkage when
the reverse is true. The estimator h JSE improves on the sample
leading eigenvector h of S, as we describe below, by reducing its
angular distance to the population eigenvector.

To state a precise result, we introduce the factor model
framework in which we are applying JSE, as initiated in (10)
and elaborated in (11). Factor models are widely used to reduce
dimension in settings where there are a relatively small number
of drivers of a complex outcome. The prototype is a one-factor
model:

r = βf + ε, [10]

where r is a p-vector that is the sole observable, β is a p-vector of
factor loadings, the scalar f is a common factor through which
the observable variables are correlated, and ε is a p-vector of
variable-specific effects that are not necessarily small but are
homogeneous and uncorrelated with f and each other. Setting
the factor variance to be σ 2 and the specific variance to be δ2,
the population covariance matrix takes the form:

6 = σ 2ββ> + δ2I, [11]

and β is its leading eigenvector.
Our theoretical results are asymptotic in the number of

variables p, so we introduce a fixed sequence of scalars {βi}
∞
i=1,

from which we draw factor loadings. Suppressing dependence on
dimension in our notation, let β be the p-vector whose entries are
the first p elements of the fixed sequence. To prevent asymptotic
degeneracy of the p-indexed sequence of models, we impose the
normalizing condition that |β|2/p = (1/p)

∑p
i=1 β

2
i tends to a

finite positive limit as p→∞.
Any nonzero multiple of an eigenvector is an eigenvector,

so we define the distance between population and estimated
eigenvectors as the smallest positive angle, denoted 6 , between
representatives.

Theorem 1 (10). Assume that the angle 6 (β, 1) tends to a limit
strictly between zero and π/2.

Then, in the limit as p→∞ with n fixed,

6 (h JSE,β) < 6 (h,β) [12]

almost surely.

The proofs in (10) assume the equivalent hypotheses that the
mean m(β) and dispersion d(β) have finite positive limits, where

d2(β) =
1
p

p∑
i=1

(
βi − m(β)

m(β)

)2
. [13]

A limiting mean of zero corresponds to a limiting angle between
β and 1 of π/2, in which case h JSE reduces to h and the strict
inequality of Theorem 1 becomes a weak inequality.

The unit eigenvector b = β/|β| is featured in our illustration
of [12] in Fig. 1. The left panel shows JSE shrinkage as defined
by Eq. 6. The right panel shows an equivalent formulation of
JSE shrinkage in terms of vectors on the unit sphere obtained by
normalization.

The conclusion of Theorem 1 is equivalent to the statement
that the JSE estimator reduces the Euclidean distance between
normalized representatives∣∣∣∣ h JSE

|h JSE|
− b

∣∣∣∣ < |h− b|, [14]

when they are chosen to lie in the same hemisphere. This is due
to the elementary relation (1/2)|u − v|2 = 1 − cos 6 (u, v) for
any unit vectors u, v.

Theorem 1 guarantees that the angle between h JSE and b
becomes smaller than the angle between h and b for p sufficiently
large as long as 6 (β, 1) tends to a value in the interval (0,π/2)
and |β|2/p tends to a positive value as p tends to infinity. We
explore the magnitude of improvement offered by JSE on a
data set of n = 40 observations and p = 50, 100, 200, and 500
variables. Gaussian data are simulated with the factor model Eq.
10, with σ = 0.16, δ = 0.60, and β generated by applying an
appropriate affine transformation to pseudorandom draws from a
normal distribution so that |β|2/p = 1 and 6 (β, 1) is as desired.
The choice of these parameters is motivated by equity markets,
as described in (4). We consider small, medium, and large angles,
6 (β, 1) = 0.174, 0.785, and1.40 radians, equivalently, 10, 45,
and 80◦. For each fixed p and β, our experiment relies on 1,000
simulated paths.

Table 1 shows the mean and median difference,

D = 6 (h, b)− 6 (h JSE, b), [15]

Fig. 1. Shrinkage of the sample eigenvector h along the line connecting h
and m(h)1 in Euclidean space (Left) and projected on the unit sphere (right).
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Table 1. Improvement (D) measured in radians, by JSE
over the sample eigenvector as an estimator of the
population eigenvector.
6 (�, 1) Interquartile
(Radians) p Mean D Median D Range D P(D > 0)

0.174 50 0.276 0.289 0.051 0.996
100 0.316 0.345 0.055 0.989
200 0.276 0.367 0.066 0.967
500 0.328 0.370 0.071 0.983

0.785 50 0.066 0.066 0.025 0.995
100 0.069 0.069 0.028 0.998
200 0.070 0.068 0.027 1.000
500 0.069 0.067 0.025 1.000

1.396 50 0.000 0.002 0.004 0.724
100 0.001 0.003 0.004 0.762
200 0.002 0.003 0.004 0.757
500 0.002 0.002 0.003 0.867

Gaussian data are generated from the factor model [10] with � = 0.16, � = 0.60, and
|�|2 /p = 1. Results are based on 1,000 simulations of n = 40 observations for each
value of 6 (�, 1) and p. Average and median improvement are uniformly positive, and
they increase as 6 (�, 1) decreases. Results are consistent across values of p considered.

along with its interquartile range and the probability that
D is positive. The mean, median, and interquartile range of
improvement D by JSE are small and positive for the largest
angle we consider, 6 (β, 1) = 1.40 radians, close to a right angle,
and increase materially as that angle diminishes. The probability
that D is positive exceeds 0.72 in all cases and exceeds 0.96 for
the two smaller angles. The results are stable across values of p,
consistent with the hypothesis that n = 40 and p = 50 are
effectively in the asymptotic regime for the factor model that
we specified.

A More General Shrinkage Target. In Eqs. 1 and 6, JS and JSE
reduce excess dispersion in an estimated vector of interest relative
to a shrinkage target, τ = m(·)1, with constant entries. Efron and
Morris (7) describe the JS estimator for a more general shrinkage
target, where the dispersionless vector m(·)1 is replaced by an
initial guess τ ∈ Rp for the unknown µ. In that case, the JS
estimator becomes

µ̂JS = τ + c JS(z − τ ), [16]

where c JS is defined relative to τ , with

s2(h) =
p∑

i=1
(zi − τi)2/(p− 2). [17]

We describe a similar generalization of Theorem 1. As we did
for factor loadings β, we introduce a fixed sequence of scalars
{τi}
∞
i=1, from which we draw coordinates of a shrinkage target

vector τ . In the previous case, τi = 1 for all i. Continuing
to suppress dimension in our notation, let τ be the p-vector
whose entries are the first p elements of the sequence. To avoid
degeneracy, we again impose the normalizing assumption that
|τ |2/p tends to a finite positive limit as p→∞.

For any p-vector y, denote the the orthogonal projection of y
onto τ by

Pτ (y) = 〈y, τ 〉
τ

|τ |2
. [18]

Define the generalized variance relative to τ as

v2
τ (y) =

1
p
|y − Pτ (y)|2, [19]

and define the generalized shrinkage constant

c JSE
τ = 1−

ν2

λ2v2
τ (h)

, [20]

where ν2 is defined as before and we assume h 6= Pτ (h). We may
now define the generalized JSE estimator as

hJSE
τ = Pτ (h) + c JSE

τ (h− Pτ (h)), [21]

which depends only on the line determined by τ.

Theorem 2 (10). Assume that the angle 6 (β, τ ) tends to a limit
strictly between zero and π/2.

Then, in the limit as p→∞ with n fixed,

6 (h JSE
τ ,β) < 6 (h,β) [22]

almost surely.

The proof of Theorem 2 is a formal generalization of the proof
of theorem 3.1 in (10), with the original target 1 replaced by
τ , as long as the nondegeneracy condition on |τ |2/p is satisfied.
When the entries of τ are all ones, we recover Theorem 1 as a
special case of Theorem 2.

The analogy of JSE with JS suggests viewing τ as a guess
at the identity of the true eigenvector β. An alternative is to
think of τ as an exogenously imposed constraint in a variance-
minimizing optimization. In this situation, JSE corrects the
sample eigenvector in the direction of τ to reduce optimization
error. The effectiveness of this correction is controlled by the
angle between β and τ , 6 (β, τ ) as well as |β2

|/p and |τ |2/p.
This alternative perspective allows us to think of a τ -indexed
family of biases in the sample eigenvector h.

A Consistent Estimator. An extension of the generalized JSE
estimator developed by Gurdogan and Kercheval in (11) incor-
porates multiple targets to further reduce estimation error. The
result depends on a specific collection of k = k(p) < p linearly
independent target vectors {τ 1, τ 2, . . . , τ k

}. Letting τ denote
the (p × k)-dimensional matrix whose columns are the τ is, the
orthogonal projection of a p-vector y onto the k-dimensional
space spanned by the columns of τ is

Pτ (y) = τ (τ>τ )−1τ>y. [23]

Suppose we know the rank ordering of the betas
β1,β2, . . . ,βp, but not their actual values. Group the betas
into k ordered quantiles, where k is approximately √p. For
i = 1, 2 . . . , k, define the target vector τ i = (a1, a2, . . . , ap),
where aj = 1 if βj belongs to group i, and zero otherwise.

Theorem 3 (11). Let the number n of observations be fixed. For τ
equal to the (p× k)-dimensional matrix whose columns are the τ is
defined from the rank ordering of betas as above, the JSE estimator
defined by Eq. 21 is a consistent estimator of b in the sense that

lim
p→∞

6 (h JSE
τ , b) = 0 [24]

almost surely.

In (11), it is shown that the full rank ordering is not needed; only
the ordered groupings are used.
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Three Regimes

The two James–Stein estimators, for averages and for the leading
eigenvector, are structurally parallel, but the current state of
theory guarantees their performance in different settings. The
dominance of JS over the sample mean expressed in inequality 4
holds in expectation, typically under normality assumptions, for
finite p > 3. In contrast, the JSE theory of Theorems 1 and 3 is
asymptotic in the HL regime and is nonparametric, courtesy of
the strong law of large numbers.

The relevance of the HL regime to the analysis of scientific data
was recognized as early as 2005, by Hall et al. (13). The 2018
article by Aoshima et al. (14) surveys results on the HL regime.

The HL regime stands in contrast to the low-dimension high
sample size (LH) regime of classical statistics, where the number
of variables p is fixed and the number of observations n tends to
infinity. In the LH regime, a sample covariance matrix based on
identically distributed, independent observations is a consistent
estimator of the population covariance matrix, converging in
expectation as n tends to infinity. Different effects emerge in the
high-dimension high sample size (HH) regime, in which both p
and n tend to infinity. The HH regime is part of random matrix
theory, dating back to the 1967 work of Marčenko and Pastur
(15). This three-regime classification of data analysis is discussed
by Jung and Marron in their 2009 article (16).

Placing any particular finite problem into an asymptotic con-
text, whether LH, HL, HH, or something in between, requires
specifying how the model is to be extended asymptotically. For
LH, this means letting the number of independent observations
grow, but the HH and HL regimes require defining a sequence
of models of increasing dimension. This extension was natural
in early works from random matrix theory that characterized
the limiting spectra of standard Gaussian variables in the HH
regime. Johnstone (17) looks at the HH spectrum of eigenvalues
in a spiked model, where the eigenvalues of a fixed-dimensional
set of eigenvectors are substantially larger than the remaining
eigenvalues. The covariance matrix corresponding to the factor
model, Eq. 10 is spiked. In some settings, it can be beneficial
to estimate the spiked covariance model guided by Theorems 1
and 3 from the HL regime.

co
m

pl
ex

ity
 

duality

LH: p<<n

HL: p>>n

HH: p~n

Fig. 2. Three asymptotic regimes for data analysis. LH is the low-dimension
high sample size regime of classical statistics. HH is the high-dimension
high sample size regime of classical random matrix theory. HL is the high-
dimension low sample size regime of alternative random matrix theory. HH
tends to be more complex than HL because duality arguments allow some
features of classical statistics to emerge in the HL regime.

A schematic diagram of the three regimes is in Fig. 2. Duality
enables us to use classical statistics to obtain results in the HL
regime. This has been observed by various researchers, including
Shen et al. (18) and Wang and Fan (19) and used in (10). For
example, if Y is our p×n data matrix with p > n, the p×p sample
covariance matrix YY >/n has rank at most n. If we consider the
n× n dual matrix SD = Y >Y /p, it has a fixed dimension in the
HL regime. The nonzero eigenvalues of SD and S are related by
the multiplicative factor p/n, and the eigenvectors are related by
left multiplication by Y or Y >. Since, for SD, the roles of p and
n are reversed, methods from classical statistics apply.

High-Dimensional Covariance Matrix
Estimation

Eigenvalue adjustment to improve covariance performance met-
rics, or loss functions, goes back at least to Stein’s 1956 and 1986
articles (20) and (21). In this section, we discuss aspects of the
literature.

In their 2018 article (22), Donoho, Gavish, and Johnstone
emphasize the dependence of the optimal estimator on the choice
of performance metric. Like Stein (21), they consider estimators
obtained by varying the eigenvalues while keeping the sample
eigenvectors fixed. In describing an oracle estimator for their
spiked covariance model in the HH regime, they write:

The oracle procedure does not attain zero loss since
it is “doomed” to use the eigenbasis of the empirical
covariance, which is a random basis corrupted by noise,
to estimate the population covariance.

This situation is reasonable in the context they consider in
which there is no prior information, other than data, about the
eigenvectors. As indicated in (11), prior information can allow
for the correction of a wide range of eigenvector biases in the HL
regime.

Similar themes emerge from a series of articles (23–28), by
Ledoit and Wolf. Beginning in 2003, these papers explore high-
dimensional covariance matrix estimation with applications to
financial portfolio construction and other disciplines. As in the
paper by Donoho et al. (22), Ledoit and Wolf (28), consider “the
class of rotation-equivariant estimators”.

Ledoit and Wolf write:

Rotation equivariance is appropriate in the general case
where the statistician has no a priori information about
the orientation of the eigenvectors of the covariance
matrix. . .
The fact that we keep the sample eigenvectors does not
mean that we assume they are close to the population
eigenvectors. It only means that we do not know how
to improve upon them.

In earlier papers, Ledoit and Wolf consider estimators that
shrink a sample covariance matrix toward a target. Some of these
estimators modify the sample eigenvectors. By implementing a
spiked shrinkage target in (25), Ledoit and Wolf provide prior
structural information to the estimator. For the JSE estimator,
that structural information is in the form of a factor model and the
positive mean assumption on the leading population eigenvector.

In their 2017 article, Wang and Fan (19) develop the S-POET
eigenvalue shrinkage estimator, which can be applied to the
spiked covariance model in the HH and certain HL regimes.
They evaluate S-POET with performance metrics based on the
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relative spectral norm, the relative Frobenius norm, the spectral
norm, and the max norm. Their candidate estimators, again, use
the sample eigenvectors. In the absence of structural information,
they also remark that “correction for the biases of estimating
eigenvectors is almost impossible.”

Despite the challenges of characterizing or correcting sample
eigenvectors in high dimensions, there are streams of literature
on the subject in both the HH and HL regimes. Some
of the literature concerns consistency of sample eigenvectors
under different modeling assumptions. HH references include
Paul (29), Nadler (30), Mestre (31), and Johnstone and Lu (32).
A 2018 survey by Johnstone and Paul (33) has an extensive
reference list. HH results that are partial analogs of our findings
include Montanari (34) and Montanari and Venkataramanan
(35), who study estimation of singular vectors for low-rank
matrices using approximate message passing (AMP) algorithms.
In a 2022 article (36), Zhong, Su, and Fan describe a Bayes
AMP algorithm to estimate principal components in the HH
regime. Techniques from the HH regime have been applied to
improve optimized portfolios; see, for example, the 2012 paper
by Menchero and Orr (37), and the 2013 publication by El
Karoui (38).

For the HL regime, asymptotics and estimation of eigenvectors
have been studied in work previously cited and, among others,
Ahn et al. (39), Jung et al. (40), Lee et al. (41), and Jung (42).

In the next section, we introduce a focus on optimization
error and relevant performance metrics. We show that JSE
eigenvector shrinkage, perhaps surprisingly, can substantially
dominate the gains due to eigenvalue correction in optimization-
based performance metrics.

JSE Corrects an Optimization Bias

Estimated covariance matrices are used in quadratic optimization,
which chooses coefficients to minimize the variance of a linear
combination of random variables subject to constraints. In
what follows, we evaluate estimators of high-dimensional spiked
covariance matrices with performance metrics that measure the
accuracy of optimized quantities.

We present simulations of practical situations where JSE
materially improves optimization-based performance metrics
while eigenvalue corrections can have little effect. Our simula-
tions illustrate results from (10) and (11) showing the dependence
of optimization-based performance metrics on the optimization
bias as the number of variables p tends to infinity and the lack of
dependence of these metrics on errors in eigenvalues. Our context
and examples are taken from financial economics but our results
apply in any discipline where spiked covariance models are used
as inputs to quadratic optimization.

Quantitative Portfolio Construction. From a universe of p finan-
cial securities, there are countless ways to construct a portfolio.
We focus on quantitative portfolio construction, which has relied
on mean–variance optimization since Markowitz (43). In this
framework, a portfolio is represented by a vector whose ith entry
is the fraction or weight of the portfolio invested in security i. A
portfolio is efficient if it has minimum forecast variance subject
to constraints, and the search for efficient portfolios is central to
quantitative finance. The simplest efficient portfolio is minimum
variance.

A fully invested but otherwise unconstrained minimum
variance portfolio is the solution ŵ∗ to the mean-variance
optimization problem

minw∈Rp w>6̂w
subject to:

w>1 = 1,
[25]

where the p×p matrix 6̂ is a nonsingular estimate of the unknown
true security covariance matrix 6. If the estimate 6̂ is derived
from observed data, then ŵ∗ is a data-driven approximation of
the true optimum w∗, defined as the solution to [25] with 6̂
replaced by 6.

Performance Metrics and Optimization. We review three per-
formance metrics that are sensitive to different aspects of the
impact of covariance matrix estimation error on optimization.

The variance forecast ratio (VFR) is the quotient of estimated
by true variance of a linear combination of random variables.
Considered in 1956 by Stein (20) for arbitrary combinations,
the VFR can be substantially less than the maximum value 1
when it is applied to an optimized quantity like a minimum
variance portfolio:

VFR(ŵ∗) =
ŵ∗
>
6̂ŵ∗

ŵ∗
>
6ŵ∗

. [26]

This is because a variance-minimizing optimization tends to
place excess weight on securities whose variances and correlations
with other securities are underforecast. In the words of Richard
Michaud (44), mean–variance optimizers are “estimation error
maximizers.” Bianchi et al. (45) use the VFR to assess risk
underforecasting in optimized portfolios. By considering the
additional metrics described next, we are able to gauge the
accuracy of optimized portfolios themselves, not merely the
accuracy of their risk forecasts.

Unlike the VFR, the true variance ratio (TVR) makes sense
only for optimized combinations of random variables. TVR is
the quotient of the true variance of the true optimum by the
true variance of the estimated optimum, and it measures excess
variance in the latter:

TVR(ŵ∗) =
w∗6w∗

ŵ∗
>
6ŵ∗

. [27]

A more direct measure of the accuracy of an optimized quantity
is tracking error, which we define as:

TE2(ŵ∗) = (ŵ∗ − w∗)>6(ŵ∗ − w∗), [28]

for the minimum variance portfolio. Tracking error is widely used
by portfolio managers to measure the width of the distribution
of the difference in return of two portfolios, and it is commonly
applied to measure the distance between a portfolio and its
benchmark.

Since these performance metrics require knowledge of the true
covariance matrix6, they cannot be used directly in an empirical
study. However, the denominator of VFR, the true variance of
the optimized quantity, can be approximated in out-of-sample
empirical tests.

Factor Models, Eigenvalues, and Eigenvectors. When p > n,
the sample covariance matrix S is singular and so is not a
candidate for 6̂. Factor models are used throughout the financial
services industry and the academic literature to generate full-
rank estimates of security return covariance matrices. In the
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discussion below, we rely on the one-factor model specified
in Eq. 10. Similar results are obtained numerically in the case of
multiple factors and nonhomogeneous specific risk in (4) and are
supported by theoretical work currently in development.

Writing the factor loadings β as a product |β|b of a scale factor
and a unit vector, the population covariance matrix Eq. 11 takes
the form

6 = (σ 2
|β|2)bb> + δ2I . [29]

The quantities σ 2 and |β|2 are not identifiable from data, but
their product η2 = σ 2

|β|2 is. Thus, we specify an estimator
6̂ in terms of an estimator b̂ ∈ Rp of unit length and positive
estimators η̂2, δ̂2

∈ R so that

6̂ = η̂2b̂b̂> + δ̂2I . [30]

In what follows, we use guidance from the HL regime to estimate
the identifiable but unobservable quantities η2 and δ2 from a data
set.

We assume, without loss of generality, that the sample
covariance matrix S has rank n. The leading eigenvalue is denoted
λ2 as before, and we set `2 to be the average of the remaining
nonzero eigenvalues,

`2 =
tr(S)− λ2

n− 1
, [31]

where tr denotes trace. Under the assumptions of Theorem 1,
Lemma A.2 of (10) provides the asymptotic relationships between
eigenvalues of S and factor model parameters. If p is sufficiently
large,

λ2
≈
|β|2|f |2

n
+

p
n
δ2, [32]

where f = (f1, f2 . . . , fn) is the vector of realizations of the
common factor return, and

`2
≈

p
n
δ2, [33]

where ≈ means equality after division by p, in the limit as p→
∞. An immediate consequence is an approximate expression for
the trace of S in terms of the elements of the factor model:

tr(S) ≈
|β|2| f |2

n
+ pδ2. [34]

Although we do not have access to | f |2/n, it is an unbiased
estimator of the true factor variance σ 2. Relabelling | f |2/n by
σ̂ 2 and applying formulas 32 and 33 gives us estimators:

η̂2 = σ̂ 2
|β|2 ≈ λ2

− `2. [35]

δ̂2 = (n/p)`2, [36]

that determine, for any choice of eigenvector estimator b̂, the
covariance estimator

6̂(b̂) = (λ2
− `2)b̂b̂> + (n/p)`2I, [37]

with leading eigenvalue λ2
− `2 + (n/p)`2 and trace λ2 +

(n− 1)`2. The leading sample eigenvalue is approximately equal
to the leading population eigenvalue σ 2

|β|2 + δ2. It also agrees,
for p >> n, with the S-POET leading eigenvalue estimate of

Wang and Fan (19), developed in a regime that includes our
spiked model in the HL setting.

The leading population eigenvector b remains to be estimated.
To help quantify the effect of estimation error on our perfor-
mance metrics, we use the following two quantities defined for
any nonzero eigenvector estimate b̂ of b. The “optimization bias”
E(b̂), introduced in (10), is

E2(b̂) =
(b, q)− (b, b̂)(b̂, q)

1− (b̂, q)2
. [38]

and the “eigenvector bias” D(b̂), introduced in (11), is

D(b̂) =
(b̂, q)2(1− (b̂, b)2)

(1− (b̂, q)2)(1− (b, q)2)
, [39]

where q is the unit vector 1/√p and (·, ·) denotes the Euclidean
inner product. Note E2(b) = 0, meaning the population
eigenvector has zero bias, as desired.

As shown in (10) and (11), and discussed below, these bias
measures are substantial contributors to the optimization-based
performance metrics VFR, TVR, and TE. A lesson from (10) is
that eigenvalue estimates can be less important, for the purpose
of optimization in the HL regime, than estimating the leading
eigenvector. This is especially true when considering the true
variance (ŵ∗)>6ŵ∗ of an estimated minimum risk portfolio ŵ∗
defined by Eq. 25 using the estimated covariance matrix.

Correcting the Optimization Bias. In a factor model in the HL
regime, JSE can correct the optimization bias, Eq. 38, leading to
greater accuracy in optimized quantities.

Theoretical guarantees of this assertion are expressed in terms
of η2 = σ 2

|β|2, δ2, b, and their estimates η̂2, δ̂2, and b̂ from
Eq. 30.

As a consequence of our assumptions on β, η2 is of order p
asymptotically, so the covariance matrix of data generated by our
factor model is spiked. As in the setting of Theorem 1, we assume
the nondegeneracy condition that |β|2/p tends to a finite positive
limit as p→∞.

Theorem 4 (10 and 11). Assume that the angle 6 (β, 1) tends to
a limit strictly between zero and π/2. Assume that the population
covariance matrix is given by Eq. 29.

1. Asymptotically, the true variance of the estimated minimum
variance portfolio is

(ŵ∗)>6ŵ∗ = (η2/p)E2(b̂) + o(p). [40]

In particular, the true variance of the estimated minimum variance
portfolio is asymptotically independent of eigenvalue estimates but
depends only on the eigenvector estimate b̂ and the true covariance
matrix 6.

2. limp→∞ E(h JSE) = 0 and limp→∞ E(h) > 0 almost surely,
where h is the leading eigenvector of S.

3. Asymptotically, the tracking error of the estimated minimum
variance portfolio ŵ∗ is

TE2(ŵ) =
η2

p
E2(b̂) +

δ2

p
D(b̂) +

C
p
E(b̂) + o(p), [41]

where C is a constant depending on the population covariance
matrix, the data, η̂2, and δ̂2, but not on b̂ (see (11)).
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If we denote by w PCA the minimum variance portfolio
constructed using the sample eigenvector h in Eq. 37, and w JSE
using h JSE, parts 1 and 2 of Theorem 4 imply that TVR(w PCA)
tends to zero as the dimension p tends to infinity, but TVR(w JSE)
does not. From parts 2 and 3, it follows that TE2(w PCA) is
bounded below, and TE2(w JSE) tends to zero.

Simulations calibrated to financial markets in refs. (4), (10),
and (11) illustrate that these asymptotic properties are already
present for values of p and n that are typical in financial
markets. In addition, we observe that the variance forecast ratio
is drastically improved by the JSE estimator.

Numerical Illustration. Consider the problem of estimating a
covariance matrix with a year’s worth of daily observations
for stocks in an index like the S&P 500. The observation
frequency and size of the data window are limited by empirical
considerations: stocks enter and exit the index, markets undergo
changes in volatility, and intraday sampling magnifies serial
correlation.

In the case at hand, we have approximately n = 252 daily
observations to estimate a covariance matrix for approximately
p = 500 variables. Since p > n, this problem falls outside the
realm of classical statistics. Whether it falls under the HH or HL
regime and which performance metrics should be used depend
on application details. The example described here illustrates a
realistic context in which substantial performance improvements
can be achieved using results from the HL regime to correct the
leading eigenvector, while corrections of the leading eigenvalue
have little value.

We examine a hypothetical market driven by the one-factor
model, Eq. 10 with covariance matrix, Eq. 29. Because the
diagonal elements of S are unbiased estimators of the population
variances, the trace tr(S) is an unbiased estimator of the sum
tr(6) of the population variances. As a consequence, we preserve
tr(S) in our covariance matrix estimators.

We consider the following three data-driven, trace-preserving
estimators:

6 raw = (λ2
−

n− 1
p− 1

`2)hh> +
n− 1
p− 1

`2I, [42]

6 PCA = (λ2
− `2)hh> + (n/p)`2I, [43]

6 JSE = (λ2
− `2)

h JSE(h JSE)>

|h JSE|2
+ (n/p)`2I . [44]

Here,6 raw matches the leading eigenvalue and eigenvector of
S without correction.6 PCA has the corrected leading eigenvalue
but still uses the leading eigenvector h to estimate b; 6 JSE
improves further by substituting h JSE of Eq. 6 for h.

Our factor model parameters are taken approximately from
(4) and (10), which contain detailed information about cal-
ibration to financial markets. We draw factor and specific
returns f and ε independently with mean 0 and standard
deviations 16% and 60%, respectively. In the simulation, factor
returns are normal, and specific returns are drawn from a
t-distribution with 5 degrees of freedom. We use this fat-tailed
t-distribution to illustrate that the results do not require Gaussian
assumptions; repeating the experiment with several different
distributions including the normal gives similar results.

The factor loadings β are inspired by market betas. We draw
entries of β independently from a normal distribution with
mean 1 and variance 0.25 and hold them fixed across time and
simulations.

We compare the effect of eigenvalue vs. eigenvector correction
on our portfolio performance metrics. In the experiment sum-
marized in Fig. 3, we fix p = 500, n = 252, and examine the
tracking error, variance forecast ratio, and true variance ratio for
each of the three estimators 6 raw, 6 PCA, and 6 JSE, with box
plots summarizing the values for 400 simulations.

Correcting the leading eigenvalue, from λ2 to the asymptot-
ically correct λ2

− (1 − n/p)`2, has little effect compared to
the JSE eigenvector correction. Related experiments described in
(4) and (10) confirm that improving the accuracy of optimized

A

B

C

Fig. 3. Portfolio-level accuracy metrics for simulated minimum variance
portfolios optimized with 6 raw, 6PCA, and 6 JSE: (A) annualized tracking
error, (B) variance forecast ratio, and (C) true variance ratio. A perfect
tracking error is equal to zero, and perfect variance forecast ratios and true
variance ratios are equal to one. The estimated covariance matrix is based
on n = 252 observations of p = 500 securities. Each boxplot summarizes 400
simulations. The experiments show that eigenvalue correction (PCA) makes
no improvement, but the eigenvector correction (JSE) is substantial.
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quantities has negligible dependence on the eigenvalue estimator
and relies almost entirely on the choice of eigenvector. All else
equal, the magnitude of the improvement in accuracy increases
as the dispersion of beta decreases.

Comparing our experiment to the numerical study in (19)
illustrates a conclusion from (22): The choice of performance
metric materially affects the optimal covariance matrix estimator.

Summary and Outlook

This article concerns James–Stein for eigenvectors, a shrinkage
method that is structurally identical to classical James–Stein.
JSE has asymptotic guarantees to improve optimization-based
performance metrics in the high-dimension low sample size HL
regime. In the context of an empirically motivated one-factor
model with a spiked covariance matrix, we show theoretically
and illustrate numerically that optimization error is materially
reduced by the JSE estimator, while relatively unaffected by
eigenvalue correction.

Next steps are to extend the theoretical results to multifac-
tor models and further develop the link between constrained
optimization and eigenvector bias. Open problems include an

empirical Bayes formulation of JSE for finite p and n and a more
comprehensive understanding of the relationship between per-
formance metrics and errors in eigenvectors and eigenvalues. The
notion of “three regimes” is a simplified framework that allows us
to organize results, but, in reality, the three regimes belong to a
family of largely uninvestigated possibilities. Applications of JSE
to GWAS studies, machine learning, and other high-dimension
low sample size empirical problems await exploration.

Data, Materials, and Software Availability. Python simulation code used
to create the boxplots in Fig. 3 and the data in Table 1 is available at https://
github.com/kercheval-a/JSE.
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