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smoothness. Our results include the proofs of existence of 
asymptotics of best covering and maximal polarization for 
(Hd, d)-rectifiable sets and maximal polarization on self-
similar fractals.
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1. Introduction

The question of covering a compact set by metric balls or, more generally, by convex 
bodies is a classical problem in metric geometry, and has multiple important applications. 
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In this paper we focus on covering a set by balls of small radius ε, and deduce the 
asymptotic behavior for the number of balls needed to cover a given compact set when 
ε → 0. Our results allow general norms, so the corresponding balls can in general be 
rescaled copies of a given bounded convex absorbing balanced set.

The theory of covering by translations of a fixed convex set was developed by Rogers, 
[29,30]. The early investigation of the asymptotic properties of the optimal covering of 
compact sets was undertaken in a paper by Kolmogorov [19] and subsequently expanded 
in his joint paper with Tikhomirov [20]. Inspired by the work of Shannon in information 
theory, Hausdorff measures of fractional dimension, and following an earlier study by 
Pontryagin and Shnirelman [26] on the metric notion of dimension, Kolmogorov defined 
the so-called ε-entropy of a compact set A as

log2 Nε(A),

where Nε(A) is the smallest cardinality of an ε-covering of A:

A ⊂
⋃

U∈γ

U,

with each set U ∈ γ having a diameter at most ε. The quantity Nε(A) can be understood 
as the smallest number of points in a discrete quantization of the set A, if the admissible 
error must be bounded by ε. Accordingly, log2 Nε(A) is then the “quantity of informa-
tion”, measured in bits, contained in this quantization. The aforementioned paper of 
Kolmogorov-Tikhomirov proceeds to discuss the asymptotic orders of growth of Nε(A)
for ε ↓ 0 in the case of Jordan-measurable compact set A; i.e., a measurable set A ⊂ Rd

whose boundary has zero Lebesgue measure. They further study metric dimensions of 
the spaces of functions with finite smoothness and analytical functions.

An alternative approach to the optimal covering problem, and the one used in the 
sequel, consists in fixing the number of points N in the quantizer and finding the smallest 
εN , for which set A is contained in the εN -neighborhood of the quantizer. It can be viewed 
as the question of finding the best quantization of the set A, with the maximal possible 
error used as objective function that is to be minimized.

Quantization as a part of information theory was actively developed by a number of 
researchers; the papers by Zador [32] and Bucklew and Wise [7] established the existence 
of asymptotics on Jordan-measurable sets for a related functional: expected quantization 
error. The monograph of Graf and Luschgy [13] summarized these developments both for 
the asymptotics of quantization error, and for optimal covering. They also rediscovered 
the results of Kolmogorov and Tikhomirov about asymptotics of covering for Jordan-
measurable sets. Graf and Luschgy then conjectured that the asymptotics for N → ∞
must exist for sets, more general than just Jordan-measurable. This fact will indeed be 
one of our main results, Theorem 4.

We note that the Jordan measurability assumption is in effect a smoothness condition 
for the set A. In this paper we study the asymptotic properties of point configurations 
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that achieve optimal covering for embedded sets lacking such smoothness properties. 
Our results include the proofs of existence of asymptotics of best covering for (Hd, d)-
rectifiable sets. We also show existence of the asymptotics for the polarization P∗

s with 
hypersingular Riesz kernel on (Hd, d)-rectifiable sets, as well as the necessary and suffi-
cient condition on fractal contraction ratios, under which the polarization asymptotics 
exist on self-similar fractals satisfying the open set condition. Analogous results for cov-
ering on fractals were obtained by Lalley [23].

The study of covering properties of various functional spaces, initiated by Kolmogorov 
and Tikhomirov, was continued in various settings by a number of authors, includ-
ing Birman-Solomyak, Bourgain-Pajor-Szarek-Tomczak-Jaegermann, Posner-Rodemich-
Rumsey, Temlyakov, and others [3,6,27,31]. Notably, it has been observed that metric 
entropy is related to the small ball problem [21]. In most cases, the primary goal of these 
works is to establish the order of growth of the metric entropy for a certain set; in the 
Euclidean space however we can obtain the existence of a constant in the asymptotics, 
depending only on the Hausdorff dimension of the set when the dimension is integer. For 
fractal sets we have the existence of the constant as well, but it generally depends on 
the set.

Recently, a general approach for studying first-order asymptotics of interaction func-
tionals has been developed [16]. It transpires that both the existence of asymptotic and 
weak∗-distribution of the minimizers of a functional follows from its so-called short-range 
properties (which will be further discussed in Section 7.1). Intuitively, if the contribution 
of pairs of nearby points in ωN dominates over the contributions of remote pairs, there 
necessarily exist asymptotics with respect to a polynomial rate function. In this paper we 
show that this approach applies to the problems of optimal covering and polarization, 
and employ it as one of our main tools. In a remarkable coincidence, the two papers 
addressing this phenomenon from the opposite sides: one due to Gruber, on the asymp-
totics for optimal quantization with general kernels, another due to Hardin and Saff, on 
the asymptotics of hypersingular Riesz energy, appeared in Advances in Mathematics
within several months of each other [14,15].

To establish our main results for best covering and optimal polarization, we treat 
these functionals simultaneously, formulating their abstract short-range features at the 
beginning of Section 7.1. Theorems 4–6 are derived for compact A ⊂ Rd from these 
features. The asymptotics are then generalized to (Hd, d)-rectifiable subsets of Rp using 
the tools from geometric measure theory.

The following Section 7.2 is dedicated to the verification of the short-range properties. 
The main technical novelty over the classical results of Kolmogorov-Tikhomirov and 
Graf-Luschgy is contained in Lemma 21, establishing the stability of asymptotic behavior 
under small perturbations of the set A. Once this property has been established, it 
becomes possible to treat sets in Rd with boundaries of positive Lebesgue measure, 
which was not available to classical methods.

In Section 6, concerning polarization on fractal sets, our main tool is renewal theory. To 
our knowledge, this is the first time it is applied to polarization problems. After analyzing 
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the interaction of optimal polarizations on different parts of fractal, we are able to 
verify the renewal recurrence relation, thereby proving the existence of the asymptotics. 
The negative results in Theorem 16 are derived by applying renewal theory to the best 
covering functional and then using the relation between covering and polarization for 
large exponent s, obtained in Theorem 10.

While an earlier version of this manuscript was in preparation, we learned that Cohn 
and Salmon obtained similar results about the asymptotics of covering on (Hd, d)-
rectifiable sets simultaneously [8]. It is worth noting that their approach is, like ours, 
based on the fact that the covering functional is a short-range interaction; they also 
study asymptotics of sandwich functions on graphs using some of the short-range inter-
action ideas. This shows how short-range interactions can be the right tool for computing 
asymptotics in a number of contexts.

2. Preliminaries

As explained above, we shall be interested in the asymptotics of N -point best covering
of the compact set A ⊂ Rp, defined as

ρ∗(A, N) = inf
ωN ⊂Rp

sup
y∈A

dist(y, ωN )

where the distance between a point and a multiset ωN = {x1, . . . , xN } (note, the pos-
sibility xi = xj is allowed) is defined naturally as dist(y, ωN ) = minx∈ωN

‖x − y‖. Here 
and in the following we write ‖ · ‖ for a fixed norm in Rp (in particular, not necessarily 
Euclidean). We shall study the behavior of this quantity for N → ∞. A related quantity 
is the N -point constrained best covering:

ρ(A, N) = inf
ωN ⊂A

sup
y∈A

dist(y, ωN ),

in which optimization over the configuration occurs on subsets of A only. Notice that 
due to compactness of A, inf and sup can be replaced with min and max respectively; 
we shall still need the above definitions for non-compact input sets.

Following [4], we define the problem of maximal polarization with Riesz kernels. Given 
ωN , A ⊂ Rp as above, let

Ps(ωN , A) = inf
y∈A

∑
x∈ωN

‖y − x‖−s,

the Riesz s-polarization achieved by configuration ωN on A. Maximal unconstrained 
polarization for A with cardinality N is then given by

P∗
s (A, N) = sup

p

Ps(ωN , A).

ωN ⊂R
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Similarly to the covering radius case, we may want the configuration ωN to stay in the 
set A. In this case, we introduce the maximal constrained polarization as

Ps(A, N) = sup
ωN ⊂A

Ps(ωN , A).

The above quantity is closely related to the covering radius of the set A, but has a some-
what less local structure. The study of the maximal polarization was initially motivated 
by the notion of Chebyshev constant in polynomial approximation theory [9], and has 
since been discussed in a number of papers [4,17,28].

3. Notation

Before we proceed to formulate the main results, let us introduce some notation. We 
consider a fixed norm ‖ · ‖, not necessarily Euclidean, on the ambient spaces Rd and Rp, 
p � d. With respect to this norm, we define Hd, the d-dimensional Hausdorff measure, 
normalized so that Hd([0, 1]d) = 1; we then write vd = Hd(B1(0)) for the volume of the 
d-dimensional unit ball. The d-dimensional Minkowski content is denoted by Md.

Let Br(x) stand for the closed ball of radius r > 0 centered at x ∈ Rp, with respect 
to the norm ‖ · ‖. Similarly, Br(A) =

⋃
x∈A Br(x) for r > 0 and a compact set A. As 

discussed in the introduction, we are interested in the quantity

R(ωN , A) = sup
y∈A

dist(y, ωN ),

which denotes the smallest radius r for which A ⊂ Br(ωN ).

4. Main results on rectifiable sets

In this section we establish the existence of the asymptotics of best covering and 
optimal polarization on compact subsets of Rd of positive Hd-measure. This strengthens 
the previously known asymptotic results for covering and polarization [17,20].

Recall that for Jordan-measurable sets in Rd, the asymptotics of best covering is 
known to exist and depend only on the measure of the covered set and the dimension d. 
More precisely, the following result was known to hold.

Theorem A (Kolmogorov-Tikhomirov [20]; Graf-Luschgy [13]). Given a nonempty com-
pact A ⊂ Rd with Hd(∂A) = 0, one has

lim
N→∞

N1/dρ∗(A, N) = θdHd(A)1/d,

with the finite positive constant θd depending only on the dimension d and the norm 
chosen in Rd.
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Concerning maximal discrete polarization on Jordan sets, the following results were 
obtained for the constrained and unconstrained polarization.

Theorem B (Borodachov-Hardin-Reznikov-Saff [4]; Hardin-Saff-Petrache [17]). Given a 
nonempty compact A ⊂ Rd with Hd(∂A) = 0, one has for every s > d,

lim
N→∞

Ps(A, N)
Ns/d

= lim
N→∞

P∗
s (A, N)
Ns/d

= σs,d

Hd(A)s/d
,

where the finite positive constant σs,d depends on s, d, and the used norm only.

Remark 1. The results formulated in Theorem B in the above references were originally 
stated for the Euclidean distance, but the same proofs apply to general norms.

We further remark that in [4], a similar theorem was proved for C1-smooth embedded 
manifolds, and later in [17] the assumption Hd(∂A) = 0 was dropped. However, almost 
nothing was known for embedded sets of lower smoothness. To state our main results, 
we need some classical notions of smoothness from geometric measure theory.

Definition 2. A compact set A ⊂ Rp is called d-rectifiable, if A = f(K) for a compact 
set K ⊂ Rd and a Lipschitz function f : Rd → Rp. A set A ⊂ Rp is said to be (Hd, d)-
rectifiable, if A can be written as

A =
∞⋃

j=1
Aj ∪ R,

where each Aj is d-rectifiable, Hd(R) = 0, and the union in the right-hand side is disjoint.

In the next definition we introduce the notion of Minkowski content, which will be 
necessary to state the smoothness assumptions on the set A.

Definition 3. Recall that for a compact set A ⊂ Rp, we use the following notation for the 
r-neighborhood of A:

Br(A) := {x ∈ Rp : dist(x, A) � r} (1)

Furthermore, for every d ∈ (0, p] we define

Md(A) := lim inf
r↓0

Hp(Br(A))
vp−drp−d

, Md(A) := lim sup
r↓0

Hp(Br(A))
vp−drp−d

.

When these limits are equal, their common value will be denoted Md(A), the Minkowski 
content of set A.
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Existence of Md(A) is equivalent to the existence of box-counting dimension of set 
A. The equality Md(A) = Hd(A) holds for closed subsets of Rd as well as for reasonably 
good subsets of Rp; it will be a part of our smoothness assumptions in the sequel. With 
that in mind, we are ready to state our first main theorems, which significantly generalize 
results from [4] and [17]. We will formulate them separately for polarization and covering 
radius functionals.

Theorem 4. For any compact (Hd, d)-rectifiable A ⊂ Rp satisfying Hd(A) = Md(A) one 
has

lim
N→∞

N1/dρ(A, N) = lim
N→∞

N1/dρ∗(A, N) = θdHd(A)1/d
,

with the constant θd depending only on the dimension d and the norm chosen in Rp. In 
particular, the above holds for any compact set A ⊂ Rd.

Theorem 5. For any compact (Hd, d)-rectifiable set A ⊂ Rp satisfying Hd(A) = Md(A)
one has, for s > d,

lim
N→∞

Ps(A, N)
Ns/d

= lim
N→∞

P∗
s (A, N)
Ns/d

= σs,d

Hd(A)s/d
,

with the constant σs,d depending only on the dimension d, exponent s, and the norm 
chosen in Rp. In particular, the above holds for any compact set A ⊂ Rd.

We further remark that examples of (Hd, d)-rectifiable sets that satisfy Hd(A) =
Md(A) include d-rectifiable compact sets and bi-Lipschitz images of closed sets in Rd. 
In what follows we say that the map ψ : Rd → Rp has bi-Lipschitz constant 1 + K, if 
there holds

(1 + K)−1‖x − y‖ � ‖ψ(x) − ψ(y)‖ � (1 + K)‖x − y‖ for any x, y ∈ A ⊂ Rd.

Note that this definition applies to norms in spaces Rd and Rp, which do not need to 
agree or be Euclidean, but are fixed throughout the paper (and by an abuse of notation 
we write ‖ · ‖ for either norm). Observe also that ψ must necessarily be invertible, with 
ψ−1 being a bi-Lipschitz map with the same constant.

The covering and polarization functionals share the common property of short-range 
functionals, by which any sequence of configurations attaining the values of asymptotics 
from Theorems 4–5 is distributed uniformly over the set A. One can follow the proof of 
[17, Theorem 1.14] to obtain this result; we provide a short independent argument for 
completeness.

Theorem 6. Assume A ⊂ Rp is a compact (Hd, d)-rectifiable set satisfying Hd(A) =
Md(A) > 0. Let {ωN }∞

N=1 be any sequence of configurations in Rp such that
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lim
N→∞

N1/dR(ωN , A) = θdHd(A)1/d
, or lim

N→∞

Ps(A, ωN )
Ns/d

= σs,d

Hd(A)s/d
.

Then the sequence of corresponding empirical measures satisfies

1
N

∑
x∈ωN

δx
∗

⇀
Hd(· ∩ A)

Hd(A) ,

with the convergence understood in the weak∗ sense.

We also show that the smoothness assumptions for set A in Theorems 4–5 are sharp 
in that the expression for the asymptotics in terms of Hd(A) no longer holds without 
them.

Theorem 7. Assume A ⊂ Rp is a compact (Hd, d)-rectifiable set satisfying Hd(A) <

Md(A). Then we have

lim sup
N→∞

N1/dρ(A, N) � lim sup
N→∞

N1/dρ∗(A, N) > θdHd(A)1/d,

and, for sufficiently large s,

lim inf
N→∞

Ps(A, N)
Ns/d

� lim inf
N→∞

P∗
s (A, N)
Ns/d

<
σs,d

Hd(A)s/d
.

Finally, to conclude this section, we present some general estimates on covering and 
polarization.

Theorem 8. Assume A ⊂ Rp is a compact set. Then, for some positive finite constants 
c1 and c2, that depend on d and p, we have

c1Md(A)1/d � lim inf
N→∞

N1/dρ∗(A, N) � lim inf
N→∞

N1/dρ(A, N) � c2Md(A)1/d,

c3Md(A)1/d � lim sup
N→∞

N1/dρ∗(A, N) � lim sup
N→∞

N1/dρ(A, N) � c4Md(A)1/d.

One outcome of this theorem is a corollary that illustrates the sharpness of our as-
sumption of existence of Md(A).

Corollary 9. There exists a finite positive number C that depends on d and p with the 
following property: if A ⊂ Rp is a compact set, and Md(A) > CMd(A), then the limits

lim
N→∞

N1/dρ∗(A, N) and lim
N→∞

N1/dρ(A, N)

do not exist. Furthermore, if Md(A) > CMd(A), then for sufficiently large s, the limit
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lim
N→∞

P∗
s (A, N)
Ns/d

does not exist.

5. Covering using optimal polarization sets

This section quantifies the connection between the covering radius and polarization; 
namely, we will show that the discrete polarization resembles the covering radius when 
s → ∞ in a strong sense. Moreover, we will show some local distributional properties of 
the optimal configurations for P∗

s (A, N), which did not follow from global properties in 
Theorem 6.

Equalities analogous to (2)–(3) below were previously known for the constrained func-
tionals Ps(A, N) and ρ(A, N) in the case where A is convex and has a sufficiently smooth 
boundary [28]. Note that when Theorems 4–5 apply, the limits with N → ∞ for the con-
strained and unconstrained functionals coincide. We thus obtain a generalization of the 
previously known results in the constrained case, as well as completely new results in 
the unconstrained case, applicable to (Hd, d)-rectifiable A ⊂ Rp with Hd(A) = Md(A).

We begin with the following new estimate for general compact sets A ⊂ Rp, based on 
the weak separation of optimal polarization configurations [17]. The underlying principle 
is summability of the hypersingular Riesz kernel and has been used to similar effect 
before [5, Lemma 5.2]; the main novelty here lies in avoiding the use of strong (pairwise) 
separation.

Theorem 10. Let A ⊂ Rp be a compact set, Hd(A) > 0, and s > p. Then for any 
configuration ωN that attains P∗

s (A, N) we have

ρ∗(A, ωN ) � C(s, d, p, A)N
p

d(s−p) (P∗
s (A, N))

1
p−s .

Moreover,

lim
s→∞

C(s, d, p, A) = 1.

This theorem has several corollaries. The first one concerns the limit of polarization 
as s → ∞.

Corollary 11. Let A ⊂ Rp be a compact set with Hd(A) > 0. Then

lim
s→∞

(
lim inf
N→∞

P∗
s (A, N)
Ns/d

)1/s

= 1
lim sup
N→∞

ρ∗(A, N)N1/d
, (2)

and
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lim
s→∞

(
lim sup
N→∞

P∗
s (A, N)
Ns/d

)1/s

= 1
lim inf
N→∞

ρ∗(A, N)N1/d
. (3)

This corollary is useful, in particular, in proving the non-existence of the asymptotics. 
Indeed, the following statement clearly follows from the corollary above.

Corollary 12. Let A ⊂ Rp be a compact set with Hd(A) > 0. Assume the limit for the 
covering radius does not exist; i.e.,

lim sup
N→∞

ρ∗(A, N)N1/d > lim inf
N→∞

ρ∗(A, N)N1/d.

Then, for sufficiently large values of s, we have

lim sup
N→∞

P∗
s (A, N)
Ns/d

> lim inf
N→∞

P∗
s (A, N)
Ns/d

.

Our next corollary gives the covering properties of optimal configurations for P∗
s (A, N)

with minimal assumptions on the set A. We note that the order of covering that we 
establish in the statement below is optimal, since for sets of positive Hd-measure, optimal 
covering has asymptotic order at least N1/d. For convex sets, the estimate below was 
proved in [28].

Corollary 13. Let A ⊂ Rp be a compact set and assume that for some finite positive 
constant Cs we have, for every N � 1, an estimate P∗

s (A, N) � CsNs/d. Then there 
exists a finite positive constant Rs such that for any N � 1 and any configuration ωN

optimal for P∗
s (A, N), we have

R(ωN , A) � RsN1/d.

In particular, our assumption is satisfied if Md(A) < ∞.

6. Main results on fractal sets

Recall [18] that a similitude contraction ψ : Rp → Rp can be written as

ψ(x) = r · Ox + z

with an orthogonal matrix O ∈ O(p), a vector z ∈ Rp, and a contraction ratio 0 < r < 1. 
It is well-known that any collection of similitude contractions has a compact set of fixed 
points. Conversely, it will be convenient to consider the class of fractals defined as the 
set of fixed points of similitude contractions.

Definition 14. A compact set A ⊂ Rp is a self-similar fractal with similitudes {ψm}M
m=1

with contraction ratios 0 < rm < 1, 1 � m � M , if
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A =
M⋃

m=1
ψm(A),

where the union is disjoint. We further say that A satisfies the open set condition if there 
exists a bounded open set V ⊂ Rp such that

M⋃
m=1

ψm(V ) ⊂ V,

where the union in the left-hand side is disjoint.

In what follows the fractal sets are always assumed to be self-similar and satisfying 
the open set condition. For such an A, it is known [10,25] that its Hausdorff dimension 
dimH A = d is the unique solution of the equation

M∑
m=1

rd
m = 1. (4)

It will also be used that such fractal sets A are d-regular, that is, satisfying

c−1rd � Hd(A ∩ Br(x)) � crd, (5)

for any x ∈ A and 0 � r � diam A, with some constant c > 0. It is well-known [17], [9], 
that d-regularity implies that for some constant C > 0 and any integer N � 1 we have

C−1 � P∗
s (A, N)
Ns/d

� C (6)

The same estimates hold for the constrained polarization Ps; the constant C in general 
depends on A. It was noticed by Lalley [23,24] that the existence of the limit

lim
N→∞

N1/dρ∗(A, N)

can be tackled using renewal theory, and thus depends on the properties of the multi-
plicative subgroup of R, generated by {rm}M

m=1 [12]. Our first main result of this section 
is to prove the same result for polarization, which is a less local and, therefore, harder 
to handle quantity.

Theorem 15. Let A be a fractal set defined by similitudes {ψm}M
m=1 with contraction 

ratios {rm}M
m=1. Let s > d = dimH(A). If the set

{t1 log(r1) + · · · + tM log(rM ) : t1, . . . , tM ∈ Z}

is dense in R, then the limits
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lim
N→∞

P∗
s (A, N)
Ns/d

, lim
N→∞

Ps(A, N)
Ns/d

exist.

On the other hand, when the set of linear combinations of the contraction ratios is 
not dense in R, Lalley proves existence of the limits over certain implicit sub-sequences. 
However, nothing is said about the sharpness of this result. We follow the ideas from [2]
to show that the assumption of Theorem 15 is sharp.

Theorem 16. Let A be a fractal set defined by similitudes {ψm}M
m=1 with contraction 

ratios {rm}M
m=1. Let d = dimH(A) and s > d. If the set

{t1 log(r1) + · · · + tM log(rM ) : t1, . . . , tM ∈ Z}

is not dense in R, then the limits

lim
N→∞

ρ(A, N)N1/d, and lim
N→∞

ρ∗(A, N)N1/d

do not exist. Therefore, Corollary 12 implies that, for large values of s, the limit

lim
N→∞

P∗
s (A, N)
Ns/d

does not exist.

7. Proofs

7.1. Polarization and covering on d-rectifiable sets

This section is dedicated to proving the results stated in Section 4. To make transpar-
ent the parallels between covering and polarization, we formulate the key properties of 
these functionals in an abstract form and use them to derive the values of asymptotics 
and limiting distribution. In the case A ⊂ Rd it is done by approximation from above by 
Jordan-measurable sets, and the case of (Hd, d)-rectifiable A uses the bi-Lipschitz ap-
proximation argument going back to Federer. In the negative results of Theorems 7–8, we 
directly analyze the asymptotics using the connection between covering and Minkowski 
content.

We introduce some notation to prove Theorems 4 and 5 in a unified way. In order 
to deal with polarization and covering simultaneously, observe that both are functionals 
of the form f(ωN , A), taking a multiset of cardinality N , ωN ⊂ Rp, and a compact set 
A ⊂ Rp as inputs. We can distinguish the two by the sign exponent in the corresponding 
rate function t(N) = Nσ, namely,
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f−(ωN , A) := R(ωN , A), σ = −1/d,

f+(ωN , A) := Ps(ωN , A), σ = s/d.

Notice that the dependence of f on s and d is suppressed for brevity. These parameters 
will be fixed in each specific argument, so it will not lead to confusion; we always however 
assume s > d. The result of optimizing such f over N -point multisets in Rp will be 
denoted by F ±(A, N):

F −(ωN , A) := ρ∗(A, N), σ = −1/d,

F +(ωN , A) := P∗
s (A, N), σ = s/d.

Our strategy is a modification of that in [16]: we intend to show, in effect, that the 
functionals ρ∗(ωN , A) and P∗

s (A, N) are so-called short-range interactions [16] with rates 
t(N) = Nσ for σ ∈ {−1/d, s/d}, respectively. To that end we will assume that functionals 
F ± satisfy the following axioms and obtain the desired asymptotic behavior. Verification 
of the axioms is deferred to Section 7.2. To state the axioms, we will need an additional 
piece of notation for the binary min and max operators:

◦ =
{

∨, binary max, σ = −1/d,

∧, binary min, σ = s/d.

We write sgn σ ∈ {±1} to denote the sign of the exponent σ.

• Monotonicity: for compact sets A ⊂ B ⊂ Rp and N � 1 there must hold

sgn σ · F ±(A, N) � sgn σ · F ±(B, N). (7)

• Asymptotics on Jordan-measurable sets: asymptotics of the considered functionals 
on Jordan-measurable sets A ⊂ Rd exist and depend only on the volume of the set:

lim
N→∞

F ±(A, N)
Nσ

= c(F ±)
Hd(A)σ

.

In particular, the constant c(F ±) is equal to the value of these asymptotics on the 
unit cube [0, 1]d.

• Short-range property: asymptotics of the functional F ± over unions of sets that are 
positive distance apart.
Assume that the sets A1, A2 ⊂ Rp are compact, dist(A1, A2) = 2h for some h > 0, 
and Md(Am) < ∞, m = 1, 2.
(i) For any N -point configuration ωN such that F ±(A1 ∪ A2, N) = f(ωN , A1 ∪ A2), 
let

N1 := #(ωN ∩ Bh(A1)), N2 := #(ωN ∩ Bh(A2)),
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where Bh(Am) is the h-neighborhood of Am, as in (1). Then

lim inf
N→∞

sgn σ · F ±(A1, N1) ◦ F ±(A2, N2)
F ±(A1 ∪ A2, N) � sgn σ. (8)

(ii) For any two sequences of positive integers N1 and N2 such that N1, N2 → ∞, we 
have:

lim sup
N→∞

sgn σ · F ±(A1, N1) ◦ F ±(A2, N2)
F ±(A1 ∪ A2, N1 + N2) � sgn σ. (9)

Notice that the short-range property extends to any finite number of disjoint compact 
sets Am, 1 � m � M , by induction.

• Stability: asymptotics of F ±(A, N) for N → ∞ are stable under perturbations of 
the set A with small changes of the Minkowski content. More precisely, for every 
(Hd, d)-rectifiable compact set A ⊂ Rp with 0 < Md(A) = Hd(A) < ∞ and a given 
ε > 0, there exists δ = δ(ε, s, p, d, A) such that

sgn σ · Lim
N→∞

F ±(A, N)
Nσ

� (sgn σ − ε) · Lim
N→∞

F ±(D, N)
Nσ

for Lim ∈ {lim inf, lim sup}, (10)

whenever the compact D ⊂ A satisfies Hd(D) > (1 − δ) Hd(A). While it is not nec-
essary in general, we shall further use that for p = d, δ can be chosen independently 
of A, since this holds for both F ± and will simplify our proofs.

We first prove Theorems 4 and 5 assuming the above axioms hold. We start with the 
following lemma.

Lemma 17. Suppose A ⊂ Rp is a compact set, d � p, and 0 < Md(A) � Md(A) < ∞. 
Then for N � N0,

• ρ∗(A, N) � C1N−1/d;
• P∗

s (A, N) � C2Ns/d

• ρ∗(A, N) � C3N−1/d,

with constants N0 and Ci depending on s, p, d, A only, 1 � i � 3.

Proof. Fix an ε > 0. Let M > 0 and a sequence rn ↓ 0, n � 1, be such that

M = lim
n→∞

Hp(Brn
(A))/vp−drn

p−d.

Then, for some n0 = n0(ε, p, d, A) we have, for any n > n0,
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Hp(Brn
(A)) � (M + ε)vp−drn

p−d.

For every n > n0, consider the maximal rn-separated subset ωk in A. Given x, y ∈ ωk, 
we have Lp[Brn/2(x) ∩ Brn/2(y)] = 0, and Br/2(x) ⊂ Br/2(A), implying, for n > n0,

k �

∑
x∈ωk

Hp(Brn/2(x))

vp(rn/2)p
=

Hp

(⋃
x∈ωk

Brn/2(x)
)

vp(rn/2)p

�
Hp(Brn/2(A))

vp(rn/2)p
� c(p, d) (M + ε) rn

−d.

Now pick N = N(n) so that

(
N

c(p, d)(M + ε)

)−1/d

� rn <

(
N − 1

c(p, d)(M + ε)

)−1/d

.

By the above discussion, for n > n0 there holds k � N ; in addition, the maximality of 
ωk gives that

A ⊂
⋃

x∈ωk

Brn
(x).

Thus, we covered A by k � N balls of radius rn, so that there holds ρ∗(A, N) �
ρ∗(A, k) � rn � c(ε, p, d, M)(N − 1)−1/d, and the first part of the lemma follows by 
setting e.g. ε = 1 and M = Md(A). To prove the second part of the lemma, we notice 
that for N as above,

P∗
s (A, N) � P∗

s (A, k) � Ps(ωk, A) � r−s
n = C2Ns/d,

where the last inequality follows from the fact that ωn covers A with balls of radius r.
For the third part, again consider Md(A) � M � Md(A) and sequence {rn} as 

above; recall that Md(A) > 0 and fix 0 < ε < Md(A). Assume again that for some 
n0 = n0(ε, p, d, A), whenever n > n0, there holds

Hp(Brn
(A)) � (M − ε)vp−drn

p−d.

Choose N = N(n) so that

ρ∗(A, N) � rn < ρ∗(A, N − 1).

Denote ρ = ρ∗(A, N) and pick a configuration ωN attaining the covering radius ρ; since 
A ⊂ Bρ(ωN ) ⊂ Brn

(ωN ), there holds Brn
(A) ⊂ B2rn

(ωN ) and

N · 2pvp · rp
n � Hp(Brn

(A)) � (M − ε)vp−drp−d
n , n � n0,
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implying

Nρ∗(A, N − 1)d � Nrd
n � c(p, d)(M − ε).

The desired estimate follows by taking M = Md(A) and ε = Md(A)/2. �
By the same argument as the above lemma, we have also the following related fact, 

to be used in the proof of stability in Lemma 21.

Lemma 18. Suppose A ⊂ Rp is a compact set with 0 < Md(A) < ∞; then for any 
r � r0(A) there exists a covering configuration ωn ⊂ A with radius r, consisting of 
n � c(p, d)r−dMd(A) points.

Proof. Let r0 = r0(A) be such that Lp(Br(A)) < 2vp−drp−dMd(A) for r � r0. The set 
ωn ⊂ A is constructed as a subset of the maximal cardinality n, for which whenever 
x, y ∈ ωn we have |x − y| � r. Then, by maximality of ωn = {xi}n

1 , there holds A ⊂
Br(ωn), and also, by definition,

Lp

(
Br/2(x) ∩ Br/2(y)

)
= 0, x �= y, x, y ∈ ωn.

Taking into account that ⋃
x∈ωn

Br/2(x) ⊂ Br(A);

we conclude for N � N0(A, D, δ),

n � Hp[Br(A)]
vp(r/2)p

� 2 vp−drp−d Md(A)
vp(r/2)p

= 2p+1r−d vp−d

vp
Md(A). � (11)

We now obtain our first main result for unconstrained covering and polarization.

Proof of Theorems 4 and 5 for ρ∗ and P∗
s . We first establish the result for d = p. Recall 

that restricted to compact sets in Rd, Md = Hd = Hd. Consider the case F − = ρ∗, so 
that σ = −1/d; fix an ε > 0 and a compact set A ⊂ Rd. It suffices to assume Hd(A) > 0, 
since otherwise Theorem A applies. For δ = δ(ε, d) as in the stability property, let Jε ⊃ A

be a finite union of closed dyadic cubes, such that Hd(A) > (1 − δ)Hd(Jε); then Jε is 
Jordan-measurable. Note that δ is chosen uniformly in Jε and only depends on ε and d. 
Without loss of generality, δ � ε < 1. On the one hand, monotonicity property together 
with asymptotics on Jε give, with θd as in Theorem A:

lim sup
N→∞

N1/dρ∗(A, N) � lim sup
N→∞

N1/dρ∗(Jε, N)

= θdHd(Jε)1/d � (1 − ε)−1/dθdHd(A)1/d
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On the other, by the choice of Jε and (10) with sgn σ = −1 and Lim = lim inf,

θdHd(A)1/d � θdHd(Jε)1/d = lim inf
N→∞

N1/dρ∗(Jε, N) � (1 + ε) lim inf
N→∞

N1/dρ∗(A, N).

By making ε > 0 arbitrary small, we conclude

lim
N→∞

N1/dρ∗(A, N) = θdHd(A)1/d.

In the case F + = P∗
s , σ = s/d, the same argument gives

lim sup
N→∞

(1 − ε) · P∗
s (A, N)

Nσ
� lim

N→∞

P∗
s (Jε, N)

Nσ
� lim inf

N→∞

P∗
s (A, N)

Nσ
,

which completes the proof when A is a compact subset of Rd.
Suppose now A ⊂ Rp is an (Hd, d)-rectifiable compact set with Hd(A) = Md(A) > 0

and fix an ε > 0. Take δ = δ(ε, s, p, d, A) to be from the stability property. By a result 
of Federer (see [11, Thm. 3.2.18] or [1, Proposition 2.76]), there exist compact sets 
K1, . . . , KM ⊂ Rd and bi-Lipschitz maps ψm : Km → Rp, 1 � m � M with constant 
1 + ε, such that ψm(Km) ⊂ A are disjoint and

Hd

(
A \

M⋃
m=1

ψm(Km)
)

< δ.

Denote

Ã =
M⋃

m=1
ψm(Km),

a compact (Hd, d)-rectifiable set, which satisfies Hd(Ã) = Md(Ã) (see [5, Lemma 4.3]). 
Without loss of generality, sets Am := ψm(Km) satisfy Hd(Am) > 0. In particular, this 
implies that Md(Am) = Hd(Am) > 0 for every m = 1, . . . , M . We need this estimate to 
utilize the short-range properties of F ±.

Let us first consider the covering functional, F − = ρ∗, so that σ = −1/d. Take a 
sequence N that attains the lim infN→∞ ρ∗(Ã, N)N1/d. For every N ∈ N , pick a con-
figuration ω∗

N attaining ρ∗(A, N). Since the sets A1, . . . , Am are compact and metrically 
separated, we have

h := 4 min
j �=k

(dist(Aj , Ak)) > 0.

Denote Nm := #(ω∗
N ∩ Bh(Am)). Since m = 1, . . . , M has a finite range, we can pass to 

a subsequence of N , to ensure that the limits
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β∗
m := lim

N→∞

Nm

N

exist for every m = 1, . . . , M . By the short-range property of F − = ρ∗, we have

lim inf
N→∞

ρ∗(Ã, N)
N−1/d

= lim
N∈N

ρ∗(Ã, N)
maxm ρ∗(Am, Nm) · maxm ρ∗(Am, Nm)

N−1/d

� lim inf
N→∞

maxm ρ∗(Am, Nm)
N−1/d

� max
m

lim inf
N→∞

maxm ρ∗(Am, Nm)
N

−1/d
m

· N
−1/d
m

N−1/d

� max
m

(
(β∗

m)−1/d lim inf
N→∞

ρ∗(Am, Nm)
N

−1/d
m

)
.

Recall that Am = ψm(Km), where Km ⊂ Rd is a compact set, and ψm is a (1 + ε)-bi-
Lipschitz map, and so

lim inf
N→∞

ρ∗(Ã, N)
N−1/d

� 1
1 + ε

max
m

(
(β∗

m)−1/d lim inf
N→∞

ρ∗(Km, Nm)
N

−1/d
m

)
= 1

1 + ε
max

m

(
(β∗

m)−1/dθdHd(Km)1/d
)

� θd

(1 + ε)2 max
m

(
(β∗

m)−1/dHd(Am)1/d
)

.

We finally notice that N1 + . . . + NM � N , and so

M∑
m=1

β∗
m � 1 =

M∑
m=1

Hd(Am)
Hd(Ã)

.

Thus, for some m we have β∗
m � Hd(Am)/Hd(Ã), and therefore

lim inf
N→∞

ρ∗(A, N)
N−1/d

� lim inf
N→∞

ρ∗(Ã, N)
N−1/d

� θd

(1 + ε)2 Hd(Ã)1/d.

Since ε can be made arbitrarily small, we obtain

lim inf
N→∞

ρ∗(A, N)
N−1/d

� θdHd(A)1/d.

To finish our proof for the covering radius, it is now enough to show that

lim sup ρ∗(A, N)
−1/d

� θdHd(A)1/d.

N→∞ N
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Indeed, take the same set Ã, and for every N fix numbers N1, . . . , NM with N1 + . . . +
NM = N and such that

βm := lim
N→∞

Nm

N
= Hd(Am)

Hd(Ã)
.

Then by the short-range property, we have

lim sup
N→∞

ρ∗(Ã, N)
N−1/d

� lim sup
N→∞

ρ∗(Ã, N)
maxm ρ∗(Am, Nm) · maxm ρ∗(Am, Nm)

N−1/d

= lim sup
N→∞

maxm ρ∗(Am, Nm)
N−1/d

� max
m

(
lim sup
N→∞

ρ∗(Am, Nm)
N−1/d

)
= max

m

(
β−1/d

m lim sup
N→∞

ρ∗(Am, Nm)
N

−1/d
m

)
� (1 + ε) max

m

(
β−1/d

m lim sup
N→∞

ρ∗(Km, Nm)
N

−1/d
m

)
= (1 + ε) max

m

(
β−1/d

m θdHd(Km)1/d
)

� (1 + ε)2θd max
m

(
β−1/d

m Hd(Am)1/d
)

= (1 + ε)2θdHd(Ã)1/d

� (1 + ε)2θdHd(A)1/d.

It remains to recall that the choice of Ã was defined by the stability property, and 
therefore

lim sup
N→∞

ρ∗(A, N)
N−1/d

� (1 + ε) lim sup
N→∞

ρ∗(Ã, N)
N−1/d

� (1 + ε)3θdHd(A)1/d.

Since ε can be made arbitrarily small, our proof for the covering radius is finished.
In the case σ = s/d; i.e., the polarization P∗

s , the proof is the same and we therefore 
omit it here. �

As a consequence of the asymptotics of optimal covering/polarization, obtained above, 
we deduce the uniformity of asymptotic distribution for configurations ωN achieving the 
optimal constant in the limits of N1/dR(ωN , A) and Ps(A, ωN )/Ns/d, respectively.

Proof of Theorem 6. We shall give the proof of uniform distribution for asymptotically 
optimal covering configurations; the proof for optimal polarization is similar. Let ωN , 
N � 1, be a sequence of N -point configurations as in the statement of the theorem, and 
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let μ be a cluster point of the corresponding empirical probability measures. That is, for 
some subsequence N ⊂ N we have

1
N

∑
x∈ωN

δx
∗

⇀μ, N → ∞, N ∈ N .

In what follows, we always assume N ⊂ N .
We begin the proof by showing that μ � Hd. Indeed, otherwise there exists a closed 

D ⊂ A such that Hd(D) = 0, but b := μ(D) > 0. As a result, for any ε > 0 there are 
closed neighborhoods E1 := A ∩ Br(D) and E2 := A ∩ B2r(D) with r > 0, such that 
μ(∂AE1) = 0, where ∂A denotes the boundary relative to A, and such that Hd(E2) < ε. 
Condition Hd(∂AE1) = 0 implies, by definition of weak∗ convergence, that

lim
N→∞

#(ωN ∩ A \ E1)
N

= μ(A \ E1) = 1 − μ(E1) � 1 − b.

Since for N large enough we have R(ωN , A) � CN−1/d is small, Lemma 18 implies that 
there is a collection ωn for set E2 with covering radius R(ωN , A) and cardinality

n � c1(p, d, A)R(ωN , A)−dHd(E2) � εc2(p, d, A)N.

We define a new sequence of configurations (of cardinality not necessarily equal to 
N):

ω(N) := (ωN \ E1) ∪ ωn.

For N large enough, we have R(ωN , A) < r, which implies that ω(N) covers A with radius 
at most R(ωN , A). However, cardinalities of these new configurations are such that

lim
N→∞

#ω(N)

N
� 1 − b + c(p, d, A)ε < 1

for ε sufficiently small. We have therefore found configurations with cardinalities at most 
a fraction of N , but with the same covering radius. This contradicts the assumption of 
asymptotic optimality of ωN .

To prove that the measure μ is uniform on A with respect to Hd, we again argue by 
contradiction. Let ϕ = dμ/dHd; suppose it is not constant Hd-a.e. As a result, there 
exists a pair of distinct points x1, x2 ∈ A, such that

lim
r↓0

μ (Br(xm))
Hd (Br(xm) ∩ A) = ϕm, m = 1, 2, ϕ1 < ϕ2.

Then for any ε > 0 there exists a pair of radii r1, r2, for which r1 + r2 < ‖x1 − x2‖ and∣∣∣∣ μ (Brm
(xm)) − ϕm

∣∣∣∣ < ε.
Hd (Brm
(xm) ∩ A)
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Let ε < (ϕ2 −ϕ1)/4 and Bm := Brm
(xm), m = 1, 2 be a pair of such closed balls; without 

loss of generality also Hd (∂ABm) = 0, m = 1, 2. Consequently, there is another pair of 
radii tm < rm, such that for B̃m := Btm

(xm) there holds Hd(∂AB̃m) = 0 and∣∣∣∣ μ (Bm)
Hd(B̃m ∩ A)

− ϕm

∣∣∣∣ < ε and
∣∣∣∣ μ(B̃m)
Hd (Bm ∩ A) − ϕm

∣∣∣∣ < ε, m = 1, 2. (12)

Since the sets B̃m and A \(B1 ∪B2) are positive distance apart, the short-range property 
(8) gives for a sufficiently large N0,

ρ(A, N)d � ρ
(
B̃1 ∩ A, �μ (B1) N�

)d
, N � N0, (13)

as the fraction of points in ωN within distance rm − tm > 0 from B̃m is at most μ (Bm), 
m = 1, 2. Applying Theorem 4 to the set B̃1 ∩ A results in

lim inf
N→∞

(μ (B1) N) ρ
(
B̃1 ∩ A, �μ (B1) N�

)d � θd
dHd

(
B̃1 ∩ A

)
,

whence, dividing through by μ(B1), one has from (12) and (13)

lim
N→∞

N · ρ(A, N)d � lim sup
N→∞

Nρ
(
B̃1 ∩ A, �μ (B1) N�

)d � θd
d/(ϕ1 + ε).

The last inequality controls how good the covering by a non-uniformly distributed 
sequence ωN can be. It remains to show that, because there is a large number of points 
in ωN ∩ B̃2, some of them can be removed without making the local covering worse than 
in the bound we just obtained. Indeed, by Theorem 4, using a collection ωn of cardinality 
n(N) := �(ϕ1 + 2ε)Hd (B2 ∩ A) N�, the set B2 ∩ A can be covered in an optimal fashion, 
to achieve the covering radius satisfying

lim
N→∞

n(N) ρ(B2 ∩ A, n(N))d = θd
dHd (B2 ∩ A) ,

whence

lim
N→∞

N ρ(B2 ∩ A, n(N))d � θd
d/(ϕ1 + 2ε) < lim

N→∞
N · ρ(A, N)d.

Replacing ωN ∩ B̃2 with the optimal covering configuration for A ∩ B2 results in a 
configuration of the form

ω(N) = (ωN \ B̃2) ∪ ωn.

Using the short-range property (9), we see that ω(N) has the same covering radius as 
ωN on ωN \ B2 for large N , and its covering radius on B2 has asymptotics smaller than 
those of N1/dρ(A, N), hence ω(N) is asymptotically optimal on A.
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In addition, by (12) and the definition of n(N), the fraction n(N)/N of points required 
for covering of B2 in ω(N) is strictly smaller than the asymptotic fraction μ(B̃2) of points 
from ωN contained in B̃2. Thus, the difference of cardinalities of ω(N) and ωN is a positive 
fraction of N :

N ·
(

μ(B̃2) − n(N)
N

)
> 0,

which contradicts the asymptotic optimality of ωN assumed in the theorem. We conclude 
that μ must be uniform with respect to Hd on A. �

Before we turn to the proof of the following theorem, we shall introduce a simple 
observation about the set neighborhoods Br(A). Namely, given two compact sets E, F ⊂
Rp and positive numbers α, r > 0, there holds

Br(E) \ B(1+α)r(F ) ⊂ Br(E \ Bαr(F )). (14)

Indeed, pick an element x ∈ Br(E) \ B(1+α)r(F ); then for some y ∈ E, ‖x − y‖ � r. 
Furthermore, since dist(x, F ) > (1 + α)r, dist(y, F ) > αr. It follows y ∈ E \ Bαr(F ), and 
therefore x ∈ Br(E \ Bαr(F )) as desired.

Proof of Theorem 7. Clearly, to prove the first pair of inequalities in the statement of 
the theorem, it suffices to show

lim sup
N→∞

N1/dρ∗(A, N) > θdHd(A)1/d.

Furthermore, the second claim of the theorem follows from Corollary 11. We will therefore 
focus on proving the above inequality for ρ∗.

Fix an ε > 0. As in the preceding proof of this section, an application of [11, 
Thm. 3.2.18] gives existence of a compact set Ã ⊂ A, such that Ã is d-rectifiable and 
Md(Ã) = Hd(Ã) � Hd(A) − ε. Consequently, Theorem 4 applies to Ã; by the theorem 
we have

lim
N→∞

Nρ∗(Ã, N)d = θd
dHd(Ã) � θd

d(Hd(A) − ε). (15)

We shall further need to characterize A \ Ã. By the definition of Minkowski content, 
there is a sequence of positive numbers rn ↓ 0, n � 1, such that along this sequence,

lim
n→∞

Lp[Brn
(A)]

vp−drp−d
n

= Md(A), lim
n→∞

Lp[Brn
(Ã)]

vp−drn
p−d

= Hd(Ã).

In particular, there exists n0(ε, A, Ã) so large that
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Lp[Brn
(A)]

vp−drn
p−d

� Md(A) − ε,

∣∣∣∣∣Lp[Brn
(Ã)]

vp−drn
p−d

− Hd(Ã)

∣∣∣∣∣ � ε, n � n0,

implying for every α > 0 sufficiently small

Lp[Brn
(A) \ B(1+α)rn

(Ã)] � Lp[Brn
(A)] − Lp[B(1+α)rn

(Ã)]

� vp−drn
p−d(Md(A) − (1 + α)p−dHd(Ã) − 2ε)

� vp−drn
p−d(Md(A) − (1 + α)p−dHd(A) − 3ε).

(16)

To apply the above estimate, consider a covering set ω̃ for A \Bαrn
(Ã) of cardinality kn, 

achieving the covering radius of at most rn, n � 1. Using (14) and that by the covering 
property A \ Bαrn

(Ã) ⊂ Brn
(ω̃) gives

Brn
(A) \ B(1+α)rn

(Ã) ⊂ Brn
(A \ Bαrn

(Ã)) ⊂ B2rn
(ω̃).

In view of (16), this results in the following estimate for kn = #ω̃:

knrd
n � vp−d

2pvp
(Md(A) − (1 + α)p−dHd(A) − 3ε) > 0 (17)

for sufficiently small α, ε.
Now consider an optimal covering configuration ωN for A attaining the covering radius 

ρ := R(ωN , A) < αrn/3 and such that ρ∗(A, N − 1) � αrn/3, so that N is the smallest 
possible cardinality for this inequality. Denote

ω′ := ωN ∩ Bρ(Ã), ω′′ := ωN \ B2ρ(Ã).

By construction, since αrn > 3ρ

R(ω′, Ã) = ρ = R(ω′′, A \ Bαrn
(Ã)).

Since N1 → ∞ when rn ↓ 0, by taking n large enough and using (15) we ensure that

N1(rn/3)d � N1ρ∗(Ã, N1)d � θd
d(Hd(A) − 2ε);

in addition, due to ωN having the covering radius ρ < rn and (17), there holds

N2(αrn/3)d �
(α

3

)d

· vp−d

2pvp
(Md(A) − (1 + α)p−dHd(A) − 3ε) > 0.

Adding together the last two displays yields, by fixing sufficiently small α, ε > 0 and 
taking n → ∞:
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lim sup
N→∞

Nρ∗(A, N) � lim sup
n→∞

(N(n) − 1)ρ∗(A, N(n) − 1)

� lim sup
n→∞

(N1 + N2 − 1)(αrn/3)d > θd
dHd(A). �

Proof of Theorem 8. The proof follows along the same lines as that of Lemma 17. Indeed, 
taking M = Md(A) the first part of that proof gives

lim inf
N→∞

ρ∗(A, N)N1/d � lim inf
n→∞

ρ∗(A, N(n)) N(n)1/d � c(p, d)Md(A)1/d.

To obtain the inequality

lim sup
N→∞

N1/dρ(A, N) � c4Md(A)1/d,

observe that for any ε > 0 and sequence rn ↓ 0 one has eventually

Hp(Brn
(A)) � (Md(A) + ε)vp−drn

p−d,

and it suffices to set rn = ρ∗(A, n) over the sequence achieving the
lim supN→∞ N1/dρ(A, N) in the proof of Lemma 17. This gives the two upper bounds 
of the theorem.

For the lower bounds, start by observing that for every ε > 0 and sequence rn ↓ 0, 
eventually

Hp(Brn
(A)) � (Md(A) − ε)vp−drn

p−d,

so it suffices to take rn = ρ∗(A, n) over the sequence achieving the
lim infN→∞ N1/dρ(A, N) in the proof of Lemma 17. Finally, for the second lower bound 
of the theorem, take M = Md(A) in the third part of Lemma 17 and observe

lim sup
N→∞

ρ∗(A, N)N1/d � lim sup
n→∞

ρ∗(A, N(n)) N(n)1/d � c(p, d)Md(A)1/d,

with the dependence N(n) as in the lemma. �
7.2. Verification of the short-range properties of ρ∗(A, N) and P∗

s (A, N)

It remains to verify properties of the functionals R(ωN , A) and Ps(ωN , A), formulated 
at the beginning of the previous section.

Monotonicity. Equation (7) follows immediately from the definitions of ρ∗(A, N) and 
P∗

s (A, N).

Existence of asymptotics on Jordan-measurable sets. As mentioned previously, existence 
of these asymptotics for covering was obtained in the papers of Kolmogorov and 
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Tikhomirov [20], and independently the monograph of Graf and Luschgy [13]. The cor-
responding results for polarization were proved in [4] for constrained polarization and, 
using similar ideas, in [17] for its unconstrained analog.

Short-range property. We first prove the estimate (8) for the covering functional F − =
ρ∗. By Lemma 17, for some constant C = C(s, p, d, A) > 0 there holds, in view of the 
assumption Md(Am) < ∞, m = 1, 2:

ρ∗(A1, N) � CN−1/d, ρ∗(A2, N) � CN−1/d, ρ∗(A1 ∪ A2, N) � CN−1/d.

For the sake of brevity, denote A := A1 ∪ A2, and fix a configuration ωN such that 
ρ∗(A, N) = R(ωN , A). For m = 1, 2, we have

CN−1/d � ρ(A, N) = R(ωN , A1 ∩ A2) � R(ωN , Am) � min
x∈ωN

|y − x|

= max
y∈Am

min
(

min
x∈ωN ∩Bh(Am)

|y − x|, min
x∈ω∗

N \Bh(Am)
|y − x|

)
� min

(
min

x∈ω∗
N ∩Bh(Am)

|y − x|, h
)

. (18)

Since h is fixed, and for large N we have h > CN−1/d, we obtain that the latter minimum 
is equal to minx∈ωN ∩Bh(Am) |y − x|, and therefore, by definition of Nm,

ρ(Am, Nm) � R(ωN ∩ Bh(Am), Am) � R(ωN , Am) � R(ωN , A) = ρ∗(A, N).

This implies

max (ρ∗(A1, N1), ρ∗(A2, N2)) � ρ∗(A1 ∪ A2, N),

and the desired inequality is proved. �
We proceed with proving (8) for the polarization functional F + = Ps. In this case, 

Lemma 17 implies

Ps(A1, N) � CNs/d, Ps(A2, N) � CNs/d, Ps(A1 ∪ A2, N) � CNs/d. (19)

Again denote A := A1 ∪ A2 and notice that, for y ∈ Am, m = 1, 2, we have∑
x∈ωN \Bh(Am)

|y − x|−s � h−s · N

and, therefore, ∑
x∈ω

|y − x|−s �
∑

|y − x|−s + h−s · N.
N x∈ωN ∩Bh(Am)
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This implies

Ps(A, N) = Ps(ωN , A) = inf
y∈A

∑
x∈ωN

|y − x|−s

= min
(

inf
y∈A1

∑
x∈ωN

|y − x|−s, inf
y∈A2

∑
x∈ωN

|y − x|−s

)

� min

⎛⎝ inf
y∈A1

∑
x∈ωN ∩A1(h)

|y − x|−s, inf
y∈A2

∑
x∈ωN ∩A2(h)

|y − x|−s

⎞⎠ + h−s · N

� min (Ps(A1, N1), Ps(A2, N2)) + h−s · N.

It now remains to divide the above inequality by Ps(A, N) and pass to the limit, taking 
into account estimates (19) and that s > d. �

We now prove (9) for F − = ρ∗. Take two configurations, ωNm
, m = 1, 2 such that 

ρ∗(Am, Nm) = R(ωNm
, Am). Define ωN := ωN1 ∪ ωN2 ; then #ωN = N1 + N2 =: N . 

Therefore,

ρ∗(A, N) � R(ωN , A) = max (R(ωN , A1), R(ωN , A2))

� max (R(ωN1 , A1), R(ωN2 , A2)) = max (ρ∗(A1, N1), ρ∗(A2, N2)) ,

and (9) is established. The proof of this inequality for F + = Ps is the same, and we 
leave it to the curious reader. �
Stability. We prove (10) for F + = P∗

s . The proof for F − = ρ∗ will be a by-product of 
Lemma 21, see Corollary 22.

To begin, we prove that in a sufficiently small neighborhood Br(A) of a set A, with r
depending on N , the value of Ps(ωN , Br(A)) is close to Ps(ωN , A) for any configuration 
ωN ⊂ Rp. To do this, we will need the following well-known application of the Frostman 
lemma.

Lemma 19 (Theorem 2.4, [9]). For any Borel set A ⊂ Rp with Hd(A) > 0 and s > d, we 
have

Ps(ωN , A) � Ns/d cFro(s, d, A) = Ns/d s

s − d
· (2c)s/d

μ(A)s/d
, N � 1, (20)

where ωN is an N -point configuration in Rp, and μ is a Borel measure satisfying μ(A) > 0
and μ(Br(x) ∩ A) � crd. Clearly, μ � Hd. When A ⊂ Rd, one can use μ = Hd, so that

cFro = s

s − d
· (2vd)s/d

Hd(A)s/d
.

We proceed with the following statement, in which we assume s > d as usual.
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Lemma 20. Suppose the compact set A ⊂ Rp is such that Hd(A) > 0. Take any 0 < ε <
1/2c

1/s
Fro and define rN := εN−1/d. Then for any configuration ωN ⊂ Rp, the sets BrN

(A)
satisfy

P∗
s (ωN , Br(A)) �

(
1 − ε s c

1/s
Fro

)
P∗

s (ωN , A)

=: (1 − ε c0(s, d, A))P∗
s (ωN , A).

Proof. Let in this proof

H = 1/c
1/s
Fro.

Our goal is to prove that for every y ∈ BrN
(A), we have

U(y, ωN ) =
∑

x∈ωN

‖y − x‖−s � Ps(ωN , A).

Since y ∈ BrN
(A), there is an x ∈ A such that |y − x| � rN = εN−1/d. There are two 

cases for the location of x:

(a) mini{‖x − xi‖ < (H − ε)N−1/d}
(b) mini{‖x − xi‖ � (H − ε)N−1/d},

which we consider separately. If the first of the above cases holds, we can find an x′
i ∈ ωN

with ‖x − x′
i‖ < (H − ε)N−1/d. Then, from (20), we obtain:

U(y, ωN ) � ‖y−x′
i‖−s � (‖y−x‖+‖x−x′

i‖)−s �
(

HN−1/d
)−s

= cFroNs/d � Ps(ωN , A).

If the second case holds, we have for every 1 � i � N :

‖y − xi‖−s

‖x − xi‖−s
=

(
‖x − xi‖
‖y − xi‖

)s

�
(

‖x − xi‖
‖x − xi‖ + εN−1/d

)s

=
(

1 − εN−1/d

‖x − xi‖ + εN−1/d

)s

� (1 − ε/H)s � 1 − ε s/H,

whence

U(y, ωN ) � (1 − ε s/H)U(x, ωN ) � (1 − ε s/H) inf
x∈A

U(x, ωN )

= (1 − ε s/H)Ps(ωN , A). �
The following lemma constitutes the main challenge of this section and establishes 

stability for the functional F + = P∗
s . The geometric idea behind it is splitting A into a 

sequence of small neighborhoods DN of set D, controlled by Lemma 20, and a sequence 
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of “bad” parts RN , and then use a small fraction of points to cover the RN . Balancing 
the radius of the neighborhood DN and the covering radius for RN , we show that the 
maximal polarization on A is close to that on D, as required for stability.

Lemma 21. Suppose A ⊂ Rp is a compact set with 0 < Md(A) < ∞ and Hd(A) > 0, 
and that s > d. Given an ε ∈ (0, 1), there exists δ = δ(ε, s, p, d, A) such that whenever a 
closed D ⊂ A satisfies

Md(D) > (1 − δ)Md(A) and Hd(D) > (1 − δ)Hd(A),

there holds

Lim
N→∞

P∗
s (ω∗

N (A))
Ns/d

� (1 − ε) Lim
N→∞

P∗
s (ω∗

N (D))
Ns/d

, Lim ∈ {lim inf, lim sup}. (21)

In addition, for d = p, δ can be made independent of A.

Proof. For this argument, let the constant 0 < ε0 < 1/2 be such that

1 − ε0

(1 + ε0)s/d
� 1 − ε.

It will be shown that taking

δ � C(s, p, d, A) εd+1
0

yields the desired estimate; in addition, the constant C in this inequality will be made 
independent of A when d = p. Denote

rN := ε0N−1/d

2c0(s, d, D) ,

where c0 is defined in the preceding lemma. For every N � 1, we write A as a disjoint 
union

A = DN ∪ RN

where

DN := B2rN
(D), RN := A \ DN .

Let ω∗
N (D) be a configuration that attains P∗

s (D, N). This choice of rN implies

Ps(ω∗
N (D), DN ) � (1 − ε0)P∗

s (D, N). (22)
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To construct a sequence of configurations giving the estimate (10), we choose a number 
n = n(ε0, N) and a configuration ωn ⊂ RN , and denote ωN+n := ω∗

N (D) ∪ ωn. In view 
of the definition of P∗

s , we have

P∗
s (A, N + n) � min [Ps(ω∗

N (D), DN ), P∗
s (RN , n)] . (23)

The desired estimate will follow if we choose a configuration ωn of cardinality n, so that

(a) P∗
s (RN , n) � P (ωn, RN ) � P∗

s (D, N),
(b) n = �ε0N�.

Indeed, assume conditions (a)–(b) have been verified; using (22) and (23), in the case 
Lim = lim sup the left-hand side of (10) can be estimated as

lim sup
N→∞

P∗
s (A, N)
Ns/d

� lim sup
N→∞

P∗
s (A, N + n)
(N + n)s/d

� lim sup
N→∞

1
(N + n)s/d

min [Ps(ω∗
N (D), DN ), P∗

s (RN , n)]

� (1 − ε0) lim sup
N→∞

P∗
s (D, N)

(N + n)s/d
� (1 − ε) lim sup

N→∞

P∗
s (D, N)
Ns/d

.

Similarly, when Lim = lim inf, choosing a subsequence N ⊂ N such that

lim
N �N→∞

P∗
s (A, N)
Ns/d

= lim inf
N→∞

P∗
s (A, N)
Ns/d

,

and taking N + n ∈ N gives

lim inf
N→∞

P∗
s (A, N)
Ns/d

= lim
N �(N+n)→∞

P∗
s (A, N + n)
(N + n)s/d

� lim inf
N �(N+n)→∞

1
(N + n)s/d

min [Ps(ω∗
N (D), DN ), P∗

s (RN , n)]

� (1 − ε0) lim inf
N �(N+n)→∞

P∗
s (D, N)

(N + n)s/d
� (1 − ε) lim inf

N→∞

P∗
s (D, N)
Ns/d

.

Now let us verify conditions (a)–(b). To prove condition (a), we use that equation 
(20) gives

P∗
s (D, N) � cFro(s, d, D)Ns/d =

(c0

s

)s

Ns/d.

Assume that we can choose a set ωn = {x1, . . . , xn} such that
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RN ⊂
n⋃

i=1
Bs/c0N1/d (xi) .

Then for every y ∈ RN there is an x ∈ ωn such that |y − x| � s/c0N−1/d, which implies

P∗
s (RN , n) � Ps(ωn, RN ) = inf

y∈RN

n∑
i=1

‖y − xi‖−s �
(

s

c0

)−s

Ns/d � P∗
s (D, N),

so that for such a choice of ωn, condition (a) is satisfied. It remains to prove that n can 
be taken to satisfy (b).

Notice that by definition, for any r > 0,

Br(RN ) = Br

(
A \ B2r(D)

)
⊂ Br(A) \ Br(D),

so in view of Md(D) > (1 − δ)Md(A),

Md(RN ) = lim sup
r↓0

Hp[Br(RN )]
vp−drp−d

� lim sup
r↓0

Hp(Br(A) \ Br(D))
vp−drp−d

= lim sup
r↓0

Hp(Br(A)) − Hp(Br(D))
vp−drp−d

= δ Md(A).

By Lemma 18, for N � N0(A, D, δ) (so that rN is sufficiently small) there exists a 
configuration ωn ⊂ RN , for which

RN ⊂
n⋃

i=1
BrN

(xi) ,

with cardinality n satisfying

n � δ c(p, d) r−d
N Md(A)

= δ

εd
0

c(p, d) sd · 2dcFro(s, d, D)d/s Md(A) N.
(24)

Since μ � Hd, there exists a δ0 = δ(A), such that Hd(A \ D) < δ0Hd(A) implies 
μ(D) � μ(A)/2, whence by (20) cFro(s, d, D) � 2s/dcFro(s, d, A). Substituting the value 
of cFro from (20) shows that setting

δ = min
{

δ0, εd+1
0 · cFro(s, d, A)−d/s

sd 2dc(p, d) · Md(A)
}

=: C(s, p, d, A) εd+1
0

gives
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n � ε0N, N � N0(A, D, δ).

The above estimate implies n � �ε0N�. By adding more points to ωn, we can always 
ensure that n = �ε0N�, and the proof of (a)–(b) is finished.

To verify the second claim of the lemma, recall that for p = d, μ = Hd; substituting 
this into cFro gives δ0 = 1/2, and in view of Hd(A) = Md(A) equation (24) becomes

n � δ

εd
0

3sd · 22d+2
(

s

s − d

)d/s

N = c(s, d) δ

εd
0

N.

As a result, δ is chosen independently of A in this case, as desired. �
As a by-product of our proof, we get the stability result for F − = ρ∗ and for the 

unconstrained polarization.

Corollary 22. Since for the proof of (10) we presented a covering of the set A \ B2rN
(D), 

it is easy to see that this construction yields also the stability results for covering.

Corollary 23. Assume A ⊂ Rp is an (Hd, d)-rectifiable set with 0 < Md(A) = Hd(A) <
∞, and s > d. For every ε > 0, there exists δ = δ(ε, s, p, d, A) such that

lim inf
N→∞

Ps(A, N)
Ns/d

� (1 − ε) · lim inf
N→∞

Ps(D, N)
Ns/d

(25)

and

lim sup
N→∞

ρ(A, N)N1/d � (1 + ε) · lim sup
N→∞

ρ(A, N)N1/d, (26)

whenever the compact D ⊂ A satisfies Hd(D) > (1 − δ) Hd(A).

The proof of this corollary is identical to the proof of (10); indeed, the only configu-
ration we constructed was ωn ⊂ RN ⊂ A. Therefore, if the original configuration ω∗

N(D)
is a subset of D, then the new configuration ωN+n is a subset of A, and we can estimate 
Ps(A, N + n) � Ps(ωN+n, A).

Proof of Theorems 4 and 5 for ρ and Ps. Assume first p = d; i.e., A ⊂ Rd. In this case, 
our theorem follows from [17, Theorem 1.11].

Assume now d < p. We notice that the only difference of ρ and Ps from ρ∗ and P∗
s is 

the lack of monotonicity. However, the proof of the inequalities

lim inf
N→∞

P ∗
s (A, N)
Ns/d

� σs,d

Hd(A)s/d
, and lim sup

N→∞
ρ∗(A, N)N1/d � θdHd(A)1/d

did not use monotonicity and used only stability and short-range properties. Since these 
properties still hold for ρ and Ps, we get
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lim inf
N→∞

Ps(A, N)
Ns/d

� σs,d

Hd(A)s/d
, and lim sup

N→∞
ρ(A, N)N1/d � θdHd(A)1/d.

On the other hand, we clearly have Ps(A, N) � P∗
s (A, N), and therefore

lim sup
N→∞

Ps(A, N)
Ns/d

� lim sup
N→∞

P ∗
s (A, N)
Ns/d

� σs,d

Hd(A)s/d
,

which finishes the proof for Ps. Finally, we have ρ(A, N) � ρ∗(A, N), which implies

lim inf
N→∞

ρ(A, N)N1/d � lim inf
N→∞

ρ∗(A, N)N1/d � θdHd(A)1/d,

and our proof is finished. �
Remark 24. An inspection of the proof of the above lemma shows that when the set A is 
d-regular, i.e. equation (5) holds, the constant δ depends only on the constant c in this 
equation. Furthermore, one can use μ = Hd in this case.

7.3. Covering as a limit of polarization

Recall the following result about separation properties of optimal polarization con-
figurations. It will be useful to control the cardinality of such configurations in a given 
volume.

Theorem C (Theorem 2.3 [28], Proposition 4.2 [17]). Let A ⊂ Rp be a set with Hd(A) >
0. For every s > max(d, p − 2) there exists a constant η(s, d, A) such that for every 
N � 1, and every configuration ωN that attains P∗

s (A, N), we have

#
(

ωN ∩ Bη(s,d,A)N−1/d(x)
)
� p, ∀x ∈ Rp.

Moreover, the value of η(s, d, A) can be taken such that lims→∞ η(s, d, A)1/s = 1.

Remark 25. The proof of the claim about η(s, d, A) can be found in the first reference 
[28], where it suffices to observe that Rp is a convex set without boundary.

Proof of Theorem 10. In this proof, constants c1, c2, c3 can depend only on p. For brevity, 
we write

ρ := ρ∗(A, N), η := η(s, d, A)

for the optimal N -point covering radius of set A and the constant η from Theorem C, 
respectively. Let a point y ∈ A be such that ρ = minj |y − xj |. For an integer n � 2, set

Hn := Bnρ(y) \ B(n−1)ρ(y).
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Notice that the choice of y implies that Bρ(y) ∩ ωN = ∅, and thus ωN ⊂
⋃∞

n=2 Hn. 
Furthermore,

Hp(Hn) = vpnpρp − vp(n − 1)pρp � c1vpnp−1ρp.

We can cover Hn with balls of radius ηN−1/d; a single ball of this radius has volume 
vp(ηN−1/d)p, so at most c2η−pnp−1ρpNp/d such balls are required to cover Hn. In addi-
tion, the weak separation property implies that each ball contains no more than p points 
from ωN , so that for n � 2 we have #(Hn ∩ ωN ) � c3η−pnp−1ρpNp/d. This results in

Ps(ωN , A) �
N∑

j=1

1
|y − xj |s =

∞∑
n=2

∑
xj∈Hn

1
|y − xj |s � ρ−s

∞∑
n=2

(n − 1)−s · #(Hn ∩ ωN )

� c3η−pρp−sNp/d
∞∑

n=2
(n − 1)−snp−1,

where it is used that for x ∈ Hn we have |y − x| � (n − 1)ρ. The series in the right-hand 
side converges in view of the assumption s > p.

Notice that

lim
s→∞

( ∞∑
n=2

(n − 1)−snp

)1/s

= 1,

so for the constant

c(s, d, p, A) := c3η−p ·
∞∑

n=2
(n − 1)−snp

we have lims→∞ c(s, d, p, A)1/s = 1, and

P (A, ωN ) � c(s, d, p, A)ρp−sNp/d.

Solving for ρ while taking into account s > p

ρ � c(s, d, p, A)
1

s−p N
p

d(s−p) P (A, ωN )
1

p−s .

It remains to denote C := c(s, d, p, A)
1

s−p , and the proof is complete. �
Proof of Corollary 11. To obtain equalities (2)–(3), we establish the inequalities in both 
directions. Let ω∗

N be a configuration on which ρ∗(A, N) is attained. Then

P∗
s (A, N) � Ps(A, ω∗

N ) = min
y∈A

N∑ 1
|y − xj |s �

(
1

ρ∗(A, N)

)s

,

j=1
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implying immediately (2)–(3) with “�” in place of equality.
To obtain the converse direction, observe that Theorem 10 implies for s > p,(

P∗
s (A, N)
Ns/d

)1/(s−p)

� 1
C(s, d, p, A) · 1

ρ∗(A, N)N1/d
.

It remains to recall that C(s, d, p, A) → 1 as s → ∞ to conclude that (2)–(3) hold with 
“�”. �
7.4. Polarization on fractal sets

To prove Theorems 15–16 we need the following well-known result [12,22,23].

Theorem D (Continuous renewal theorem). Let μ be a probability measure on [0, ∞) and 
Z(u) be a function defined on [0, ∞). Assume that for some positive constants C and ε
and u sufficiently large there holds∣∣∣∣∣∣Z(u) −

u∫
0

Z(u − x) dμ(x)

∣∣∣∣∣∣ � Ce−εu.

Then limu→∞ Z(u) exists.

Remark 26. In a general formulation of this theorem, the exponential on the right can 
be replaced with any noninreasing function from L1([0, +∞), L1).

Observe that P∗
s (A, N) is nondecreasing in N . For t > 0, we define

N(t) := min{N : P∗
s (A, N) � t},

a generalized inverse function to P∗
s . Clearly existence of the limit limt→∞ N(t)t−d/s is 

equivalent to that of limN→∞ P∗
s (A, N)/N−s/d.

Proof of Theorem 15. We cannot apply Theorem D directly to the function N(t) · t−d/s; 
it will be necessary to introduce a change of variables first. Consider the quantity

Z(u) := (eu)−d/s
N(eu).

In order to apply the renewal theorem to Z, it suffices to show that

Z(u) = z(u) +
u∫

0

Z(u − x) dμ(x), (27)

where |z(u)| � Ce−εu and μ places the weight rd
m in −s log rm:
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μ =
M∑

m=1
rd

m δ−s log rm
.

With such μ, equation (27) is equivalent to

(eu)−d/s
N(eu) = z(u) +

M∑
m=1

Z(u + s log rm)rd
m

= z(u) +
∑

(eurs
m)−d/s

N(eurs
m)rd

m

= z(u) + (eu)−d/s
M∑

m=1
N(eurs

m),

which after setting L(eu) := (eu)d/s
z(u) and t = eu becomes

N(t) = L(t) +
M∑

m=1
N(trs

m). (28)

Hence, to apply Theorem D, it suffices to show that in (28), |L(t)| � Ctd/s−ε for suf-
ficiently large t. The rest of the proof establishes the two bounds on L(t) giving this 
estimate.

Upper bound. Denote Nm = N(trs
m), 1 � m � M , and let N =

∑
m Nm. By definition, 

P∗
s (A, Nm) � trs

m, 1 � m � M , so that for configurations ω∗
Nm

attaining P∗
s (Nm) one 

has Ps(ω∗
Nm

, A) � trs
m. Furthermore, due to the nonnegativity and scale-invariance of 

the polarization functional there holds

P∗
s (A, N) � Ps

(⋃
m

ψm(ω∗
Nm

), A

)
� min

m

{
r−s

m P∗
s (A, Nm)

}
� t.

Thus, N =
∑

m N(trs
m) � N(t), giving

L(t) = N(t) −
M∑

m=1
N(trs

m) � 0.

Lower bound. Let N = N(t) for some t > 0, so by definition P∗
s (A, N) � t. Let Am :=

ψm(A) for 1 � m � M . Because A satisfies the open set condition, there exists an h > 0, 
such that dist(Al, Ak) > 2h, l �= k. Consider an optimal polarizing configuration ω∗

N ; let

Nm := #[ω∗
N ∩ Bh(Am)]

be the number of points from this configuration that lie within h from Am, 1 � m � M . 
Observe that the contribution of points in ω∗

N \ Bh(A1) to the values of U(y, ω∗
N ) =∑

∗
‖y − x‖−s with y ∈ A1 is at most h−sN , implying
x∈ωN
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h−sN + min
y∈A1

∑
x∈ω∗

N ∩Bh(A1)

|y − x|−s � P∗
s (A, N) � t.

Since ω∗
N ∩Bh(A1) can be rescaled using ψ−1

1 and be used as a polarization configuration 
for the entire A,

P∗
s (A, N1) � Ps

(
ψ−1

1 [ω∗
N ∩ Bh(A1)]

)
� rs

1 (t − cN)

for c = h−s. To complete the proof, observe that minimal polarization is superadditive: 
for any n1, n2,

P∗
s (A, n1 + n2) � P∗

s (A, n1) + P∗
s (A, n2).

Pick an Ñ1 := N(crs
1N) � CNd/s. There holds

P∗
s (A, N1 + Ñ1) � P∗

s (A, N1) + P∗
s (A, Ñ1) � rs

1 (t − cN) + crs
1N = rs

1t,

which implies N(rs
1t) � N1 + Ñ1 � N1 + CNd/s.

The above argument applies to all Am, whereby we have N(trs
m) � Nm + CNd/s. 

Recall also that N �
∑

m Nm. Combining the last two inequalities we finally have

N(t) � N(trs
1) + N(tr2

2) − CNd/s.

As N(t) � td/s by (6), this gives L(t) � −CNd/s � −Ctd2/s2 ; since d < s, we thus obtain 
the desired lower bound for L(t), and are in the position to use the renewal theorem. 
This completes the proof. �
Proof of Theorem 16. First observe that since the additive group

{t1 log(r1) + · · · + tM log(rM ) : t1, . . . , tM ∈ Z}

is not dense in R, it must have the form aZ for some a > 0. As a result, there exists a 
number r ∈ (0, 1) and positive integers i1, . . . , iM such that

rm = rim , m = 1, . . . , M.

Without loss of generality, assume i1 � i2 � . . . � im. Similarly to the proof of Theo-
rem 15, we set

N(t) := min{N : ρ(A, N) � t},

and consider the sequence

Rn := N(rn), n � 1.
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Let J be an integer for which 2rJ < minl �=k dist(Al, Ak) with Am = ψm(A). We will 
show that for some constant C > 1 and every n � J , there holds

ρ(A, Rn − 1) � Crn. (29)

Since ρ(A, Rn) � rn by definition, this will be sufficient to justify the inexistence of 
limits claimed in the theorem. The first step towards (29) is the renewal equation for 
covering:

Rn0 = N(rn0) =
m∑

m=1
Rn0−im

=
M∑

m=1
N(rn0−im). (30)

Indeed, for a configuration ω∗
N attaining the covering radius rn0 , assume a point y max-

imizes the distance to ω∗
N in A,

‖y − xj‖ = dist(y, ω∗
N ) = rn0 .

It follows that y and xj must belong to the same set Am, since rn0 < dist(Al, Ak), l �= k. 
Hence, covering radius in each of Am is at most rn0 , implying #(ω∗

N ∩Am) � N(rn0−im), 
1 � m � M . On the other hand, due to the minimality of N(t), the converse inequality 
also holds, giving (30).

To prove (29), observe that by definition of N(t),

ρ(A, RJ+n − 1) > rJ+n, n � 1,

and we emphasize that this inequality is strict. Let

C := min
{

2, min
n=0,...,i1

r−n−Jρ(A, RJ+n − 1)
}

> 1.

By construction, (29) is satisfied for n = J, . . . , J + i1. We proceed to obtain (29) by 
induction.

Assume that n0 > J + i1, and the estimate (29) is known for every n = J, . . . , n0 − 1. 
Take a configuration ω∗ of cardinality Rn0 − 1 that is optimal for ρ(A, Rn0 −1). By (30), 
one of the sets Am contains at most Rn0−im

− 1 elements of ω∗; suppose this is the case 
for m = j. The induction hypothesis applied to ω∗ ∩ Aj shows that

ρ(Aj , Rn0−ij
− 1) � rj · Crn0−ij = Crn0 .

Also, the elements of ω∗ \Aj do not contribute to covering on Aj as dist(Al, Ak) > 2rJ �
Crn0 , implying

ρ(A, Rn0 − 1) � Crn0 ,
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which completes the proof of both (29) and the first claim of the theorem. Proof for 
the unconstrained covering is obtained with minor adjustments in the argument, by 
using Bh(Am) in place of Am, with 2h < minl �=k dist(Ak, Al). Finally, the nonexistence 
of polarization limits for large s is a consequence of the above results for covering and 
Theorem 10. �
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