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I. Further researches in the Theory of Divergent Series and Integrals.

By G. H. Hardy, M.A.

[Received, April 2, 1908. Bead, May 18, 1908.]

§ 1. This paper is a continuation of one published in the Quarterly Journal of

Mathematics in 1904*.

In § 16 of the paper referred to I said:

'The definitions of the previous sections are perhaps of most use in connection with

double limit problems, such as differentiation under the integral sign. Their employment

in such problems raises questions which demand a detailed treatment which I must reserve

for the present.'

In the present paper I propose to consider some of these questions in greater detail.

A. Generalised limits and integrals and infinite series.

§ 2. Two of the most important among the double limit problems of ordinary analysis

are the following:

(i) when is the limit of the sum of an infinite series equal to the sum of the limits

of the terms of the series %

(ii) when is the integral of the sum of an infinite series equal to the sum of the

integrals of the terms?

Or in symbols,

00 00

(i) when is lim 2 fn (x) = 2 lim fn (x)?

x-*-a n=0 n=0 x->-a

[A co co rA

(ii) when is I dx 2 fn (#) = S I fn(x)dxi.

J a n=0 n=0J a

The case which is of especial interest to us now is that in which in (i) a = oo and in

(ii) a = 0, A = aof. The two problems may then be regarded as substantially the same.

For if we suppose that the series 2/„ (x) may be integrated term by term over any finite

interval (0, X), and write

Fn(x)=(Xfn(t)dt,

Jo

* '^Researches in the Theory of Divergent Series and the integrals discussed to be zero: the limitation is of

Divergent Integrals,' Q. J., vol. xxxv. pp. 22—66. course apparent only,

f Throughout this paper I suppose the lower limit of

Vol. XXI. No. I. 1

257732
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2 Mr HARDY, FURTHER RESEARCHES IN THE

the second problem takes the form—

(ii)' when is ■ lim I Fn{X) = £ Km Fn(X)1

X-*-w n=0 n=0 X-*-co

—which is substantially the same problem as (i).

The problems which we have now to consider are—

(1) when is L I fn(x) = £ L fn(w)1

x-*-to n=Q n=0 #-»-oo

(2) when is G T dx £ /»(*?) = £ G fn(x)doci.

JO n=0 n=0 J 0

—the symbols L and G \ denoting the generalised limit and generalised integral according

£C-^30 J 0

to the definitions of my former paper. In that paper I in the first instance defined

L F(x) as being

lim I e~xF(tx)dxy

t-*co J 0

and G I f(x) dx as being

lim \ e~xltf{x)dx}

or (what is, at any rate in all cases of interest, the same thing)

xe~txf(x) dx;

dt

JO JO

and I showed that if, for all positive values of r,

lim e~TXf(x) = 0

and if F\x) = f f(t) dt,

Jo

then L F (x) = G T f(x) dx.

J o

In these circumstances the problems (1) and (2) are equivalent in the same sense as

were (i) and (ii). I shall in what follows adopt (2) as the standard form of the problem,

as it takes this form in the most interesting applications; and I shall for the present confine

myself to the simple definitions recalled above. As I explained in my former paper, more

powerful definitions may be given; but those just stated are easy to work with and are

sufficient to deal with the most interesting and obvious cases. I shall, moreover, concern myself

solely with the difficulties proper to the particular problems under consideration, ignoring those

which affect equally the ordinary double limit problems of the Integral Calculus, such as those

which arise from discontinuities of the subject of integration.

§ 3. The transformation expressed by the equation (2) is valid if

lim je-TXdxXfn(x)= lim 2 \ e~TXfn(x)dx

= 2 lim [ er^fn (x) dx.

t+o J o
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 3

Now the first of these equations asserts that the series

.2

may be integrated term by term from #=0 to &'=oo. The second transformation asserts

that the series

00 /'CO

2 er^xfn O) dx

o .'o

is a continuous function of r for t = 0. Thus we obtain

Theorem I. The equation

G r\ifn (*)} dx = tQ f% (x) dx

Jo (o j o Jo

will certainly be true, if

(i) the series %e~TXfn(x) (r > 0)

can be integrated term by term over the interval (0, oo),

/'°°

(ii) the series 2 e~~TXfn (x) dx

Jo

is a continuous function of r for r = 0.

Our problem is therefore reduced to the investigation of (1) the legitimacy of a certain

ordinary term by term integration, and (2) the continuity of a certain infinite series.

It is useful to notice one case in which the first of the two conditions stated above is

certainly fulfilled. This case is that in which

(a) 2fn (#) is uniformly convergent over any finite range (0, X)}

(b) the integral / e~TX2 I dx

Jo

is convergent. For then, as I have proved in a note in the Messenger of Mathematics*, the

integration term by term, from 0 to oo, of the series yZe~TXfn(x) is certainly legitimate.

§ 4. By far the most interesting case is that in which

fn(x) = anxn<j)(x)y

the series 2 anxn being convergent for all values of x. We have then to consider

(a) whether the series 2 e~TX4> (x) anxn

may be integrated term by term from 0 to oo,

(6) whether the series 2an| e~TX(j>(x) xndx

Jo

is continuous for t = 0.

Let us first notice certain cases in which the first of these questions can certainly be

answered in the affirmative.

* Vol. xxxv. p. 126. See also Bromwich, ibid., vol. xxxvi. p. 1, and Infinite Series, pp. 448—455.

1—2
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4

Mr HARDY, FURTHER RESEARCHES IN THE

(1) It can certainly be answered in the affirmative if the integration is legitimate

over any finite interval (0, X), and

e-rx$(x), e-™t\an\xn

each tend to zero as x tends to oo, for any positive value of t. For then the conditions

stated at the end of the last section are satisfied. In particular it is fulfilled if e~TX<j>(x) tends

to zero, for any positive value of t, and Xanxn is an integral function of order less than 1.

(2) It can certainly be answered in the affirmative if the integration is permissible over

any finite interval (0, X), and e~TXcf)(x) tends to zero for any positive value of t, and

*Zn\anxn is convergent for all values of x. For then, if X is large enough, | (x) | < e^TX for

x ^ X, and

j0°e~TXxn(f>(x)dx < j°°e~2TXxndx

which is always less than n ! I-J ,

and, for any assigned values of r and n, tends to zero as Z-^oo. Hence

i an r e~TXxn(f>(x) dx < (2 + 2 ) | an \ e~TXxn$ (x) dx

0 JX \0 N+lJ JX

N f00 i 30 /2\n+1

< 2 I an | e ?TXxndx+ 2 n ! I an I (-) .

0 JX N+l \T/

We can now choose, first N so that the second sum is less than ^-e, and then X so

that the first sum is less than \e\ and hence we see that

00 /*QO

lim tan e-TXxn<j>(x)dx = 0,

X-^oo 0 J X

and this is precisely the condition that the integration over the whole range (0, oo) should

be legitimate.

It should be remarked that the results just proved are by no means sufficient for the

applications that we have in view. There are many interesting cases in which the result

holds for all positive values of t, but its correctness does not follow from anything that

has yet been proved. If, e.g., ^>(x) = e~mix, where ra>0, and an = (— ai)n/nl, where cr>0,

so that

2 anx11 = e~ax\

the equation states that f^-fr+Cm+a)*?^ = v (~

^ Jo (T + mi)n+1'

a result which is true for all positive values of t, if a < m. But the conditions (1) are not

satisfied, since

2 | an | xn = e°x;

and the conditions (2) are not satisfied, since H n\anyn is not an integral function of y.
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 5

§ 5. Before passing on I may make a few further remarks. In a former paper in

these Transactions* I proved that

\ er* (2 anxn) dx=% n! an

Jo

whenever the series on the right is convergent. It follows that

J e~*x(tanxn)dx = tnl anT~n-\

if t > 0 and the series on the right-hand side is convergent.

A more general result is the following.

If t>0, fA> — l} the equations

\ e-TX{tanx*+n)doo = tan \ e'^x^dx

Jo Jo

_v„ ro +7i + i)

are certainly true whenever the last series is convergent,

Let un = an T O + n + 1) r^-"-1.

Then, for any positive value of X,

and what we have to prove is that

T/iH-?i+i

Now

TfJL+1l+l

lim S-r,, ', l lXun \e^xx^ndx = 0.

+ 1) J x

-1 rcc

^ , —^ / e~rxx^ndx

"e T'tr(^ + i) + r(M + 2)+- + r0i + n + i)J+ r<»j/

T/u.+n+i fee

and so 2 .pnr— ^ e-T^+wcfc = S1 + S2,

where ^ = e~rX 2 ^ 2 Vf ,\,1V

Obviously S2j^0 as X-^qo . Also, as in my former proof, we have

S1 = e z£ 2 ^— =^ 2 u\ = e tX 2 ^ ^<rn,

— n^TiiM + n + l)^ w=0r(/i + » + l)'

say.

* Vol. xix. p. 299.
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6 Mr HARDY, FURTHER RESEARCHES IN THE

Now if y (x) = 2 ^prr :rv

it is known* that ^ (#) = (1 + e^),

where e^O as oc-*»x>, and so, for all positive values of X,

x(tX)<Z^,

and, a fortiori. 2 ^, < KerX.

0 1 {fl + ?1 + 1) jNM-i L + ?i + 1)

Choose JV so that | an \ < e/K (n > N).

and from this it follows immediately that 81-^0 as X-^oo. Thus our theorem is established.

The question is naturally suggested as to whether it is not always true that

J e~7X (2 anxn) <f> (x) doc=tan J ™e~*xxn<p{cc) dx}

Jo Jo

when t>0, e~TX(j)(x)-^0 for any positive value of t, and the series on the right-hand side is

convergent. But it is easy to show by an example that this is not the case. Suppose

$ (a) = e-™i* (m > 0)

(a case with which we shall be much concerned in the sequel). Then the question takes

the form: is

n! an

!'

JO

e-(T+mi) x anXn} dx=2

whenever the last series is convergent?. Now let

zn

r + mi = y, an = - .

The result would be e~{1J~z)xdx = 2 -rrr, •

Jo y1l+1

The right-hand side is convergent if |^|<|y|, the left-hand side when R(z)< R(y),

and it is obvious that the first of these conditions does not imply the second.

§ 6. (3) As the sets of conditions (1) and (2) are not sufficiently general for the

applications I have in view, I shall indicate a set of conditions of a different character,

under which it is always possible to give an affirmative answer to the question (a) of § 4.

Let us suppose first that e~™ <f> (x)0 for any positive value of t, and write

yjr (T) = f e-** (j> (x) dx.

Jo

And further let us suppose that yfr (t) is an analytic function of t, regular in the neigh-

bourhood of the origin: (a fortiori regular in any region throughout which the real part of

t is always positive).

* See e.g. Proc. Lond. Math. Soc, N.S., vol. n. p. 405.
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THEORY OF DIVERGENT SERIES AND INTEGRALS.

The integrals

( e~rxxnj)(x)dx

J o

are all uniformly convergent in* any interval (r0, tO, where 0<t0<t1. Hence, for any

positive value of t, we have

d-J1 yfc (t) = (- l)w J (a?) dr.

Also the integral on the right converges to a limit as t-*~0, and this limit is equal

to i|r(n) (0): or in other words

Q f xn (j> (x) dx = (- 1)» ip> (0).

Jo

Now let S denote the distance from the origin of the nearest singularity of y{r (t).

Then if p < 8 and the contour of integration is the circle C denned by | u | = p, we have

d_\n , , n\_ [ yjr (u) du

dr) yfr{T)~27ri](u-T)n+1'

Finally let us suppose that the series Xn\any11 has a radius of convergence greater

than 8. Then, for sufficiently small values of r, the series

'x v (- l)n n ! an

is uniformly convergent along C. We have therefore

1 ( , / x , v , ^ (- l)n n ! an fyfr (u) die

= 2(-iran(0>(r)

= 2an f e"T* 6 (x) xn dx.

Jo

Now the only singularity of the subject of integration, within 0, is u = t. We may

therefore replace G by a contour C such as is shown

in the figure, cutting the positive real axis between

u = 0 and u = t, say at u = 7. On G\ u has its real

part positive and greater than 7. Hence

^7ri!c/^^X^ T^du

In this repeated integral we may invert the order

of integration. For, in the first place, this inversion is

obviously justifiable when the upper limit 00 is replaced by any positive number X. And,

in the second place,

j ± fo/ X(u,r) du £ <r* <*> (?) # I < <n* 1<f> (01

which may obviously be made as small as we please by sufficiently increasing X.
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Me HARDY, FURTHER RESEARCHES IN THE

Hence ^ / * (M) X (u> T)du = ^ /0 4> (f) df/ e""f X T)dw-

%m J c \ (u-r)n+1 j

= 2(-l)»a„(0V*

/•CD r> 00

Hence finally 2a„ er« 0 (x) xndx = e~** <f> (£) Sa^df.

Jo Jo

Thus the question (a) of § 4 may be answered affirmatively.

§ 7. I shall now pass on to the question (b), and show that if the conditions of

§ 6 are satisfied it also can be answered affirmatively. In order to prove this let us go

back to the equation

The series under the integral sign converges uniformly for all values of u on G and

all values of r such that 0 ^ r ^ t0. Hence each side of the equation is a continuous

function of r for t = 0, and the series

/• 00

2 (-1)» OnV^ (0) = 2on0 ocn$ (as) dx.

Jo

is convergent and equal to

lim 2(-l)wani/rW (T),

or to lim %an I e~rX cc71 <j) (x) dx.

T^O J 0

Thus the question (&) may also be answered in the affirmative.

§ 8. Thus we arrive at:

Theorem II. We may evaluate the generalised integral

I* oo

G 6(x)F(x)dx,

Jo

by expanding F(x) as a power series %anxn and taking the generalised integral term by

term, provided

(1) the function yfr (r) = \ e"7* <j> (oo) dx

Jo

is regular at the origin,

(ii) the series %nl anyn has a radius of convergence greater than 1/8, where 8 is the

distance from the origin of the nearest singularity of yfr (t).
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 9

§ 9. Let us consider in particular the case in which

<j> (x) = e-™™ x*,

where m > 0, fi > — 1. Then

r w Jo (T + mi)*+1'

where that branch of (r + 7ni)~^~L is chosen which reduces to

-LL-1 -i(u+l)7Tl

m e ',

for t = 0. In this case S = m, and we shall certainly have

(? <r™* (%anx11) x^dfi = XanG e-mixxn+f dx

Jo Jo

= lan T(n + fjL+ 1) m-"-"'1 *"* *\

if the series Hn\anyn has a radius of convergence greater than 1/m. This condition,

however, may be reduced to a simpler form. For the radius of convergence of

ZanT(n + n + l)e-i{n+>l+1)vir

is the same as that of *Zn\anyn. The integration is therefore certainly legitimate if its

radius of convergence is greater than 1/m. But we can go farther and say that the

integration is certainly legitimate if the radius of convergence is as great as

For let fa (r) = f e~ xx»dx = r 0*+ l) .

The distance of the nearest singularity of fa (r) from the origin is

V(m2 + > m>

f OC /.CO

and therefore e-(K+mi) % (^anxn) & dx = Xan G / e~{K+mi) x xn+» dx

Jo. Jo

- 2 r(n + /x+l)

"71 (fc + miy+n+i'

provided the radius of convergence of Xnla7lyn is greater than

1/V(W2 + K%

and therefore certainly if it is equal to 1/m.

But, by a well-known extension of Abel's theorem on the continuity of power-series

provided only the series on the right is convergent, or even if it is oscillatory, but summable

by Cesaro's mean value process or one of its extensions*.

We have thus proved:

Theorem III. We may evaluate the generalised integral

of e~mix F (x) x» dx,

Jo

* Bromwich, Infinite Series, pp. 210 et seq. and pp. 310 et seq.

Vol. XXI. No. I. 2
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Mr HARDY, FURTHER RESEARCHES IN THE

by expanding F (x) in a power-series %anxn, and taking the generalised integral term by

term, whenever this method of procedure leads to a series either convergent, or oscillatory

and summable by mean values.

And we may add that if F (x) is an integral function of order less than 1 the second

condition of Theorem II and the solitary condition of Theorem III will certainly be satisfied.

§ 10. I shall now give some examples of the use of the Theorems II, III, starting

with the latter, from which we conclude that if F (x) — %anxn then

0 ^ e-m™F(x) & dx = 2an V (n + p +1) mT11-^'1 <f *

Jo o

provided only the series on the right is convergent.

Supposing an real, and separating the real and imaginary parts, we obtain

G I cos mxF (x) x^dx = — C sin \^ir — S cos \yLiri

Jo

G I sin mxF (x) x^dx = — 0 cos ^fiir -f S sin

Jo

, nvr o + ^ + i),

where C = 2a„ —mn+M+1— cos £rwr,

TQ^-l) f Qi + l)Qi + 2)n , fr + l)(Ai + 2)Q* + S)Q* + *) I

01 °" m^ | m* a2+ m* ^4-...J,

Q..rQi + l) [ Q* + l) Qi + D(Ai + 2)(^ + 3) )

In particular, if = 0,

G CcosmxF(x)dx=-^ +

Jo . m2 mA m6

Jo ra ra3 m5

By taking /* = 0 and F(x) = J0(*/x) we obtain

f JQ(Jx) °?Smxdx = — Sm f-r—^ (1):

J o sin ra cos V4m/

T3y taking F(x) = goss/x and ^ = —-| we obtain

r cos 7 //irW 1 . 1 \ /#r.

—:—cosra#a# = A/ — cos-: hsin-— (2),

Jo \lx V V2m/ V 4m 4m/ v /y

or I cos^cos2/i^d^ = |V(i^)(cosM2 + sinA62) (3) >

Jo

and similarly / sin x2 cos 2ju#cfo = J V(i w) (cos /a2 — sin yu,2) (4).

Jo
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 11

These are cases in which F (x) is an integral function of order < 1, and the integrals

on the left are all convergent in the ordinary sense.

More general results may be obtained by taking

x»F(x) = xkJQ(sJx\ 52^?

• ■ • \JX

(where h is a positive integer); e.g.

G [ J0 cos = (-)* {I sin A.} (5).

§ 11. Taking n = 0 and

i^) = /0(*) = l-g + ^_...,

we obtain / cos mx J0 (x) dx = 0 (6),

Jo

= V(m2-1)

provided m>l. The results agree with Weber's well-known formulae*.

If we, take /a = k> and F(x) = J0(x), we obtain formulae for

r°° cos

G xk . mxJ0 (x) dx.

Jo sin uv

which agree with the results of formal differentiation of (6) and (7).

More generally we may take

xf-F(x) = xP-1Ja(x),

where p + a > 0, and express

G \ xp~l °PS mx Ja (x) dx

Jo sin v 7

as a hypergeometric series. When — a < p < § we obtain a known expression of an ordinary

integral. An interesting special case is that in which p — 1 = a. In this case we find

_ V (-)" r(2w+2«+l) |(2n + 2a + l)^

2°+2"w!r(H + a+l) m™+2a+i

Using the formula

T (a) T (a + = T (2«) 2* " 2 V2tt,

we can reduce this series to

2'r(«+j)e(-tt+*),r* v (« + £) (a + f)...(q + »-^) /ly

)n!l+Vir'" ~ 1.2...n W/

v__2»y~a+*)rir(a + i)

Vir(m*-l)a+4

* Gray and Mathews, Bessel Functions, p. 73.

2—2
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12 Mr HARDY, FURTHER RESEARCHES m THE

Equating real and imaginary parts we obtain

Cr I ®a Ja (®) cos mx dx = sin air (8),

G xaJa (x) sin mx dx = - ^—r cos ewr (9).

Since r(a + i)r(i-a) = —

cos air

the second of these two formulae agrees with the formula

r

J (

xaJa(x) sin mxdx = <^l'7r (n> \ _ i<^< 1)

o r(i-a)(m2-l)a+*

given by Sonine*. Our formulae are valid provided only m>l and the integral is con-

vergent at the lower limit, which requires a > — J for (8) and a > — 1 for (9). If a = — -J-

the formula (9) becomes illusory and reduces to the well-known result

Jo

!0 %

Another interesting pair of results is

cos a? sin ma? , . , /im

-dx=\ir (m>l) (10).

r

J (

la/ \C0S/ u \^ C0S/1 \ 6 /n\

Ja(#) . (#eosheu)— = . (i«7r) (11)

o sin v ;« sinV2 ;a v;

{valid for a> l)f.

To prove these formulae we observe that if m = cosh &>

r°° flrp oo / \n O—a—2« z*00

J*(x)r™** — = 2 , ^0 x«-1+*ne~mi*dx

Jo # »=o^Jr(a + n + l) Jo

/o \~a -Jcwri % 1 (a + 2?l) , x

= (2m) e 5 2 -—^ ^ 2m "2w

v 7 n=o^ir(a + n + l)v;

= (2m)-ag^a?ri ( / 1 y a(a + 3)/ 1 V , «(a + 4)(« + 5) / 1 y )

a ( V2»J + 1.2 \2m) 1.2.3 VW J

« "VI *

-- i a7ri

= 6 2

a'

the only condition required being m > 1, which is satisfied.

§ 12. The following three examples are also instructive:

(i) 6 1 cosm#cos)u:<i# = 0 +0+0+ ... =0,

Jo

n r . . 7 i ^2 ^4 m

Or sin m# cos aw ax = —|—--j—-+...= ——— ,

Jo m m3 m5 m2 — a2

provided m > X—of course in this case the formulae are also true for m < X;

* Math. Annalen, Bd. xvi. p. 39. buch der Cy Underfunktionen, p. 197, and the analogous

f For a> -2 if the sine be taken: cf. Nielsen, Hand- results of Schafheitlin, Math. Annalen, Bd. xxx. p. 171.
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 13

,..N f00 sin mxsinx 7 „ 1 in

<u> Jo * <tea82(2n + l)^-^og

sin m# sin # , v (—)n

Jo ^ (2w + l)! Jo

==27r)

all the integrals in this case vanishing save that for which ?i = 0*. In these formulae we

must have m > 1. It might appear that the last formula should also hold for m < 1, since

the series

^•7T+0 + 0 + 0+...

is always convergent. But our condition was that the series obtained by integrating

f00

e~mixF(x)dx

'o

should converge, i.e. that the two series obtained by integrating

f°° cos

. mx F (x) dx

Jo sm y

should both converge: and it is easy to see that in this case the series obtained by

taking the cosine diverges for m < 1. This must always be borne in mind. Otherwise we

should be tempted to infer that

G cos mx <f> (#2) dx

J o

(where </> is an integral function) is always zero, which is evidently not the case, as, e.g.,

cos mx e~x2 dx = | \Jtte~^m .

J o

In this case it will be found that the series for j sin mxe~x dx is divergent for all

o

values of m.

§ 13. Let us consider next some applications of the more general theorem II. It is

easy to prove that

provided a + p > — 1, t > m. We have only to replace Ja (mx) by its expression as a series

and integrate term by term. This formula fails us for small values of r, but, by the

help of a formula of Euler's connecting two hypergeometric functions, we can deduce

from itf

/*

Jo

Ja(mx)e~7Xxi'dic

_T(a + p + l) {hmY /a + p + 1 a-p m*__\

- I> + 1) {mi + T«-)i(«+P+i) [ 2 ' 2' ' m> + W'A *

Too /*»

* We note that G I x2n cos mx dx = G I x2n+1 sin mx dx = 0,

J o kJ o

G x^cosmxdx = (-)^^n^-) G x*» sin mxdx= ( - )«-^ .

Jo m J 0 'IL

t Hankel, Math. Annalen, Bd. vin. p. 467. Nielsen, Handbuch der Cylinderfunktionen, pp. 185, 188.
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14 Mr HARDY, FURTHER RESEARCHES IN-THE

In the limit for r = 0 this equation becomes _

G f J« (mx)x>dx=*- rt*(« + P + l)i (u)

This formula holds for a + p > — 1. If also p < \> the integral is convergent in the

ordinary sense*.

§ 14. Now let us, in the general integral

G( ^(x)F(x)dx>

Jo

suppose F=%anxn,

and cf) (x) = Ja (mx) x?.

p 00

Then ^(T)= e~TX Ja (mx) x?dx

Jo

is, as we can see from the equation (13), a function of r regular within the circle whose

centre is the origin and whose radius is m.

From Theorem II we deduce that if the series %nl anyn has a radius of convergence

greater than 1/m, then

/•CO -00

G Ja(mx)xPF(x)dx = ZanG Ja(mx) xn^dx

Jo Jo

2P+n r (« + 1 + P + **)}

- * mP+n+i^ r {£(a +1 - p - n)j'

Writing a — /3 for a and putting m = l we obtain

Now suppose #^(#) = a-^***'JV_1 (0<^<1)

Then we must take p = a + /3 - 1,

/£\2v+y—l ( — )V

a2r+1 = 0, a*,= (^J „ir(7 + v)*

/• oo

and we find G J0--^ (x) Jy~l (xz) x~y+a+^ dx

Jo

~z M j/ V!r(7+v)r(i-/8-i»)

= sinffTr ^ r(«4 y)r(y8 + y) 2„

-^ra-ffr^ft^^; (15);

. . * Nielsen, Zoc. ci£., p.-189.
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THEORY OF DIVERGENT SERIES AND INTEGRALS.

15

a formula which contains a very large number of interesting particular cases. Our proof

involves only that the integral should be convergent at the lower limit, i.e. that a > 0.

If 7 —a-/3> —1 the integral is convergent in the ordinary sense*.

§ 14. As a final example of the use of Theorem II let us consider the integrals

Jo c2 + x°~J w Jo o2 + ^ J w

where m and a are positive, X a positive integer, and /' (x) is an even function of x defined

by a series fix) — 2 anx2n, convergent for all values of x.

Since = (- l)*c2*\~±-t,--0 + ~ - ... + (- l)k ^1,

c2 + x2 v ' \c2 + x2 c2 c4 v J 62k-2)

we have G ~ 0 dx = (- 1 )* c2* --— ,- dx = (- 1 )fc ittc2*"1 e"9™

Jo c- + #2 Jo c2 + «2

(? 5 — dx = {-lf c2k — dx = (- 1 )k ±7rc2k e~™.

Jo c2 + x2 J0 c2 + x2

Hence, taking the divergent integral term by term, we obtain

~ f^COSmX r, . 1X 7 ^ f00 #2(™+A> COS??i# 7

G — fix) x2k dx = Zan G 0 ■ 0 dx

J 0 c2 + X2 J w J 0 C2 + #2

= (-!)* Ittc^-1 e-™ 2 (- l)nc^c271,

~ x sin /./ N ,x , ^ ~ [°° x2ln+k)~jrls'mmx 7

Or — / (x) x-K dx = zan G dx

Jo c2 + x2 J w Jo Q2 + X2

= (- 1)A ^ttc2X e~mc $(-l)k ancm.

These results may be stated in the form

G r?X?/^)^^=(- l)H^-e— {f(ci)+f(-ci)} (16),

JO O -f vL

G 1^ ^r^A*)^d* = (- !)x i™*e-mo ifW +/(" c01 (17)-

v 0 ^ T" X

We have now to consider under what conditions this procedure is legitimate. In the

first place

r co e—2x

8iz)= — -x2kdx

v } Jo c2 + x2

is known to be an analytic function of z> regular save at the origin and at infinity. It

follows that

foo p— (T+mi)z

has as its singularity nearest to the origin the point t = — mi, so that 8 = m.

* For special examples see Nielsen, loc. cit. pp. 191 for z = l, and the result may be extended to this case

et seq. If 7- a-/3>0 the hypergeometric series converges (Nielsen, loc. cit. p. 194).
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16 Mr HARDY, FURTHER RESEARCHES IN THE

Thus we are justified in evaluating the integrals

f00 cos mx ~, N , n sin mx x 7

G- —r— 0 / (#) &"A a.r, Cr — f (x) x2k dx,

Jo c2 + «2 J w Jo e2-f W v 7

in the manner adopted above, if the series

22??! any2n

has a radius of convergence greater than l/m. A similar argument can of course be applied

to the integrals

C* x cos mx , j f00 x sin mx

G — / (x) x2K dx, G — fix) x2X dx.

Jo c2 + ^ J 'Jo c2 + x2■ J w

It is however only in the two cases considered above that the result can be calculated

in finite terms.

§ 15. So far we have considered only the particular case of the general theorem in

which the integral is of the form

Too

G cj>(x)f(x)dx,

J 0

where f(x) — Xanxn. Another interesting case is that in which f(x) is a periodic function

representable by a Fourier's series

2a«e-2n,r/flJ.

If we suppose f(x) continuous, it is known that

If f(x) is continuous except for a finite number of points xv in the interval (0, 1),

at which it has infinities of the type A/(x — xvy, where 0</3<l, it is known that

i i K

We have to consider,

(1) whether \ e~rx <£ (x) tane~2nirix dx = Saft I °° e-(T+2niTi) x <f> (x) dx,

Jo J o

(2) whether the last series is a continuous function of r for t = 0.

I shall consider only the particular case in which

</> (#) = x°--\ (a > 0)

It is in this case not hard to show that the question (1) can be answered affirmatively.

We have to prove that

rco

lim 2 an e~{T+2n7Ti) x xa~l dx = 0.

A'-»-x J A"

Too e— (r+miri) X

Now e~ (T+2/l7r?') x xa~l dx = X a~1 .-

J X T "f 2 )1711

a — 1 C20

+ . e-{T+m7ri}xxa-'2dx

r + 2nir% J x
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 17

say. But j \n ! < - Xa~l e~rX

n

and j „n! < *e-*x f V*™ ^ dz< K- e~^X,

and so | 2 an \n \ < KX a_1 e~rX 2 nP~*,

j %anfin j < Ke~ *tX tn&-\

each of which tends to zero as X oo.

The second question can also be answered in the affirmative if a ^ 1. For then the

series

2 an e~* x«~l dx = T (a) 2 , ^—~- ,

Jo (T+2W)*'

where that value of (r + 2mri)~a is chosen which reduces to

(2?i7r) e 2

for t = 0, has its terms numerically less than those of the series

if 2

and so is uniformly convergent for any interval 0 ^ t ^ t0.

Thus the equations

Toe CO f CO

G x°--1 f (x) dx = 2 an G x*~l e~2n7rix dx

Jo i j i)

(a)(27r) 6 - 2-a,

G f00 ^ 2a,, C0S %xirx dx = r (a) (2w)~- C?S Jaw I ^ (18)

Jo i sin w\ / sm 2 i na V /

are certainly valid if a > 1. On the other hand they are not necessarily valid if 0<a<l.

Thus if ol = \ and an = l/\/n we are led to the series

which is divergent. In this case the integral also is divergent at the lower limit, since

0— i-nix g—iimx

has an infinity of order 1/2 for x = 0.

§ 16. Sufficient will have been said by now to show that, however difficult it may be

in some cases to justify our procedure, the method of expansion and taking the generalised

integrals of the separate terms is, in such cases as naturally occur in analysis, generally

defensible; and as a ride leads to correct results. The reader will have no difficulty in

constructing any number of further examples for himself, there being a large variety of

integrals, of very different types, whose values are most easily determined in this way.

The process may be combined with BorePs method for the summation of a divergent

series. This will probably be illustrated best by an example.

Yol. XXI. No. I. 3
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18 Mr HARDY, FURTHER RESEARCHES IN THE

roc ^xi—1 0—i

Consider the integral GJ - y^7^

where a and m are positive. Expand 1/(1+a?) in the series

l-# + #2-...

convergent if 0 ^ x < 1, summable if # ~ 1. Taking the generalised integral term by term

we obtain

r(a)a-*«"m-{l + a(i)+a(a + l)(i)'+...}.

The series in brackets is divergent for all values of m. Its sum, according to Borel's

definition, is

The series under the sign of integration is itself divergent if v > m; but it is summable

for all positive values of v, and its sum is known to be

V m)

Hence we are led to the result

e~v dv

G —r—— dx = r (a) e - ^- .

Jo I + x Jo (m-iv)a

Whether our work can be justified is another matter. We shall see in a moment that

to attempt to do so would involve considerable difficulties. The point is that the work

leads us to the result, which is as a matter of fact correct and includes a number of

interesting special cases. In particular if m = 0, a < 1, we obtain

, o 1 +

dx = T(a)T(l-a) = *

sm air

and if a = 1 wre obtain

o 1 + x ww i } 0 m — iv'

cos mx 7 . f00 ve~v dv f ™ sin mx 7 [™ me~v dv

o 1 + a? Jo m2 + J,, 1 + ® Jo m2 + v

a pair of formulae due originally to Cauehyf.

Let us consider what our transformations really involve. In summing the series

l + a(—) + a(a + l)(—) + ...

\mj v \mj

we had to use two repetitions of Borels process: hence

w Jo (m-iv)a

is in reality the equivalent of

T (a) e - iari m"a f e-dv f e~™ dw la (a + 1) ... (a + n - 1) CrywV™>!,

Jo Jo \n0

* See, e.y., Bromwich, Infinite Series, p. 302.

t « Memoire sur les Integrates Definies,' Oeuvres, t. i. p. 377.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



THEORY OF DIVERGENT SERIES AND INTEGRALS. 19

or of f e-°dv C e~» dw XT (a + n) <f 4 + ma'n (~ ,

Jo 'Jo (^!)2

r* oc / m(J\n r*

or of e~vdv e~w dw 1 v /-Km e-^+im)x xa+n-1 dx;

J0 Jo n = 0 V1')" t = oJu

and what we assert is that this is equal to

f00 fx fx 00 (—vwxY

lim e-^'^^^-UZ^ <r*(fo e-wc?w; 2 ^ .

r=oJo Jo Jo »=o V>*02

Now each of these expressions is an 8-ple repeated limit, for an infinite integral

f(x) doc

is itself a repeated limit. Hence our work is in reality a shorthand representation of a

multiple limit permutation of extreme complexity.

§ 17. As a further application of Borel's method let us notice the following. We

obtained in § 6 the two formulae

G Fix) cos mx dx = \ + ——-1 ~ + ..

J0 772,- ?"/l4 mb

~, f00 7-r/ N . 7 a0 2! a., 4! a4

Cr (#) sin mx ax = —~ + -—-— ....

J0 m 7ii" m5

where F(x) = Xanxn. If we sum the series on the right by Borel's method we obtain

e~y^1(^)cfo, I e~v^.2(v)dv,

Jo Jo

where (•) = - a, Q + a3 (£f - ... = U [f g) - F (-:

2V

We thus obtain the formulae

g /; Fw cos Wl* =^ /; r- {i- g) _ * (_ |)

G/o" «n ^ cte = ^ // g) + F (-1) civ,

or £ f F(x) emix dx = - - [ e~v F (—) dv = i ( e'1^ F(iv) dv.

Jo wi J o \m/ Jo

This is exactly the formula which we obtain by integrating

j F(x)e>™dx (n>0)

round the contour formed by the positive parts of the real and imaginary axes and a very

large quadrant of a circle, supposing the integrals along the axes convergent in the ordinary

sense, and the curvilinear part of the integral evanescent in the limit.

3—2
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Mr HARDY, FURTHER RESEARCHES IN THE

This fact suggests that we must expect errors if *£anxn has only a finite radius of

convergence (though summable for all positive values of x), and F(x) has poles situated

within or on this contour. It also suggests that when F (x) is integral we may be liable

to error when the order of F (x) is not less than unity or at any rate when it is not

true that | emixF(x) j 0 as \x\-^cc, for any value of am.x between 0 and |7r. It is

instructive to consider from this general point of view, no less than from that of the

precise theorems of the earlier sections, the results

1

p co

I cos mx Jo (\/x)dx--

J 0

_ 2 1 1 1

'4 m2 3! 43m4 + 5! 45m6'

(valid for all positive values of m),

cos mx J{) (x) dx = 0 + 0 + 0 4-...,

/

Jo

F

J 0

sin mx J0 (x) dx ■■

1_ 1 JL + 1' 3 JL +

m 2 m:i 2 . 4 m5

(valid for m > 1 only),

and

/*

J o

/'

J Q

/"

J 0

cos mx e~xdx =

sin mxe~xdx =

1 1

m4 mb

_ 1 1

m m* m5

cos mx e~x~dx = 0 + 0 + 0 + ,

cos mx

1+x2

dx = 0 + 0 + 0 + ...

(valid for no value of m).

B. Continuity of generalised integrals which contain a continuous parameter.

| 18. I shall now consider the generalised integral

Gff^^dx (1),

and the question of its continuity for a particular value of a, which we may suppose

to be zero.

The integral (1) will be continuous for a = 0 if

lim G I f(x, a) dx = lim lim e~TXf(x, a) dx

a^O J 0 a^O JO

.(2).

= lim lim e~TXf(x, a) dx

t-»»(.) a-*-0 J 0

= lim I e~TXf(x, 0) dx

= e f /(^o)cfo

J 0

The applications of this transformation do not appear to be so interesting as those of the

transformation of § 2. I shall therefore not discuss its legitimacy in great detail.
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The most interesting case appears to be the following. Suppose that f{x,a) is a

continuous function of both variables throughout the rectangle

(0,a0; 0,Z),

where a0 is some positive value of a, and X any positive value of X. Suppose also that

for 0 = a^a0, and all positive values of x,

\f(x,d)\<HxK

where H and K are constants.

Further suppose that /(#, a) dx

is convergent for a > 0, and that

G f(x, 0) dx

J 0

is summable*.

Then lim e~TXf(x, a) dx = I f(x, a) dx,

T-*-o Jo Jo

lim e-rXf(x, 0) dx=Gl f(x, 0)cte,

t-*-0 Jo Jo

so that the first and last steps of the argument expressed by the equations (2) are justified.

Further, it is easy to see that, for any particular positive value of r, the integral

e~TXf(x, a) dx

Jo

is uniformly convergent throughout the interval (0, <x0). Hence

/» 00 /»0O

lim e~TX f(x, a) dx = e~rXf(x, 0) dx.

0.-+0 Jo Jo

Thus the last step but one of the argument is justified. Thus if we write

,00

e~TXj- (x, a) dx = <f> (t, a)

J o

the whole question reduces to the question whether

lim lim </> (r, a) = lim lim (/> (r, a) (3).

a-»-0 t-»»0 t-^0 a^O

We may notice that we are already assured of the existence of the second repeated limit

and of the inner limit on the left-hand side.

Now Mr Bromwichf has enunciated the following necessary and sufficient conditions

for the truth of (3):—

(i) the simple limits

<f> (T) = lim (t, a),

(f) (a) = lim <p (t, a)

exist,

* It seems better, on account of the ambiguity of the vi. p. 119. See also Hobson, Proc. Loud. Math. Soc, N.S.,

uses of the term divergent, to call a generalised integral vol. v. p. 225, and Theory of Functions of a Real Variable,

summable than convergent. pp. 303—311 and 464—467.

+ Proc. Lond. Math. Soc, N.S., vol. i. p. 184, and vol.
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22 Mr HARDY, FURTHER RESEARCHES IN THE

(ii) the repeated limit

lim cf> (t)

exists,

(iii) given e and t0 (each positive but as small as we please) we can choose a positive

value of t less than t0, and a positive value of a0, so that

; <f> (a) - <f> (T, *) < 6

for the one value t and every positive a less than a0.

In the present case the first two conditions are certainly satisfied, and the third is

equivalent to

| -00 .

I f(x, a) (1 - e-TX) dx I < e

|Jo' I

for one positive t less than t0 and every positive a less than a0.

We have therefore:

Theorem IV. If fix, a) is a function of x and a continuous for O^x^X, 0^a^a0,

however great X may be, and numerically less than HxK for all these values of x and a:

/• X * CO J'

if moreover j f(x, a) dx (a > 0), is convergent, and G j fix, 0) dx swmmable; and if finally,

however small be e and r0, we can find r so that 0<t<t0 and

/» X

Jo f(*> «) (1 - e~TX) dx j < e, (0 < a < aQ)

then lim I /(#, a) dx = G fix, 0) dx.

§ 19. The most interesting case of this theorem is the following:

Let fix, a) = (f) (ax) e~mixx*,

where m > 0, > — 1, and <\>(u) is a function of u which possesses the following properties:

(1) as u~^cc, cf)(u)-^ 0, and that more rapidly than any power of u;

(2) <j>(u) has continuous derivatives <f>'(u), cf)"(n),... (f>in+1) (u), where n> //,;

(3) the integral

/•X

(11)11* du

J 0

is absolutely convergent.

Then it can be shown that the conditions of Theorem IV are satisfied: but the proof

rests on a number of preliminary results.

§ 20. Let %0 (x, t) = e-(r^nnxa:t,}

where r > 0. Farther let

%i 0> T) = Xo & T) dt>

J X

X-Mt)= j xAt,r)dt,

J X
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 23

have

Then it is easy to prove, by a repeated integration by parts, that, if a = r + mi, we

Yi(x, t) — i I H -i 7 ^ h ...

*1V' J a [ ax (ax)2

(a#V ) a' J tV

where r is any positive integer (we may set aside the case in which p is a positive

integer, when r) can be found in finite terms). In fact %i t) has the asymptotic

expansion

e-^j1+ , + J (5).

a { ax (ax)'2

We can find an expression of the same kind for Xk (x, t), k being any positive integer.

For it is easy to prove* that

lc-l

= %

(-xf

A—1

e"att^

(-xY

a*1

+ ...

+

(p + k-l-\)(fi + k-2-\)... .(fi + k- r - X)

(ax)r

fc+fc-l-\)...(;* + &-r-l -X) f

..(6).

This furnishes for r) the asymptotic expansion

where

Lv At0X!(&-l-\)!

It is, however, easy to prove that

A0= = ... = Ak_2 = 0, Ak^=l

For

(*-l)! 1_

;(T=n)!

from which the result follows at once. Thus for large values of x

g>— (T+mi) x spfjL

and T) i <

for all positive values of x and r.

Now let Xo 0) = Jim Xo t) = e-"1'*^.

Jordan, Coitrs cVAnalyse, t. m. p. o9.
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24 Mr HARDY, FURTHER RESEARCHES IN THE

Then (see p. 59 of my paper in the Quarterly Journal already quoted) we know that

Xl(x, 0) = ff£ Xn(t 0)dt

is summable, and that Xl (x> 0) = ^m %i T)-

Now suppose, in the equation (4), that r > /x, and make r tend to zero. Clearly we

obtain in the limit

Xifo 0) ='

1 + -^- +

fl Ll(fl-l)

mix (mix)2

+ ...

Since we can determine a positive value of e such that

fi-r — l+ e< — l,

and

n-edt

< Kx~

(£ > x, a> 0)

It follows that the last term in the equation (4)' possesses an absolutely convergent

integral up to x . The other terms on the right-hand side possess generalised integrals up

to oo . Hence %x (x, 0) possesses a generalised integral up to oo, and we may write

It is, moreover, not difficult to prove that

lim X2 O, t) = %2 (x, 0).

This point, however, does require proof, for

/•CO

lim X2 t) = lim ^ (t, r) dt

? •-*-() .' .r

/•CO

and ^2 (x, 0) = lim e~~T'xi (£, 0) cfe

are not defined in the same manner. But it is easy to show that the two limits are the

same. For

/•OO

lim %2 (x, t) = lim %x (t, t) dt

-ru/jOL-D--(^tl)e-^-,

MQx-l)...Q,-r) f50^,^^

= lim

and

%2(^0) = lim f 0)c/£

= lim

s=„ (ww)s+1
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 25

If we suppose r > ja, the integral in the last line is absolutely convergent in the ordinary

sense. And all that we have to show is that

r> QO I* GO /» 00 /• 00

lim J dt I e-ir+^u^-r-i £u = Jjm I e-rt fa I e-miuun-r-idu;

TH^O J X J t THM) J X it

and since r may be as large as we like, this is very easily proved. For if r > p +1 it

/»X /.OO

follows, by comparison with the integral / dt J u^'^du, that each of the integrals in

J x Jt

question is uniformly convergent in an interval including t = 0, so that they have the common

limit

J dt J e-miuii^-r-ldu.

Thus x^(°°y T)~^%2(^'; 0) as and we can now prove, precisely on the lines of the

deduction of (1') from 1, that %2 0) possesses an asymptotic expansion precisely similar to

that of %2(#> t), t being replaced by 0, i.e. mi written for t -f mi. It is clear that we can

proceed indefinitely in this way, and so establish the existence of a series of functions

/•OO /.CO

Xo (x, 0), xi (*> °) = G j v %o 0) cfe,..., xic 0», 0) = G j ^ xk-1 & 0) eft,...,

such that lim Xk t) = Xk (#> 0),

and 0) possesses an asymptotic expansion deducible from that of xk (x> t) by merely

replacing r in it by zero. In particular Xk (x> 0) satisfies the same inequality

\Xk(x, 0)\<Kaf-

that we found to be satisfied by Xk (%> t).

It may be observed that %fc (0, r), Xk (0, 0)

can be found in finite terms. For if we integrate by parts and observe that

lim ccaxv r) = 0 (r > 0)

JC-^CO

for all values of a and z>, we see that

Jo Jo

= r^)A')(T + mi)-"-,:.

Hence also Xk (0. 0) = m-<*-*e-4<*+*>«.

Vol. XXI. No. I.
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§ 21. We are now in a position to establish the result enunciated in § 19. For

( f(x, a) (1 - e~TX) dx=( cf> (ax) (1 - e~TX) e~mixx^dx

Jo Jo

= (ax) i%o O, 0) - %0 (x, t)} dx

J 0

= 4> (0) {%! (0, 0) - xi (0, t)} + (aw) \Xl (x, 0) - %1 (a, t)} dx

J 0

= I a^M(0){Xr+1(0,0)-Xm(0, t)}

+ f a»+^<»+D (a*) {Xb+1 («, 0) - Xn+1 (x, r)\ dx.

J 0

But the last integral is in absolute value less than

/»co /.co

K an+1 \ cf>{n+1) (ouc) | x»dx = Ka'1-* \ ^n+^ (u) j u^du,

Jo Jo

so that

f /(*, a) (1 - e-«) cfe < 2 a'' | </."•» (0) j | (0, 0) - %r+1 (0, t) | + Ka^;

J 0 r=0

and so the condition of Theorem IV is clearly satisfied.

Hence we obtain

Theorem V. If <f>(u) is a function of u which tends to zero, as u^x>, more rapidly

than any poiver of it, and has continuous derivatives <£' (u), <f>" (u),... cf>{nJrl) (a), and

[ <f>n^]) (u)u*du

Jo

is absolutely convergent, then

i* CO -co

lim e~mixx^^ (ax) dx = (j>(Q)G e~mixx^dx = (0) V (p +1) rnr^e-b(m-+d ^

JO Jo

provided m > 0, /jl > — 1.

Examples of the preceding theorem are given by supposing <f> (u) = e~u (in which case

the result is obvious), $ (u) = e~u\ <j> (u) = sech u, etc.

§ 22. The case in which fi = 0 is of especial interest. In this case we have

f(x, a) (1 - e~TX) dx=] <$> (ax) {e~mix - e~^+mi)x} dx

Jo Jo

(1 -i \ /•» (e-mix e—(T+?ni)x)

—• W(0) + —. —Adx

mi r + mi J r v Jo ( nn T + ww J

= f—• -—) <$> (0) + l~ - ;—1—=J af (0)

\ww t + mi/ r ((mi)'2 (t + mi)2 J

+ a2 6" (ax) \—^0 - -■ ^-J cZ#,

Jo r v 7 )(wi)3 {r + mif)

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s
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all that we have assumed so far being that <f> (u) and <l>" (u) are continuous and tend to

zero as u-*-oo , and that the original integral is convergent. If in addition

r //

\ <f> (u) du

J o

is absolutely convergent, it follows as in the general case that the conditions of Theorem IV

are satisfied, and that

lim / cos mx<f> (ax) dx = 0 (7),

r 1

lim I smmx(f)(ax) dx — — <f>(0) (8).

A particular case in which I $"(u)du is certainly absolutely convergent is that in

J o #

which <\>" (u) changes sign only a finite number of times.

As examples we have

f00 /7T

lim I cos mxe~[axyIdx = lim ^ e-(mM2 — o,

r00 2 „ rw/2a , i

lim sinmxe-{ax)"dx = lim - e-[mj-a) ev'dt = — ,

a^O J 0 a-»»0 « io m

f00 COSm^ 7 7T .

lim - dx = lim — e-r/'/a = 0,

f^sin?^ 7 (1 /m\ f00 sinw 7 1 . cosu 7 )

lim dx = lim -{-cos — aw sm — du}

a+oJo 1+olx tt-*-o la \aJJmia u a \a j J m/a u )

i • (1 , fm\ a 1 • -, / w\ a) 1

= lira - cos- — . —H - sm- — .—>• = —.

aHSte0 (a \a/ m a \a/ mj ?/*,

It is also instructive to notice that the result of the theorem is true when

(f>(ii) = slT]^) J0(*Ju), J0 (it),

u

f sm ax 7 _ f sin ax . 7 1 . n

since cos mxdx = 0, sm mxdx = — log* -

Jo ax J0 ax 2a & \?

m + a'

?7i — a

[ Jo cos mx = — sin f-p-) , f J0 (V«^) sm mxdx = ^ cos f

I Jn (a#) cos mxdx = 0, I J0 (ax) sin mxdx = 77—- — ,

Jo Jo V(wi--a-)

which tend to the prescribed limits as But in these cases the conditions which we

have laid down are not satisfied, the integral \ <fi"(u)du not being absolutely convergent.

In the case of the integrals

f00 / v, cos??i# 7 1 //i , f /m\2 . /m\2)

Jo C°S <"*>" sin mx dx = 2« ^ |C°S fej ± Sm fej }

the conditions are not satisfied and the result does not hold.

These examples naturally suggest that the conditions of this section may be generalised.

Indeed a variety of generalisations of Theorems IV and V are naturally suggested: but I

shall be content with investigating the simplest and most obvious cases.

4—2
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Uniform summability and continuity.

§ 23. We have not, so far, used the idea of uniform summability of

Gj f(x,a)dx (9).

J o

We shall naturally say that the integral is uniformly summable if

e-rxf(x, a)dx (10)

J o

tends to a limit as t->0, uniformly for all values of a in question.

If, as in Theorem IV, f(x, a) is a continuous function of both variables, and

,./>, cl)\<H*k,

the integral (10) is for any positive t, uniformly convergent and continuous: and so (9) is

also continuous.

This test is, however, less general than that of Theorem IV, at any rate in the only

case to which that theorem applies, viz. that in which

f(x, a) dx

10

is convergent for a > 0. For if

lim \ e~TXf(x, a) dx = I f(x, a) dx

t-»-0 Jo JO

uniformly for all positive values of a, we can, given r, find r0 so that

f f(x, a) (1 - e~TX) dx < e,

Jo

for all positive values of r less than t0 and all positive values of a, and this is more than

the test of Theorem IV demands. At the same time this more stringent test is satisfied

in the cases considered in the preceding paragraphs, and such an integral as

G ( <j> {cue) e~mixx^ dx

Jo

is uniformly summable throughout the interval 0 ^ t ^ t0.

§ 24. Before passing on to other questions I may point out the simplest example of a

discontinuous generalised integral, viz.

G \ a sin ax dx=l (a =j= 0)

J o

= 0. (a = 0)

It is easy to see that in this case the condition for uniform summability is not satisfied,

since

ae~TX sin ax dx = -

Jo «2 + t2

has the limit 1 if a 4= 0 and the limit 0 if a = 0. Also to make
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we must take r < aV{*/(l — 6)}> which cannot be effected by a choice of t independent of a.

Similarly

G I a^1 cos axx^dx = T (//, -f 1) cos ^/ztt, f? / sin axx^dx = T (//, + 1) sin J-^7r

are discontinuous for a = 0.

The integral G | a cos ax dx = 0

is continuous, but not uniformly convergent. For

/*

J o

7 «T

ae-TX cos aa? a# = •

a1 -f t2

which has the limit zero for all values of a, but does not approach its limit uniformly.

C. Differentiation ivith respect to a parameter.

§ 25. Let us next consider the equation

G ( fix. a) dx = G I % dx.

da Jo Jo 3a

This rests upon the equations

d

da'

f00 d f°°

G I fix, rx) dx = -y- lim I e~T* a) dx

■Jo da T^0Jo

cZ f00

= lim 7- e~TXf(x, a)

T^o fZa J o

lim f

T^O J 0

e-TX ^ ^

8a

'3/

Jo 9a

It is however, in dealing with the question of differentiation, more convenient to adopt

the alternative form of the definition of the generalised integral, viz.*

r> Uj r> 00 r- 00

G f(x)dx= \ dt xe~txf(x)dx3

Jo Jo Jo

which is equivalent to the definition hitherto followed in all cases of any practical interest.

For if, as we shall throughout suppose,

lim e-rxf(x) = 0

for any positive value of t, it is easy to see that

rrr r00 /,co rT

I dt \ xe~tx fix) dx = xfix) dx J e~~ix dx

JT Jo Jo Jr

= f (e-r*-e-Tx) fix)dx,

J o ■

and / eft xe~txf{x) dx = iim e~TXf(x) dx,

Jo Jo t-*-0 J o

if, and only if, the latter limit exists.

* Quarterly Journal, loc. cit. p. 50.
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The transformation which we have to justify is then

d_

da jo

d

G J / (x, a) dx = ^a J dt J xe~txf (x, a) dx

/• cc ^ /• CO

= I dt^J xe~tx f (x, a) cfoc

= ( dt ( xe~tx % dx

Jo Jo oa

Jo 0a

which rests upon a double application of Leibniz's theorem.

Let us suppose now that ^ is a continuous function of x and a and that

6 da'

where t has any positive value, tends to zero, as x oo , uniformly throughout an interval

Then j xe~tx |£ dx

is uniformly convergent throughout the region

0 < r0 ^ t, a0- H £ a ^aQ + H.

For

df

d0L

dx.

; rX' fif rX' _fr 1

and so I xe~tx ~ dx < xe 27V

\Jx da Jx

that, for any positive value <

xe~tx f (x, a) dx = xe~tx ~- dx,

do Jo da

From this it follows (1) that, for any positive value of t,

d_

da.

(2) that each side of this equation is a continuous function of t and a throughout

the region of values just defined. Now let

/•CO

F(t, a) = xe~tx f(x, a) dx.

Jo

dF

Then — is a continuous function of both variables throughout the region; and so

a sufficient further condition for the truth of the equation

is that the latter integral should be uniformly convergent, i.e. that it should be possible

to make

for 0 < t < Tj and T > Tx respectively, by a choice of rl and 1\ independent of a.
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Now if ti and t2 are any positive values of t

^dt= dt xe-t* % dx

= \ (e~^x - e-f*x) % dx,

Jo 'da

the inversion of integrations being easily justified on the hypotheses that were made above

concerning ^- . Hence our conditions take the form

° da ,

f (e-™-e-^)% dx < e, if (e~T^x - e~Tx)% dx < e.

Jo ca J „ oa

The second condition can obviously be satisfied: the first can be satisfied if

'o da

tends to a limit, as t 0, uniformly for a0 — H ^ a ^ a0 + H. Hence we obtain

Theorem VI. Iff and — are continuous functions of x and a, for a0 — H ^a^a0 + H

and all positive values of x; if further e~TX ~ tends uniformly to zero as x go , for any

positive value of r; if finally G j dx is uniformly summable, then

i- g[ fix, a) dx — G \ % dx.

da Jo Jo da

for a = a0.

§ 26. Examples of differentiation, (i) The integrals

G xa~l e~mix dx, G xa Ja (x) e~mix dx (1),

Jo Jo

are summable if a > 0, a > — \. Moreover, if n is any positive integer, the integrals

G \ x^11-1 e~mix dx, G \ xa+n Ja (x) e~mix dx

1 0 JO

are uniformly summable throughout any interval of values of m which does not include

m = 0, as appears directly from the analysis by which they are evaluated. Hence the

integrals (1) can be differentiated any number of times with respect to m, as may be

immediately verified.

[ * cos fi,e - cos rJX .

(n) If / (*) = / (sm2 x) dx,

J 0

where a and ft are positive, and /' is continuous, we find that

dl

^ = G j sin c xf (sin2 x) dx

1

cos cxf (sin - x) dx,

sm i a7r J o
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the uniform summability of the derived integral following from the analysis by which its

value is found*.

In particular we find

A

da Jo ® "Jo "A"~"vvt~ a

d f x cos Bx — cos ax 7 ^ f00 . _ 1

) — ax = 6r sin ax dx = - ,

Jo x Jo

J (

cos &x — cos ax 7

'd# = loer - ].

The result may be extended to cover the case in which / becomes infinite for

certain values of x in such a way that

I f(sm2x)d%

J o

is convergent.

Similarly, if 1 (a)= j logxdx,

dl [°° 1

we find -j- = G sin ax log # cfo = - - (log a + 7),

afl£ J 0 a

where 7 is Euler's constant, and so

f = 7 (y + Ma°g«)2-(log/3)2}.

(iii) If /(a) = I S1D ^/(sin2a?) dx,

di r°°

^- = Q-J cos a#/(sin2 #) = 0,

unless a is an even integer 2nf. Hence 1(a) is constant for 2n < a < 2 (n + 1), and so

/(a)=rsin(2?z+J>/(s.n^)^

Jo #

which is easily found to be equal to

r*7rsin(2?i + l)x . . 0 x 7

^_ — f (sm2 oc) dec.

Jo smx J

In particular, if 0 < a < 2,

/(sin2 x) dx = i7r f (sin2 x) dx.

J 0 x J 0

(iv) Suppose (as in -§ 20) that

Xo(a, T) = e-(T+M»,a!^,

and consider the integral

r ~rj

I (T) m, /8) = x„ (*, t) cf> (fix) dx (2),

'ft

where /3 is positive, and <j>(u) is a function of u which has continuous derivatives of all

orders, while

e-TU <j) (u) 0,

* Quarterly Journal, loc. tit. pp. 55—58. t Quarterly Journal, loc. ext.
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 33

as u oo , for any positive value of r. Then, integrating by parts, as in § 20, we find

/ (t, m, 0) = S1 0s </>(s> (0) (0, r) + f 0" ^ (0x) Xv (*,T)da> (3).

v-1

s=0 " J 0

Now suppose that, for some value of v, the integral

( <p> (u) u* du

Jo

is absolutely convergent. Then the integral

\ 0»<f>V(0x)Xv(x,T)dx

J o

is absolutely and uniformly convergent throughout any region of values of r, m, and 0

defined by inequalities such as

0^t^t0, 0<m0<m, O<0O<0,

and tends uniformly to the limit

/•OO

0v^{0x)Xv{x, °)da;

J 0

as t-*~0, for all such values of m and 0. Also

(0, t)^Xs+1(0, 0),

uniformly for all such values of m. Hence, under the conditions stated, the integral

Jo

is uniformly summable.

Thus, e.g., the integrals

p e-m^ ^ da? f00 e~m^ of- dx

where yu, > — 1, are uniformly summable for m0 < m, /30 < /3, and the reader will easily

write down any number of such examples. This result enables us to justify the processes

used in the following examples.

(v) If /(m)=Ojo —

■ x

00 e~mix xk dx

dl [20 e~mix a

where X > 0, then -r— = — i G I -~—

dm Jo 1 +

and ^- -il = -iG [ e-mix^a-i^

am Jo

= -;r(\)m-xe~4X,ri,

an equation whose solution is

I = % r (\) e(m" * x"} * (f er* r * ^ + a

Vol. XXI. No. I.
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It is easy to prove that I 0 as m oo . Hence

Jo l+# J«»

a result which is easily verified in special cases.

(vi) If I(a)=f ^2f(sm^)dw,

d2I f00

we find that ^ — / = — G j cos a#/(sin2 x) dx = 0,

unless a is an even integer.

Thus if 2n<a< 2 (w +1),

we have / (a) = ea + Bn e~a,

where An, Bn are given by the equations

I2n ~ An6"n Bn6 2?1,

l2n+2 = Ane*n+2 + Bne-m-\

If /(sin2#) = 1, ^—, — 7=0 for all values of a, so that

I = Aea + Be~a,

from which we deduce the well-known formula

f00 cos ax 7 n

-—— dx = ^7re~a.

U 1 + x2

'o 1+^2

The same method may be applied to obtain the formula

J (a) = J" ^-^2 dx = J {e-* Zi (e*) - Zi

b>y means of the differential equation

T _ 1

And it is evident that this method is capable of very general application to integrals

of the form

/ °0S ax R (x) dx.

Jo sin

f00 . dx

(vii) * If J (a) = tanh \irx sin ax ——9,

Jo J- -r #-

d2I f00

we find -y-0 — I = — G l tanh ^-7r# sin a#c&£

da2 Jo

^ f00 . 7 rt r sinct^ 7

=~~ J o Sm ^ Jo ^+1

= — cosech a,

and hence can deduce that

I (a) = | {e~a log (e2a -l)-ea log (1 - e~2a)}.

Many other integrals of a similar type may be calculated in the same way.

* For the next two examples cf. Bromwich, Infinite Series, pp. 496—7.
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(viii) Let P (oc) = a0xn + axxn~^ +... + ««:

then the integral G f sp-1 eipw dx (p > 0)

J o

is uniformly convergent throughout the region defined by

0 < a0° < a0 < a0\ ar° < ar< a,.1.

This will be proved if we can show that, if X is any positive number, the integral

p go

rc^e-TX+iP{x) dx

J x

tends uniformly to a limit as r 0.

Let y = P(x). Then, if X is large enough, and z = yVn, we have, for y = P(X),

expansions of the forms

x= Az ^1

-T^S 1+

z z*

A,

dy V £ £2

where A > 0, these series being absolutely and uniformly convergent for y ~ F and for all

values of the coefficients in question.

Now, if m is large enough, the integral

is uniformly convergent and tends uniformly to a limit as Hence the problem is

reduced to that of showing that

J yk e-^'^y dy

tends uniformly to a limit as r 0. But if

^o(y) = yK eiy,

f1(y) = G( ir0(t)dt9

J v

t2(y) = ef fAt)dt}

we have £ f0 (y) e^1"' dy = f s+1 ( Y) (J£f (e^*)
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Now (§ 20)

and

\^rv(y) < KyK

where a = 1 — *. By supposing v large enough we can make X — v (\ — negative and

as large as we like, and so ensure that

is uniformly convergent, for 0 ^ r ^ t0, and tends uniformly to a limit as And so

J yk e-ryv'iJriy dy

tends uniformly to the limit

^Y) = Gj yK^dy.

The result enunciated originally is thus established.

/•00

Now let I(a)= eipw dx,

Jo

where P (x) = a0xn + a^1"1 + a2xn~2 + ... + an_2x2 + olcc.

The integral is convergent if x > 1. Also

. r00

-7-tt = ikG xk eiP[x) dx,

dak Jo

these integrals being, as is easily proved, convergent in the ordinary sense if k ^ n — 2.

Hence

fjn—i J T

Ua^{n~l) do^ + <n " 1} ^'"(n~2) + -

since

and

+ 2a?l_2 i"1 ^ + a/ = G F(x) ef^ dx = i;

CtCL Jq

I eiP(x) = iim ( e-x+iP(tx) cix = lim - \ e~wt)+iP^ dx = lim ^ I* eiP® dx,

/

J o

eiP{x}dx

<K,

so that i e*p^=0. Suppose in particular that a0 = 1, a2 = a2 = ... = <xn_2 = 0. Then

,;-(w-D .

dan~

Thus, if n = 3, we see that

satisfies the equation

ei(t*+ax) ^

o d-I T
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or that

cos (a? + ax) dx, I sin (x3 + ax) dx,

J o

d2I , T d2I 1 T 1

satisfy the equations

a result originally due to Stokes*.

D. Integration of a generalised integral with respect to a parameter,

§ 27. I shall consider finally the question of the integration of a generalised integral

with respect to a parameter, as expressed by the equation

| da G \ f(x, a) dx = G \ dx j f(x, a) da (1).

J p Jo" Jo J p

This formula rests upon the transformations expressed by the equations

^da G I f(x, a)dx= | da \ dt \ xe~txf(x, a)dx'

J j8 Jo J p J o Jo

= j dtTdaf xe~txf(x, a)dx

'l 3\ U f I (2),

= dt xe~tx dx I' f(x, a) da

JO JO J p

= Gj dxf: f(x, a) dx J

i.e. on a repeated inversion of integrations.

I shall suppose (a) that f(x, a) is continuous throughout the region 0 ^x £ X, /3 ^ a ^ 7,

for any value of X however large, (b) that, for any positive value of t,

e~TXf(xy a)-^0

as x oc, uniformly for all values of a in the interval 7), and (c) that

G I f (x, a) dx

Jo

is uniformly summable throughout the same interval.

In the first place, the conditions (a) and (b) are sufficient to ensure that, for any

positive value of t,

j da i xe~txf (x, a) dx = j xe~tx dx \ f (x, a) da (3).

J/3 JO JO J/3

For, however large X may be, we have

( da ( 'xe~txf(x, a)dx—l 'xe~tx dx [ f(xya)dx (4).

J p J 0 Jo J p

But we can choose K so that

htx

\f{x,a)\<Ke*

L vol. iv. Mr Broi

romwich, arriving

Infinite Series, p. 497. Since this paper has been in type shortly in the Messenger of Mathematics,

* Stokes, Math, Papers, vol. 11. p. 329 and vol. iv. Mr Bromwich has devised a shorter and simpler method of

pp. 77, 283; Stolz, GrundziLge, bd. 111. p. 30; Bromwich, arriving at the results of this section, which will be printed
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for all values of x and a in question, and then

[ j7da|A xe'txf{x9 a) dx < K(y - /3) j xe~**x dx

= K(y-/3)e^(l+±tX)

for all values of X' greater than X. The last expression has the limit zero as X oo.

From this it follows that

lim I da I xe~tx f {x, a)dx=( di \ xe~txf(x, a)dx,

X-*~oc J 8 J 0 J 8 J o

and so that (3) follows from (4).

Now let F(t, a) = f xe~txf(x, a) dx.

This integral, as is easily seen, converges uniformly with respect to t and a throughout

any domain bounded by inequalities

and so is a continuous function of t and a throughout any such domain. Hence

P da (TF(t, a) dt = \Tdt P F{t, a) dz.

But \f(x,a)\<Ke?,

and so, if t > 1,

r00 ir

Jo (£ —J

i)2

Thus, if 2">r>l,

P da [T F(t, a)dt \<(y-/3)K f < f,

J B J T 1 J J

(^l)y

which tends to zero as T oo . Hence

P da f F{i, a) d£ = lim P f * = lim f * P = f eft P JFft a) da.

I shall now prove that if the condition (c) is satisfied we may replace r by 0 in this

equation. To see this we observe that if 0 < r < r

jy da |T F(t, a) dt = jydajTdtj xe~txf(x, a) dx

= P da( {e-T'x- e~TX)f{x, a) dx.

J B JO

But if j e~TXf(x, a) dx
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converges uniformly to a limit, as we can, given 6, so choose r0 that

<6

< €

for 0 < t < r ^ t0, /3 £ a ^ 7,

I fy fr

and so ;I da | a) d£

for all such values of r, t and a.

We can now state

Theorem VII. If (a) f(x, a) {5 continuous for 0 ^ x ^ X, /3 ^ a ^ 7, however large X

may be; (b) for any positive value of r

e-7Xf(x, a) 0

uniformly for /3 ^ a ^ 7; awd (c) integral

G f (x, a) dx

J 0

is uniformly summable for /3 ^ a ^ 7,

\ da G \ f(x, a)dx = G \ dx j f(x, a) da.

J P JO J 0 J P

§ 28. A particularly interesting special case of this theorem is one which leads us

"to certain extensions of Dirichlet's integral and Fourier's double integral, which are due to

Sommerfeld *.

Suppose that f(x, a) = f(a) e-imxa,

where m > 0. Then G e~imXadx is uniformly summable in the interval /3 ^ a ^ 7 if ft

Jo

and 7 have the same sign, say the positive. On this hypothesis we obtain the equations

G C dx P f(a)e-im*°-da = ^- P' ^ da,

Jo Jp im } $ a

G \ dx I f(a) cos mxa da = 0,

Jo J j8

6? f cfe P /7a) sin mxa da= —-I J-^- da.

Jo Jp mJp a

It is of course well known that if is monotonic as well as continuous (or,

more generally, is a fonction a variation bornde) the integrals on the left-hand side of these

equations are convergent in the ordinary sense. For

[x 7 fy x 1 1 f7 */ \ sin mXoL 7

dx f (a) cos mxa az = — I j (a) — da,

Jo Jp J £ «

rY? fy jn \ - ^ 1 P ^/ \1 -~cos ^

dx \ j (a) sin m#a aa = — / (a) da,

Jo J p m J p a

* Dig willkurlichen Funhtionen in der Math. Physik, Bromwich. The idea which is the base of Sommerfeld's

Inaug. Diss., Konigsberg, 1901. See also Carslaw, Fourier's work appears to go back to Cauchy; see e.g. his Memoire

Series and Integrals, p. 186. I owe these references to Mr sur la Theorie des Ondes, Note vi. (CEuvres, t. i, p. 133).
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and the integrals on the right-hand side are known to have the limits

m J js a

as X oo .

If B = 0 the formulae cease to be true, and in fact

dx I f(a) cos mwz da = f(0) (5),

o Jo *w

G

whereas the corresponding sine integral is in general divergent.

It is very easy to establish the formula (5) on the assumption that f(a) is continuous,

the only case contemplated in the general theorem. As however the result is one of

considerable interest in itself, I shall adopt less restrictive hypotheses*. I shall suppose

only that

(i) /(a) is integrable in any interval throughout which it is limited,

(ii) / (+ 0) is determinate,

(iii) |* \f(a)\da is convergent.

Jo

Then it is easy to see that

I e~TXdx I f (a) cos mxa da = I f(a)da\ e~TX cos mxa dx

Jo Jo' Jo Jo

da

Jo t2 + m2a2

for any positive value of t. For e~TXcos mxaf(a) is an integrable function of the two

variables x and a throughout any rectangle (0, X; 0, 7), so that the equation certainly holds

when 00 is replaced by any positive number X, however large. And

P f(a) da ( e~rxcQS mxa dx \< - e~rX P \f (a) | da,

Jo J x I t Jo

which tends to zero as X 00.

Moreover, on the hypotheses which we have adopted,

r n rf(a) da ir AN

hm / v yv-2 = -—/(+ 0).

For let /(«)-/(+O) = 0(«)

so that <j>(a)-*~Q with a. Then

H r(f> (a) da I _ / -8 [y\ T<f> (a) da |

\Jo

t2 + wi2a2

5 / t2 + ??z2a2

(a)l^

ft)7T

2m T

where a> is the upper limit of \<j>(a)\ in the interval (0, S).

* The succeeding analysis is not essentially different from Sornmerfeld's, but rather more general and direct.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



THEORY OF DIVERGENT SERIES AND INTEGRALS. 41

Let S = ts, where 0<s<^- Then co and r/(T2+m282) each tend to zero with t, and so

(y T(f>(a) da

Jo

-0.

/0 T2+m2a2

T> 4. S/ , AX fY 1 W , AN fW7/T ^ 17 4 /AX

which establishes the result desired.

Similarly we can show that

f e~TXdx [ f(a) sin mxa da = [7 m<*/(a)

Jo Joy Jo T2-f?7l2^

in general tends to + oo or to — oo (according to the sign of /(+0)) as

If however f(a)=aF(a), and ^(a) — F(+0) as a +

f e~rxdx [ f(a) sin m#a da = m f * a f^f*

Jo JoJ Jo T2+m2a2

= — \ F(a)doL-r\ -7 F(a)da.

m Vo w Jo T2 + m2a2J mj0 v y

§ 29. The equation (5) expresses a generalisation of Dirichlet's integral much on the

lines of Fej^rs generalisation of Fourier's theorem, in which the 'conditions of Dirichlet'

are removed and mere continuity (or integrability) assumed, and the Fourier's series, while

possibly oscillatory, summable by Cesaro's method of mean values.

It is easy to obtain other generalisations on similar lines. For example, if f(a) satisfies

conditions similar to those imposed in it in § 28, we have

lim I e~iTX)2dx j f(a) cos raxa da = lim f f(a)da\ e~(TX)2cosmxa dx

t^-0 Jo Jo t-*~0 Jo Jo

= i-*j7r P/(«) e-{ma^2da

*T Jo

by a well-known theorem of Weierstrass*.

But a generalisation more precisely on Fejer's lines can be obtained by using the

definition!

G f (f)(x)dx = l\m - [ dt ( <f)(u)du,

J 0 x^oo % J 0 Jo

We have then to state conditions under which

1 fx ft fy 7r

lim - dt I du f(a) cos mua da = ^— /(+ 0).

a>-*cc% J 0 Jo Jo 2*m

* This formula also is given by Sommerfeld (loc. cit.). our previous definition, see the same paper, p. 54, and

f Quarterly Journal, loc. cit., p. 53. For a proof that, C. N. Moore, Trans. Amer. Math. Soc, vol. vm. p. 299.

under very general conditions, this definition is included in

Vol. XXI. No. I. 6

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s
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If / (a) satisfies the conditions employed above, we can invert the integrations, and obtain

f dt ( du (y / (a) cos mua da = f7 f{a) da [ dt f cos mua d*i

Jo Jo Jo Jo Jo Jo

fy v 1 — cosm#a 7

= /(a) t—x7— da,

Jo*7 w (ma)2

so that Gr f da; P f (a) cos mxa da = lim P /s^n ^ma?aV/(g) jrffda,

Jo Jo Jo V iww?a /

if the latter limit exists. Since

lim P f™*"")'^ = lim I du

Jo V \mxa J z x+ac mJo \ u J

mj0 V u J 2m

it will be seen that what we have to prove is that

1 fy /sin hmxa\2 , , x ,

where $ (a)=/(a) —/(+ 0) tends to zero with a.

Let p be a positive number less than 7, and let co be the upper limit of |</>(#)|

in the interval (0, /?). Then

1 I [p /sin^r mxa\2 , . x . g> f00 /sin -A-m#a\2 .

- —f (#) da < - —^ da

xj0\ fma / r #Jo \ fma /

2ft) f00 /sin wA2(i^ — ft)7r

m J 0 \ u J m'

, 1 I fY /sin A??2#a\2 . / x 7 I 4 fY I . / \ 1 j

Thus I1 P f SM^ V (a) <*« < ^ + - *- P I * («) | da,

# | Jo \ \ma y ^ w m in2p2xj0 T 1

and if we choose p so that

p 0, p2# 00 ,

as by taking p = #~s, where 0 < s < we see that the limit of the right-hand side is zero.

Thus the result is established.

It is of course well known that there are continuous functions f(a) for which the

equations

lim IY/0) Sm da = \irf{ + 0), f dx (V(a)cos (mxa) da = ^-/( + 0)

X-^oo Jo 0t J 0 J 0 4M>

do not hold. An example of such a function was given by Du Bois Reymond, and a

simpler one by Schwarz* The functions given by these writers are of a very complicated

type and defined by an enumerable sequence of different formulae, in a corresponding

* See Hobson, Theory of Functions of a real Variable, pp. 701 et seq., for references and further discussion.
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THEORY OF DIVERGENT SERIES AND INTEGRALS. 43

sequence of intervals of values of x approaching the origin. In all such cases any of the

generalised forms of Dirichlet's Theorem hold.

§ 30. (ii) Suppose

fix, a) = /(s) cos mx (a — a).

Then G I cos mx (a — a) dx = 0

J o

is uniformly convergent in any interval which does not include x = a; and so

G \ dx I f(a) cos mx (a — a)da = 0 (6),

Jo J 0

if (/3, 7) does not include a = a.

On the other hand, if /3 < a < 7,

(? I cZ^c? / /(a) cos m# (a - a) doc = — f(a) (7),

Jo J 0

as may be shown by arguments precisely similar to those of § 28. When /(a), besides

being continuous, satisfies Dirichlet's conditions, the sign of the generalised integral may

be omitted, and the formulae reduce to Fourier's double integral formulae.

These formulae of course hold under wider conditions, and so do (6) and (7). It may

be proved, precisely on the lines of § 28, that if f(a) satisfies the conditions there laid down,

/W03 + 0) (a = £)

W(7-0) (a = 7)

f 00 f Y

G dx f(a) cos mx (a — a) da =

Jo J /3

^{/(a-0)+/(o + 0)} (/3<a<?)

0 (otherwise),

a formula equivalent to Sommerfeld's principal result.

Again, precisely on the lines of § 29, we can show that the above equations remain

valid when either of the definitions

/.GO /•<*>

G\ f(x)dx = lim e-Wf (x) dx,

J 0 t-*-0 J 0

G I f(x)dx = lim - ( dt ( f(u)du,

J 0 3^-00 J 0 Jo

is adopted.

§ 31. (iii) As a final illustration I shall consider Hankei's generalisation of Fourier's,

double integral theorem by means of Bessel functions. Hankel* first gave the formula

f00 fy 0

xJv(ax)dx f (a) Jv (ax) dx = (8),

Jo J J8 / W

* Math. Annalen, bd. vm. p. 482.

6—2
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where /3, 7, and a are positive, according as a does not or does fall inside the interval (#, 7)

A rigorous proof that the value of the integral is

i {/(a - 0) +/(a + ())} (6 < a< 7),

i/X/3 + 0) 08 = a), 1-/(7-0) (a =7),

0 (a < /3 or 7 < a),

has been given by Nielsen*, it being assumed that

22(i/)>-l, .

and that /(a) satisfies Dirichlet's conditions.

A generalisation of Hankel's formula on the lines of §§ 29, 30 has been attempted

and partly achieved by Sommerfeld in his dissertation already quoted. Sommerfeld shews

that the formula holds for any integrable function in the form

£{/(a-°)+/(*+o)h

limf e~^xJv(ax)dx Pf(a)Jv(ax)da = %f((3+ 0), ±f(ry-0)\ (9),

r-^OJ J/3 q

i.e. that

G I" xJv (ax) dx P f(a) Jv (ax) da = \{f(a- 0) +f(a + 0)}, etc (10),

J0 J/3

if the definition of the generalised integral by means of the convergence factor e~^2 is

adopted.

But when the convergence factor e~TX is used Sommerfeld only succeeded in esta-

blishing the result for integral values of v. I shall now prove that the formula holds

for all values of v whose real part is greater than — 1.

§ 32. For this purpose we require the value of the integral

f xe~rXJv (ax) Jv (ax) dx (11),

Jo

where R (v) > — 1 and r, a, and a are positive. For this purpose we start from the

formula f

2 (v + s) P/ (cos 0) Jv+S (ax) Jv+S {ax)

= (a2 - 2aa cos 0 + a2)~*" J* {x*J(a2 - 2aa cos 0 + a%

It is easy to prove that we are justified in multiplying this series by xe~TX and

integrating term by term from 0 to 00 . We thus obtain

2 (v+ s)Psv (cos 0)IS

s=0

= ^T^V (a'2 - 2aa cos 6 + a2)~hU \ xV+1 e~TX Jv WO*2 ~ 2a* cos 0 + a2)} dx

1 W Jo

^ 2(aayT(v + i) r

T(v) Vtt (T2 + a* + a2 _ 2aa cos 0)v + i>

* Cylinderfunktionen, pp. 366—370. f ibid. p. 280.
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/•CO

where Is = xe~TX Jv+S (ax) Jv+S (ax) dx.

Jo

Let us suppose for the present that R(v)> — ^. Then it is easy to see that we can

multiply this equation by

(sin 0)2v,

and integrate term by term from 0 = 0 to 0 = 7r. Since it is known that

fn (sin P/ (cos 0)d0 = O (s> 0)

Jo

we obtain

j = (2y + l)(a«)y p t (sin g)2ycZ^ 9

J o (t2+ a2 + a2-2aa cos (9/+l

)(T2+a2 + a2-2aa cos (9)'

Let us, in Sommerfeld's notation, write

^2 = (r2 + a2 + a2)2-(2aa)2

= {T2 + (a + a)2}{r2 + (a-a)2},

t2 4- a2 + a2 = 4f, 2aa = 4 V(£2 - 1).

We then obtain

2-*(2i/ + 1) (? - 1)^ fff T(sing)2yrifl

»{f-V(i2-i)cos^j

Now Hobson* has given the formula

(sin 0)2vd0

Jo irA* Jo \P— V(f - l)cos 6y+¥

1)2"/0{r-v(r-i)cos^-»

- "^} 2" + 4) {p»"(0- - e—* sin ™-<2„*(£)},

I> +

and also the formulae f

T(n-v + 1)

P„-'(f) = P_^.r'(e).

If in these formulae we put n = — |, we see that

|P«' (f) - ^ sin (£)} = P„-" (f),

{i-v(r2-i)cos^r+*

= 2V^r(i;+i)P_4-'(D

= 2ywI> + i)P4-'(£).

* P/u'Z. Trans. 2to?/. Soc. (A), vol. clxxxvii. p. 493.

t ibid. pp. 462, 452.
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Hence we deduce

\ xe~rxJv(ax) J"(ax) dx = 2F^V * & T Pt-y( g) (14)

If however z/ is integral we have also

J xe~TXJv{ax)Jv(ax)dx

=^w«> («>

The function which Hobson denotes by P_»v(f) would be denoted by Heine or

Sommerfeld by

//2\ P*(Z)

vWr(f-i»)'

so that in this notation we obtain

and this is the result obtained by Sommerfeld for integral values of v.

The formula (14) has been proved on the assumption that R(v)> — \. Each side of the

equation represents an analytic function of v regular for all values of v for which R(v)> — 1,

and the equation therefore holds for all such values.

§ 33. We have thus the formula

f xe-rxJv(ax)Jv(ax)dx

J o

= 2J>±I) I Pl-,f T2 W" 1 (i6)

Vtt {r2-f (a + a)2}*{r2-f * ([T2 + (a + a)2^[T2+(a-a)2]^",V *

and it is clear that, unless a = a, this expression tends to zero with t, and moreover does

so uniformly in any interval of values of a which does not include a = a. Hence

G \ x Jv(ax) Jv (ax) dx = 0 (a ± a) (17;;

Jo

moreover the integral is uniformly summable in (/3, 7) if that interval does not include a.

In this case, therefore, by Theorem VII

G f x Jv(ax)dx fyf (a) Jv(ax) dx = 0.

If, however, a = a, and £-^oo as In this case we require an asymptotic

formula for Pfv(%).

Now it is known* that

where j e$ | < iff

* Hobson, loc. cit., p. 463. When n — % the expansions can easily be deduced by a passage to the limit,

there given become illusory, but the appropriate expansion
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and, if /3 > 0, K is independent of £ or a. Hence it follows that, if ft < a < 7,

lim [*/(«) da ( xe~TXJv (ax) Jv (aw) dx

t-*»0 J j3 Jo

«?! lim fV(a)Tfi-4-*da

= — lim |———-—ryr-7——j- r-, f(a) aa,

7T T^o J/3{t2 + (ciH-a)2}{T2+(a-a)2}y v;

provided that the last limit exists.

We divide the range of integration into the two parts (/3, a), (a, 7). Let us first

evaluate the limit

Hm T T(T2 + a° + Q*

™ J, p+ (a + af] (tH (a - a)2]

The integral is equal to

—7 ttit arc tan I ~ + J arc tan -7- i-^— -44

r2+(a + #/ V t y V r 7 da \ r2+(a + a)2 J

It is easy to see that the last integral is continuous for t = 0, so that the expression

tends, as to the limit

>2 + /32)^ f« d f(a2+a2)i)

, r(a2 + /32)^ f« d f(a2+a2F{ ,

L"(a+ /3)2 + J, di ITa + a)2 }

7T

V2'

Hence, if /(a — 0) is determinate,

2*,. fa T(r2 + a2 + o2)4 ,, ... AN

tt T-~Jp {T2 + (a + a)2} {r2 + (a-a)2}-/ v 7 -/

Now let /(a)-/(a-0)=<£(a),

so that <j>(a)-3~0 as a-*-a —0. Then

; fa T(T2+a2 + a2)* . , <|/'a-sL [a I

J,{T2+(a+a)2}{T2+(a_a!^(«)da =|j„ rJ.-,:

T(r2+2a2)* fa, ,

<(r^)(THS-)j/(a)'tfa

j. f T(T2+a2 + a^ ,

+ ft,Ja-S{T2 + (a+a)2} {t*+ («-«)")*"•

where a> is the upper limit of | $(a) | in the interval (a — S, a).

The first term is less than Kt/(t2 + S2),

and the second is less than

~~a~~ Ja-a T2 + (a-a)2 2a
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48 Mr HARDY, FURTHER RESEARCHES ON DIVERGENT INTEGRALS.

If S = ts, where 0 < s < ^, each of these expressions tends to zero with t. Hence

— lini r- 1—wl f t>—t r— /Ya) da = A r (a — 0).

The integral from a to 7 can be treated in a precisely similar manner, and so we arrive

at the equation (10) of § 31. Thus the result proved by Sommerfeld for integral values of

v is extended to all values of v whose real part is greater than — 1.

§ 34. When e~-<Ta?>a is used as the factor of convergence the work is easier since, by a

well-known formula,

j°e-<r*>*x Jv {ax) Jv {ax) dx = ^ f ^ J* (^^) ■

* Sommerfeld, loc. cit. p. 31; Nielsen, Cylinderfunktionen, p. 184.
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from the Falmouth declination and

horizontal force magnetographs on

quiet days in years of sun-spot

maximum and minimum 165

Crofton, Morgan, law of error 45

Double zeta functions and double

gamma functions, expression in

terms of elliptic functions 1

Doubly-periodic coefficients, equations

with 328

Edgeworth, The law of error 36, 113

Electromagnetic fields on the spark

spectra, the influence of very strong

193

Expansions, asymptotic 215

Equation, a partial integral 246

Equations, generalised Picard 389

Equations, Halphen 426

Equations, integral 233, 281, 371

Falmouth declination and horizontal

force magnetographs, results from

165

Fourier coefficients, diurnal in-

equality 177

Fredholm, 234, 281

Functions defined by simple types of

hypergeometric series, Part i the

series ^ {a; p; x) 254

Functions defined by simple types of

hypergeometric series, Part n the

function o^i {/>; %} 270

Functions, Bessel 270

Gamma function, simple 7

Gamma function, double 20

Halphen 426

Hardy, On the expression of the

double zeta function and double

gamma function in terms of elliptic

functions 1

Highly convergent product forms 253

Hilbert 236, 281, 373

Hypergeometric series 253

Integral equations, a class of 233

Integral functions, asymptotic ex-

pansions of certain 215

Invariants and covariants, irreducible

151

Iridium 213

Kummer 270

Law of error 36, 113

Laplace, law of error, 51

Littlewood, On the asymptotic ap-

proximation to functions defined

by highly-convergent product-forms

321

MacMahon, Memoir on the orthogo-

nal and other special systems of

invariants 142

Magnetic field 296

Magnetographs 165

Mercer, On the solutions of ordinary

linear differential equations having

doubly-periodic coefficients 383

Ordinary linear differential equations

having doubly periodic coefficients,

solutions of 383

Orr 256

Orthogonal and other special systems

of invariants, memoir on 142

Oscillating functions 281

Page, The variation of the absorption

bands of a crystal in a magnetic

field 291

Picard 372, 383

Platinum, 211

Pochhammer 270

Perpetuants, relations among 65

Purvis, The influence of very strong

'electromagnetic fields on the spark

spectra of vanadium and platinum

and iridium 193

Quintic surfaces which admit of inte-

grals of the first kind of total differ-

entials 74

Quintics with a double conic and a

triple point 75

Quintics with a double conic and a

double point 76

Quintics with a non-degenerate double

conic but with no distinct multiple

point 83

Quintics with a double conic, consist-

ing of two coincident straight lines,

but with no distinct multiple point

105

Quintics with a double conic consist-

ing of two distinct intersecting

straight lines, but with no distinct

multiple point 90

Series, hypergeometric 253

Spectra, spark 193

Sun-spot-frequency 166

Syzygies 157

Transcendental equations, reality of

roots of certain 371

Variation of absorption bands 291

Voigt 322

Weierstrass 380

Wolf 186

Wolfer 166

Young, On relations among perpetu-

ants 65

Zeta and gamma functions, simple 3

Zeta and gamma functions, double,

13

Zeta functions, double, special cases

of 21

Zeta and gamma functions, connec-

tion with Barnes' contour integrals

31
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CORRIGENDA AND ADDENDUM.

p. 36, line 13, for "jfc", read "V'.

p. 42,1. 9, for " as unity ", read " as of the order unity ".

p. 43, 1. 8, for "function for y0 as the firstread

"function of x for 3/0 > the first".

p. 51, last line, for "OtA#", read "Ofc".

p. 52,1. 7,/or "£", read "£0 (£)

p. 53, 1. 6 from bottom, for "J», read"

p. 60, 1. 9, put brackets outside the right member of

the equation and outside the bracket on the

right, "y0".

p. 60,1. 10. Make similar correction.

p. 61,1. 8, for "x3?', read "x3 + ...".

p. 118, put at the beginning of the last line, also of the

line fourth from the bottom, and the line seventh

from the bottom, " - " (the minus symbol).

p. 119. Make similar correction on lines 3 and 5.

p. 123,1. 10, for "in general", read "at first".

p. 123,1. 11, for "will be found necessary", read "is

convenient".

p. 141 Add 4 The writer desires to refer to his paper

on " The Generalised Law of Error" in the Journal of

the Statistical Society for September 1906: where a

condition which is mentioned only incidentally in the

paper on the Law of Error in the Oamb. Phil. Trans.

(at pp. 114, 115), viz., the case in which the series of

coefficients kx, k2, kz... descends less rapidly than by

powers of 1/s/m (m being the number of elements), is

shown to be generally admissible, and to permit the

extension of the generalised formula to a large class

of concrete statistical groups.5

p. 285 for <j> (s) =f(s) - X \ k(s, t)<f> (t) dt.

J 0

read f(s) = # (s) - X j* h (s, t)<f> (t) dt

p. 286 for <j>(s)=f(s)+\ K(s, t)<t>(t)dt,

read $ {s)=f(s) + X j*K(s,t) f(t) dt.
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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II. On the Longitudinal Impact of Metal Hods with Rounded Ends.

By J. E. Sears, B.A., St John's College.

[Read 28 October, 1907.]

PREAMBLE.

In a former paper under the above heading*, a description has been given of some

experiments undertaken with the object of comparing the values of Young's modulus in

metal rods as determined by static and dynamic methods. Previous experiments on the

subject f had given rise to no conclusive results, though a higher value of E seemed to

be generally obtained in the dynamic tests. Such an effect might be accounted for by

assuming a time-lag between stress and strain, so that in the case of extremely rapid

applications of stress (such as are involved in the propagation of elastic waves in the metal),

the full value of the strain would not have time to be developed. This would give rise to

an apparently higher value of E3 and consequently of the velocity of wave propagation,

which, according to St Venant'sJ theory, is a/—. It was with the object of finally settling

v p

this point that the experiments were originally undertaken.

The method employed was to determine the velocities of propagation of elastic waves in

long rods of the metals by means of observations on the duration of longitudinal impact

between them. According to St Venant, for pairs of rods of equal length, this should be

simply the time required by a wave to travel twice the length of either rod. The experiments

of Voigt§ and others had, however, shewn that this is influenced by the nature of the ends

of the rods where contact takes place, and that the actual duration of the impact is always

larger than the above by an amount which we shall call the "end-effect."

For convenience in working, the ends of the rods in these experiments were rounded

off, but even with the most carefully polished plane ends, the end-effect still persists. It

was, however, found to be independent of the length of the rods (using them always in

pairs of equal length) provided the velocity and other circumstances of the impact were

kept the same. By plotting duration of impact against length of rods a straight line was

thus obtained whose slope gave the required value of the wave velocity.

* Proc. Gamb. Phil. Soc. vol. xiv. pt. m. J Liouville, ser. 2, t. xn. 1867.

f Wertheim, Ann. de Chim. et dePhys. 3e s6r. tome xii.; § Wied. Ann. xix. 1883.

Hopkinson, Proc. Roy. Soc. vol. lxxiv.

Vol. XXI. No. II. 7
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50

Mr SEARS, ON THE LONGITUDINAL IMPACT OF

The duratioDs of the impacts were determined by the method first introduced by

Pouillet*, and subsequently applied to the same problem by Schneebeli+, HausmaningerJ,

and Hamburger§. The particular form of the method used in these experiments is simply

represented by Fig. 1. An electric circuit is completed by the contact between the rods

r1} r2i the total quantity of electricity which passes, from the moment they first meet,

until they again separate, being measured on the ballistic galvanometer G.

=1 C

Fig. 1.

The resistance R1 is made so great that the contact resistance between the rods may

at all times be neglected, so that, ignoring for the moment the effects of self-induction,

we should have

V R

q = ^T, or T=yq

where q is the quantity of electricity; V the voltage; R the total resistance of the circuit;

and T the duration of the impact.

The galvanometer was calibrated in situ by placing a standard condenser in the circuit,

and charging to a known voltage. In this way the galvanometer works during calibration

under as nearly as possible the same conditions as in the actual experiments—viz.. making

its flings on open circuit ||.

Some difficulty was experienced in determining the necessary corrections for self-induction,

the whole effect being very small, and the coil of the galvanometer, which accounted for

nearly all of it, having a very high resistance. The ultimate correction was found to be

simply an addition of 2'5 x 10~6 seconds to the duration of impact 1T.

The rods were suspended from two parallel wooden beams by 'V's of fine cord (fishing

line), Fig. 2, being thus compelled to swing always in the same vertical plane, and with

their axes always horizontal. They were connected to the electric circuit by long light

flexible wires wl and w2. In their lowest position the rods were collinear, and just in

contact at their ends. The radius of the arc described was 5 feet.

* Pogg. Ann. 64, 1845.

f Ibid. 143-145, 1871-2.

X Wiener Sitzungsberichte, 88, 2te Abth.

§ Wied. Ann. 28, 1886.

II This is a matter of some importance. See also p. 73.

IF For the method by which this was finally determined,

as well as for more detailed descriptions of the apparatus

in general, the reader is referred to the paper (Proc. Camb.

Phil. Soc. vol. xiv. pt. m.) already mentioned.
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METAL RODS WITH ROUNDED ENDS.

51

The cords, C, were used as guides in adjusting the rods for collinearity, and were

removed when this was attained.

The rod, r2, was then withdrawn by means of the cord, c, to a distance which could

be measured by means of a travelling telescope. This cord passes under a small pulley,

P, to a dropper, D, which is supported at its upper end by a fuse wire, F. The rod is

released by blowing the fuse. The diameter of all the rods used was \", and the radius of

the spherical ends 1".

Fig. 2.

The withdrawal finally adopted was 2", giving rise to a velocity of impact of about

5" per sec. It was found, during the preliminary experiments on steel rods, that any

higher velocity than this led to overstraining at the centres of the ends of rods, the slight

flattening of the ends (which was easily detected by observing the reflexion of a straight

line in their highly polished surfaces) giving rise to an appreciable diminution in the end-

effect. Even such a small velocity as 5" per sec. produces a mean pressure over the

area of contact far higher than the elastic limit of the steel under static compression, and

7—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



52

Mr SEARS, ON THE LONGITUDINAL IMPACT OF

it appears probable that very high pressures may be applied instantaneously without pro-

ducing any permanent effects*.

Any reduction in the withdrawal below about 2" increased considerably the difficulty

of obtaining accurate results, so that, in the cases of copper and aluminium, this overstraining

effect could not be avoided. The end-effect thus diminished gradually with successive im-

pacts until a steady state was reached. Referring to Fig. 3, in which the results of the

experiments are plotted, it will be seen that for these metals two parallel straight lines

are obtained, the points on the dotted lines each representing the first observation of a set,

and those on the full lines representing the means of several readings taken after the

steady state was established.

7 | 1 , 1 , , , , , ,

* This conclusion is in| agreement with Prof. Hopkinson's observations, loc. cit. See also p. 78.
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METAL RODS WITH ROUNDED ENDS.
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The figures are a* follows:

Length of rods\

(inches) /

Time of impact"!

(10-4 sees.) J

Steel rods, 2" withdrawal

5|

1-501

13|

2-319

21|

3-089

29f

3-868

37|

4-675

Copper rods, 2" withdrawal

Length of rods (inches)...

°8

13|

2-993

2-721

21^

4-064

3-817

37|

6-193

'6-041

Time of impact (^-n^^a^

(10-sees.) -jsteady

1-845

1-617

Aluminium rods, 2" withdrawal

Length of rods (inches)...

6

16

2-602

2-272

26

33-621

3-354

36

4-619

4-359

Time of impact j^n^^a^

(10-sees.) -jsteady

1-611

1-349

From the slope of the lines in Fig. 3 we then get the following values for the

velocity of wave-propagation:

Steel 16,820 ft. per sec.

Copper ... ... 12,060 „ „ „

Aluminium ... ... ... ... ... ... 16,620 „ „ „

The values of \J — (St Venant's theoretical wave-velocity), as calculated from static

tests on the rods, were as follows:

Steel 16,750 ft. per sec.

Copper 12,010 „ „ „

Aluminium ... ... 16,580 „ „ „

These values have to be multiplied by the following factors to correct from isothermal

to adiabatic propagation,

Steel 10010.

Copper 10015.

Aluminium ... 1*0026.
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54 Mr SEARS, ON THE LONGITUDINAL IMPACT OF

So that we ultimately get the following table:

Velocity.

Steel

Copper ....

Aluminium

The agreement between the first and last columns here is very close, the difference in

the worst case (that of steel) being only J per cent. This is well within the limits of

experimental error, and we are consequently justified in assuming that the value of Young's

modulus is the same for instantaneous as for steady stresses.

A slight modification of the above statement is, however, necessary when the material

employed displays an appreciable amount of elastic after-working. In the static test of

the aluminium rods this effect was found to be present to such an extent that the final

extension produced by the application of a load was rather more than 1 per cent, greater

than that obtained by reading the extensometer as soon as possible after the load was

applied. This elastic after-working requires time, and consequently does not occur with

stresses of the very short duration involved in wave-propagation.

The static value of E for aluminium was therefore found, not by increasing the load

step by step and plotting a straight line (a process requiring considerable time for its

completion), but by running the whole load quickly on (or off), and reading the extenso-

meter at once. This was repeated several times, and the figure quoted above represents

the mean of the readings so obtained. It will be seen that it agrees exactly with that

obtained by the impact method.

The time occupied in taking a reading by the above method was not checked, but

it would probably be something like 15 seconds. It follows therefore that elastic after-

working represents, not the completion of an extension growing—rapidly at first and after-

wards more slowly—from zero, but a distinct effect; the greater part of the extension

being produced instantaneously on the application of the load*.

* A similar result has been recorded by Hopkinson and Rogers, Proc. Roy. Soc. vol. a. lxxvi/ 1905, p. 424.

See also Appendix III.

Calculated

Observed

16,820

12,060

16,620

Isothermal 1 Adiabat c

16,750

12,010

16,580

16,770

12,030

16,620
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METAL RODS WITH BOUNDED ENDS.
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MATHEMATICAL THEORY.

In the present paper it is our object to give a mathematical investigation of the

effects of the rounded ends of the rods on the nature and duration of impact, together with

the results of some further experiments performed with the object of fully checking the

theory developed.

We have at our disposal two distinct theories of impact, due respectively to St Venant*

and Hertzf. Neither of these theories in itself represents adequately the whole of the

facts; but it will be shewn how, by a suitable modification and combination of the two,

a solution may be obtained which agrees well, in every respect, with experiment.

St Venant's theory, which refers particularly to the case of long rods, treats the

problem by considerations of wave-propagation. Thus, if two rods impinge longitudinally,

waves will be set up in each, travelling out from the point of contact with the velocity

y/f, and these waves, by their reflexion in the free ends of the rods, determine the

whole course of the impact. If, for example, the longer rod be at rest before impact,

then, after impact, the shorter rod will be left at rest and inert, the whole of its momen-

tum being transferred to the longer, which rebounds vibrating. The duration of the impact

is the time taken by the wave to travel up and down the longer rod. It is assumed

throughout this theory that the ends of the rods are mathematical planes, so that, during

contact, the rods may be treated as a continuous whole. This of course, owing to the

granular structure of metals, can never be attained, even with the most carefully polished

ends, and VoigtJ has given a modification of the theory in which he attempts to overcome

this difficulty by postulating an indefinitely thin region of separation between the rods,

having a mean elastic modulus different from that of the rods themselves. This form

of the theory is also not very satisfactory, owing to the indefinite character of the con-

stant thus introduced. In either form, moreover, the theory is applicable only to plane-

ended rods.

To get any information on the impact of bodies with curved surfaces, we have to

turn to Hertz' theory. In this theory it is assumed that no tuave motion is set up, so that

the masses of the bodies may be treated as concentrated at their centres of gravity,

and the pressure between them taken to be the same as would be produced statically

by the same relative displacement. This limits the application of the theory to cases in

which the duration of impact is very long compared with the gravest mode of vibration

of the bodies concerned; and for this to be the case either the velocity of impact must

be extremely small, or the dimensions of the bodies very closely the same in all directions.

This theory then is also not directly applicable to the case under consideration.

It is only necessary, however, in order to get a satisfactory theory, to combine with

the wave-theory of St Venant a condition representing the law of compression for that

* Liouville, ser. 2, t. xn. 1867. t Crelle, Bd. xcn. 1882. + Wi'ed. Ann. Bd. xix. 1883.
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region of the rods which includes the point of contact*. This condition is obtainable in

a simple and convenient form by a modification of Hertz' theory which we now proceed

to discuss.

Consider first the case of statical compression.

Hertz gives, as the law of compression between two infinite elastic bodies in contact,

P = Zat,

where P = total pressure between the bodies,

a = relative displacement of infinitely distant points in the two bodies,

if=a constant depending only on the curvatures at the point of contact and on

the elastic constants of the materials.

(For a pair of equal spherical surfaces of radius r, K has the value

where E is Young's Modulus, and a Poisson's ratio.)

We may treat either body separately as consisting of two parts. Within a hemisphere

of radius p, large compared with the area of contact, but small compared with the dimen-

sions of the body, the displacements will be dependent only on the distribution of the

pressure over the area of contact, and the shape of the body in the immediate neighbour-

hood; while in the rest of the body they will be simply proportional to the whole pressure,

P, independent of its distribution, but dependent on the general shape of the body.

We may thus divide a', the displacement of the infinitely distant parts of the body

relative to the point of contact, into two parts, a/ and a2\ of which a/, the displacement

of A relative to B, is independent of the shape of the body at a distance from J., but

depends on the distribution of pressure at A, while a/, the displacement of B relative

to infinity, is simply proportional to the total pressure P.

If, now, the body, instead of being infinite, is finite, the value of a/ will remain

unaltered provided p is small compared with the dimensions of the body. The displace-

* This, in fact, is what Voigt attempts to do for plane- modulus whose value remains quite indeterminate. See

ended rods; but, the law of compression in the ends being also pp. 79-82.

unknown, he is obliged to represent it by a mean elastic
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merit of B relative to any^ point of the body external to the hemisphere} will still be

proportional to P, and it will therefore be possible to find some point, 0, such that the

displacement of B relative to C = a2'- The displacement of A relative to G will then be

ai + a2 = so that by taking a as the relative displacement of two such points Gx and

Co suitably chosen in the bodies, the formula, P — Kofi, is made applicable to bodies of

finite size.

In dealing with the impact problem, we now apply Hertz* principle to that part

of either rod lying between A and (7, and calculate the total compression of this 4 end

element' as though the pressure in it were statical * In other words we neglect the

effect, on this total compression, of the pressure-gradient set up in the end-element by

the inertia of its parts. We then have the law

r — Ken = 0 ,- r*a*

3(1-<js)

connecting the pressure at A with the compression simultaneously existing between Gx

and Ct. (Fig. 5.)

Apart from this one step, however, we shall suppose that waves are propagated along

the whole length of the rods (including the end-elements) in accordance with St Venant's

theory f.

■IP

Fig. 5.

To determine the circumstances of the impact we then proceed as follows:

Consider any element, dx, of the rod.

(In particular we shall use the element situated at G.)

The pressure, at a distance x along the rod, will be that which existed at 4 at a

time - previously, where v is the velocity of propagation of waves along the rod

V?)-

* For the determination of the appropriate length of

AC in this case see Appendix I.

t There appears, at first sight, to be an inconsistency

in thus treating the end-element on a static basis in

calculating its total compression, and on a dynamic basis

for the rest of the problem. A moment's reflection will

shew that this inconsistency is only apparent, and that

the end-element is really being treated on a dynamic

basis throughout. The static calculation is used in one

step merely as a good approximation to the dynamic facts.

The greater part of the compression takes place in the

immediate neighbourhood of the point of contact, and is,

consequently determined solely by the pressure actually

existing at that point at the instant. With moderate

velocities of impact, moreover, the pressure-gradient in the

end-element is always small, so that, altogether, the varia-

tion of pressure which does occur in the parts of the end-

element remote from the point of contact can have but

little influence on the total compression. A numerical

estimate of the error involved will be found in Appendix I,

p. 88.

Vol. XXI. No. II.
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58 Mr SEARS, ON THE LONGITUDINAL IMPACT OF

Hence the pressure difference between the two faces of the element at P

= !~dx = -jf- \p, x\} dxy

where pt denotes the pressure existing at A at time t.

Thus, if f be the displacement of P towards A, and £(=7ra2), the cross-section of the

rod, the equation of motion for the element dx is

pSd4 + ^.jt{p^)dx = 0,

or pSP + - . p/. x\= const.

(p now standing for the density of the material).

Applying this to the motion of C^; if & be the displacement of we get

pSfi + lp^-pSVi (i),

since, at all times previous to t — 0,p = 0 and ft0=Vu the velocity of the rod before impact.

Similarly for the other rod, if 7 be the displacement of C2 in the same direction,

and V2 the initial velocity of the rod in that direction,

psy-lp(t-<D = Psr*

2

Subtracting, pS (/3 - 7) + - p^ = pS ( V1 - V2)

or, pSi +? =pS(V^V2) (iii).

Taking this equation with p = Ka$, we can get an approximate mathematical solution

up to the time when the first reflected wave reaches either Gj or (72. Another term

has then to be added to the equation, which involves the previous part of the solution

in the form p = <j> (t). But as the original solution appears in the form t = f(p), where

/ is the sum of transcendental functions, it is impossible to get the form of <£, and the

solution becomes impracticable. It appears better therefore to plot the pressure-time curve

step by step from the beginning, as this process can be carried straight on to the end

with any desired degree of accuracy, and without any further assumptions. The process

is as follows:

Integrating (i), and using the conditions there stated, we get

pS/3 + 1 f'p, dx dt = PSV1t (iv).

Let us plot the pressures at intervals of time, r, chosen sufficiently small to ensure the

degree of accuracy required, and let AAA etc. be the values of /3 at times r, 2t,

3t, ... etc.
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Then, from (iv), pSfr + ^dt = PSViT )

pSfr +i J%^dt=SpSVlr

or, subtracting these in turn and dividing by pS,

dt

dt

•(v).

Similarly we have

7l:

F2T +

dt \

7, = 7l+F2x+^£VH)

eft

.(vi).

If dOsHj... be the values of a at times t, 2t, 3t, ... etc., ttn = fin-yn, so that, subtract-

ing equations (v) and (vi) we get

«i = (F,-

F2)t

a2 = ai + (T;'i-

7„)t

a., = a2

F2)t

i) *

•(vii).

The equations (i) and (ii) hold until the pressure waves, being reflected from the free

ends of the rods, arrive again at Ox and G2 respectively, when new terms have to be added.

Equation (i) then takes the form

This holds until the wave, being once more reflected at A, again returns to Cl} when

a further term -p, a+zi+Mx has to be added, and so on. Similar additions have to be made

v (t v-)

to equation (ii), and the corresponding terms inserted in equations (v), (vi), and (vii).
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For purposes of calculation we may take any value for r ^. It is convenient to

take r = ^ or some sub-multiple of Suppose T = ~~- Then, since, at all times previous

to t = 0, p = 0, we get

for all values of r if- n, and

ar=r(F,-F2)T = r(F1-^)^,

«Wl = a>+(F1-r,)--^J^ P{t_^dt

or,

a, = r (— V2) — up to r = n,

«»+2 = (FJ-r2)-+«n+1-^j;" Ptdt

=<^ - -+«w - ^ j^ ^

. (viii),

where extra terms have to be inserted for the reflected waves when they appear.

Now p = Ka% so that, up to time -, we can plot jo = jSr(F1— V2)* $ at intervals

A

( ^] two

Then in the second of equations (viii), an is known j= ("P^ — F2)and J _ptcfa = area

under curve up to point (1) (Fig. 6) (equals impulse on end of rod during first time

interval). Hence an+1 is known and thence pn+1. The point (n+1) can now be plotted,

and so on.

It is convenient, for purposes of actual calculation, to have ^ some submultiple of

the whole length of the rod. In this way, when the terms due to the reflected waves

appear, the areas which have previously been calculated may be used over again. The

method will be quite clear from the consideration of the worked out examples which are

given in Appendix II.

The general course of the impact is shewn in the accompanying sketches (Fig. 7).

To understand the shading of these sketches, they may be regarded as representing a piece

* In making my numerical calculations I found that sufficient accuracy was attained by taking r=- simply.
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Fig. 7.
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of paper, cut to the shape of the pressure-time curve, and folded backwards and forwards

within the length of the rod. For clearness, only those portions of the paper actually

visible at any stage have been shaded, but it is understood that the stress actually existing

at any point is the sum of all the whole ordinates of the paper at that point, ivith their

appropriate signs. In this way we can determine the state of pressure in the rod at any

time during the impact. Fresh terms are to be inserted in the equations every time the

head of the wave returns to the point 0. Shading thus and thus ///// indicates

compression; shading thus ;= and thus $ indicates tension.

It is necessary to distinguish carefully between the step by step method of solution

here employed, and the attempt to solve an ordinary differential equation by producing

the curve. The successive points in the present method are determinable with any desired

degree of accuracy from those already known, and the errors are not cumulative. The

accuracy of the final result depends only on the accuracy of the assumptions made in using

the statical compression of the end-element.

EXPEKIMENTAL TESTS.

Duration of Impact and Velocity of Rebound,

It seemed best to check this theory in the first place by the use of rods of unequal

length. In this way we get a check, not only from the duration of the impact, but

from the changes in velocity as well (the total impulse being simply the area of the

pressure-time curve from end to end). In the case of equal rods, the relative velocities

before and after impact are practically equal, so that this latter check is of little value.

I therefore made some experiments on unequal rods with a view to determining their velocities.

These I calculated from observations on the amplitude of swing, which were made as

follows*:—The travelling telescope was fitted with a micrometer eye-piece, and so adjusted

that the end of the rod, in its lowest position, just coincided with one of the principal

graduations. The divided head was then turned through such a number of complete

revolutions that the rod, at the end of its swing, nearly returned to the original gradua-

tion. The outstanding difference was then measured by the small divisions of the micrometer

eye-piece, and the whole amplitude thus determined. Small corrections had to be made for

air-damping. Taking the amplitude as A> the velocity at the lowest point of the swing

(where the impact takes place) will then be —p—, where P is the time of a complete

swing.

Great difficulty was at first experienced in getting self-consistent observations, the

total momentum after impact being apparently different from (generally greater than)

that before. This was attributed to transverse waves set up in the suspensions at the

moment of impact, which, returning to the rods after reflexion at the upper ends, so

affected the amplitude as to make it unreliable as a means of measuring the velocities

* See also p. 73.
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immediately after impact. It was some time before a suspension was found sufficiently

light and inextensible for this error not to be serious. Finally, a suspension of fine gut

fishing line was obtained. This was much lighter and less elastic than cotton, and, as

will be seen from the figures, worked fairly satisfactorily.

The following* are the figures for this series of experiments:

Length of striking rod o\".

Velocity of striking rod before impact = 5#030" per sec.

The struck rod was at rest previous to the impact.

Velocity of struck rod

after impact.

Ins. per sec.

Observed

Velocity of striker after

impact.

Ins. per sec.

Duration of impact.

10~4 sees.

Calculated

0

■ 1-354

-2-074

■ 2-273

- 2-305

-2-305

-2-305

Coefficient of restitution.

Observed

Calculated

Observed ,

Calculated

Observed

0

1-414

1-445

1-000

1-002

-1-336

1-607

1-604

•994

•992

-2-019 |

1-790

1-795

•977

•969

-2-219

1-937

1-960

•904

•888

-2-256

1-999

2-046

•823

•811

-2-256

1-999

2-047 |

•723

•712

-2-261

1-999

2-037

•667

•657

Fig. 8 exhibits these readings graphically. In it the dotted curves represent the

calculated, and the black dots and full curves the experimental, values. In Case B the

agreement is so close that only the theoretical curve could be shewn, and in all cases

the agreement in general character, between corresponding curves, is remarkably good.

The first point which calls for remark is the impact of the equal h\" rods. It will

be seen that the calculated value of 'e* is unity, and the velocity of rebound of the

striking rod consequently zero, and that the experimental readings agree well with this.

This was by no means the case in the earlier experiments, the striking rod then following

up the struck rod after impact through a small distance which Voigt.|, in his experiments,

used to provide a correction for other cases. When the gut suspension was employed,

however, the change produced was remarkable, the striking rod, when observed through

the telescope, appearing absolutely at rest after the impact. At the same time it will be

seen that the duration of the impact was less than that previously recorded for the corre-

sponding pair of rods§. It appeared desirable, therefore, to repeat the experiments there

given, and this was accordingly done, care being taken to adjust the apparatus so that the

* See also footnote, Appendix II, p. 89. explained in Appendix I (footnote, p. 87), by graphic inter-

t The cases marked f were calculated for y»48" and polation.

17*48" rods, respectively, the values given being found, as X Voigt, loc. cit. § See p. 53.
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actual velocity of impact was the same in each case, instead of, as formerly, relying for

this purpose on the constancy of the withdrawal. The results were as follows:

Steel rods. Velocity 5*030" per sec.

Length of rods (inches) ...

H

131

21*

291

371

Time of impact (10~4secs.)

1-445

2-306

3-089

3-895

4-683

Fig. 8.

It will be seen that, but for the shortest pair of rods, there is very little difference

from the earlier series of results (the last four readings lie, in fact, more accurately on a
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.straight line than before). The reduction in the end-effect for the shortest pair is just

what the theory would lead us to expect. Referring to Fig. 9*, which gives the calculated

pressure-time curves for pairs of equal rods of different lengths, we see that, until the

first reflected wave appears, the pressure rises asymptotically to the value 28,020, which

V

corresponds to the formula P=\ird2E~ given by St Venant's theory. Provided, then, the

rods are sufficiently long for this value to be practically attained before the arrival of the

first reflected wave, the end-effect will be independent of the length of the rods. In the

case of 5£" rods, however, not only does the first reflected wave return much sooner than

this, but, before the end of the impact, a second reflected wave comes into play. The

consequence is that for these rods the end-effect is only '886 x 10~4 sees., while for the

13£" rods it is '990 x 1()~4 sees. Beyond this it only increases to '999 x 10~4 sees, for

indefinitely long rods.

Taking the last four readings in the above table, we get the same value for the

velocity of wave propagation (16,820 ft. per sec.) as before, so that the conclusions of the

previous article are not impaired. It is rather curious, however, but perhaps not very surpris-

ing, that this effect should have been so exactly masked by the use of the heavier suspension

in all three cases then tried. Unfortunately I have not had time to repeat the experi-

ments on copper and aluminium. The calculated figures for the steel rods are as follows:

Steel rods. Velocity 5-030" per sec. (calculated)

Length of rods (inches)

13J

2-311

211 , 29* 37*

3-113 j 3-905 j 4-698

Duration of impact (10~4 sees.)

1-414

Returning now to the consideration of Fig. 8, a most striking feature is the close

agreement shewn by the theoretical and experimental values of the coefficient of restitution.

The curves D do not really adequately represent this agreement. The values of f e' are

calculated from the velocities of the rods after impact, and these again from the impulse,

which is equal to the change of momentum of either rod. In the case of the short strik-

ing rod, the greater part of this is taken up in the fixed known momentum before

impact, so that any error in the impulse will make a considerably greater error in the

velocity of the striking rod after impact, and, consequently, in the coefficient of restitution.

It is fairer, therefore, to compare the impulses direct. These are, of course, given at

once by the velocities of the struck rod after impact, and a reference to the curve B}

shews how remarkable the agreement really is.

It will be seen that, as the length of the struck rod increases, the duration of

impact also increases; but slowly, so that we finally reach a length (whose calculated

value is 20*18") at which the time taken by a wave to travel up and down the longer

rod is equal to the whole duration of the impact. Beyond this point the impact ceases

before the reflected wave in the struck rod gets back to the point of contact, and the

* p. 96.
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nature of the impact is independent of the length of the longer rod. In fact, to the

right of this ordinate the curves A and G become horizontal straight lines. The impulse

at impact being constant, it follows that the velocity of the struck rod after impact must

be inversely proportional to its mass, so the curve B is in this region an hyperbola.

The curve D, whose ordinate is proportional to the sum of the ordinates of B and (7,

is therefore also an hyperbola, whose asymptote is shewn.

It appears then that the rod of length 5^", if allowed to impinge on an infinitely

long rod, would give rise to a limiting value for 'e' of '449. This result is surely very

remarkable. We have here a set of values for 1 e7 varying from absolute unity in the

case of equal rods, to *449 for one short and one very long rod; and this is entirely

due to the energy taken up in vibration, the rods still behaving perfectly elastically.

In a paper in the Philosophical Magazine for February, 1906, Lord Rayleigh concludes

that, in the case of spheres, the energy of vibration is extremely small compared with

that of translation, so that Hertz' theory would apply. The present case is far different,

and no former theory of the impact of long rods has, I believe, shewn an agreement

with experimental results, both as regards duration of impact and velocity of rebound,

nearly so good as this. It will be seen at once that the actual results are far from

agreement with either the Newtonian (or Hertzian) or the St Venant theories*.

The next series of experiments was similar to the one just described, except that

the longest rod was chosen for the fixed length instead of the shortest. In these experi-

ments I concerned myself only with the durations of impact. The results, which are

plotted in Fig. 11, are as follows:

o

CO

p

c3

a

O

o

co

O

44

c

to

h3

Duration of Impact (10~4 sees.)

Length of struck

rod (inches)

Calculated

Observed

H

1-999

2-037

H

2-700

2-807

134

3-335

3-386

3-938

3-934

21*

4-197

4-213

25J

4-278

4-298

29J

4-380

4-399

334

4-510

4-516

374

4-698

4-683

In Fig. 11, the curve shewn is the calculated curve, the black dots being the experi-

mental values. With the longer rods it will be seen that the agreement is again remarkably

good, while the shorter rods give readings not very different from the theoretical values.

The general character of the curve, at any rate, is well established.

* See Love, Theory of Elasticity, 2nd ed. pp. 25, 26.
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The interesting feature of this curve is its hump. This occurs when the length of the

shorter rod is half that of the longer, and may be explained as follows:—When two long

unequal rods impinge together, the first reflected wave in the shorter rod, on its arrival

at the point of contact, initiates a separation between the rods. The terms in the equations
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Fig. 11.

arising from the progressing wave consequently begin to diminish, thereby partially counter-

acting the effect of the reflected wave, with the result that the displacement (and therefore

the pressure) between the ends of the rods, instead of approaching zero in a finite manner,

tends asymptotically towards this limit, and it is not until a reflected wave in the longer

rod, or a second reflected wave in the shorter rod, also reaches the point of contact, that

separation finally ensues*.

* To illustrate this point I have given in full (Appendix from the arrival of the first reflected wave in the shorter

II b) the calculation of the end-effect for two indefinitely rod. The pressure-time curve is shewn in Fig. 10.

long rods with 16" difference in length. This is calculated

9—2
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It follows that, if the difference between the two rods is greater than the length

of the shorter, the duration of impact will be greater than the time taken by the wave

to travel four times the length of the shorter rod. The greater this length, however,

the nearer will, the pressure be to zero when the second reflected wave reaches the point

of contact, and the sooner after this time will the impact, consequently, cease. The dura-

tion of impact, in fact, in the case of two long rods, one of which is more than twice

as long as the other, tends asymptotically to this value. This is indicated by the dotted

curve, E, and the straight line, C (Fig. 11).

The above statement, as it stands, is not, however, quite complete. If the length

of the longer rod be only slightly greater than twice that of the shorter, a reflected wave

in the longer rod will arrive at the point of contact before the impact is finished and

help to hasten the end. The curve, A, consequently begins to fall away from the curve,

E, (Fig. 11), at the point, P, where the duration of impact attains a value equal to twice

the time taken by a wave to traverse the longer rod. When the length of the shorter

rod is exactly half that of the longer, the two waves will arrive together, and, as the

shorter rod continues to increase in length, the wave in the longer rod acquires more

and more importance, until, at the point, Q, it is sufficient to complete the impact before

the second wave in the shorter rod arrives. From this point on, the end-effect (measured,

as usual, from the arrival of the first reflected wave in the shorter rod) will depend

only on the difference between the two rods, becoming less as the rods approach equality.

My appaiatus was not capable of dealing with rods of greater length than those

used in the above series of experiments; but, the theory being so well supported by

experiment in all cases tried, it seems quite justifiable at this stage to follow up the

result of using still longer rods by the aid of theory alone. This is done in Fig. 12,

which represents the result of allowing rods of all lengths up to 120" to impinge with

the same velocity (5"030" per sec.) on a single rod of length 48". The black dots on this

curve represent, not experimental values, but the points for which the calculation was

actually performed.

By taking the fixed rod of this length, the character of the first portion of the curve

is rendered more apparent. From P to Q we have the transition stage, as before. To

obtain the points on the curve beyond Q, we add the end-effect, calculated for indefinitely

long rods of the proper difference in length, to the time required by the first wave

to run up and down the shorter rod. The blank circle indicates the duration for a 24"

rod impinging on an indefinitely long one. The effect of a new reflected wave on the

relative displacement, a, between G1 and (72, being independent of the rod in which it

appears, it follows that the end-effect in this case is the same as that for indefinitely

long rods which differ by 24". The prolongations of the portions of the curve on either

side of the transition stage therefore meet in this point. The black dot below shews

the duration for 24"—48" rods.

From Q to R, the length of the shorter rod increases uniformly, but at R the two

rods become equal, and from this point onward the length of the shorter rod does not

alter. In plotting the curve to the right of Q by means of the end-effects, a discontinuity
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is thus introduced at R. This however makes no apparent difference to the continuity

of the curve*, which now becomes asymptotic to the straight line, B, which represents

the time taken by a wave to travel once up and down the variable rod. The ordinates

ab, a'b\ at equal distances on either side of i?, are equal.

At Sy where the variable rod attains a length nearly twice that of the fixed rod,

the duration becomes equal to the time taken by a wave to travel twice up and down

the latter, and a second transition period sets in, of exactly the same character as before.

At T, the variable rod attains such a length that the second reflected wave in the fixed

shorter rod completes the impact before the return of the first reflected wave in the

longer. From this point onwards the duration of impact becomes independent of the length

of the longer rod, just as we saw in the first series of experiments (Fig. 8). As before the

two portions of the curve on either side of the transition stage, intersect, if produced on the

ordinate which gives to one rod twice the length of the other.

It is particularly interesting to find a curve consisting of three (or possibly four) distinct

portions like this, as the representation of a process apparently perfectly continuous; and

the agreement with experiment which has been established leaves no room to doubt its

accuracy.

Variation of End-effect with velocity of Impact.

A last series of experiments was undertaken with a view to determining the variation

of the end-effect with the velocity of impact. For this purpose the shortest (5£") rods

were chosen. The results of this series are tabulated below, and the figures plotted in

Fig. 13.

Withdrawal

(inches)

Velocity (inches

per second)

Duration of impact (10~

4 sees.)

Calculated

Observed (a)

Observed {b)

i

•6005

2-098

2-184

l

2

1-229

—

1*891

—

1

2-502

1-607

1-646

—

H

3-758

—

1-522

—

2

5-030

1-414

1-445

1-400

3

7-553

—

—

1-311

4

10-05

1-258

—

1-242

6

15-13

—

—

1-175

8

2022

1-125

1-132

1-119

With velocities up to 5" per sec, no overstrain is produced at the ends of the rods.

These readings were accordingly taken first, and appear in column (a). The velocity was

* A discontinuity was found at this point by Hamburger his figures, renders this discontinuity less conspicuous, but

in his experiments on plane-ended rods (Wied. Ann. xxvni. it is, none the less, quite unmistakeable.

1886). The correction of certain errors made in plotting
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then at once increased to 20" per sec, and a set of readings taken with this velocity. Of

these, the first is recorded in column (a), while the mean of the last four readings appears

in column (b). The remainder of the observations (including a repeat of the 2" withdrawal)

were made with the ends thus overstrained, and appear in column (6)*.

In the figure, the full curve, A, represents the experimental values, points from column

(a) being shown as black dots, and points from column (b) as blank circles. The dotted

curve, B, gives the calculated values.

2-5| 1 1 1 1 —I

1

'528

•5

0 5 10 & 2° 25

Veloci ty ( I riches f><n~ $e c . )

Fig. 13.

This is the case in which (the length of the rods being only ten times their diameter)

Hertz' theory may be expected to agree best with experiment. I have therefore also plotted,

in curve (7, the values given by this theory. It will be seen that, with small velocities of

* See p. 51. Also Camb. Phil. Proc. xiv. 3, pp. 261, 262.
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impact, the three curves run close together, but that, as the velocity increases, Hertz curve

begins to fall away from the other two. The formula given by Hertz' theory is, in fact,

2T* = const., so that this curve is asymptotic to the line T = 0, while the other two are

asymptotic to the line 27=*528 x 10~4, which represents the time of a complete vibration of

the rods, and corresponds to St Venant's theory.

•4-

C u roe

6 h ( u>i ng relation

between loc^ar'tt^n

S of

Vt I oc i t i e s 8j Z

) tt rations oj Imp

S tecl.

•3

5i'

\ \

/\ A

--

/ \V

c

\

. I I L I I

0 -5 10 IS 2 0

Fig. 14.

With longer rods the deviation becomes much greater: for instance, with 21 J" rods

impinging with a velocity of 5'030" per sec, Hertz' theory gives 2*340 x 10-4 sees, instead

of 3-089 x 10~4, while for the 37^" pair we get 2*927 x 10"4 as against the true value

4*683 xl0~4.

In Fig. 14 are plotted the logarithms of the quantities represented in Fig. 13. The curve

G, here becomes simply a straight line with a slope of 1 in 5, and the relationships between
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the curves are more clearly seen. I suspect that, with small velocities of impact, the ex-

perimental values tend to become slightly too high*, and that the curve A should really

be asymptotic to this line as well as the curve B.

Details of Method.

I have not thought it necessary to give in full all the experimental data upon which

the figures in the foregoing tables are based. The durations of impact were determined

by the method described in the previous paper, and the tables of observations are of precisely

the same character as those there published.

A question was, however, raised as to the legitimacy of calibrating the galvanometer

by means of a standard condenser, and I therefore made some experiments with a view to

checking this method against those known as "steady deflexion" and "standard field/' Using

various galvanometers, discrepancies were always found between the three methods which

amounted in some cases to as much as 3 per cent., and it is certain that great care must

be taken, in all cases where accurate calibration is required, to ensure that the galvanometer

works during the calibration test under conditions closely resembling those obtaining in

actual use. In the present case the galvanometer makes its fling on open circuit, a condition

which is most nearly attained in the standard condenser method. As explained in the

previous paper, fatigue effects in the suspension rendered it difficult, with the galvanometer

used in these experiments, to obtain a satisfactory calibration by the steady deflexion method;

but after several failures I at last succeeded in doing so, the constant so arrived at differing

by only 1 part in 3000 from that obtained with the standard condenser. That given by

the standard field method, however (corrected in the usual way for damping), differed from

these by nearly 1 per cent. This latter calibration was the least regular of the three, and

the method is, moreover, that which differs most from the conditions obtaining in actual

practice. There is, I think, no reason to doubt the accuracy of the constant employed, though

of course it is not claimed that the experimental figures are correct to 1 part in 3000.

It may perhaps be worth while also to describe here at somewhat greater length the method

of determining the velocities"f, and to give a sample table. In the first place it is necessary

to determine the velocity of the striking rod at impact. To get this, the other rod was

first removed, and the striker, after being withdrawn to the correct distance, was released

(by blowing the fuse) and allowed to swing freely without any impact, consecutive elongations

on the same side of the lowest point being observed by means of the micrometer eye-piece

in the telescope. It was found that the elongation, at the end of the first complete swing

from release, differed from the original withdrawal by an amount which, though small, was

considerably greater than could be accounted for by air-damping (as calculated from the

consecutive values of the elongations, neglecting the original withdrawal). This was attributed

* This would be the effect of the slight irregularities of mean curvature of the ends of the rods except when the

curvature due to the granular structure of the metal, which pressure was extremely small,

would be negligible compared with the whole effect of the t See p. 62.
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to a loss of energy during the release*, and the velocity at the lowest point of the first

swing (which in the actual experiments is the velocity of impact) was therefore calculated,

not from the original withdrawal, but from the elongation after the first complete oscillation,

adding to this the appropriate damping correction.

The following table exhibits the figures for the 5^" rod with 2" withdrawal.

MICROMETER EYE-PIECE

READINGS.

(2)

After 1st

complete swing

(3)

After 21st

complete swing

(1)

(2)-U)

(3)-(2)

Initial

8-0

8*35

10-35

•35

2-00

8-0'

8-4

10-5

•4

2-10

8-0

8-3 +

10-4

•S +

2-1-

8-0

8-4-

10-5-

•4-

2-10

8-0

8-35

10-4-

•35

2-05-

8-0

8-3 +

10-4

•3 +

2-1-

8-0

8-4

10-45

•4

2-05

8-0

8-4

1045

•4

2-05

8-0

8-3 +

10-45

•3 +

2-15-

8-0

8-3

10-3

•3

2-00

Means...

•355

2-06

One division of the micrometer eye-piece corresponds to -104". (This was determined

simply by getting one of the principal graduations of the eye-piece in line with the end of

one of the rods (fixed), and then turning the divided head of the travelling telescope until

the next graduation came opposite the same point.)

The mean amplitude after the first swing is therefore 2"- '355 x -104" = 2"--037" = 1-963".

The mean amplitude after the 21st swing is less than this by 2*06 x *104>" or '214". It has

therefore the value T749".

To get the equivalent amplitude for the velocity of impact, we have to correct the

amplitude (1*963"), at the end of the first swing, for the air-damping during the last three

quarters of that swing.

1*963

The coefficient of air-damping in 20 complete swings is '(logarithm = *05013).

The logarithmic coefficient for one complete swing is therefore —= 00251; and for a

three-quarter swing, f x '00251 = '00188 (antilog. = 1*0043).

* The effect appeared also when the rod was released by burning cotton, instead of in the ordinary manner by

blowing the fuse.
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Correcting the value 1*963" by this factor we get the required amplitude =1*972".

The time of a complete oscillation was found experimentally to be 2*464 sees. We thus

get finally the velocity of impact = ^2-464^ = 5 Per sec*

The velocities after impact were determined directly from the first elongation after

impact, the proper correction being applied for air-damping.

THE ELASTIC MODULI.

Referring back to p. 63, and comparing the experimental and theoretical values of

the impulses (or, what is the same thing, of the velocities of the struck rod after impact),

we get the following table:—

Length of

struck rod

(inches)

Velocity of struck rod

after impact

(ins. per sec.)

Difference

°IQ Error

Calculated

Observed

H

5-030

5-041

-•011

-•22

n

3-648

3-653

-•005

-•14

131

2-841

2-815

•026

•92

m

2-247

2-247

•0

•0

21*

1-834

1-825

•011

•60

29J

1-334

1-324

♦010

•75

37|

1*048

1-042

•006

•57

The mean absolute error is thus only *46 °/o, while the mean algebraic error comes out

at *34 %.

The results with regard to duration of impact, though not quite so close as this,

are still very good. Omitting those cases in which the velocity of impact was very small

(so that, as mentioned above, the experimental value may be expected to be too high), we

may construct the following table:—

10—2
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Length of

Eods

Velocity of

Impact

Duration of Impact

(10"4 sees.)

Difference

°/0 Error

(inches)

(ins. per sec.)

Calculated

Observed

5-030

1-414

1-445

•031

2-1

1-607

1-604

- -003

-•3

„

1-790

1-795

•005

•3

1-937

1-960

■023

1-2

1-999

2-046

•047

2-3

1-999

2-047

•048

2-4

^-371

1-999

2-037

•038

1-9

131—131

„

2-311

2-306

-•005

— -2

! 211—211

3-113

3-089

-•024

-•8

291—291

„

3-905

3-895

-•010

-•3

371—371

„

4-698

4-683

-•015

-•3

371—331

„

4-510

4-516

•006

•1

371—291-

„

4380

4-399

•019

•4

371-251

„

4-278

4-298

•020

•5

371-211

4-197

4-213

•016

•4

37^-171

„

3-938

3-934

-•004

-•1

371—131

3-335

3-386

•051

1-5

371-91

2-700

2-807

•107

3-9

H-H*

7*553

1-317

1-344

•027

2-0

10-05

1-258

1-281

•023

1-8

15-13

1-178

1-193

•015

1-3

Fji P)l

20-22

1-125

1-132

•007

•6

* Interpolated from curve.

The mean absolute error here is 1*1 °/0, and the mean algebraic error *9 °/0.

Of the 22 cases here considered, however, 11 give rise to errors lying between - '3 °/Q

and *6 °/0, which is less than one-fifth of the whole range covered. Considering this group

alone, we get, instead of the above figures, *32 % and '10 % respectively*.

Such agreement is, of course, extremely good; but, in view of the fact that the

value of the wave-velocity used in making these calculations was that actually obtained

from the experiments on equal rods, it seems, perhaps, fairer to consider the errors, not

in the total times, but in the end-effects alone, the peculiar features of the theory being

* In the early stages of these experiments, spasmodic the variations which did occur were almost invariably in

high readings were very frequent, and proved a great source the same sense. The last vestiges of this tendency may

of difficulty. At a later stage (when the above observations perhaps be traced in the fact that, in 10 out of the 11 cases

were made) these readings were practically eliminated; but in which larger errors occur, these errors are positive.
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only manifested after the return of the first reflected wave in the shorter rod. It must,

however, be borne in mind that in doing this we are artificially emphasizing the purely

experimental errors, which are, of course, errors in the total time. The result is that the

marked grouping of the errors in the neighbourhood of zero now disappears, and we are

compelled once more to take into consideration all the cases with the exception of the two

extremes.

The value of the mean absolute error is thus increased to 1*7 °/0, and that of the

mean algebraic error to 1*3 °/0.

Even so, the discrepancy between the experimental and theoretical results is not great;

and, but for a slight mistake in the calculations*, the agreement, both as regards impulse

and duration of impact, would be even better.

In any case wTe are certainly justified in regarding the differences which do exist

as the result rather of accident than of any fundamental disagreement.

Now the theory on which the above calculations are based depends essentially on the

formula

3(1- o~)

given by Hertz for the compression between two spheres of radius r.

20

E ( E \

Thus (1-^ = 2C[2-2CJ = CV-W,

/ E \

log (1 - <r2) = log E - log 0 + log (l - ,

E

In this formula a represents Poisson's ratio, and has the value 1.

E E\ E( _E_

or

so that 1 ^-O- 1+ E x

or

(1 - <r2) dC GT 402 ,_J2_'

40

d(l-<r*) = dG (2ff-40

(1 - a2) 0 \W-E

2a dC

l-<7 0'

The value of <r for steel is about -27, so that

d(l- <j2) 3 dG

-JTZ^) =4 0. Very near1^

An error of 1 °jo in the value of G will thus give rise to an error of f % in tne

value of Hertz' constant K.

Now the value of G used in calculating this constant was taken from a static torsion

test on the specimen rod; and, as it has already been seen that the value of E is

the same for both steady and instantaneous stresses, it follows from the close agreement

* See note, Appendix II, p. 89.
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above established between the experimental and theoretical results, that the same remark

must apply also to the rigidity modulus, C.

But all the elastic constants of the material are expressible in terms of E and G, so

that we are now entitled to make the following general statement:—

Tlie values of all the elastic constants of a metal are the same under instantaneous as

under steady stresses.

THE ELASTIC LIMIT.

One other point appears worthy of remark. It was mentioned in the previous paper

that, with a withdrawal of 2", the pressure at the centre of the area of contact (as cal-

culated by Hertz' formula) reaches a value of 108 tons per sq. in. (the mean value over

the whole area being 72 tons per sq. in.) and that this pressure apparently produces no

overstrain. The agreement established in this paper between theory and experiment may

be taken to prove that the application of the formula is correct, and that the pressure

may therefore rise instantaneously to as much as five times the elastic limit of the material

without producing any permanent effects. It would be most interesting to enquire further

into this phenomenon.

A REMARK BY HERTZ.

The results obtained in this work lend considerable weight to a paragraph in Hertz'

paper* which appears to have been generally overlooked by experimenters and others who

have applied themselves to the problem of impactf. Hertz there suggests that, by combining

the static compression for the parts of the bodies in the immediate neighbourhood of the

point of contact with the general equations of motion for the rest of the bodies, we could

probably get the laws of impact for bodies of any shape. It is not easy to see how this

could be done, however, nor wherein the process would be likely to be simpler than that of

applying the laws of motion to the whole of the bodies direct. Hertz himself offers no

suggestion. It will be seen that the solution, in the case of long rods, has been brought

about by a combination of the static compression in the end-element, not with the general

equations of motion J, but with certain simple laws which, in this case, may be deduced from

them. It is possible that other simple cases may afford similar solutions.

* Hertz, Miscellaneous Papers, trans, by Jones, pp. 159, work. It is, I find, reproduced in full by Lord Bayleigh in

160. the paper (Phil. Blag. Feb. 1906) above mentioned.

t I may perhaps remark that the passage in question X I attempted to do this first,

escaped my own notice till after the completion of this
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EXTENSION TO PLANE-ENDED RODS.

It is interesting to try to extend the present work to the case of plane-ended rods, taking

account of the irregularities of surface produced by the granular structure of the metal.

We cannot in this way get any quantitative information without actually determining the

mean curvature of these irregularities, and the manner of their distribution, but we can get

some idea, at any rate, of the sort of laws which may be expected to govern the 'Zwischen-

schicht5 of Voigt's theory*.

For the sake of clearness, we shall suppose, for the present, that the end of the rod

consists simply of a large number of small convex areas regularly disposed, such as might

be formed by fitting together a number of equal hexagonal rods each provided with a rounded

end. (Each of these elementary rods will behave independently of its neighbours provided

only the diameter of the whole rod is so small that the energy of the radial displacements

may be neglected.)

Consider one such elementary rod. Let b be the side of the hexagon, r the radius of

the end. Let r = X6.

We have then P = Y^ .A r* a2 f

•3(1 - <r)

\2 W or.

'3(l-o-2)

3 V3

The cross-section of the rod = —^- 62, so that, if the pressure per unit cross-section be p,

2^/2 E 1 3

p = —7= V. —.

9V3(l-<72) b*

Again (Love, 2nd Ed, p. 197, Eqn. 70), if ax be the radius of the area of contact,

^"[a'2j ~ V 2 J

Now the maximum pressure per unit cross-section in the composite rod is determined

solely by the velocity of impact. It follows that greatest value of the ratio ^, and therefore

also of the ratio will be independent of the size of the rod provided its proportions

are kept the same.

The dimensions of the areas of contact will thus always bear the same relation to

the diameters of the elementary rods, no matter how much the latter are reduced, and we

are therefore still entitled to employ the methods of the present article.

* Voigt, loc. cit. Up to the present the use of the schicht by two end-elements whose mechanical properties

rounded ends has enabled us to replace this Zwischen- were definitely known. t See p. 56.
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The pressure per unit cross-section in the composite rod will therefore be:—

P 9V3(l-<r2)pa"'

so that in this case the Zwischenschicht would follow, not a linear law, but (with a different

constant) that obtained above for a single spherical end.

Owing to the smallness of b, the constant involved would be extremely large, and the

results obtained from the above formula would probably approximate closely to those given

by St Venant's theory. This result is, however, due to assuming a regular disposition of the

elementary convex surfaces. In any actual case, these surfaces would be irregular, both in

shape and distribution, and only a few points would come into contact at the beginning of

an impact, more and more contacts coming into play as the compression increased. Moreover

the normals at the points of contact would not, in general, be parallel to the axis of the rod.

This deviation would not, however, be very great, and, in any case, the law connecting atrial

pressure and compression for any particular contact will still be of the form P = Kar the

only difference being the increase of K by a factor, sec- 0, due to the obliquity.

We shall probably get a much closer idea of the state of things which actually exists,

if we assume that the number of points in contact at any stage during the impact is pro-

portional to the compression, a, at that stage, and that the sum of the constants, for the group

of points which comes into play during any small change in the compression, is proportional

to that change*.

Let us denote this by writing kda for the aggregate constant of all the points which

come into play between

a = a and a = a + da.

Then we have P = I kda (a — a)2

J o

The constant here is, of course, much smaller than in the preceding formula, making

the end-element, equivalently, much softer, so that its effects once more become appreciable.

The general character of the results would still be similar to those found from the formula,

P = Ka?} for round-ended rods. The mean elasticity of the Zwischenchicht would be less

with a ground than with a polished surface, and would increase with increasing velocity of

impact, thus accounting for all Voigt's results.

There is one check on the formula P = f£a* which could be performed without any

knowledge of k If two equal rods impinge with a velocity so small that the duration of

impact is large compared with their period of vibration, we may neglect the wave-motion,

and calculate the duration of impact after the manner of Hertz. The formula P = %kofi

then gives rise to the law TV7 = const., connecting the duration and velocity of impact.

If, then, we take a pair of short plane-ended rods, and plot the curve connecting log T

* The total compression in the end-elements during between the hills andjvalleys on the surfaces of contact, so

impact will be small compared with the difference in level that this assumption will probably not be very far wrong.
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and log 7", as in Fig. 14, it should become asymptotic, for small values of V9 to a line

having a slope of 1 in 7, In fact, the line to which this curve ultimately becomes asymptotic

should give us both the constant and the index in the formula P = Kan by deduction

from those in the formula TVm = const.
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Fig. 15.

Some rough experiments which I made on plane-ended rods, before finally adopting

the round-ended form, indicated end-effects of the same general character as are obtained

with the latter, and led to the conclusion that, in this case also, the end-effect for unequal

rods becomes independent of the length of the longer rod provided the difference in length

is sufficiently great. Unfortunately I have not had time to repeat these experiments with

the care necessary to provide a check on the foregoing theory.

Yol. XXI. No. II. 11
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To obtain this I therefore tried using the figures given by Hamburger* for two plane-

ended brass rods of length 300 mm., but without much success. It is possible to draw a

smooth curve through the points so obtained which approximates ultimately to a slope of

1 in 7, but the last two points lie one on either side of the curve, and do not really

suffice to determine accurately its final direction (Fig. 15). Errors of this sort are un-

fortunately almost inevitable when dealing with the very small velocities here involved.

CONCLUSION.

In conclusion, I have to express my thanks to Prof. Hopkinson, of the Engineering

Laboratory, Cambridge, where the work was carried out, for his unfailing interest and kind

advice. When he first suggested that I should undertake experiments on the velocity of

wave-propagation in metal rods, the developments he had in view were, I believe, of a far more

practical character than those here described. I happened, however, to be interested in the

abstract problem of impact, and he has always shewn himself perfectly willing that I should

follow up the work on these lines. I have also to thank Mr H. Booth, of Trinity College,

who was good enough to relieve me of some part of the arithmetical calculations.

* Hamburger, Wied. Ann. xxviii. 1886.
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APPENDIX I.

(A)

Determination of the Length of the End-element.

The determination of the appropriate length of AG (p. 57), for the particular case of

a long rod with flattish spherical end, led to unexpected difficulties. I had hoped to be

able to use the Bessel solution of the general equations of equilibrium for this purpose,

applying over the area of contact a pressure distributed according to the law given by

Hertz. Unfortunately I found it impossible by this method to satisfy the necessary con-

dition that there should be no other traction of any sort on the whole of the rest of the

surface, and I had, consequently, to adopt the approximate method here described. It will

be seen (p. 87 below) that the error involved is probably less than might at first sight

be supposed; but the method is far from being satisfactory, and the sufficient accuracy of

the value found for AC must be allowed to rest, in the last resort, on the close agree-

ment invariably found between the experimental and theoretical results.

The method in question consists in a consideration of the transition from the case

of an infinite plane solid, to that of a long rod under the same applied stress. Take first,

for simplicity, the case of a normal pressure applied at a single point of the surface (the

centre of the end of the rod) (Fig. 16). We have then (Love, Theory of Elasticity, 2nd ed.,

p. 189) the traction across any plane parallel to the surface

r being the distance from the point of pressure, and 6 the angle between the radius

vector and the normal.

Fig. 16.

11—2
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The form of this function enables us to represent this system of forces (at all points

in the body external to a small hemisphere at i) by a series of radial lines having

geometrical properties analogous to those of the lines of force in electrostatics*.

If we now suppose the shaded portions of the infinite solid to be removed, all these

lines will have to be crowded into the region occupied by the rod, attaining ultimately

a uniform distribution parallel to the axis. Within the small hemisphere at A, the dis-

tribution will not be sensibly altered €by the change, so that the ultimate distribution must

be somewhat as represented by the dotted lines. Up to the point D, at which the pressure

P

in the infinite solid attains the value corresponding to a uniform distribution of the

pressure over the whole cross-section of the rod, it is clear that the distribution near the

axis is little different in the two cases, while beyond D the axial pressure in the rod

never differs greatly from this value, which it soon sensibly attains.

Fig. 17.

* These lines are shewn correctly plotted in Fig. 16.

Suppose n=no. of lines per radian.

Then n oc cos2 6=A cos2 6 (say).

Let Ne be the no. of lines in the angle d.

-I:

Nd~ I A cos* Odd

= ± [26 + sin 26].

The total no. of lines within the quadrant is thus

N=j.7T.

Suppose we actually plot m lines, then the positions of

these lines are got by putting

„ N 2N 3N

Nft = — , — , —,

0 m m m

26 + sin 26 =

2?r 3tt

The graphic solution of this equation for the case m=8

is shewn in the accompanying diagram (Fig. 17).

The extremely open spacing of the lines of force in the

neighbourhood of 6=^ is well brought out by this con-

struction, and serves to illustrate clearly a point to which

Hertz, in his memoir, devotes but little attention, viz., the

exceedingly slight influence which the shape of the surface

outside the area of contact, has (within limits) on the

distribution of stress in the interior of the solid.
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Now by far the greater part of the compression in AG takes place in the immediate

neighbourhood of A (i.e., along AB)y and we shall not, therefore, make a very serious error

in the total value of this compression if we assume that up to B the pressure in the rod

P

is the same as in the infinite solid, and that beyond D it has the uniform value —n *.

J 7ra2

Exactly similar remarks apply when the pressure at A, instead of being concentrated at

a single point, is distributed according to Hertz' formula, and it was on the above as-

sumption that the value to be taken for AC was calculated.

The distance AD is sufficiently great for the stress (and strain) at D to be independent

of the distribution at A, and we may therefore calculate these as if the pressure there were

concentrated at a point.

3P

Putting AD = c, we have then (Love, loo. cit.) p = = pressure at D in the infinite

P /3

solid. This has to equal —, so that c = ^ ^ a simply.

Again, the displacement of D relative to infinity in the complete solid is

4nrfi \ X + p Jo

(say).

~ 4<7rC\SE+C" "' c

We have to determine the point G so that the compression in DC in the rod = ««/.

Hence, putting DG = e}

P B- P

c >ira?E-e>

ira?EB

or e =

o

whence d = AC = c + e

See p. 87.
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(B)

Numerical data with a discussion of the errors involved in certain assumptions.

The steel rods which I used had the following constants (taken from previous paper).

Eadius of cross-section, a = *25".

Radius of spherical end, r = 1".

Density, p = 485*7 lbs. per cu. ft.

Wave velocity, v = 16,820 ft. per sec.

From v and p we calculate E^ the adiabatic value of Young's modulus, as follows:

_ pv2 _ 485-7 x (16820)2

* ~ g ~ 144 x 3218

= 29,640,000 lbs. per sq. in.

A torsion test on the specimen rod gave:

(7=11,660,000 lbs. per sq. in.

E

Now °"=2(7""1> anC^ s*nce snear involves no change of volume, G$ = Ge = C, so that

_E^ 2964

Hence 1 - *f = '9265

i

and Hertz' constant,

Lastly d=\Zla + \/;

V2^r2

:3(1-V)

2* x 29-64 x 106 x 32-18 x 12

3 x -9265

: 5*825 x 109 absolute inch units.

2

^irEBa

/3 1 /2 „ 1 (6E+5C t \ 1

V2*4 + V 3^"4^U*^ + 1,"Z

/SE + C 'V'4

= *3062// + -3047"

= •6109//

For the reason already stated, that the greater part of the compression takes place

in the immediate neighbourhood of the point of contact, a considerable latitude is per-

missible in this figure, and for convenience in working we therefore take the next smaller

submultiple of the length of the rod*. The same rods were used as in the earlier experiments,

* See p. 60.
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but they were all shortened by Jj", making the shortest of them 5£" long. The submultiple

of this nearest to -6109" is '5926", which is ^th*.

The difference between "6109" and *5926// is '0183", so that the error thus made in

d is about 3 per cent. The corresponding error made in a is, however, much smaller. The

greatest pressure reached in any case I tried was 96,060 absolute inch units, corresponding

to a = 645x!0-6". The compression in '0183" due to this pressure is

p x -0183 _ 16

96060

•0183

ira2E

it 3218 x 12 29-64 x 106

= 7375 x 10~6

The error in a is thus ^ or ^ess ^an i Per cent-

Again we have a = (jj^S> so that ^=iT^^. The error in a therefore increases only as

p^-f. The maximum pressure reached being (for long rods) proportional to the velocity of

impact, it follows that this velocity may be considerably increased without serious error from

this source. By taking the submultiple next smaller than *6109", moreover, the tendency

of this error will be to neutralize that made in the assumptions on which the value *6109"

is calculated,—viz. that, up to the point D (Fig. 16), the axial pressure in the rod is no

greater than in the infinite solid, and that beyond this point it has everywhere the value,

p

—-, which it finally attains.

To get an estimate of the magnitude of this latter error, we may take for the radius

AB (within which we suppose the pressure to be sensibly the same in the rod and in the

infinite solid) a length of and let us take, as a first approximation to the dotted

curves near the axis (Fig. 16), a circle touching the line AH at Gy and the line HF' at F.

This is shewn on an exaggerated scale in Fig. 18.

We have AD = DC = -3" approximately.

[e Bi \

Fig. 18.

* The 13|", 214", 29£" and 37^" rods are respectively, -5926", and the tabulated values found by graphical

45, 72, 99 and 126 times this length, but the intermediate interpolation.

rods are not exact multiples of it. In these cases the t The absolute error in a is proportional to p. The

calculation was carried out for the nearest multiple of °/0 error in a is therefore proportional to p/a.
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It is at once clear from the figure that in the limit, when 0 is indefinitely small,

HK = ±HL=±HM.

Now the pressure in the rod at D is to that in the infinite solid as limit or f

KD o

so that the error at the point D comes out at 20 per cent. Integrating from B to E,

however, the mean error between these points only comes to about 6 per cent.

But, using the value of the maximum pressure given above, the displacement of B

relative to G (calculated on the assumption of point pressure at -4) is only 12 per cent,

of the whole compression in AG (calculated on Hertz' theory), the remaining 88 per cent,

occurring within AB. If we take the pressure at A as distributed over a small area, as

in the Hertzian theory, the intensity of pressure along the axis will be everywhere slightly

less than in the case of point pressure, so that we may take it that the compression between

B and E is really not more than say 10 per cent, of a. The final error in a, due to an

error of 6 per cent, in this, will thus be only *6 per cent.

By taking AB — -fa" and proceeding in the same way, we should have arrived at an

estimate of the error about three times as great as the above. I do not think, however,

that there is any need to make AB so small as this, and I regard the former estimate

as probably nearer the truth.

In making this calculation the effect of the transverse pressures has been neglected.

It is fairly evident that the changes in this will be considerably less than those in the

longitudinal pressure, and their effect on the longitudinal compression will be still further

reduced by the action of Poisson's ratio.

On the whole it appears that the nett error, due to this and the preceding cause, should

certainly be less than 1 per cent., and probably not more than about \ per cent, even when

the pressure is at its greatest. With lower pressures it will, of course, be less still.

Lastly, let us consider the error due to pressure-gradient in the end-element. Taking,

for instance, the figures for 5-^" rods impinging with the velocity 5*030" per second which

was usually employed, we see that the greatest difference of pressure ever produced between

the two ends of the end-element is about 1080 absolute inch units, this occurring between

the points 8 and 9, and 9 and 10, in the tabulated sheet. (Appendix II.)* The value of

a9 is 120*96 x 10~6 inches. We may suppose the error due to the pressure-gradient to be

roughly one half the compression which would be produced in the end-element by a pressure

equal to the difference between the pressures at its two ends. This would be

16 ^xl080 -5926 1/IOK 1A . .

V X 8k^l2 X 29-64 x IV = ^ * 10 ^

2 x '1425

The worst error in a is therefore jvq.qq > or agam rather less than \ per cent. During

the greater part of the impact the error will, of course, be considerably less than this.

Moreover, the pressure-gradients being in opposite senses when the rods are approaching

and when they are separating, this error will, to a large extent, be compensating.

* Up to n=17, the figures for equal 5|" rods are identical with those for —13V rods.
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METAL RODS WITH ROUNDED ENDS. 89

APPENDIX II.

Specimen calculations.

(See pp. 57—60.)

A. of—lSf Steel Rods.

Velocity of 5£" rod before impact...5'030'ysec.

131" 0

)j j) J-'J 3 ...V/.

Data (see Appendix I):—

logarithm

d = -5926" 7727

v = 16820 x 12 = 201,800 ins. per sec \3050

jST* =5-862 x 109 -7681*

T = - = 2 936 x 10"6 sees -4677f

v

7=5*030 ins. per sec '7016

Vt = 14 77 x 10-6ins -1693

J- = -A- xl7^x^ -9531

5^5= 1*317 xl0~10 -1198

2vpS

* Throughout my calculations I unfortunately used for value. The difference would be very small (less than the

the constant K the value 5-862 x 109 instead of the true value error in K), but would have the general effect of increasing

5'825 x 109 (Appendix I, p. 86). This error was introduced the duration of impact and decreasing the impulse. It

by taking the modulus of rigidity C as 11,560,000 instead would, in fact, tend, on the whole, to improve the agree-

of 11,660,000. It did not appear worth while to repeat the ment already found between theory and experiment,

whole of the rather laborious calculations with the correct t See footnote, p. 60.

Vol. XXI. No. II. 12
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In the table which follows An denotes the area of the pressure-time curve between

the ordinates p^ and pn ^ = j pt dt^j. It was found that sufficient accuracy was attained

by simply taking this equal to ^ (pn-i +Pn)- The value of Ax was obtained direct from the

formula, thus

Jo Jo

or

ill =

vPS 5 * vpS

= -035 x 10"6.

The successive lines in the columns marked /3n and yn represent the calculations of

the successive equations ((v) and (vi),- p. 59) respectively.

d

Putting T = ~> Vi = F(= 5*030), V2 = 0y and remembering that, at all times previous to

zero, p = 0, these equations become

or

A

and

'y2 = 'yi+^

7s = 72 +

The equations in this form hold until the appearance of the reflected waves in the

corresponding rods. The terms due to these, when they arise, are simply repetitions

A A

of the terms —^, —and involve no further calculation*.

vpS Vpb

* See p. 60.
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The process is then as follows:—

From an, pn is calculated, then pn+Pn-i> and finally ^-g. In the first portion of

column yS we then calculate ^Vr — ^g —reflected terms^, and adding this to /3n we get

/3n+1. Similarly we get yn+1, and thus, by subtraction, an+l.

Up to n = 17, when the first reflected wave appears, the course of this impact is the

same as for a pair of equal rods, and may be seen plotted in Fig. 9 (p. 96).

12—2
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vpS

4-968

4-864

4-750

4-629

4-498

4352

4-197

4-029

3-851

3-664

3-472

3-276

3-075

Pn+Pn-1

37710

36920

36050

35130

34130

33030

31850

30580

29230

27810

26350

24860

23330

3

Vn = K*n

18670

18250

17800

17330

16800

. 16230

15620

14960

14270

13540

12810

12050

11280

216-43

213*21

209-73

205-92

20175

197-15

19214

186-71

180-90

174-77

168-37

161-69

154 70

-=-J + reflexion terms

vpS

113-74

11871

123-57

128-32

132-95

137-45

14180

146-00

150 03

153-88

157-54

16105

164 50

A

...

= 3-51| ...

= 3-45

7n = 7n-i +

4-97 .

4-86 .

4-75 .

4-63 .

4-50 .

4-35 .

4-20 .

4-03 .

3-85 .

3-66 .

04

17:

5-06

347 +

3-28 +

330-17

331-92

333-30

334-24

334-70

334-60

333-94

332-71

330-93

328-65

325-91

322-74

319-20

q _ Vt + &. i - reflexion terms

•461

- -10

- -66

-1-23

-1-78

-2-28

-2-74

-3-17

-3'54

rn rn 1 vpS

(13-39)

_ 4-46-4-03- -04 = 1-38*

(13-83)

-4-66-4-26- -17= -94

(14-31)

-4-83-4-46- -35- -04 =

(14-87)

-4-97-4-66- -57- -17 =

(15-43)

-5 09-4-83- -81- -35 =

(16-00)

-5-19-4-97-1-07- -57 =

(16-55)

-5-26-5-09-1-35- -81 =

(17-05)

-5-31 -5-19 -1-63 -1-07 =

(17-51)

-5-33-5-26-1-91-1-35 =

(17-94)

-5-33-5-31-2-20-1 63 =

(18-31)

- 5-31 -5-33-2-48-1-91 =

(12-64)

-4-03-3-55 = 2-13

(13-02)

-4-26 -3-79= 1-75

-5-06-

-4-97-

-4-86

-4-75

-4-63

-4-50

-4-35

-4-20

-4-03

-3-85

-3-66

-3-47

-328

14-77-

14-77-

14-77

14-77

14-77

14-77

14-77

14-77

14-77

14-77

14-77

14-77

14-77

11

34

35

36

37

38

39

40

41

42

43

44

45

46

* Arrival of second reflected wave in b\" rod. t Return of second reflected wave in 5 J" rod. \ Arrival of first reflected wave in 13£" rod.
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Mr SEARS, ON THE LONGITUDINAL IMPACT OF

Results:—

Impact complete in 60*99 steps.

Duration of Impact = 60*99 x 2*936 x 10"6

= 1-790 x 1Q-4 sees.

2-^ = 187-69 x 10-6.

Vpb

Impulse = 2 A n.

Mass of rod = pSL.

.-. Change of Velocity of rod = ~^ = 2^~^-

Change of velocity of 5£" rod = 2^fQ°QQ x 187*69 x 10"«

= 7-104 ins, per sec.

Change of velocity of 13£" rod = x 187*69 x 10~6

= 2*841 ins. per sec.

Velocity of 5£" rod after impact = 5*030" - 7*104" per sec.

= --2*074// per sec.)

Velocity of 13£" rod after impact = 2,841// per sec.J

When the two rods are of equal length, the reflected waves in both appear at the

same time, and there is then no need to keep the columns for /3n and yn separately, a

single column sufficing for the calculations of an. The method is thus considerably

simplified.

The results of some of these calculations are seen plotted in Fig. 9.
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METAL RODS WITH ROUNDED ENDS.

97

B. End Effect for indefinitely long rods with 16" difference in length.

The work commences with the arrival of the first reflected wave in the shorter

rod, the length of the rods being assumed so great that the pressure has then reached

its limiting value 28,020: a has then the value 283*7 x 10-6. This instant, being indefinite,

is denoted by putting n = V.

The course of this calculation should be considered with reference to the diagram (Fig. 10).

The terms representing the reflected waves are to be found in the ^~ column for

5£"—13£" rods up to n = 17. Beyond this they have the following values (taken from the

calculations for pairs of long equal rods):—

18 .,,

.. 4-26

32 ..

6-30

46

7-03

60 ...

... 7-29

19 ...

4-47

33 ...

. . 6-39

47 , ,

7-06

61 ,

... 7-29

20

4-67

34 ...

6-46

48 ...

. 7-08

62 ...

... 7 30

21

4-85

35 .,

,,, 6'54

49

711

63 ..

,, 7-31

22

, 5'04

36

, . 6-60

50

7-14

64

,. 7-32

23 ...

521

37

, 6-66

51 ...

,. 7-16

65 ...

7-32

24

... 5-36

38 ...

6-72

52 ,

7-18

66 ..,

... 7-33

25 ,.

... 551

39 ..

6-78

53 ...

.. 7-20

67 ..

... 7-33

26 ...

.,. 5-65

40

.,. 6-82

... 7-22

68 ...

, , 7-34

27

. . 5-78

41

.., 6-87

7-23

69 .

7-34

28 ...

.,. 5-90

42 ,

, 691

56

7-24

70 ...

, 7-34

29 ,

. , 6-01

43 ,

6-95

57

. , 7-26

71

. 7-35

30 .,

, 612

44

6-98

58

,.. 7-27

72 ,,

... 7-35

31 ..

621

45 ...

7-00

59 ,,,

7-28

approaching gradually the asymptotic value 7*385 (=£x 14*77).

Result:—

End Effect complete in 71*95 - 1 = 70*95 steps.

End Effect = 70*95 x 2*936 x 10"6

= 2 083 x 10"4 sees.
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An

vpS

7-385

7-384

7-379

7-369

7-348

7-308

7-261

7-196

7-112

7-015

6-905

6-782

6-645

Pn+Pn-l

56040

<=%v)

56030

56000

55930

55760

55470

55100

54610

53970

53240

52410

51470

50440

24950 1

Vn

28020

28010

27990

27940

27820

27650

27450

27160

26810

26430

25980

25490

283-70

283-66

283-50

283-12

282-41

281-22

279-83

277-92

275-59

272-88

269-79

266-36

262-61

0

7-39

14-77

22-15

29-52

36-87

44-18

51-44

58-64

65-75

72-77

79-67

86-45

7n~x

7-39

7-38

7-38

7-37

7-35

7-31

726

7-20

.711

7 02

6-90

6-78

1

283-70

291-05

298-27

305-27

311-93

318-19

324-01

329-36

334-23

338 63

342-56

346-03

349-06

Note: ft0' and y0' are not known,

but their difference a0' is. Putting

x ~ 7o'y we proceed as below.

(7-42)

14-77 -7-38- 04 - 7-35

14-77 -7-38 - -17 = 7-22

14-77 -7-38- -35- -04 = 7-00

14-77-7-37 - -57- -17 = 6-66

i4.77_7.35_ -81- -35 = 6-26

14-77 - 7-31 - 1 07 - -57 = 5-82

14-77 -7-26-1-35- -81 = 5 35

14-77 -7-20- 1-63- 1 07 = 4-87

1477 -7-11 -1-91 -1-35 = 4-40

14-77 - 7-01 - 2-20 - 1 63 = 3*93

14-77-6 91-2-48-1-91 = 3-47

14-77 - 6-78 - 2-76 - 2-20 = 3*03

Pn~x

(7-55)

(7-77)

(8-11)

(8-51)

(8-95)

(9-42)

(9-90)

(10-37)

(10-84)

(11-30)

(11-74)

n

0'

r

2'

3'

4'

5'

6'

7'

8'

9'

io'

lr

12'
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43'

44'

45'

46'

47'

48'

49'

50'

51'

52'

53'

54'

55'

56'

57'

58'

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77

14-77-

2-20-6-95

2-11-6-98

2-02-7-00

1-94-7-03

1-86-7-06

1-78-7-08

1-71 - 7 11

1-64-7-14

1-58-7-16

1-52-7-18

1-46-7-20

1-40-7-22

1-35-7-23

1-29-7-24

1-24-7-26

1-19-7-27

16-02)

-6-87^-

1-25

16-00)

-6-91

= -1-23

15-97)

-6-95 =

15-95)

-6-98 =

15-92)

-7-00 =

15-89)

-7-03

15-88)

-7-08 =

15-86)

-7-08 =

15-85)

-7-11 =

-1-20

-1-18

-1-15

= -1-12

-Ml

-1-09

-1-08

15-84)

-7-14 = -1-07

15-82)

-7-16 =

15-80)

-7-18 =

15-78)

-7-20 =

15-75)

-7-22 = -

15-73)

-7-23 =

15-70)

-7-24 = -

-1-05

-1-03

-101

- -98

•96

•93

2-20

2-11

2-02

1-94

1-86

1-78

1-71

1-64

1-58

1-52

1-46

1-40

1-34+ -04 = 1-38* ...

1-29+ -17 = 1-46

1-24 + -35-1- 04 = 1-63

217-64

219-75

221-77

223-71

225-57

227-35

229- 06

230- 70

232- 28

233- 80

235- 26

236- 66

238- 04

239- 50

241-13

1-19 + -57 + -17 = 1-93 I 243-06

of first reflected wave in longer rod.

121-17

117*83

114-61

111-49

108-48

105-58

102-76

100-03

97-47

94-88

92-37

89-94

87-55

85-11

82-52

79-66

7820

7500

7193

6901

6625

6360

6104

5865

5642

5419

5205

5001

4801

4604

4395

4168

15982

15320

14693

14094

13526

12985

12464

11969

11507

11061

10624

10206

9802

9405

8999.

8563
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vpS

1-065

•998

•923

•843

•759

•669

•577

•483

•390

•298

•211

131

•063

—

Pn+Pn-l

8088

7571

7008

6401

5756

5079

4380

3668

2958

2264

1602

997

481

—

Pn

3920

3651

3357

3044

2712

2367

2013

1655

1303

961

641

356

125

—

76-47

72-91

68-95

64-59

59-82

54-62

49-03

43-03

36-68

29-94

22-86

15-44

7-68

-•41

245-35

248-06

251-22

254-84

258-94

263-53

268-59

274-13

280-12

286-57

293 45

300-75

308-46

316-57

M3+ -81+ -35 = 2-29

1-07 + 1 07 + -57 = 2-71

1-00 + 1-35 + -81 =3-16

•92 + 1-63+ 1-07 = 3-62

•84 + 1-91 + 1-35 = 4-10

•76 + 2-20+ 1-63 = 4-59

•67 + 2-48 + 1-91 = 5-06

•58 + 2-76 + 2-20 = 5-54

•48 + 3-03 + 2-48 = 5-99

•39 + 3-30+ 2-76 = 6-45

•30 + 3-55 + 3-03 = 6-88

•21 + 3-79 + 3-30 = 7-30

•13 + 4 03 + 3-55 = 7-71

•06 + 4-26 + 3-79 = 8 11

321-82

320-97

320-17

319-43

318-76

318-15

317-62

317-16

316-80

316-51

316-31

31619

316*14

316-16

•90

•85

•80

•74

•67

•61

•53

•46

•36

•29

•20

•12

•05

•02

(15-67)

-7-26 = -

(15-62)

-7-27 = -

(15-57)

-7-28 = -

(15-51)

-7-29 = -

(15-44)

-7-29 = -

(15-38)

-7-30 = -

(15-30)

-7-31 =-

(15-23)

-7*32 = -

(15-13)

-7-32 = -

(15-06)

-733 = -

(14-97)

-7-33 = -

(14-89)

-7-34 = -

(14-82)

-7-34 = -

(14-75)

-7-34 = +

ft*-*

-7-28

-7-29

-7-29

-7-30

-7-31

-7-32

- 7-32

-7-33

-7-33

-7-34

-7-34

-7-34

-735

-7-35

M3

1-06

1-00

•92

•84

•76

•67

•58

•48

•39

•30

•21

•13

■06

14-77-

1477-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77-

14-77 -

11

59'

60'

61'

62'

63'

64'

65'

66'

67'

68'

69'

70'

71'

72'
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APPENDIX III.

It follows from the remarks on p. 54 (preamble) that the general characteristics of

the extension—where elastic after-working is present—must be represented by some such

formula as

€ = P.^(l-6<r«)

where e = extension,

P = load per unit area,

I = length of specimen,

t = time, from application of load,

E, 6, k = constants of the material.

If this formula be correct, we should get for Young's modulus, with t = oo, the ordinary

static value, E (which includes elastic after-working); and with £ = 0, the instantaneous value

E

-—^, or E (1 + b) since b is small.

For the case of aluminium the difference was about 1 per cent., so that b = roughly.

Suppose we now take two observations, the first at 15 seconds, and the second at

5 minutes from the application of the load*: and suppose that the latter gives the final

extension correct to ^ per cent.

We have then ^ = 15, 4 = 300, so that^ = ^-.

Also by supposition e~ki2 = e~mk =

so that e-kt* = (^)* = & about.

The first observation consequently gives the instantaneous value of the extension, also

correct to ^ per cent.: which is in accordance with the observed facts.

Formulae of the above character may be deduced from various hypotheses: one of these,

which is purely mechanical in its nature, may be simply illustrated as follows:

Suppose that the crystalline grains of which the metal is formed are aeolotropic; and

to simplify the argument suppose them to be cubes of side I arranged as in Fig. 19,

the value of the modulus in the direction of the shading being El9 and across it E2. The

behaviour of the metal as a whole will still be isotropic.

* This corresponds roughly to the actual conditions of the experiment, see p. 54.
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Mr SEARS, ON THE LONGITUDINAL IMPACT OF

Suppose also that the tangential reaction between adjacent cubes is viscous in character—

i.e., proportional to the velocity of relative motion. Let EX<E^

r

r

—\}-

*> 1

^ A

t

fa

4

!5

I2

Fig. 19. Fig. 20.

Then, on the application of a load, each of the grains will extend, instantaneously,

to the same amount, since any instantaneous relative motion would involve an infinite reaction

between the grains. To produce this equality of extension, reactions will be set up between

the grains of the character represented in Fig. 20.

Let the equivalent extensive effect of each of these groups of forces be denoted by R/2.

The total strain in the length I will then be

p-r i p+r i_pi (l Ll-jiLiL-L

E, '2 + E2 '2 r2\E1 + Eft] 21E, E2_

= AP -BR say.

The relative displacement of any two points originally in contact will, at any time, be

proportional to the relative displacements of the ends of the adjacent grains, i.e. to

P-R I P + R l . pi/ l i\ i\

-sr-s—sr-sor to p^ErEj-^E+Ej'

or to BP-AR.

Now by hypothesis R is proportional to the rate of change of this relative displace-

, . , dR

ment, i.e. to y-.

at

That is

R = -k

dR

dt 9

or integrating, R = Ce~kt + D.

Now when £ = 0, no relative motion has taken place, so that AP — BR0 = 0, or

E> _ B T>
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METAL EODS WITH ROUNDED ENDS.

105

Also when t = oo , R = 0, so that D = 0, and thus finally

R = ~ Ptf-**.

-4

Inserting this in the expression for the strain at any time, we get

B2

€ = AP-~ Pe~kt

A

Now A= \ f-i + ^rV so that putting E equal to the harmonic mean of E1 and E2,

we get A = simply, whence

which is exactly the form of equation suggested above.

To get the values for aluminium we should need to have

A2~ 100' °r A" 10'

m, , • E2 ~ E1 1

That 18 snrsrio'

#2 11

by no means an unreasonable supposition.

B 1

The maximum value of R involved is -r P, or —r P, which is also quite reasonable.

A 10 n

In any ordinary metal the crystalline grains will, of course, not be cubes in regular

piling, but of all shapes and sizes mixed indiscriminately together. This would not, how-

ever, alter the general character of the formula, which depends solely on the hypothesis

of aeolotropic grains with a viscous reaction between them.

In support of such an hypothesis we may remark that as the crystalline grains are

built up from their various centres, there will in general be a certain number of molecules

to spare between their surfaces; and these molecules will evidently be distributed in the

spaces between the grains with relatively small density, i.e., in such a fluid or semi-fluid

condition, as would just account for the viscous reaction required. It is, of course, well

known from the phenomenon of burnishing that such a fluid condition exists at the surfaces

of metals.

It must be understood, however, that up to the present only the general characteristics

of the stress-strain-time relation have been proved, and that its exact form still remains a

subject for future investigation.
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liberality in taking upon themselves the expense of printing this

Volume of the Transactions.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:1

9
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



III. Integral Forms and their connexion with Physical Equations.

By R Hargreaves.

[Received in revised form May 7, 1908. Read May 18, 1908.]

We are concerned here with the variation of integral forms, or more specially with their

invariance, under the action of an operator which is an extension of the hydrodynamical operator

in Euler's equations. In the integral forms temporal terms are admitted, i.e. terms containing

dt as well as the differentials of coordinates, and it appears that the forms have special pro-

perties when the temporal terms are associated with the non-temporal in a definite way. These

associated terms are significant quantities which include vector and scalar products as particular

cases.

The general theory comprises the action of the operator, its conjunction with the process

of derivation in Stokes's theorem, and the law of association. The account of the general

theory is followed by applications to the equations of hydrodynamics, to those of general

dynamics, and to the electromagnetic equations.

It is hoped that this may prove a useful contribution, to the unification of the equations

of physics on what may briefly be described as the principle of 'the invariance of circuital

content.' In connexion with the significance of the circuit Stokes's theorem, in a generalized

form, is of fundamental importance as revealing the quantities characteristic of an infinitesimal

circuit, and also as furnishing the clue to the treatment of integrals for closed spaces.

§ 1. The operator ^ + ux ^ + u2 g- + is denoted by , the operand by fit. The

latter is a sum of multiple-integral forms jj ... Xvqr_ dxp docqdxr..., each term of which

contains the same number of differentials, those in one term all distinct; the terms involve

various combinations of the letters but not necessarily all the combinations of given order.

The letters X and u denote functions of t and of the variables x.

The operation Dfl/Dt is then understood to mean that

-j^ dt is limit of ^%X'vqr,.dx vdx qdx'r ... — j %Xpqr_dxpdxqdxr (1),

Vol. XXI. No. III. 14
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108 Mr HARGREAVES, INTEGRAL FORMS AND

where xp = xp + updt, ... and X' has the value corresponding to the altered values of t, x,

DX

viz. X -f -jr- dt. The difference above is the sum of terms

uz

j (X'pq,mm - XpqM) dxpdxq ... + j Xpq.mm (dxfpdxq ... - dxpdxq ...) (2),

and the first term in is therefore j 2 ^ j^'" dxpdxq ....

When a/p, ... depend only on xp> xq, the variables of their own group, the

9 (x x' xf \

transformation is made by the Jacobian p>—-—r'"' ;but in general the group comprises

0 \Xp} Xq> Xr) ... j

only a part of the variables. Since in any one differential form dxpdxq... the other variables

are regarded as constant, the transformation of each element is to be made by applying

Jacobi's formula to all the possible combinations of the same order, i.e. we write

dxpfdxq' ... == 2 o~7 \ dxpdxq ... .(3).

For like subscripts we have 1 + — dt, for unlike = dt. Thus two types of

OXp uXp OXq uXq

transformation occur; in the first all the subscripts for x agree with those for x, in the

second all but one agree. If more than one subscript is different, the Jacobian contains

the square or a higher power of dt, and the term need not be considered.

When all the subscripts agree the main diagonal gives the only terms of first order in

the Jacobian, viz. 1-f (J^ + ^ ^> as m we are concerned with

dx'pdxq ... — dxpdxq ..., this is 4- ^ + .. dtdxpdxq ....

Combining this with the term previously given,

■■■)}*«*• (1>

is the section of in which the differentials are all the same as in the term of origin.

If 772 —1 members of the groups (pqp'...), (pqp ...) are alike and the remaining one un-

like (p and p say), then m — 1 rows of the Jacobian have an element equal to 1, their

other elements containing dt; while the remaining row has dt in each element. Only one

term therefore of the Jacobian is of the first order in dt, and its magnitude is |^ dt.

Thus the contribution of Xp„,p>„dxp ... dxp>... to the differential dxp ... dxp ... in

Da. Y 3tv

Dt 38 ±"W--dx~o

is + Xp_pr_ -^-dxp ... dxp (5).

We consider now the question of sign. The order of the differentials is only important

in the sense that, having chosen an order we must adhere to it, or recognise a change by

change of sign in the result: in general a cyclic or symmetrical arrangement is convenient.

Thus in transforming dx'pdxfqdxfr to dxpdxqdxr and to dxqdxpdxr respectively, there is a
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THEIR CONNEXION WITH PHYSICAL EQUATIONS.

difference of sign corresponding to the single interchange of adjacent members. If the

m — 1 like subscripts in (5) fall in corresponding positions, the only relevant term of the

Jacobian is the main diagonal and the sign is positive. Thus if the number of single

interchanges of adjacent terms, needed to make the m — 1 like subscripts fall into corre-

sponding positions is even, the sign of the term is positive; if odd, it is negative.

§ 2. The parts (4) and (5), the latter summed with attention to the rule of signs,

constitute the value of D£l/Dt. But it is not convenient to examine the Jacobian for each

sign, and a convention will permit us to state the result of differentiation in a fully defined

form. The convention is that Xpq_ shall be regarded as a quantity which changes sign with

each single interchange of adjacent subscripts, and its actual value got by bringing the sub-

scripts to an original defined order. The use of this convention replaces the direct consideration

of the Jacobian, and the collection of terms becomes simple. If

r r

12 = J 2 Xpq.^docpdttq then ~^~J ^Xsvq„dxpdxl

where X W.. - ^ + 2 & X_. + ^ X„m +

•(6),

and n may have any value present in the subscripts appearing in X2. A term Xnqr_ is to

be taken as zero if two subscripts agree (e.g. if n = q), or if the group (nqr...) does not agree

with some group appearing in 12. But it is not necessary that a group of differentials in

-j^ should agree with some group in 12; one differential may be different.

One other point remains for consideration, viz. the position as regards dt. In the

d d

operator — + %_ = h ... the position of dt is exceptional in that the u which corresponds to

Ov ox-±

it, uT say, is 1. If this is borne in mind, the general method applies also to t. Two features

should be noted: (1) no terms are carried over from temporal to non-temporal sections in

3u

the operation DjDt, since ~^ = ®> an(i (2) a^ terms carried from a non-temporal to a temporal

section contain ^ , p being the one subscript in the source-term which does not appear in

the final term, but is replaced by dt.

The notation and result of (6), as furnishing an explicit collection of terms, are effective

for the purpose of establishing general theorems. But an equivalent rule may be given

which is easy of application in the simpler forms. The terms which arise from a source-term

dxpdxq ... by modification of any differential, say dxq) are got by writing 2 ^ dxn in the place

of dxq. The rule of signs is used to bring any term to a standard order, and the summation

extends to all values of n (including t as representing dt) not contained in the other differentials

of the group.

§ 3. Some simple examples will now be given. The linear form does not introduce

the question of sign, and I22 being j %Xpdxp + Tdt,

14—2
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and

D d d d d

In three dimensions with the more usual notation -rr = ^rt + u=- + v=- + w7r-,

Dt dt dx dy dz

ft2 = J Xdx + Ydy + Zdz + Tdt,

Da, [(DX x vdu , v3v Jm;\, , (DT , ^ vdu\ .

A form of the second order is

02 = j Xdydz + Ydzdx + Zdxdy + Udtdx + Vdtdy + Wdtdz,

D02 [[DX (dv , dw\ „du du) ,

^ = ![m+X[dy + d'z)-Ydy-Zd-,\dydz+---

[(DU , TTdu Trdv , Tjrdw ^dw „dv\ 1± 7 ,

for which

V

du dw d (zr ocfs) d (zf x'}

The terms — Y ^- , 4- Y ^- are got through the Jacobians -^t-1—and —r r

dy dt 5 3(2/, z) d(t, x)

tively, i.e. through

(9).

espec-

dw ,

dw 7j du 7,

Tydt'

7T dt

dy

and

Ttdt' dtdt

du .

1,

^-dt

dz

for which

The rule at the end of § 2 derives these terms by writing Ydz ^dy, and Ydtdx,

and changing the sign in the first for the alteration in order of the differentials.

A form of the third order is

Xl3 = j pdxdydz + Udtdydz + Vdtdzdx -f Wdtdxdy,

DD.3 [(Dp (du dv dw\) , 7 ,

, [ \DU tt (dv , dw\ rrdu iTrdu du) 7, 7 7 , /nAx

+1 {m+u +u) -v dy -w *+dtdydz+ (10)-

In (9) and in (10) we note that the temporal terms derived from a temporal source

w the rule of their order in xyz; i.e. in (9) + U ^ + ... is a linear form; in (10)

J-fb OX

U + ... is a surface form.

Dt

f dv dw\

Kdy"

Special values may be assigned to the temporal terms in (7) to (10), which have the

property that the temporal terms in DVLjDt vanish automatically with the non-temporal

terms, i.e. without further condition. These values are for (7)

-T=2,UpXp; for (8) -T = %uX\

for (9)

and for (10)

U = vZ-wY, V=wX-uZ, W=uY-vX;

— U = pu, — V=pv, — W = pw.
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Ill

Thus by placing the temporal terms in a definite relation to the non-temporal we are

led to forms of fundamental importance. The examples given are readily verified; they are

particular cases of a general theorem proved below.

§ 4. The operator will be used often in conjunction with a process which is a general-

ization of the mode of derivation used in Stokes's theorem. The rule of derivation applied

to integrals of any order is as follows: In the integral form write for each integrand its complete

differential, remove terms which with the existing differentials yield the square of any

differential, and as regards order follow the rule given above: the result with one more sign

of integration (not here written) is the derived form.

For &<i= j Xdx + Ydy + Zdz + Tdt, the derived form is

J(^-^)^+- + (»-s)*cto+(lla)-

For n2= j Xdydz+ ... + Udtdx+ the derived form is

ffdX BY dZ\, , , ^ fdX dV dW\,., , ^ ...

For &3=jpdxdydz+ Udtdydz + the derived form is

[/dp dU BV dW\,., , , ... .

fdV dV dV dV \

In (11 b) for example we have a term dt + dx + dy + dzjdtdy, the first and

dV

third to be rejected, the second requiring a change of sign to give — — dtdxdy, the fourth

ox

no change of sign because the movement of dz is through two places.

If in (11 c) we put U = — puy ... we obtain ^ 4- ^Pu + ••• tne same integrand as in (10),

but here the form is of the fourth order.

In a form of the mth order an elementary circuit is made by varying m+1 coordinates

so that each coordinate shews a change, and the path of return to the original value is

associated with different values of the other coordinates. It is convenient to have a name

for the process described above, and we shall call the result the reticular form of fl and

denote it by M£l; having in mind the figure employed in describing Ampere's view of the

addition of circuits. If Xp, Xpq) ... are integrands of original forms and gpq9 %pqr, ... integrands,

of the reticular forms, then

„ dXq dXp

^XjQ $Xq

£ _ dXqr dXpr BXpq

y f)XqyS BXprs ^ dXpqS ()Xpqr

pqrs dxp dxq ' dxr dxs 3

and the operation may be regarded as an extended type of curl.

•(12),
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The process repeated always leads to a result vanishing identically. Thus if we watch

the operation on Xpq with a view to the term in dxpdxqdxrdxs, the first step gives

~ doCf *4" k ^ dx$ J doCf) doc a,

dxr oxs J

the second

^ dxodxy ~\~ x dxj'dxs) dx<ndxn.

oxsdxr oxrdx8 ) * 1

dxt

92X

and the terms are cancelled because the differentials are introduced in opposite order in the

two terms.

A converse theorem is also true, viz. if the integrands in MClm vanish, then Qm is MQm-iy

i.e. a reticular form of an integral form of lower order; for example if gpqr = 0, ..., then Xqr

has the form of %qr belonging to a linear integral. The reticular form of zero order of a

function

/is/:

'dxv

dxp, and differentiation is a curl of zero order.

§ 5. As regards the conjunction of D/Dt and the process of reticulation, the order of

operations is indifferent, i.e. ^ M£l = M . It will be sufficient to write the proof for a

general form of fl of the third order. If DjDt is applied first we quote (6), and curl the

result by the third of the relations (12), thus obtaining

dxq

'P L

dxa

DXqr

DXpi

t + dx/^qrnJ

+ %ftUn-X + —

n \dxq nVS dxr

+ r \dx~p ^ + dxr ^Pm + dx~s Ap

+

BXy

d_

dxs

-DXpqs ^ ^ f^^}

Dt n \dxp

pqn

DXpqr ^ fdun y , y

pnr

,+

which is equal to

Dt

71 UvCp

n OXp

dXqrs

dxv

dXprs , dXv

dxn

"az,

'dX

dx.

dxq

dXm

dx0

+

dX,

'+

dxr

dXn(

dxr

dX„

pqr

dxs

nqr

nvs dX2)rs ^ v^pns

doc,

dX,

pnr

dx8

or to

Dt

+ 2

dxr

n

~dx,

qns

dxn

dXpns

dXpqs dX,

dxt

dxn

pqn

dx>

dXgm ^ dXprn dX^

dxa

+

pqn

dxr

dXpqr

dxn J'

%pqrs

dun , dun t diint dun

gnqrs "T Spurs "+* ^7 gpqns ~t~ Zpqrn

i_dxp

dxr

dx8
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by (12); and this is ^p^s by (6). The passage from the first block of terms to the second

is made by writing

2 /) /) a y

:2

IT

and collecting terms with reference to

d D ^ D dXqrs _ s dun dXgrg

dxp Dt qis Dt dxp 7 dxp dxn 9

dUn

dxp 5

as coefficients.

§ 6. We now consider the theorem as to associated temporal forms, of which (7) to (10)

were examples. It will be sufficient to state and prove it for an integral form of the fourth

order. The statement is that if

iT2 — I 2 X.pqf-gdoGpdoc/qctoCpdccg ~j~ 2 Tpqydtdxpdxqdx.y

vhere

Tvq)— 2 umXn

(13),

"in mpqr

the temporal integrands in DCl/Dt vanish automatically when the non-temporal integrands

vanish. We set out from (6) as applied to X and T, i.e.

xr\ DXpgrs

+

y /dU7

n \dx«

dun v dun Y , dun

nqrs + dxapnrs+ dxr^pqns ' dx

and

DT,

pgr _j_ ^ ^9^w rp _j_ dun rp

Dt n \dXp

fiXin

dx.

pqrn i >

'n rp \ \ S ^n Y

■LpqnJ "t" y ^npqr-

When the value of T in (13) is used in the last formula,

dltnY dUn y dUn y

fan11™'* dXp^mnqr + dxqA'

± pqr— 4i j\.mpqY wn

Ob m. n

— 2 un

- 2

m, n

x

mpqr ^ \ •

n V

dlln Y

mpnr ~r ^ -d- mpqn

dun y .dUn y , dun y

^ A mngr + ^1 mpnr + ^ mpqn

+ - dt Anpqr

2^7n-^ mpqr'

.(14).

Thus the temporal terms T vanish with X\ and moreover the relation between T and

Xs is the same as that between T and X, when there is no question of Xs vanishing. The

form (13) covers the cases on p. 102; thus for (9) write J Xdydz + ...

X2Zdx2dxz + Xsldx-3dx1 + X12dxxdx2,

as

then Tx = — 2 umXml = — u2X2l — w3Xa = vZ— w Y,

m

is integrand of dtdxx or cfacfo?.

It is clear from the form of T in (13) that the associated temporal terms may be

derived from the non-temporal by writing for each differential as dxp in the latter the form

— iipdt, and using the rule of signs for each change of order that may be needed. The

terms associated with Xdydz in (9) are X (— vdt) dz + Xdy (— wdt) or — vXdtdz+ wXdtdy.

If with these associated terms Q is called a complete integral form, then (14) shows that

is also a complete form with Xs for X, and the operation may be repeated.
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§ 7. When ft is a complete form M£l is not a complete form, but the residual term

has a simple form, viz. ft being

I 2 Xpqrdxpdxqdxr — 2 umXmpqdtdxpdxq

J m

MQ< = I 2 %pqrsdxpdxqdxrdxs + (X^pqr — 2 um^mpqr) dtdxpdxqdxr

.(15),

for example. The integrand of dtdxvdxqdxr is

9£ 9# ^ ^m^mgr ^ ^m^-mpr ~r ^ Um2Lmpq

_ dXpqr

dt

\dx~

+-

ax

V 9#p 9#g 1 dxr

of which the first two terms are a part of X\qr. The last term may, if n is a number not equal

to pq or r, be written

9X«

9X»

CMJp * 9#r w V 9#,

9Z

dXnvr BX.

dx(

npr , ^^Miffg

9a?,

9X~

the first part is a further section of X\qr which now only wants 2%z - ----- for its completion.

11 oxn

Hence the term is

X

pqr

dxn

dXnor t dXnw dX^

9a?,

dxQ

g~9)> or Xpqr-2un!;,

npqr>

as stated in (15).

If now ft is a general form with associated terms shown explicitly, viz.

ft = j 2 Xpqrdxpdxqdxr + 2 (Lpq — 2 umXmpq) dtdxpdxq + ...

we have

Thus M£l can be made a complete form by writing

Aper-AMr=g^ -^"+ ^ ,

.(16 a).

•(16 6).

But being a curl of the second order, the third order curl of it vanishes, i.e. f\

pqrs

vanishes and therefore j^ft. Since also <^-^ = 0> is a reticular form, and in fact

-jy£ = Lpqdxpdxq — 2 umLmpdtdxp (16 c),

each member yielding

I Xxpqrdxpdxqdxr + (ip9 — 2 umXmpq) dtdxpdxq...

The conditions (16 b), therefore, make M£l a complete form, a reticular form, and

j^M£l = 0. The properties are general, though the proof is only written for a form of the

third order.
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Thus having found the associated terms to be significant quantities, we write il with

these terms in evidence, and leave the temporal terms general by the use of supplementary

terms, which again we expect to be significant. The equations (16 6) needed to make Mil

a complete form, so that yr- Mil may vanish in virtue of the scheme £v = 0, prove to be

JL/t

integrals of the latter when L's are regarded as arbitrary functions of xt; and the conditions

are presented in an alternative form.

If we add to a given il a form MHm-^ then since M2ilm-! = 0, Mil is unchanged; hence

with the conditions above all satisfied il may contain terms of type Milm-i, as well as those

leading to the characteristics of Mil, if it is our object to determine a general form of il

corresponding to the conditions.

§ 8. To explain the relation of these forms to integrals for closed spaces we set out

from a statement of Stokes's theorem; and we suppose that in the most general case vorticity

may be accompanied by Kelvin's circulation dependent on the nature of the space. We have

then the general statement (a), the difference between the line-integrals over two reconcileable

circuits is equal to the vortex-integral over a surface bounded by the two circuits; a particular

case (6), when the circuit can shrink to a point without passing outside the fluid, the line-

integral for such a circuit is the vortex-integral over a surface bounded by the circuit; a case (c)

when both the circuits shrink to points (distinct poles), and accordingly the vortex-integral

over a closed surface within the fluid is seen to vanish; and finally a case (d) when vorticity is

absent, and the line-integral is the same for all reconcileable circuits, i.e. it is constant for

a continuous range of circuits.

To the line-integral in these statements corresponds in cases of higher order the form il,

to the surface integral the form Mil. The latter contains only the part due to integration

of the continuous quantities characteristic of the infinitesimal circuit. Its integral over a

closed space at any time vanishes if the quantities appearing in il are single-valued. Thus

as regards (16), Mil is absolutely invariant, all the integrands of j^^H being zero; and

vanishes for a closed space at any time, because it has reticular form expressed in terms

of the single-valued quantities Lpq> and so il is a relative invariant.

The order of procedure in the applications which follow is to write Mil = 0, i.e. to find

the reticular form and make it invariant. This formula is the expression of the principle

of invariance of circuital content.

§ 9. Take the linear form il = j udx + vdy + wdz + Tdty for which

«-/(!-D**+-+(s-s)**+-"'

and form the non-temporal integrands of Mil as in (9). These equated to zero are the

vortex-equations of hydrodynamics, in respect to which we note that they appear in the

form

Vol. XXI. No. in. 15
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which is valid whether density is constant or a function of pressure. The integrand of dtdx in

the temporal section, cf. (9) U section, is

D^(du__dT\ (d±Jd_T\du (dv d_T_\ dv fdw _ dT\ dw

Dt\dt dx)+\dt dx)dx*\dt dy)dx+\dt dz J dt

_ fd_v _ du\ dv fdu _ dw\ dw = d Du d DT

\dx~dy) dt + \dz dx) dt ~ dt Dt dx Dt'

dyJ

The temporal section therefore vanishes if

VI=J1 v^-JA Pl-_dl ^L-Jl mn\

Dt dt' Dt~ dx' Dt~ dy' Dt~ dzK h

where f is some function of xyzt. From these equations follows

^t(T+&u>) and.-. -T=f+±2v> (176).

This determines the form of T, and the last three equations of (17 a) constitute the

equations of hydrodynamics when density is a function of pressure, here derived from the

linear form with special integrands. The value of a temporal integrand in is

dt ox

found by (17 6) and the second of (17 a) to be v — —w ^~ » ^e associated term

dT du

which makes a complete form. [The equation ^ = ^ — 2£y + 2r)W is a form given by

Nanson.] We have also by (8)

Z>n [(Du du dv dw\ , (DT du dv dw\ 1±

= (&u> -/) dx+...+ -/) dt

= [iS«2-/],

the reticular form of zero order. Here fu... being single-valued, vanishes for a closed

circuit. In the particular case u = ^,...

= jdcj>-F' (t) dt = [<j> -F(t)].

The potential need not be single-valued, but may possess Kelvin's constants of circulation.

§ 10. The surface scheme in (9) may be connected with the electromagnetic equations.

Write Va for U,V being a constant velocity so that (abc) and (XYZ) have the same

dimensions; then

Cl2(e) being jXdydz + ... + aVdtdx

.(18).
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THEIR CONNEXION WITH PHYSICAL EQUATIONS. 117

d_Y

dy

dX dY dZ D

Denote ^+ d~^"dz ^ P' ^ non"temPora^ integrand in j^.&&2(e) is

Dp (du dv dw\

dy

by (10); and this equated to zero is the condition of continuity when p is treated as a density.

The temporal terms in M£l2 (e) will also vanish in virtue of the sole condition of continuity

if M£l2(e) is a complete form, viz. Jpdxdydz — pudtdydz..., cf. p. 102, or if

dX irfdc db\

The analysis therefore furnishes directly a suggestion of the terms introduced by Fitzgerald

in amendment of Maxwell's equations.

The equations

da 1T(dY dZ\ ... da db do n /om

arFfc-^)'- Wlth d* + di + dz = ° <20>

have not the same character; they express M£l2 (m) = 0, or that I22 (m) has no quantities

characteristic of the infinitesimal circuit, where

H2(m)= j adydz+ ...-XVdtdx (21).

But if M£l2 (^0 = 03 then Xl2 (m) is a reticular form of a linear integral form, say of

ni(m) = jFdx+Gdy + Hdz-fVdt (22).

The identification of H2 (m) with Mill (m) or

m do , 7 3f i dF ....

which are well-known auxiliary forms.

Again ^Mil2(e) = 0 implies M^£l2{e) = Q} and ^il2(e) is a reticular form of a linear

integral form. This latter is got at once by (16 a, b) on writing il2(e) as

r

Xdydz + ... +(t;Z-wF+Fa)(ftd0...,

i.e. by shewing the associated terms explicitly. We have therefore

im*(e)=Mjadx + pdy + ydz-Xuadt j

/-

V Dt

.(24),

and similarly I ^fiT = -& j £dx + vdy + &z -Xugdt j

where Fa = Va + wT- vZ, V!- = VX + vc-wb (25).

15—2
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.(26),

The new vectors therefore belong to line-integral forms, whereas the original vectors were

attached to surface forms.

With respect to the second of (24), we note that as I22 (to) = (to) the left-hand

member is ~ fix (to); and therefore the line-integral forms

ID [

can only differ by an exact integral. This integral is \lr — 2uF/V, and in fact

*+£w-**>--(£+'s+°s+*s). *

and - TSuf +1- 2^) = 7 ^ - 2^(7^ -- 2t*F) + $uF

results derivable from (23) and the definition of £.

§ 11. The integral forms (18) and (20) are brought into relation by the use of (abc)

in the temporal terms of 0,2(e)} and of (XYZ) in those of H2(to). If we follow the method

of § 7 we have the statement that

n2(e)=Jxdydz+... + (vZ-wY + Va)dtdat + (27 a)

is a form in which the conditions

1 D f

make VBi^2^ = ^' + ~~ ^ua^^ c)'

and ^ Mil2 (e) = 0, without special assumption as to the nature of (afiy). In fact (27 b) is

an integrated form of the equation of continuity. The same treatment applied to I22(m)

gives

Q2 (n) = jadydz + ... + (vc — wb — 7£) dtdx 4- (28 a),

ID f

and y H2(to) = -M I %dx + 7jdy + %dz - 2dt (28c).

The forms (18) and (20) being supposed to hold for free aether, (a/3y) and (fgf) then have

the values given by (25). In view of the difference in the character of 'a' and a alluded

to above, it is natural to apply coefficients in the connecting equation. Thus in a general

way, for (25) we may write

„ X vc — wb a wY—vZ /__.

z=K+-nr> a=M+-7ir <29>'

and apply these values in (27 b) and (28 6). The assumption L = KM = fi?, where fi is index

of refraction, applied to the case of constant translation gives Fresnel's formula for modified

velocity as an exact form.
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THEIR CONNEXION WITH PHYSICAL EQUATIONS. 119

dX d Y dZ

It may be remarked that in (18) the scalar p or — + + ^ takes the place of the

vector of vorticity in hydrodynamics; and in the theory of conductors charges are the analogues

of Kelvin's constants of circulation.

§ 12. The general linear form gives the equations of Lagrange in what may be called

an Eulerian form. Thus if we write fl = / S^eft^ + (L — XpiVi) dt, with associated terms

J i i

shown explicitly, we obtain as representing (16 b)

Dpi , v dvj dL /OAX

m+jp^r^ (30)'

D d d dT

where 7*1 = ^ + 2 v» ~—. In Lagrange's equations T is a function of v and q, and pi = — .

JJt ot 1 oq% 0V1

As in (30) v is supposed to be a function of q, we may distinguish the notations by supposing

^ written in (30). Then

dT = dT + ^ dT d^^dT + ^ dvj

dqi ~~ dqi j dvj dqi dqi j ^ dqi'

and (30) becomes

Dpi dT= d (L T)= dV= dV

Dt dqi ~ dqi dqi dqi'

since L = T - V, where V depends only on q. The Eulerian form (30) may be used as

a point of departure for the treatment of the non-holonomic case.

It appears that the Hamiltonian form also is given by the present method if p's as well as

d d d

qt are taken as independent variables, and the operator is ^ 4- 2 ^+ Vi ^■. Then with

O = j Spidqi — Hdt

f dH dH I

01X1 = J %dpidqi + g— dtdpi + ^ dtdqi J

.(31),

the reticular form showing only special combinations of differentials. If 01X1 is a complete form

the associated terms, by the rule of p. 105, are Vidtdpi and —Uidtdqf, and their identification

with corresponding terms in (31) gives

dH dH /

Vi=¥i' Ui=~Wi (32))

which are the Hamiltonian equations. These secure the vanishing of the temporal terms

in when the non-temporal terms vanish. The differentials occurring in the latter in

addition to the original dpidqi are dpidpj, dqidqj and dpidqj, each having one differential

different from the term of origin. The types of non-temporal term are
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120 Mr HARGREAVES, INTEGRAL FORMS AND

which vanish if

dpi dqi 9 dqj dpi

.(33),

dpj dpi 'dq{ dqj~~ J

conditions manifestly fulfilled by (32). Quoting (16 c) we get at once = [2jp^; — H],

the residue when the associated terms are shewn explicitly; an exact function appearing on

the right hand because that is the form prior to the line-integral form. Direct work gives

DI2 [ v (Dpi , v dvA ^ dvj, , v / dvi DH\

= /2 («, + 2Pj A ||) dq< + ZPj A jj|dPi +1(2^- - 2?) d*

= Ltf + 2B^U[-ff + 2^ (34).

In the second step we used = , a consequence of (32). The result (34) establishes

contact with the further development of Hamilton's theory in connexion with the S function

(see Routh's Rigid Dynamics, 3rd ed., p. 313).

§ 13. We proceed to enquire whether it is possible to treat forms of higher order in

a manner comparable with the Hamiltonian form. As example we take the electrical surface-

D d d d

form, and write 2^ = ^ + wg^ + ,-, + ^g]f + ••• > treating XYZ as independent variables.

Then

12 being JXdydz + ... + Lxdtdx + ...,

M£l=jdXdydz + ... + -^) dtdxdy + ...

+ jdX + ^ dY+ d^dZ^jdtdx+ (35 a).

But if we make M£l a complete form, its value, by the method of p. 105, is

Mtl = j dXdydz + ... + (vdZ- wdY) dtdx + ... - Udtdydz (35 b).

The two forms are identified by writing
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The second group compels (uvw) to be independent of (XYZ). For we have ^ = 0,

OA.

^ = 0; and also gY+^=0> w^tn *wo o^ers which involve jj^=0. From the second group

therefore we infer that

L^L + vZ-wY, (36 6),

where LMN are functions of (xyzt), not of (XYZ). To make ^M£l vanish we have only

to attend to its non-temporal terms, which are

r/du dVdW\ , , , ^(dUdvdw\

+){di- dXdzdx+[dx ~ dXdxdy+■ ■ ■ ■

T,„r rj dN, dM, dN dM fdv , dw\ , vdu , „du

fdv . dw\ Tr du „du dN dM

^'^S-^-^-r? <3'>-

a result in virtue of which the non-temporal integrands vanish. With {LMN) for (Va, F/3, Vy),

(37) is the equivalent of (27 6), the whole rate of increment of X, which was there represented

by ^ + u -f v ^ 4- w , being here represented by Z7. In relation to the fact that

(LMN) or (afiy) are introduced as functions of xyzt, we note that when Vol = Va + wY — vZ

is used,

^(£2a2-i£X*) = -£ and ^(iSa»-*2X«) = (7c-Z6)/F;

i.e. we get electric force and mechanical momentum.

The fact that (uvw) in (35) are independent of (XYZ) turns on u being given both

as — and as the proof involving a circle of comparisons of second differential

d2M

coefficients such as ^^J^. This double value does not occur in the linear Hamiltonian form,

o A. o Zi

which is therefore free from the limitation. For higher forms it is essential. The method

of this paragraph applied to (16 a), for example, gives the condition (16 6) with Upqr for

DX

—f^-} with up... shown to be independent of X, and Lvq expressly introduced as a function

of ocpt. The outcome of the enquiry is therefore that if non-temporal integrands are treated

as independent variables, their appearance in temporal terms is restricted to the linear forms

which belong to the associated terms. The quantities up then define a problem in relation

to which X... are to be found so as to make a given form invariant. As regards the

functions Z, in the hydrodynamical case we have the pressure, in the dynamical case the

Lagrange function; these examples give the clue to their general significance.

While engaged on this paper I met with the short account of integral invariants given

in Whittaker's Analytical Dynamics, and have since read the part of the Micanique Celeste,
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Vol. in., in which M. Poincare' introduces the subject. His point of departure is a steady

state of motion in which the quantities here called u are defined in terms of coordinates

only. In the present paper a dependence of u on t also is supposed, and that dependence

necessitates a consideration of the temporal terms used here. This fundamental difference

does not however exclude points of contact with M. Poincare's results. I may instance the

conclusion of § 7, which is the equivalent of the statement {op. cit p. 14), "Tout invariant

integral relatif est la somme d'une integrale de diffirentielle eccacte et d'un invariant integral

absolu." The words italicised are used in a special sense (defined on the same page), viz.

they correspond to what is here called the reticular form and denoted by <^I2. The notation

permits us to consider the operations M and D/Dt separately and in conjunction, and to draw

the distinction between f2 and M£l which is necessary even for a closed circuit when Kelvin's

constant circulation is admitted. It is hardly proper to regard the constants of the latter

as constants of integration, for the integration is definite for the circuit. It appears more

satisfactory to say that if 12 contains terms of the type MQm-ly then while each quantity

appearing in 12 is single-valued, those in the form may be many-valued (analogue

circulation-potential); and the value of 12 for a closed space may contain the cyclic constants

of these latter as well as the integral of the characteristics of infinitesimal circuits as disclosed

by MCI.
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IV. On the application of Integral Equations to the Determination of Upper

and Lower Limits to the value of a Double Integral. By H. Bateman,

M.A., Fellow of Trinity College, Cambridge.

[Received February 8, 1908. Read February 24, 1908.]

1. In a former paper * we considered the properties of a certain function w (X)

connected with an integral equation of the type

/(*) = <t>(s)-\\\(S)t)<l>(t)dt (1),

J a

in which k (s, t) is a real continuous symmetric function of s and t (a^s ^6), (a ^ b).

This function w (X) which may be called the energy function of the integral equation

(1) is defined by the equation

w(\)= fb f(s)(j>(s)ds (2).

J a

If f(s) is continuous for (a^s^b) the zeros and poles of the function \w (X) occur

alternately f. This result which is derived from the fact that \w (X) increases continually

with X, will now be used to determine limits between which the value of the double

integral

J= f f K (S) t) x (s) x (t) dsdt (3),

J aJ a

must liej. The function x(s) is supposed to be a real continuous function satisfying the

condition

'b[x(s)]*ds = l (4),

/

J a

but is otherwise perfectly arbitrary. The limits that will be determined are independent of

the functional form of x(s).

* Cambridge Phil. Trans, vol. xx. no. xv. (1908) pp. for the case in which /c(s, t) is a definite function, i.e.

371—382. when the integral J is always positive. Another investiga-

+ Op. cit. p. 374. tion is given by E. Holmgren, Comptes Rendus, t. cxlii.

+ This problem is solved by Hilbert, Gott. Nachr. (1904) (1906) pp. 331—333.

Vol. XXI. No. IY. 16
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124 Mr BATEMAN, ON THE APPLICATION OF INTEGRAL EQUATIONS

We commence by defining a continuous function f(s) by means of the equation

f(s)=x(s)~\0[b fc(s,t)(v(t)dt (5),

J a

where X0 = j-.

If J=(=0 this equation implies that the function cf>(s) which is the solution of (1) with

the above value of /(s), reduces to oc(s) when X = X0. The value of w(X) for X=X0 is thus

given by

rb rb rb rb

w(X0)=l a(s)f(s)ds= I \x(s)]2 ds — X0 \ I * (s, t) x(s)x(t) dsdt = 0,

J a J a J a J a

in other words X0 is a zero of the function Xw(X).

Now since the zeros and poles of the function Xw(\) occur alternately there can only

be one zero between each consecutive pair of poles. The value X = 0 is evidently a zero of

the function and is consequently the only zero lying between the numerically smallest

negative pole and the smallest positive pole. It follows then that X0 cannot lie between

these two poles, and so if \ and \ are used to denote these two poles respectively, we

have the inequality

- <- <-

which gives

hJ%4, <6>

2. In order to determine the quantities Xx and fy2 we must recall some properties of

the integral equation (1).

It is known that the function <f)(s) is given uniquely by a formula of the type*

<!> (s) =/(«) + x ff^l^At) dt (7),

where D (X) and D (X; s, t) are integral functions of X. If, however, X is a root of the

equation

D (X) = 0,

the homogeneous integral equation

ylr(s) = \(bic{s)t)ty(t)dt (8)

J a

will possess at least one non-vanishing solution i/r (s) and the function <j> (s) as given by

formula (7) will in general be infinite. Let X be a p-fold root of D (X) = 0, then it can

be shown that there are m linearly independent solutions (s), ... ^m(s) of equation (8)

(m^p), and that this particular value of X is a simple polef of (f> (s) unless all the con-

ditions of the type

I /(*) ylrn(s)ds = 0, (n = 1, 2, ... m) (9),

J a

* Fredholm, Acta Mathematica (1903).

+ A simple proof of this result is given by T. Boggio, Comptes Rendus, Oct. (1907).
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TO THE DETERMINATION OF UPPER AND LOWER LIMITS, ETC. 125

are satisfied. When these conditions are satisfied the function <£(s), as determined by (7)

for ordinary values of X, remains finite for this singular value of X and is a solution of (1).

The solution of the integral equation is however really indeterminate for this value of X

since we may add any linear combination of the functions faz(s) to the particular solution

found and still obtain a solution of the equation.

Since Xw(X)=X ( f(s) cj>(s)ds, it appears that Xw (X) can become infinite either when

J a

X = + oo or when X is a pole of <f> (s), i.e. a singular value of X. There are several possible

cases that can arise.

(1) Let us suppose that the singular values of X are both positive and negative *,

then if X/ is the numerically smallest negative, X2' the smallest positive singular value, we

have X^X/, X2^X2' and so from the inequality (6) we may deduce that

i<J<h (10)-

The quantities X/ and X2' are evidently independent of the form of the function x(s)

and so we have found a pair of limits of the type required.

(2) Suppose that the singular values of X are all positive, then the only negative

value of X for which Xw (X) can possibly become infinite is Xi = — oo, accordingly, if X-/

is the' smallest positive singular value we have the inequality .

°<J^^j (10)'.

We may combine these two results in the following theorem.

If both positive and negative singular values of X exist, the double integral J lies between

i and i where X/ and X/ are the smallest negative and positive singular values of X

XI X2

respectively. The values z-7 and r-j themselves being assumed ivhen x(s) is chosen to be a

solution of the corresponding homogeneous integral equations

fa (s) - V f ^ k (5, t) fa (t) dt = 0

J a

fa (8) - X27 (b K (5, t) fa (t) dt = o\

J a

.(li)

respectively.

If the singtdar values of X are all positive, J is either zero or positive and is less or

d to ~\ It follows fr\

X2

negative singular value of X.

equal to ~\ It follows from this that if J becomes negative there must be at least one

x2

* It is known that they are all real.

16—2
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126 Mr BATEMAN, ON THE APPLICATION OF INTEGRAL EQUATIONS

(3) Next, suppose that for some of the numerically smallest singular values of X the

conditions of type

rb

x(s)irn(s)ds = 0 (12)

J a

are satisfied. In this case extra conditions are imposed upon the function x (s) and so we

can expect to obtain closer limits between which the value of / must lie.

If we multiply (5) by ^(s) and integrate remembering that yjrn(s) is a solution

of an equation of type

tyn 0) ~ P I K 0, t) fn (t) dt = 0,

J a

we obtain ( f(s)yfrn(s)ds = 0 (13).

J a

This equation and the others which are obtained from the system (12) imply that the

singular values of X under consideration are not poles of the function cf> (s) and so are not

poles of Xw(X). We may therefore replace the inequality (10) by

^t,^J^Jt, (14),

where X/' and X/' are the numerically smallest negative and positive singular values of X

respectively for which the complete system of conditions of type (12) are not satisfied.

Since X/' < X/, X2" > \*> the limits now obtained are much closer than the ones previously

considered.

3. A double integral of the type

H = (b Ib h (s, t) x (s) x (t) dsdt (15)

J a J a

in which h (s, t) is real and continuous but not symmetric may be reduced to the form (3)

by means of the following artifice.

We evidently have

H=( ( h(t,s)x(s)x(t)dsdt (16),

J a J a

accordingly, if we put

2k (s, t) = h (s, t) + h (t, s) (17),

b rb

we have H = f f k (s, t) x(s) x (t) dsdt,

J a J a

and this is of the form (3) since tc(s, t) is a symmetric function. The limits between which

H must lie when x (s) is a continuous function subject to the condition

rb

[x (s)]2 ds = 1,

J a

thus depend upon the singular values of X belonging to an integral equation in which the

characteristic function is determined by equation (17).
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TO THE DETERMINATION OF UPPER AND LOWER LIMITS, ETC. 127

NOTE ADDED MAY 26, 1908.

The theory may be illustrated by means of the following example.

Let h (s, t)=u {s) v (t)y

then k (s, t) = %[u (s) v(t) + u (t) v (s)\

The singular values of X may be found by assuming that a solution of the homogeneous

equation

> dt

J a

is of the form yfr (s) = au (s) + fiv (s),

we must then have

au (s) + /3v 0) = £X P [u (s) v(t) + u (t) v (s)] [au (t) + 0v (t)] dt

J a

PutfcinS cn=f[u(t)fdt,

J a

C12 = f U (t) V (t) «

J a

J a

and equating coefficients of u (s) and v (s), we obtain

(2-Xc12)a-Xc22/3 = 0,

-Xcna+(2 -Xc12)/3 = 0.

The singular values of X are thus the roots of the equation

(2-Xc12)2-X2cnc22=0.

The coefficient of X2 in this equation is c122 — gx1c^ and is negative on account of

Schwarz's well known inequality *

jb[u(t)]2dt.[b[v(t)fdt^ (bu(t).v(t)dt \

J a J a \J a

consequently the roots are real and of opposite signs.

If Xx and X2 are the roots our theorem tells us that the double integral

rb rb rb

\ j u(s)v(i)oc(s)x(t)dsdt, where I [x (s)]2ds = 1,

lies between — and ~.

\i X2

* This may be deduced from the theorem of § 2 by assuming x(s)=u(s), k(s, t)=v (s) v (t).
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Now the actual values of \ and X2 are easily found to be given by

= £ (C12 - ^Cu Cm), ^ = £ (C12 + V Cn Ca),

hence we have the inequality

cM - VC11C22 = 2 [ u(s)oc(s)ds( v (t) x (t) dt £ c12 + Vciac22,

where cn = f |> (OP ^

and x(s) is any continuous function satisfying the relation

J a

When u(s) = v (s) this reduces to the inequality of Schwarz.
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ADVERTISEMENT
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facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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V. Plemeljs Canonical Form.

By J. Mercer, B.A., Trinity College, Cambridge.

[Received May 29, 1908. Read Oct. 26, 1908.]

INTRODUCTION.

In the following pages I propose to obtain Plemelj's canonical form for the principal

part of the solving function of an integral equation of the second kind in the neighbour-

hood of a pole. It will be seen that the method differs essentially from that used by

Plemelj*; accordingly, although the results obtained are identical, there may be some interest

in this alternative procedure.

Let k (s, t) be a function of two real variables s and t, which is continuous")* in the

closed region defined by a ^.b, a^t^b; also let

/$!, S2y • • . , Sn\

\tl, t2y tnJ

denote the determinant of which the qth element of the _pth row is /c(sp, tq). It has

been shown by FredholmJ that

D(X; s, t)=fc(s, t)-\ C *c(SJ Sl)ds1+ ...

+(^r-n>C:;:::::;l;)*--^+ <>*

and D(\)=l-\| k{s1) s1)dslJt-^- \ Ik I ly 2)ds1ds2- ...

J a 4-J a J a \si> s2/

+ ^(\..f(\(s:>sr--'s;)dSl...dsn+ (2))

* Plemelj, * Zur Theorie der Fredholmschen Funktional- to avoid difficulties which properly belong to the integral

gleichung, Monatshefte fur Mathematik und Physik (1904), calculus.

p. 93 (xv. Jahrgang). t Tne reader is referred to Fredholm's paper ' Sur une

t Everything that follows will be true, of course, for classe d'equations fonctionelles,' Acta Mathematical vol.

certain functions which are not continuous; but, in develop- xxvn. (1903), p. 365.

ing a part of the theory such as the present, it is desirable

Vol. XXI. No. V. 17
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130 Me MERCER, ON PLEMEU'S CANONICAL FORM,

are integral functions of X; moreover, he has shown that, if

K^s't>~ DQ,)'

and \ is not a zero of (2),

rb n

t) = Kk(s} t)-\ k(s, x)Kk(x,t)dx,

J a

tc(s, t) = Kk(s} t)-\ I K^is, x)fc(x, i)dx

.(3).

These characteristic relations, as they are called, are of fundamental importance in the

theory of integral equations of the second kind. For, if we take the pair of adjoint

equations

f(s) = <j>(s)-\( K(Sit)<t>(t)dt?

J a

V

<K0 = x(*)-*f x(*)*(M)<&

J a'

multiply * along the first by Kk (<r, s), along the second by Kk (t r), and then integrate

from a to b with regard to s and t respectively, we obtain after a little reduction

J a

rb

%0) = #(t) + X g(s)Kk(s,r)ds.

J a

It follows from this, that a knowledge of the function Kk(s, t) will enable us to

obtain a solution f of the equations (4); on this account Kk(s, t) is known as the solving

function corresponding to the characteristic function k (s, t). The integral function D (X)

is called the determinant of the function k («§, t).

From (1) and (2) we obtain the identity

|^(D(X)) = -J62)(\; s, s)dSi

which may be written*

Jj- (log D (X)) = -j*Kk(8,8)d8 (5).

In this last form we have an equation which enables us to calculate D(X) whenever

Kk (s, t) is known (cf. § 3 below).

The equation (5) shows that if X0 is a zero of D(A), the function Kk{s, t) has

necessarily a pole there. In the present paper we shall be concerned with the expansion

of the solving function in positive and negative powers of (\0 — ^); or, more precisely,

we shall be concerned with those terms of this expansion which involve negative powers

of (\0 — X).

* It is still assumed that X is not a zero of D (X). f The solution so obtained is easily shown to be unique.
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Mr MERCER, ON PLEMELJ'S CANONICAL FORM. 131

When X has the value X0 the equations (4) do not, in general, possess a solution; but

the homogeneous equations

(s) = X0 ( fc(s,t)(j>(t)dt (5),

J a

X(t) = ^Jbx(s)K(s,t)ds (6)

can now be solved. In fact, Fredholm has shown that, if m is the lowest integer for

which constants s1; s2, sm; t1} t2) ..., tm can be chosen, so that

V f t t J = JJ(\)Kk[

\ hi °2> •••> lm' \h> v2> •••>

does not vanish for X = X0, then the m linearly independent functions

t\ (\ . $i > • • • > ^r—l > 5, , ..., Sm\

I °' t iff t J

<pr (s) = (r = 1, 2, ..., m)

t\ / \ $1 > • • • > ^r—l > 5r? sr+i, ..., Sn v

V 0,f f / / /

are solutions of (5); and the functions

D X0;

ti > • • • > ^r—l > ^> ^r+i i • • • >

Xr(0=— — r-7 (r=l, 2, ...,m)

V °' t t ft t

are solutions of (6). Further, if we take any solution whatever of (5), say <f> (s), it can be

shown* that

<f> (s) = fa (5) <j> 00 + fa (s) cj> (s2) + ... + <f)m (s) cp (sm);

and a corresponding result holds in regard to any solution ^ (t) of (6).

In conclusion I quote the formula

£(^W)-(-)-/:.../;/>(x; m,

which is due to Fredholm f.

§ 1. Suppose now that we adopt the notation just explained; and let the expansion

of K\(s, t) in the neighbourhood of X0, be

where P(\0 — X; s, t) is a power series in (X0 — ^) whose coefficients are functions! of s and t

and /t(s, t) is not identically zero in the region under consideration. If we supply this

expansion in the first of the characteristic relations (3), and equate the coefficients of the

various powers of (X0 —X) on each side, we obtain, among other relations,

rb rb

fr (s, t)-\0 k(5, x)fr 0, t)dx=-\ k (5, x)fr+l (a?, i)dx (r = 1, 2,..., 1) ...(9),

J a J a

* Cf. Plemelj op. cit. p. 120. The relation has been t op. cit. p. 371.

obtained directly by Bateman. t They are, of course, continuous.

17—2
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132 Mr MERCER, ON PLEMEU'S CANONICAL FORM.

where it is supposed that (s, t) is identically zero. Multiply along each of these equations

by KK(<ri s), and integrate with respect to s between the limits a and b; then

I KK (<r, s) fr (s, t)ds — \0( I KK (a-, s) fc (s, x) ds fr (x, t) dx

-j a J a \_J a J

fb r rb

= - \ KK (a, s) tc (s, x) ds

J a [_J a

fr+1(x,t)dx (r = l, 2,...,*) (90.

By the second of the characteristic relations (3), we may replace each of the quantities in

the square brackets by

Kk (<r, x)—k Q, x)

X

and so, after a little reduction, (9') becomes

[ Kk (<r, x)fr+1 (x, t) dx - (X0 - X) f KK (o-, x)fr (x} t) dx

J a J a

= — \Q ( k{(t, x) fr (x, t) dx + j k (<r, x)fr+1 (x, t) dx,

J a J a

which by (9)

= -fr(*,t).

Replacing a by s, these equations may be wTritten

[bKK(s9 x)fr+1(x, t)dx [bKk(s, x)fr(x) t)dx fr{s, t)

Ja (\- xri "Ja (WT "" (X0-X)^ (r - 1, 2, .... 0 (10).

Now add together the left and right sides of those of the equations (10) which follow

the (r— l)th, and remember that fc+1(s,t) is zero; we thus obtain

f (<r, x)fr (x, t)dx=k ,/"(,S'l+1 (r = 1, 2,..., 0 (11).

§ 2. In the equations (11) supply the expansion (8), and equate the coefficients of the

various powers of (X0 — \). Among other relations we obtain

f fq (*, X)fr 0> t) dx = fq+r+1 (s, t) (q £ I - V + 1),

J a

= 0 (q>i-r+l).

In particular, when r = 1 we \&ve the set

f bfq (*> *)A *) dx =/* (M) (? = 1,2,...,0; .. .(12);

J a

and, when 2 = 1,

Again, if we put r = 2,

and, writing q = 2,

f Vi (*> *)/r (*, t) ^ =fT (*, t) (r = 1, 2, ..., 0 (13).

J a

j fq (*» /a 0»> 0 =/*+! (M) (? < 1 ~ 1)

= 0 (?>*-!) (14);

J /a (*, ®)/r (^ 0 dx =/r+1 ($, *) (r ^ t - 1)

= 0 (r>*-l) (15).
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Mr MERCER, ON PLEMEU'S CANONICAL FORM. 133

It follows from this last set of equations that, when i > 2,

rb

A 0> *) = A (*> ^) A fa> 0

/4 (S> 0 = f f /* ^i)/2 (*i> ^s) /« (^2, 0 d^cfea,

J a - a

rb rb rb

/t(M)= ... f2(s,oc1)f2(x1,x2)..,f2(xL-2yt)doc1...da)L-2,

J a J a J a

rb rb rb

0=1 ... f2(s,oc1)f2(x1,x2)...f2(xL-1,t)dx1...dxL-1.

J a J a J a

We proceed now to deduce the properties of the functions /r(s, t) which follow from

these relations, and then to reduce each of them to a canonical form.

§ 3. In the first place, let us consider the function f1(s) t). Writing q=l in (12) we

see that

fMs,x)Ma;,t)dx=f1(s>t) (12').

J a

Now Neumann has shown that, if FK (s, t) is the solving function corresponding to the

characteristic function /x (s, t), then for sufficiently small values of | A, | (< R say)

rb rb rb

FK (s, t) = fx (5, t) + x /x (5, ^)/i Oi, t) dxi + ^2 A (s> A 0*1>°°>)A , 0 A»2 +. •.

J a J a J a

[b rb rb

j a J a a

Using (12'), we thus see that

FK(s, t)=f1(s,t)[l + \ + \*+...+\n+...] (\\\<R$1)

=4^4} (16).

But, since F\ (s, t) is known to be a meromorphic function and the function

i-x

coincides with it in a finite domain, it follows that (16) holds for all values of XJl.

Again, if we write s = t in (8) and integrate between the limits a and b, we obtain

\bK,{S,S)ds=jy^'^y +■■■+ fafl(^-x)+ faP(x"-x's's)ds \*o-M<t-an

The left-hand member of this equation is

-J.OogDW)
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134 Mr MERCER, ON PLEMELJ'S CANONICAL FORM.

by (5); i.e. if p is the order of the zero X0 of D(X), is

, ^ x + power series in (Xq — X) (18),

(X0 — X)

for sufficiently small values of |X0 — X|. Comparing the coefficients of the various powers

of (X0 — X) in each of the expansions (17) and (18), we deduce that

[6/r(s, s)ds = 0, (i>r>2)

J a

[/,(*, s)ds=p (19).

J a

The equation just written enables us to determine A (X), the determinant of /3 (s, t).

For, by (5) above, we have

= p

l-X'

by (19). Integrating with respect to X, and remembering that, when \ = 0, A (X) = 1, we

obtain

A(\) = (l-\)*>.

§ 4. In conformity with the notation explained above, let

A fx; **' S»-■' Sp) = A (\)Fk f*1' % **).

By (7) we have

and so, supplying in the values of A (X) and Fk (s, t),

ffl(s;'s;'--s*)dslds.2...dSp=P!.

J a v'li ^2> • • • j vp/

Thus the function

A/x M W*,

is not identically zero. On the other hand

x. «>'^-'M==(l_X)1-./1(*1''"-'M;

&j, fc2> W Ml, ^2> •••> &»/

and consequently vanishes for X = 1, if p < n. According to Fredholm's theory, it follows

that if su 82, ...,sp are constants, selected so that (20) does not vanish, the functions
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are p linearly independent solutions of

4>(s)=lbfi(s, t)<f>(t)dt (21),

J a

and the functions

y |°l > • • • » l > 8r, Sr+x, ... , Sp

y / #1» • • • , 1> #r, Sr+i, . . . , Sp \

\ Sr, ..., 5r_j , Sr, S^+i, ..., Sp/

are p linearly independent solutions of

X(*) = f%(*)/i(«.«)<*» (22)-

J a

Of course, these facts also follow from (12) and (13).

The equation (12) shows that

<K*)=/i(*, t)

is a solution of (21). It follows therefore, by what was said above, that

fi (s, t) = 4> <) + 02(s)/, (s2, t) + ...+<f>p (s)£ (sp,t) (23).

This equation, it is easily seen, is equivalent to

/ (*, t) =/2 (*, Sl) Xi (t) +£ (s, s2) X2 (t) + ... + /i (s, sp) Xp (t) (24),

which may be obtained directly from (12). Returning to the equation (23), we have seen

already that the functions </>i(s), ...,(^(s) are linearly independent. The same holds for the

functions f1(slyt)) fi(spi t); for, if any linear relation connects them, the determinant (20)

would clearly vanish; and this is contrary to our hypothesis as to the choice of sly s2lsp.

In an exactly similar manner we may establish the linear independence of the functions

fi ($> A (s, 82), • • •, fi (8, Sp).

§ 5. In the case when the pole of Kk (s, t) is of the first order either (23) or (24)

furnishes us with a canonical form for fx (s, t). For example, if we write

<M*) = *r°(4 /1(5r,0 = ^r°(0,

equation (23) may be written

A (8, t) = (s) V° (t) + <D2° (s) V2° (t) + ... + (s) %° (*)*

By (127) we nave

j* fSl9 8%, ..., $r—1> Sq, 5r+i, ..., Sp

f" 3>r° («) %» (S) ds = 1^<S*>-~'Sr-l>Sr,Sr+1,...,Sp

J a j» /j 82y ..., ^r_i, Sr, Sr+i, ..., Sp

\Si, S2f Sr—i, Srj Sr+i, Sp

which clearly =1 (q = r),

= 0. (9 + r)

* This result is evidently true whether the pole be of announced by Bryon Hey wood, Comptes Eendus, Nov. 25,

the first order, or not: it agrees, in substance, with that 1907 (p. 909).
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Moreover, as has been remarked already, the two sets of functions <I>r0(s), ^r°(t)

are each linearly independent.

§ 6. The case c = l having thus been disposed of we shall suppose in what follows

that l>2.

From (12) and (13) it appears that

X(t)=fr(s,t) V J

are all solutions of (21) and (22) respectively. Thus*

fr (*, t) = (S)fr (S,, t) + <j)2 (S)fr (S2) t)+...+cf>p (s)fr (Sp, t), (i, > V > 1) ... (25)

and

fr (*, t) =fr (S, *i) J6 (t) + fr (*, *) %2 (t) + ... +/r (*> **) X* (0 (* > f > 1) ... (26).

Multiply the first of these equations by f2(sqj s), and integrate with respect to s

between the limits a and b. It follows from (15) that

fr+i(Sq, t)=/r(«i, 0 f /2(fy, s)<f>1(s)ds +• ... +/r(^, 0 f /2(fy, «) & («) (fe.

(2 = 1,2, .... ;>)

Thus the functions

/t(*i, t\ f(s2, t\ f(sp) t)

are linear functions of

ft—i(si> 0) yi—i(^2> o> •••; fi—i(sp> o>

these latter are, in turn, linear functions of

,/i-2(5l> 0> .A—2(^2;^)J •••) fi—iiSpyt)'}

and so on, until finally we establish that each of these sets of functions consist of linear

combinations of

/1O1, t), f(s2, 0, /i(^p, 0.

or what amounts to the same thing, of

This last result might have been deduced directly from (26); for by writing

in succession, we obtain the p relations

fr (*q> t) =fr (Sq> 8,) %i (0 +/r 0g> *2> %2 (t) + ... +fr (sq, Sp) %p (t) (q = 1, 2, ..., p) ... (27).

§ 7. The determinant of the coefficients of the functions %(£) on the right-hand

side of (27) is clearly

fril1'8;I") (28).

\ "1, "2 > • • • > °jp /

* Cf. B. Heywood in the place cited above.
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When r = t, let (p — Cj) be the order of the first minors* of (28) which do not all

vanish. By the theory of simultaneous equations, it follows that (p — Cj) of the functions

/.(«!> t), /,(*„,<)> •••> /(**.*)

can be expressed as linear functions of the remaining c1( which are themselves linearly

independent. Let the latter be

/(*«,.<)> /.(*«,» 0. •••> /t (*«<,.>*).

and let

It appears at once from (12) and (14) that

.(30).

J ¥ro (a) /2 («,«) = HO 0» > i)

= 0 (P = 0)j

The last pair of equations enables us to prove that the icY functions (29) are

linearly independent. For, if there is any linear relation connecting them, there will be

a certain number for which p is a maximum, say p0(^t —1). The relation in question

would then read

W° (t) + kV» (t) + ... + lCl <F0 * (t) + ... = 0 (31),

where the terms omitted after Z^M^^OO are multiples of terms MV(£) in which p<p0i and

it may possibly be that some (but not all) the constants lly Z2, ...,ZCl are evanescent.

Multiply along (31) by f2(t> x^), and integrate with respect to t between the limits a and b;

using (30), we thus obtain

Wo-i + Z2^2po-i (^) + ... + lCi spc po-1 (Wl) + ... = 0,

where the terms omitted are multiples of (#x) for which p < p0 — 1. When we multiply

along this last equation by f2 (x1} x2)} and integrate with respect to x± between the same

limits, we have the relation

W°-2 (#2) + W°-2 fo) +... + iCx fa) +... = o,

the terms which are now omitted being those for which p<p0 — 2. Proceeding in this way

we eventually obtain

W («*) + + • • • + ^ (*J=o,

which cannot be true by our choice of the functions involved.

§ 8. Next write r = i — 1 in (27) and (28); and let p — Jc2 be the order of the first

minors of the latter which do not all vanish. We can then express p — k2 of the functions

./U f*-i (**>*), -m/h(v0 (32)

as linear functions of the remaining k2i among which no linear relation can exist. Evidently

therefore,

Vr*(t) (r = l, 2,...,Cl) (33;,

* The minors are supposed arranged in increasing order.

Vol. XXI. No. V. 18
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are linear combinations of these k2 functions; moreover, from what has been said in § 6,

it appears that

Vr°(t) (r = l, 2,...,Cl) (34)

are also linear combinations of them. Since these 2c2 functions (33) and (34) are linearly-

independent, we must have k2>2cl9 say fc2 = 2c1+c2; also the functions (32) must all

be expressible as linear combinations of (33), (34) and a certain c2 selected from the set

of k2 above mentioned, say

/'-><%,+!• «>' /-> <%+!'*)' ->

Referring to the results of § 7, we see that

M\+1,t), /.(»«„,+,.*). •-. /<KlW*)

can be expressed as linear functions of (34), say

/.(«w*)= ^

Accordingly, if we suppose that

(t) =/-i (8Ke , . t) - I lqrVS (t),

we shall have

f ¥Vtf (*)/2 (M> = 0; (q = 1, 2,..., c2)

and the functions (32) can be expressed as linear combinations of the 2cx 4- cY functions

¥r*(0 ^ = 1,2,...,*), MV>(0 (r=l, 2,...,Cl + c2) (35).

These functions must be linearly independent; for, otherwise, the functions (32) would

be linearly expressible in terms of a number of functions < k2—which would necessitate

the minors of (28) of order p — k2 being all zero.

Again, if

^w^z-p-x^w*)- ri fizlil ;.'.';tc_2) -(3G)'

the set of 1C1 + (i — l)c2 functions (29) and (36) are linearly independent. For, just as in

the corresponding case in § 7, we have the relations

f ¥PCi+fl (x)fx (x, t) dx = V>Cl+q (0,

J a

J a

= 0 (P=0).

We may prove from this that any linear relation connecting the function (29) and (36)

would evolve a non-evanescent relation connecting (35): this being impossible by what we

have said, the result follows.

§ 9. The method of procedure will now be fairly obvious. We next write r = c - 2

in the determinant (28) and suppose that the minors of order (p - k3) are the first which

do not all vanish. We can then express (p — kz) of the functions

/*-*(*!, 0> 0> •••> /e-2(W) ....(37)
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as linear functions of the remaining kz\ and these latter are linearly independent. But

the functions

V*{t) (r= 1,2,...,(?,), <fV(0 (r=l, 2,...,Cl + c2),

Vr'(t) <r»l, 2,...,* + *)...(38)

are linearly independent, and (§§ 6, 7) are linear combinations of the functions (37).

It follows that &8>3c1 + 2c2, say k3 = 3cj + 2c2 + c3; and that the functions (37) can be

expressed as linear functions of (38) and a certain c3 of themselves, say

Now we proved in the preceding paragraph that

fi-i tec

are linear functions of (38), say

/.-i (««„+„+„.<)= 2 m9r%1(0+ 'S'V^H*) (39).

It follows therefore that, if

c;: ■::::;-») •■•<«>•

the functions (37) can all be expressed as linear combinations of the 3c2 + 2c2 4- c8 functions

(r= 1,2, ...,<?,), (^ = 1,2,...,^ + ^),

(0 (r = 1, 2,..., Cl + c2 + c) .. .(41);

also, by (12), (14) and (39), we have the relations

f V>Cl+e2+q («) /, (*, 0 das = V>Cl+c^q (<)>

f ¥'e,+tfl+9 (*)/, («, 0 dx = V*+« (i) 0 > 1)

= 0 (p = 0).

Lastly the linear independence of the functions (41), and thence of (29), (36) and

(40), follows by reasoning quite analogous to that employed in §§ 7, 8.

§ 10. Proceeding on these lines, it is evident that at the final stage we obtain the

result, that the functions

/i/i(«!»*)> -i M**>*) (42)

are each linear combinations of kt(^p) linearly independent functions

MV(«) (r=l, 2,...,c0, Vr^it) (r = l, 2,...,cx+ c2), (r = 1, 2,Cl + c2 + c3),

¥r° (*) (r = 1, 2,..., c2 + c2... + c4) ... (43),

where &t = tc2 + (l - 1) c2 + - 2) c3 + ... 4- ct,

18—2
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and we have

J a

f <Pr» («)/» (*, t) dx = Vs* (0 (p > 1)

.(44).

= 0 0, = 0)]

We have seen that (42) are linearly independent; they cannot therefore be expressed

as linear combinations of less than p functions. As we have already seen that kL ^p,

it follows that

kL = p.

§ 11. Returning now to (23), when we supply the values of the functions fi(sr, t) in terms

of the set (43), and collect the terms which involve each of the functions MV(£)> w© obtain

t-l dp+i

t) = 2 2 (<J>,° (s) - (<>+1> (0 + (*) (p+2) (t) "(s) ¥r° (t)).. .(45),

p=0 r=dp+l

where dp = Ci+ c2+... + cp (p > 0)

and the functions <&/($) are each linear combinations of

We see from (45) that the p functions

/i($, fi(8, s2), /x(5, «p) (46)

can be expressed as linear combinations of the p functions 3y* (s). Consequently, if the latter

were not linearly independent, we could express all the functions (46) in terms of a number

< p of them. But this would necessitate a linear relation connecting (46), which we have

seen to be impossible (§ 4). It follows that the functions <&/($), like the functions

are linearly independent.

In the equation (45) replace t by x, multiply along by f2(x, t) and integrate with

respect to x between the limits a and 6. Using the relations (14) and (44), we obtain

t-2 d,

''P+l

f2(s, 0=2 2 (s)¥r-(<>+2> (t) + <IV(s) ¥/-<p+*>(<) + ...+ 3>/~(p+2) (*)%° (0)...(47).

Again, if we write x instead of t in this relation, multiply by f2(x,t) and integrate as

before we obtain

c-3 dp+1

f3 (S, t) = 2 2 (<J>r0 (S) <P+»> (0 + (5) MV-(P+4> (0 + ... + */-«P+8) (,) ^0 (£));

and generally, by repeated use of this process, we have

fq(s, *) = 2* 2* (Sv°(*)¥/-<p+«> (0 + *ri(«) ^/-(p+ff+D (0 +... + */-(p+«) (s)^r° (*)),

P=0 r=dp+l

which is a canonical form for the coefficient of (\0 — \)~~q in the expansion (8).
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§ 12. The principal part of the expansion of Kk(s, t) at its pole X0 is (§ 1)

(x0 - xy (x0 - x)'-1 '" (Xo - x)'

accordingly if we supply the values of the various coefficients, obtained in the preceding

paragraph, we shall obtain a canonical form for this principal part. The result is really

equivalent to Plemelj's, and may be at once brought into line with it by noticing that this

principal part, written in its canonical form, consists of that portion of

2 *r (*)¥,(*)

(48),

p=0 Oo-xy-o

which does not remain finite for X=X0, where it is supposed that

<Dr (s) = <Dr° (s) + (X0 - X) (*)+...+ (\0 - \y-p-i <ly - P- i (*),

¥r (t) = ¥r° (t) + (X0 - X) (0 + ... + (X0 - X/-0"1 ^/- p-1 (*).

There are certain relations between the functions <!>/($), MV(0> which follow from (44).

For, if we supply the canonical form of fi(x, t) in the first of these*, we obtain

i-l dp+1 *b ,h

t X (¥/-<P+1>(*)| <&r\x)^nv(x)dx + yr^{t)\ ^r1(x)^nv(x)dx

p=0 r=dp+l J a J a

+ ... (0 fV*-<p+D («)¥„'(«)Ac) = ¥»'(«).

Remembering the linear independence of the functions MV (£), we see that dp<r ^ cZp+1

P 4>/ " (o+M+U (a?) ^ (a?) dx = 1 (w, = r), (//, = */),

and = 0

in all other cases.

§ 13. From the set of equations (9) take that one for which r=l, and supply the

values of fi{s,t) and f2(s, t) obtained in § 11. Recalling the fact that the functions tyrp(t)

are linearly independent, it is easily seen that, among other relations, we have

<*V> 0) = X0 \bK (s, x) <£r° (x) dx. (r = 1, 2, ..., dt).

J a

Thus the dL linearly independent functions are solutions of (5).

Suppose now that we have any solution whatever, (s), of (5). Multiply along the

equation

(f> (s) = X0 I k (s} x) <f> (x) dx,

J a

by KK (o-, s), and integrate with respect to s between the limits a and b. By means of the

second of the characteristic relations (3), we obtain

0(o-) = (Xo-X) f KK(<r, x)<f>(x)dx.

J a

* It is supposed that p, r are replaced by j>, n respectively.
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When we supply the expansion (8) on the right, we see that

( %)<f>(x)dx= 0,

J a

J a

From the first of these and (47) it appears that

J a

unless (t) is a multiplier of one of the functions <E>r° (s) in (45). Accordingly the second

of the equations (49) shows that <f>(cr) is a linear function of the dt functions <E>r0((r). We

have therefore proved that the number of linearly independent solutions of (5) is d*, and

we have seen that this is the number of terms in (48). It follows that the results obtained

by this method are identical with Plemelj's.

* It is easily proved in a similar manner that this is the number of linearly independent solutions of (6).
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VI. The Operator Reciproeants of Sylvester's Theory of Reciproeants.

By Major P. A. MacMahon, D.Sc., F.E.S.

Received June 17, 1908.

INTRODUCTION.

The subject of the change of the independent variable, when two variables are con-

cerned, has been discussed in connection with a function of the differential coefficients

dy d2y d3y

dx1 da*' dx*''"'

sav f(dy d"y dhj \

and the object of Sylvester, Hammond, Elliott, Rogers and Leudesdorf and others in Great

Britain, including the present author, in researches some twenty years ago written in con-

nection with the subject of reciproeants, was in the first place to evolve a theory of the

functions which remain unaltered when the variables are simply interchanged, and in the

second place to separate such forms into their categories, according as the invariability

was maintained under linear and homographic transformations of different natures. The work

thus intersected and elucidated that of Lie, Halphen and others on differential invariants

and groups of transformations. In the course of the investigations various differential operators

presented themselves as being effective, either as annihilators or generators or reversors, as

had already been found to be the case in other invariant theories. These differential operators

appear as effective instruments in the developments, but the true cause of this does not

appear to have been reached. It is the object of this research to shew that the reason

is that the instruments in question have in fact the same properties as the forms upon

which they effectively operate, and that the forms which are invariant and the operators

are properly to be regarded as one system of forms possessing the same properties. The

present research is concerned with the development of this idea, and its particular appli-

cation to the theory of reciproeants and differential invariants, and it will appear that the

principle by which the "content" of this theory is enlarged is equally applicable to other

invariant theories.

With regard to two variables, if the substitution be periodic, the invariant theory of

the substitution is simple.

Yol. XXI. No. VI. 19
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If for example

x=f(X,Y)9 y = *(X,7)

leads to X =f (x} y), 7=cj> (x, y\

and we write in a usual notation

dy 1 d2y 1 d3y

di"*' 2~\dtf~a°> 8!d^ = ai'-'

dY_ ld^Y= 1 d*Y_

dX~Ty 2ldX* a°J SldX*""19""

and fx (x, y,t,a0)a1)...) = fa (X, F, t, a0, ax, ...),

it is clear that fi(®, y> t, «o> <h> --•) ±fa (#> t, aQ, ...)

is an absolute invariant of the given substitution of even or uneven order, according as

the upper or lower sign be taken.

The most general substitution of this kind may be given one or other of the forms

x = f(X,Y)\ y = <j>(X,Y))

X=f(x,y) f' Y=<f>(x,y)

and may therefore be defined by means of a single function f or fa More generally

we may take the canonical form of substitution to be

f{x,y) = <f>{X, Y)\

f{X,Y) = 4>{x,y)

for this leads by solution for x and y to a periodic substitution of the kind under con-

sideration. The Sylvester substitution (the mere interchange of the variables) is then written

X = y

and the Halphenian substitution

*~ X' y~x

Y\

in the form y~ X

Y=y

x

It is my intention to further develop the invariant theories of these substitutions by

including the theory of invariant differential operators.

I enlarge the subject-matter by adding to the elements to be dealt with the differential

operations

dx» 9yj daQ> dalf

and observe that if

fi (#> 2/' ao> <h> ••• 3«i dy> 3«» 9<v \'

= fa(X, F, t, a0, a1?... 3X, 3F, 3T, 9a0, 3^ ...)>

fi(%,y, t, a0, a!,... dx, dyi dtf 3aQ, 3^,...)

± <M^ y> a0, Ox, ... 3a-, 3y, 3t, 3«o, 3tti,...),

is an absolute invariant of the substitution whose order is even or uneven according as the

upper or lower sign is taken.
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It is my intention to particularly examine the invariant theories of the substitutions

of Sylvester and Halphen, to shew how they may be treated in a simplified manner

and to shew the remarkable parallelism that exists between them up to the point where

they merge into the theory of the invariants of the homographic substitution

The Sylvester Substitution.

Art. 1. The substitution is

and the reader is supposed to be familiar with the work of Sylvester and others on the

theory of reciproeants.

To explain the notation that I have found it convenient to adopt, I suppose £, tj

to be corresponding increments of y, so that by Taylor's theorem

V = ttj + Oof2 + 0!p+ ... = ^ = t% + af,

£ = T7] + a0r)2 + arf + ... = T7, = T?? + a»,J

and I write

7 vs = 7 +a*,?+aip+• • os = up++fe?+2+. • •,

~(V- %)s = 7 Oof + "if + ^4 + ... )s = ajp + aslp+1 + +...,

s s

-|s = -(t9 + «„V + alV* + .. .)s = W + T„lfM + TS21?S+2 + ...,

o o

- (£ - t»?)s = - (evj» + evf + a2^ + .. .)8 = as«^ + a^1 + + ....

5 S

I, in fact, introduce a double-suffix notation, thereby enabling the results to be extended

and their expression to be simplified.

Observe that

^10 == ^li == ~ &0) ^12 = ^11 = &i> • • • titm = di3 m—i = &m—i•

Tio = T> Tn = aio = ao> Ti2 = an = «i, ... TljW = = Orn-i-

I refer to Elliott's valuable paper of 1886* on the interchange of the variables, and

remark that I have necessarily to traverse much of the same ground that he did; but

differences will be found and the object in view is different.

Art. 2. The formulae for the change of the independent variable are

1

T = v

«o - t>

a, 2a02

* Proceedings of the Lond. Math. Soc. vol xvm. p. 142 et seq.

19—2
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146 MAJOR MACMAHON, THE OPERATOR RECIPROCALS OF

and generally, in the double-suffix notation,

By easy algebra we reach the more general formula

ar8, (_y {*«„ - (S + \ + *) ^a^,^ + (S + * + 2)*~ar+2>._2 - ...

wherein 5 must be a positive integer, but r is not so restricted.

Art. 3. When r = 0, we must write

and then a0* = fr" j^o* - ^ + ^Xs-i + + 2j ^"2a2,

a formula of some importance.

Art. 4. If jP(«io, «h, a12,...) be a homogeneous and isobaric function of a10

of degree % and weight w, we know that

^Oio, «n, «ui, ...) = (-)H-fle~JF(a10i an, a12,...),

where = 3i + w,

V = 4a20aaio + 5a2iaan + 6^3^ + ...,

the well-known operator which annihilates pure reciprocants.

It is easy to proceed to a generalization, and shew that

F(ar0f arl, a^,...)

-Zr

= (-)lt-*e t F(arQ) an, ...),

where Fr = (2r + 2) ar+M 3^ + (2r + 3) ar+M3ar2 +'(2r + 4)ar+1,2 3^ + ...

(becoming V1=V when r = l)*.

This result shows that every function of

, CLrl, , ...,

which satisfies the partial differential equation Vr = 0 is a pure reciprocant.

In particular when r = 0

Jr

where ^ is the sum of the jpth powers of the root of the equation

a0xn - a&n-x + a2xn~2 -... = 0,

and the partial differential equations satisfied by pure reciprocants is

<*o\ - 3(hd82 + 6a23*3 - 10a3d84 + ... = 0.

* In fact if U=a0 + a1u + a2u2+

VjUr=Urdu(vPU),

and thence Var»=(%r + s + l)ar+lt8-.1.
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SYLVESTER'S THEORY OF RECIPROCALS. 147

Writing = - s^' this is

a03Si + SaA^ + 6a2d§s + 10a33v + ... = 0.

and it will be found that the seminvariant operator is

dSl + 2sA2> + Ss2\ 4- 4s3dS4> + ....

Art. 5. In a paper of 1886* I discussed the operator which in the notation explained

above may be written

MOmo3an + (f* + v) a™An+1 + O + 2v) OmA^ + • • • >

and when convenient denoted by

{fiy v\ m, n)a.

Other operators that frequently present themselves are included in

ptmodan + (fA + v) tmidan+1 + (fl + 2v) tmaPa^ + • • •,

which may be denoted by

O, v) m,

It is to be observed that m may be any real number, positive or negative, and is

not restricted to be an integer.

The numbers v are unrestricted numbers.

The number n may be — 1, 0 or any positive integer.

The particular case corresponding to m=0 will be dealt with in the proper place.

The only other operator worthy of attention for the present purpose is

H^i\ ~ O + V) S2dan+1 + (/* + 2v) S3dan+2

where log ^1 + ^ u -f ~u2+ = siu — \s2v? + ^s3u* — ....

The particular property and values of these operators consists in the fact that the

eliminant of any two of them is an operator of the same nature. They thus constitute

a group of infinite order.

Art. 6. Recalling the formulae

V = tg + do? + axf + ... = tt = t% + ah

v = tt) + a07]2 -f <*iV3 + • = Tr, = TV + a*,*

it may be said that Elliott, in the paper quoted, shewed (with a non-essential change

of his symbolism) that in any relation connecting £ and tj, which is such that we have

terms involving

f and 7f ^ only,

we are at liberty to substitute

j

dttg_2 for and - 3aM for if ^| respectively.

* The Theory of a Multilinear Partial Differential Operator, with Applications to the Theories of Invariants

and Beciprocants. Proc. L.M.S. Vol. xvm. 1886.
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148 MAJOR MACMAHON, THE OPERATOR RECIPROCALS OF

Any relation is so expressible because

where ^ = t + 2aoV + S^tj2 -{- ....

It is convenient to denote ^| by rj'.

Transformation of 9^.

Art. 7. This is the theorem of Elliott, which I desire to exhibit in various forms.

Since p+2= (s + 2)(ts+2,oVs+2 + rs+2tlVs+*+ ...),

^ = T + 2a077 + 3a1772 + ...,

we see that £*+2 = (s + 2)(ts+2)0t;s+2 + rswV8+3 + ...) (t+ 2<xoV + 3alV2 + ...)<n',

and by easy algebra f+2 = {(s + 3)ts+3)0^s+2 + (s + 4)rs+3jl^+3 + ...}v>

whence writing da^ for p and — 9ttg_2 for 97s

9a8 = - (* + 3)Ts+3j03a5 - (s + 4) Ts+3)19a8+1

or dag = -(s + 3, 1; 5 + 3, s)T,

and putting 5 = — 1,

3t = -(2,l; 2,-l)T,

and arranging the dexter in powers of t

at = -T23T-T(3, 1; 1, 0).-(4,l; 2, l)tt3

where the last operator written is the pure reciprocant annihilator in respect of the elements

a0, ol1} or2,...,

and may be written Va.

I also write

Ir = t3t + a09a0 + + a23a2 + . •.,

WT = - t9t + + 2a2da2 + ...,

/a = «o3a0 + CLid^ + a23a2 + . • • ,

Wa= a13a1 + 2a23a2+...,

and then the above result may be written either as

at = -T2aT-T(3/0+Fa)-Fa,

or as dt = + t29t - r (3/T 4- Wv) - Ftt.

Art. 8. We may interchange the letters

t, a0, Oj,... with t, a0, o^, a2,

and thence we find the operator absolute reciprocants

(l-P)3t-t(3/a+ wa)-ra,

(i+t*)dt-t(sit + wt)-va>

of even order; and (1 + t2)dt +1 (SIa + Wa) +

of uneven order.
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SYLVESTER'S THEORY OF RECIPROCALS. 149

These results are typical of those that will be obtained in this paper. It is an obvious

remark that any operator absolute reciprocant will produce an absolute reciprocant as the

result of operating upon any absolute reciprocant whatever.

Other forms of operator absolute reciprocants are invariably obtainable from such trans-

formations as

dt = -T*dr-T(dIa+Wa)-ra,

3t = + T»aT-T(3/T+TTT)-7..

Eos. gr., multiply the first relation by t so that

tdt = -TdT-(3la+ Wa)~ ^*,

T

and we arrive at the operator absolute reciprocants

(31*4- Wa) + ^ of even order,

V

V

2tdt + (3Ia + Wa) + of uneven order.

v

Similarly we obtain the absolute reciprocants

2tdt-(Ut+ Wt)-¥s of even order,

V

V

(Slt + Wt) + of uneven order.

t

When the operand is a homogeneous and isobaric absolute reciprocant

SIt+Wt = 0,

and then 2*3,-^, ^,

t t

are generators which produce homogeneous and isobaric absolute reciprocants of the same and

contrary orders respectively.

Art. 9. The dexter of the result

3aa = -(« + 3, 1; 5 + 3, *)T

may be expanded in ascending powers of t with the result

8 8

/s + 2\

"(* o2)178+2(s + 4,1; 1*s + 1)a

_^ + 2^tS+1(s + 5; 1; 2, s + 2)a

~C 22)tS(S + 6' 1; 3' S + 8>a

~(s + 2)(2s + 6' 1; s + 3' 2s + 3)-
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150 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

Art. 10. An intermediate result is

dactn = - (n + 3) t^3 jr"-'-1 ifj2) t—- a,,m + •» + („ I* * J «»-*,»}

leading to the formula

^ = - t*"3a„8 - (« + 4) r<+2 a109am - (s + 5) T*« j Tau + (S + 2) a^J 8.^

- (, + 6) T« { t* «12 + (' + 2) to, + (5 + 2) a3o} 8«8+3

- (« + 7) t" {r3a13 + (* + 2) + (S + 2) to, + (« + 2) a,} 9^

The accented Notation.

Art. 11. The notation becomes much simplified, in cases when we deal with homogeneous

and isobaric algebraic quantities and operations by transforming to accented letters

t', a0\ a/,... t', a0', a/,...

, , as n~

where as = , ^, as

C-^(-l+3) lj t-t|(-1+3) A>

for t and r then disappear from our identities

a0' = — a0',

o/ = - a/ + 2a0'2,

a/ = - a/ + 5a0/a1' - 5a0'3,

and writing further £1==^£ rj1 = r^7j

we have ^ = £ + a0' + a/£8 + ...== ?i + a$t,

ft = *h + «o' %2 + «iV + ... = i?i +

^ a** = a J &™ + aml' f^ + ..

— c*m0 ^ -f- ^ -t- ...,

It will be noted that to form a8', a8 is divided by t raised to a power equal to half the

characteristic

3i + w or fju

of a8. Similarly in the case of any homogeneous and isobaric algebraic expression or

operator we form the accented expression by dividing by t raised to a power equal to half

the characteristic of such expression or operator.
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SYLVESTERS THEORY OF RECIPROCANTS. 151

In the identity v = + a0£2 + a2f3 -f ...

the characteristic of rj is +1,

and that of £ is — 1;

the degrees and weight of £ are 0 and — 1 respectively,

and those of rj are +1 and — 2 respectively,

the two identities in £ and ^ are thus each homogeneous and isobaric.

The operator 3^

is of degree-weight — 1, — s,

and its characteristic — (s + 3).

Hence da§, = ti{s + S) d%.

The operator da^

is of degree-weight — (s + 2), — 2s — 3,

and its characteristic + (s + 3).

Hence da ^ t4(s+3) 9a .

In the relation dt = - r2dr - r (SIa + Wa) - F0,

we have an identity of degree-weight — 1, +1,

and therefore of characteristic — 2,

and we have dt> = — dT> — (3/a/ + Wa) — Va>.

The absolute pure reciprocant (4a0a2 — 5a^) -f- V

becomes 4a0'a2/ — 5<z/2;

so that by obliteration of accents we pass to the non-absolute form.

The mixed homogeneous reciprocant

to* — a02

becomes a/ — a0'2,

and is thus not homogeneous or isobaric in accented letters, but as usual the sum of the

degree and weight of each term is a constant number. To reach the non-absolute form we

have merely to obliterate accents and insert powers of t as required for homogeneity. The

annexed table of degree, weight and characteristic will be found useful.

Observe the result

i=s+2

da , = - da' - 2 (s + i + 4, 1; i + 1, s + i + 1)«

* 8 i=0

and note that da 1 +

i=s+2

i=0

is an absolute reciprocant of even or uneven order.

Vol. XXI. No. VI. 20
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i

3i + w

1 + 10

x and £

0

- 1

- 1

-1

y and rj

I

- 2

+ 1

-1

t

1

-1

+ 2

0

T

-1

+ 1

-2

0

1

s

s+3

5+1

-5-2

2s+ 3

-5-3

5+1

-1

— s

-5-3

-5-1

K

5 + 2

-'2s -3

-f 5 + 3

-5-1

x1 and &

i

_ 3

0

-1

o2

0

-1

t'

0

0

0

T

0

0

0

0

as'

0

5+1

o-s

1(5+1)

0

5+1

da8'

-f'(*+l)

-1(^1)

0

-5-1

K>

0

-5-1

Art. 12. At this point it is convenient to studv the transformation of the general operator.

The Transformation of (fi, v\ m, ri)a.

The symbolic form is readily found to be

^ - 2vj paf" + v^a^'^a^

p = n — 2m -f 2;

p1 = n1 — 2m1 + 2.

To effect the transformation of Sylvester we have to express the former form in terms of

the latter form. Aided by the formulae

1

where

and that of a form

is

where

we find

and thence

%=T7) + 0,,

O, v\ m, n)a

= T-*y ifE - 2v) (tV + ™ (t + 3,a,) + 1/ (tt, + a^a^%a\ ,

(-)m(fi, v, m, n)a

=r-^+f+y - 2^ (l + ^j) V«,m

/ ft \3H-1
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If we write (1 + u)* = S C8,pu8,

the general term is found to be t-™+p-8+iv' multiplied by

and, comparing this with

- if - 2^) v^rT1 + vi^o,"^^,^!

we find m: = m + 5,

Ml = (m + s) j(2Cs_1)P + CS>:P)£ - SCt-i,, ij ,

so that we may write (—)m+1(^ ^5 m; n)a

+2[(m + l)|(2O0,J?4-ai,,)^-2(70s^}, C0,,£-(C0i,-Oi,p)i'; m + 1, n + l]

+ Tn-3^|\m + ^ Ci,^-^!^-^)^; m+2, 71+2]

Art. 13. This is the general result, and. since we may write the general term on the

dexter either in the form

rj-n—3m—8+3

or in the form

—n—3m—8+3

(m + s) |2CU>2) + C,, , C^lf, - + 0.v; m + s, n + s ,

(m + s) jcU, - 2») + Cs,p+1 £j , CUi., - 2v) + 0S)P+1 v, m + s, n + s ,

it is clear that we obtain special simplifications in the two cases

/t-,-0,

m

In the former

it-2^-0.

(-)m+1(m, 1; m,' w)a'

= rn-3m+3(m, 1; m, n)a

+ ^i,^-8m+2(^ + l. 1; m + 1,

+ C2,^-3m+1(™ + 2> 1; m + 2, »+2).

20—2
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In the latter (-y+1(2m, 1; m, n)a

= rn-3m+3(2m, 1; 77i, n)a

+ CliP+1Tn~m'+2(2m + 2, 1; m + 1, n + l)a

+ C2iP+1Tn-*m+l(2m + 4<, 1; i» + 2, w + 2).

+ ,

Art. 14. It is necessary to determine all the cases in which the dexter reduces to a

single operator.

There are two cases

(i) p = n- 2m +2 = 0, — - z; = 0.

Then (-)m+1(m, 1; m, 2m - 2) a = T~m+1 (m, 1; m, 2??i-2)a

or to exhibit an absolute reciprocant

4(™-i)(m, l; m) 2m-2)a = T-^m-1Hm) 1; m, 2m-2)a.

Here 2m — 2 may be —1,0 or any positive integer and thus m must either be an integer

or the half of an integer. We have the series of absolute reciprocants

(-)M(l, 2; \, -l)a=T*(l, 2; -1).,

(1, 1; 1, 0)a = (l, 1; 1, 0).,

(3, 2; f, l)a=T-i(3, 2; f, 1).,

-r*(2, 1; 2, 2). = t*(2, 1; 2, 2)a,

The square root of negative unity may always be removed by making use of the relation

Ha,* = (-)*T-*^*.

Thus when m = J(2m' + l), where m' is an integer, we may write

(_)»'+lriK+1)a0i(m' + J> 1; m+\, 2m'-l)0 = T-*<TO'+1>«„4(™' + i, 1; m+\, 2w'-l).,

and we may substitute for the first, third, fifth, &c. of the above series, the new series:—

-r*0,1(1, 2; |, -l)a = T-W(l, 2; -1).,

rW(3, 2; f, l)a = r-W(3, 2; |, 1).,

-r*a,*(5, 2; \, 3)b = t-*^*(5, 2; f, 3).,

A second series is obtained by putting

(ii) » = re-2m + 2 = -l, ^-2v = 0;

m

for then (-)m+1(2m, 1; to, 2m - 3)„ = T-»(2m, 1; m, 2m-3)«,

which, in reciprocant form, is

(_)«+»r**(2i», 1; m, 2m-3)a = T-*m(2OT, 1; m, 2m-3)a;
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SYLVESTER'S THEORY OF RECIPROCALS. 155

and if m = m' + ^,

(_)^+lrJK+2)aoi(2m, + l, 1; m' + £, 2m'-2)a = T-4(m'+2)«0*(2m' + l, 1; m' + £, 2m'-2)a;

and the series is t~*(2, 1; 1, — l)a = T"*(2, 1; 1, -

r*Oo*(3, 1; f, 0)a = r^a0^(3, 1; f, 0).,

-rx(4, 1; 2, I^t"1^, 1; 2, l)ft,

-rW(5, 1; f, 2)a = T-2a04(5, 1; f, 2)a,

In no other case does the operator transform into a single operator.

Art. 15. I proceed to determine all the cases which lead to just two operators on the

dexter. There are two cases

(i) p = n — 2m + 2 = 1, ^ — z/ = 0 gives

(m, 1; m, 2m-l)a = T-m+2(m, 1; m, 2m-l)a + T-wl+1(m + l, 1; m + 1, 2m)a;

and if m = m + \]

(-)m'+1a04(m' + -|, 1; m' + i, 2m')« = T^V(m' + 4, 1; m' + £, 2m')

+ T-1w'-1«0*(m/ + fl 1; m' + f, 2m' + l)a.

(ii) p = n — 2m+ 2 = 0 gives

(M> z,;m, 2m- 2)a = t-™+1 m, 2m- 2)a

+ ^-^T-w(2m + 2, 1; ra + 1, 2m-l)a;

and if m = w! + -J-

(-)m'+1a0i(/i, z>; m' + £, 2m/-l)fl = T-»'-1o0*0*, "5 w' + i, 2m' - l)a

+ (2^1 " ") T-^'"2^ (2m' + 3, 1; m + f, 2m')«.

Art. 16. For three operators on the dexter we have the two results

(-)m+1 (m, 1; m, 2m)a

= r-w+3(m, 1; m, 2m)a + 27-?M+2(m + 1, 1; m + 1, 2m + l)a + 7-m+2(m + 2, 1; m + 2, 2m + 2)a.

(_)m+i(^ j,; m, 2m-l)a

= T-m+2(/*, *>; m, 2m- l)a

+ t-~» |(m + 1) (s £ - 2*), £; m + 1, 2m^

+ (m " V) (2m + 4' 1' m + 2> 2m +
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156 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

Art. 17. Again for four operators on the dexter we reach the two results

(-)m+i(m? 1; Vli 2m+l)a

= r-m+4(m, 1; m, 2m + l)a + St^+^m +1, 1; ra + 1, 2m+2)a

+ 3T-m+2(m + 2, 1; m + 2, 2m + 3)a + r~m+1(m + 3, 1; ra + 3, 2m + 4)a.

H«+1(A*» v) m, 2m)a

= r~m+3 (/a, v\ m> 2m)a

+ T-^Lm + l)UE-2v), - + v; m+.l, 2m + l[

\ 771 / 7% J a

+ T-m+ij(m + 2)f5—2^-z^; m + 2, 2m + 2

+ (—- v)T-m(2m + 6, 1; m + 3, 2m + 3)«.

Similarly two formulae may be written down, each of which involves a given number of

operators on the dexter. Each of these necessarily leads to an absolute reciprocant operator.

The Transformation of the Operator (p, v\ m, ri)t.

Art. 18. The symbolic expression is

— p^j j:n-m+27jm _j_ y^n-m+z^m-i^

Also the symbolic expression of (///, v\ m', n)a

is — j/fm'-i^n'-ro'+s _ f^L _ v'J ^myi'-m'+s^;

Hence it will be clear that (p, v; m, n)t

= — \ — (n — m + 3), — — v: n — m + 3, n\ ,

for as may be readily verified each of these operators leads to the same symbolic expression.

Most important consequences follow.

First observe that

(/A, v\ m, n)t + j^j- (n - m + 3), £ — v; ft - m + 3, nj ,

is an absolute reciprocant of even or of uneven order ascending as the upper or lower sign

is taken.

We may put m = ^ (n + 3) and then the reciprocants are

{f*> v\ i(n + 3), n)t + j/*, i(n + S), njy

Further putting ^ = ri + 3, z> = 1,

we find that {ft+ 3, 1; %(n + 3), 7i}t

is a reciprocant of uneven order.
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SYLVESTER'S THEORY OF RECIPROCANTS. 157

For ?i = 2q-S

for # = 1

2«3t + Za0dao + 4a13«1 + ... = SIt + Wt,

which for an operand which is homogeneous arid isobaric is equivalent to multiplication by

Si + w.

These operators are useful for obtaining homogeneous and isobaric mixed reciprocants

from pure reciprocants.

In particular we may notice

4|\ + bta0d% + 6 (W + toi)3o3 + ...

from its resemblance to Va.

It will be remarked that

(1, 1; 1, 0), = td% + 2a0dai + 3aA2 + .. .

is converted into

-2(1, 0; 2, 0)T = -2{iT2aao + ra0aai + (iao + Ta1)3a2+...}.

Art. 19. I will now derive from these results those which affect well-known operators

and discuss those which appear for the first time.

Writing (1, 1; 1, 0)a = a0d% + 2^3^ + Sa2da2 + ... = Ia + Wa,

(2, 1; 2, 2)a = 2. J + Sa^d^ + 4 (i^2 + a0a2) 3„4 + ... = Ja

the general reciprocative relation

r£(™-i)(m> 1; m> 2m-2)a = (-)w+1T-4(m_1)(m, 1; m, 2™ - 2)a

gives /a + Fa = Ia + TTa for m = 1,

t~^Ja = -r~^Ja for m = 2;

the former relation shews that the letters

CL0, CLlf <X2> •••

the sum of the degree and weight of every term of every absolute reciprocant is a constant

quantity; the latter shews that the operation of

invariably leaves the property of absolute reciprocance intact. Ja it will be remembered is

the alternant of

(1, 1; 1, 0)a and (4, 1; 2, l)a

and is also commutative with each. It thus occupies an important central position in the

present theory. Its property, in relation to any reciprocant, which has just been established

is new to the theory.

The other operators derived from the same formula are here presented for the first time.
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In particular £~*<z0*(l> 2; \, — l)a

is seen to be a generator for all reciprocants; moreover I have elsewhere established that

3 ax t 5 4a0q2 - a* t

2a0dao+8 ^ +"'

is a reversor to Va the annihilator of pure reciprocants.

Art. 20. Again, in a result of Art. 14, put m — 1 giving

r* (2a0^ + + 4a28fli + ...) = t"* (2«o3t + 3^3^ + 4a23ai +...);

this operator, equivalent to dXy is well known.

For ?n = 2

1; 2, l)a = -T-H4, 1; 2, l)a,

or rlFtt = -T-*ra;

Va being the well-known operator

+ 5a0a19a2 + 6 (Ja^ + a0a2) d% + ....

When m is the half of an integer we find the important reciprocant

r4o*(3, 1; f, 0)a

and other new results in the theory.

In a result of Art. 15 put m = 1 so that

(1, 1; 1, l)a=T(l, 1; 1, l). + (2, 1; 2, 2)a,

or in Sylvesters notation £la = T£la + Ja,

and if f(t) = <f>(T),

then {/($) + ^ (^} na + <f> (t) Ja,

and {f(t)-t4>{t)}Q,a-4>(t)Ja

are reciprocants of even and uneven order respectively.

As a particular case

is a reciprocant of even order, a result connected with the Theory of Principiants.

Art. 21f From the result of Art. 15 we find putting ra' = 0

a,*(l, 2; J, 0)a = a04(l, 2; J, 0). + i-^aM 2; f, 1).

shewing that 2a04(l, 2; 0)a + *-1a,*(3, 2; f, l)fl

and i"1^4^, 2; f, 1).

are reciprocants of even and uneven order respectively.
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SYLVESTER'S THEORY OF RECIPROCALS. 159

Passing on to another result of Art. 15 we find, for m=l,

Qi, v\ 1, 0)a = O, is 1, 0)a + (fJb-v)T^Va

indicating a reciprocant 2(/i, v\ 1, 0)a + (/* — i/)^-1 Fa

of even order.

This shews that Ia and Wa are each of them constant in every term of a pure

reciprocant. Also that

2Wa-t~*Va

are pure reciprocants of even order.

We are also led to reciprocant combinations of the two operators

0*, V\ i, -l)a, (3, 1; f, 0)a

which may prove to be valuable as they are certainly interesting.

Art. 22. We may express these results in accented letters, remembering that t' = 1, but

dt> = tdt, by merely accenting the letters when t and t do not appear as algebraic coefficients

of the operators: thus

iV = -2IT,-TFT,

and so forth, but Iaf = Iaf + Va>9

v« = -va.

and so forth.

The accented notation is not applicable to non-homogeneous forms such as

i-gr..

Art. 23. My object is to effect the transformation of all the operators that have appeared

in the researches of previous investigators and to deduce the corresponding reciprocants; and

thus to shew the fundamental reason of the effectiveness of such operators. Thus it was

shewn by Leudesdorf* that the operators

performed upon any homogeneous reciprocant produce a reciprocant. I proceed by trans-

formation to disclose the fundamental reason of this fact.

The operator (t2 ± tk) dt - Va

becomes T ^ 1 {r2dr - r (2rdr + 3^ + 4^ +...)- Va] + ^,

and since 2t3t + Sa0daQ + ifl^ + ... = 3/T + Wr,

this is 1 {(t* ± t2) dr - (r*"1 ± t) (3/t + W,) + Va);

and since SIt + Wt = - SIT - WT

we find (t2 ± tk) dt-Va-t (SIt + Wt)=± ^ {(r2 ± t*) dr-Va-r (3JT + WT)}

or fik {(t2 ± tk) dt-ra-t (SIt + Wt)}

is a reciprocant of even or uneven order.

* Leudesdorf, "On some results connected with the Theory of Keciprocants," Proc. L.M.S., p. 197.

Vol. XXL No. VI. 21
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160 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

Hence this operation is effective in producing reciprocants from reciprocants whether

homogeneous or no.

Now in the case of homogeneity (implying isobarism)

3/t + Ft = 0,

and then (t2 ± tk)dt-Va

is also effective, the theorem of Leudesdorf.

Art. 24. We find many similar instances in which a given operator is only a reciprocant

for a given specification of operand. Ex. gr. It has been shewn that

V

2J° + T

is in general a reciprocant of even order, but Ia itself is only a reciprocant of even order

when the operand is a pure reciprocant for only then does Va vanish as a portion of the

operator. Such points as these arise naturally out of the discussion of particular operator

reciprocants and are generally established at sight.

The operator (1 - t2) dt + t (SIt + Wt) + Va.

Art. 25. Leudesdorf established that this operator caused every absolute orthogonal

reciprocant to vanish. It is easy to shew from the preceding formulae that

(l-t2)dt + t(SIt + Wt) + Va = -(l-T2)dT-T(SIr + WT)-Va)

so that (1 - t2) dt +1 (Slt + Wt) + Va

is an absolute reciprocant of uneven order.

Art. 26. This leads at once to Sylvester's theorem which states that if Ra be an absolute

orthogonal reciprocant dtRa is a reciprocant. For

{(1 -12) dt + t (SIt + wt) + Va} Ra = 0

. ... ... va

or

t +^dtRa = - (Sla + Wa) Ra~-^Ra}

and if Ra = qRa where q is -f 1 or — 1

+ J) dTRa = - (SIa + Wa)Ra - ^ Ra.

y

Now we have shewn that (SIa + Wa) + —-

is a reciprocant of even order and t + — = t + -.

t T

Hence dtRa = qdTRa

or in other words dtRa

is a reciprocant of the same order as Ra.
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SYLVESTER'S THEORY OF RECIPROCANTS. 161

The operator 3a>fia0 + 4a23ai -f 5a33aj! + ....

Art. 27. It is easy to shew that 30j3„ + 4a23a + 5a33„ + ...

"0 12

= t-1 (3ai3ao + 4a23ai + oa33a2 +...)- 2r-2a0(37. + TF.) - 2T-3a0Fa

and this may be also written 3afiaQ 4- 4a23ai + 5a33aj2 +

= T-H3a13ao + 4a23ai + 5a33a2 + ...) + 2T--1a03T-2T~3ao(2, 1; 2, - l)a.

From the former we find that

(Sofia, + 4a23ai + ...)- t~*a0 (37a + Wa + t^Va)

is a reciprocant of even order.

We note that if the operand be a pure reciprocant of characteristic zero, not involving t,

^(Safi^ + iafi^...)

is a generator, and that for any pure reciprocant

(3aAo + 4a23ai + ...)- r*a0 (37fl + Fa)

is a generator.

From the latter we learn 3*-£~2(2, 1; 2, - l)a

is a reciprocant of even order.

Art. 28. The operators

K = td% + 2a0dai + 3^3^ + ... = (1, 1; 1, 0)f,

Ha = t20dao + t21dai + *223s + ... = (1, 0; 2, 0)t.

Rogers* shewed that homographic invariants, viz. those unaltered by the substitution

W y)~[x + n > y + n> )

y-

satisfy the two partial differential equations

ha=Q, Ha = 0.

Now we find from Art. 18 (1, 1; 1, 0)t = -2(l, 0; 2, 0)T.

Thus all the solutions of ha = 0 are simply transformations of the solutions of Ha = 0; more-

over any reciprocant which satisfies ha = 0, necessarily satisfies Ha = 0. We have the absolute

reciprocants

ha — 2Aa of even order,

ha + 2Ha of uneven order,

and we can construct the homogeneous reciprocants

t~^(tha— 2Ha) of even order,

t"^ (tha + 2Jffa) of uneven order.

Art. 29. The operator Ga = 4> (a0a2 - c^2) da± + 5 (a0a3 - a^) 3«2 +....

This is the well known generator employed by Sylvester.

It may be written a0 (3^d% + 4a23tti + Sofia^ + • • •) - <h (37a -f Wa).

* Rogers, "Homographic and Circular Reciprocants," Proc. L.M.S., vol. xvn. p. 220; "On Secondary-

Invariants," ibid. vol. xx. p. 161.

21—2
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162 MAJOR MACMAHON, THE OPERATOR RECIPROCALS OF

Thence by previous results

G. = " 5 {; + + • • •) - 2 J (3/a + Fa) - 2 ^ Fa|

1 2

or (?a = - — Ga + —6 (Tax - a02) Fa

or

indicating invariants ^ — ^ ^ a° Va of uneven order,

^ a° Fa of even order.

Ga t(h - «o

t2 P

thus always produces an absolute invariant by acting upon any absolute invariants and in

particular for forms which satisfy

Va = 0

Ga is a generator.

The connexion of Ga with the Schwartzian derivative

tax — a02

is interesting.

Art. 30. The operator

a , 2a0a2-a1!' t 3a02a3 - 3a0a1a2 + a?

^ = a0^o+ ao2 ^ + al 9«2 + -

This is a reversor in the theory discovered by Hammond. It is easy to prove the formula

or tSa=-rSa + 2Ia + ^.

T

The first of these shews the invariants

(1 -t2) Sa + 2tla + Va of even order,

(1 + t2) Sa - 2tla — Va of uneven order,

V

and the second 2Ia 4- —- of even order,

V

2tSa -2Ia-^ of uneven order,

t

V

but since is an invariant of uneven order we deduce

V

tSa — I a

an invariant of uneven order.
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SYLVESTERS THEORY OF RECIPROCANTS. 163

This result is of much interest. It shews that Sa is a generator for all forms such that

Ia = 0.

Ex. gr. Sa generates an invariant from

4:a0a2 — 5a22 #

a?;

12

the operation, in fact, produces —-4 (a02as — 3a0«ia2 + 2aj3).

The operation of tSa — Ia upon 4a0a2— oe^2 produces

12(a02a3-SooOxa, + 2^) + 2-a02) ^a^a".

We may write

Sa = $i9a0 - s2dai + s*d«2 - • • • >

where log — (a0 + a^w + a2?i2 + ...) = — Js2w2 + ^3^3 — • • • •

CLq

Art. 31. Consider now the operator

= 3a0 + — ^3a2 + Ssda$ ~ • • • •

It is easy to shew that

*i\ - s2da2 + 53Sa3 -...=- t3 (er^ - o-23a2 + o-33a3 - . ..)

+ T2 (2 i0 3ax + «i3a2 - a33a4 - ~ • • •)

+ t(8, 1; 2, 2)a

+ (6,1; 3, 3)a,

and we know that

^ = -^-^(4, 1; 1,1).-2t(5,1; 2,2)a-(6, 1; 3,3)..

Hence £a' = - t3^' - 2r2Ha - rJ*,

or te = _TfS/_2T£na-HL

3 1 J

shewing that 2^ + 2t*Cla + -f

and therefore also t*Sa+t2Q,a

is a reciprocant of uneven order.

In accented notation this is Sa>' +

Art. 32. The operator

m 3 ck o ,5 4a0a2 - ax2 o 7 8a02a3 - 4a0a1a2 + of?

T«=2a0da» + 8 ^ + 16 5? *2

9 64a03a4 - 16 (a02a22 + 2a02a1a3) + 24a0a12a2 - 5a/

+128 a04

4-
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164 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

is important because it is a reversor in the theory of pure reciprocants; this is additional

to the two reversors discovered by Sylvester and Hammond which are given in Sylvester's

Lectures on Reciprocants.

Its form is ^9i\ + 5^3^ + 7^3^ + ...,

where fl + — u+ — u2+ ...Y = 1 + glU + g2*i>2 + g*u3 + ....

\ Ojq do /

In Art. 19 I shewed that t~^a0(dt + Ta) is a reciprocant.

In fact it may be shewn that

Ta = -T2Ta + T(3/a+Ftt)+Fa,

and thence that 2tTa — (itfa + Wa) is a reciprocant of uneven order. This shews that Ta

is a generator for all forms, such that 3Ia + Wa = 0.

Ex. gr. Let the operand be

4ci0a2 — oa~?

the operation of Ta yields

^0

_ 14

Ua0 3 (a02a3 — Za0axa2 + 2a!3).

Art. 33. I next remark that the relation

(fi, v\ m, n)t

= — — {fi (n — m + 3), ft — mv\ n — m + 3, n}T

771/

holds for the substitution

T

T3

a +

Therefore making a unit increase of suffix, that is, changing

t> &o, ai> °f T> ^OJ ai» a2J aS

into d0> «1> &3> • #S+1 ••• «0> ai> «3> a*+i •

we find that the relation (ji, v\ m, n + l)a

= — ^ {f>(n — m-f 3), fi — mv\ n — m + 3, n-{-l}a,
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SYLVESTER'S THEORY OF RECIPROCANTS. 165

holds for the advanced substitution

1

<*<>=->

«0

«1

"o

a04 a,

5 >

which is derived from the formulae for the interchange of the variable by merely making

a unit increase of suffix.

As this substitution must not be confused with that which interchanges the variables

x, y, I write the theorem in the form

(fiy v\ m, n+l)a

= ~~ m ^ ^n ~~ ^ + ^ ^ ~~ mv'9 U ~~ m ^ U ^h>

where a0 = ^,

This most important transformation arranges the whole of the members of the group

of the multilinear operators dealt with into pairs, the components of each of which are

transformable into one another.

A pair contains identical operators in the particular case

{rc + 3, 1; £(7i + 3),?i + l}a = -{n + 3, 1; £0 + 3), n + l}b,

a formula including a singly-infinite system of operators.

The most interesting of this nature are

(2, 1; 1, 0),

(3, 1; f, 1),

(4, 1; 2, 2).

Art. 34. Putting m = 1, n = 0 in the general formula, we find

O, v\ 1, l)a = - fi - v; 2, l)b)

and now putting /* = 2, z/ = 1

(2,1; 1, l)* = -(4, 1; 2, 1)6,

a wonderful result for now writing

a0 = c0, ^ = 2^, ... a, = ($ + !)<?„ ....
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166 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

We find that the transformation

_ 1

2c —

2bi

2

_ 63 56A obi

gives (1,1; 1,1), = -(4,1; 2, 1)6,

or nc = - Vb)

or in words the seminvariant operator fic, qua the elements c0, cu c2,is converted by the

above transformation into the pure reciprocant operator F&, qua the elements b0, bly b2,

Hence the above transformation co averts all semin variants into pure reciprocants, and

the inverse transformation

&o = T>

^0

3c2 8c,2

Oq Co

5 »

C05 C06 C07

all pure reciprocants into seminvariants.

Art. 35. This result will now be utilized in order to throw new light upon the structure

of those differential forms which are unaltered by the homographic transformation. These

have been studied principally by Halphen and Sylvester, and have been called by the

latter Principiants.

Principiants were shewn by Sylvester to be the simultaneous solutions of the equations

(1,1; 1, l)fl = 0,

(4,1; 2, l)a = 0.

It is first necessary to shew that in certain cases the solutions of (/*, v\ m, n + l)a = 0

are easily obtained.

Digression on the solutions of (fi, v\ m, n + l)a=0.

A pocket solution of this partial differential equation is obtainable in two eases:

(i) when m = 1, (ii) when v = 0.
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SYLVESTER'S THEORY OF RECIPROCANTS. 167

Case 1. ra = 1.

By substituting for the elements a0, a2, ... certain numerical multiples of them, the

operator is at once transformable to (1,0; 1, n + l)a = P suppose.

Let U=a0 + axu + a2u2 + ...,

so that P U = a0un+1 + a, un+2 + a2un+s + ... = un+1 U.

Then Pf(U)=f'{U)U,

and we can determine f(U) so that

for then /(^) = log ft

Hence P log (a0 + c^w + a2u2 + ...) = un+1,

and if log (a0 + + a2u2 + ...) = 50 + B^t 4- jB2m2 + ...,

(1,0; l,n + l)«J?,= 0, if +

(1,0; 1, rc + l)A+1 = l,

and I say that log (a0 +0^ +c^2 + ...) is the pocket solution of (1,0; l,?i + l)a = 0, under

the condition above stated.

Case 2. /a = 1, v = 0.

Put (1,0; m, n+l)a = Q,

and — Pm = I0+i¥^ + J/2u2 + ....

m

Since Q t7 = ikf 0z*n+1 + + lf2u?l+3 + ... = un+1 ^ {7™

and the dexter is equal to un+1 if

Q/(Jr-0'=/,(J7)^mww+I,

^ y m — 1

Hence (1, 0; m, n+ l)a = -

or if (7-(m-i) =C0 + CW-f (72u2+

(1,0; m, 7i+ l)aG8 = 0, when s=f?i+l,

m — 1

(1, 0; ra, 7i + l)a(7n+1 = -

and I call (a0 + a^u + a2w2 + ...)~(m_1) the pocket solution of (1,0; ra, 7i + l)a = 0, under the

condition above stated.

The relation (ft, v\ m, n + l)a

= {/^(n —?7i + 3), At —mi/; n — ra + 3, ti + 1}&

now enables us to determine all forms of operator (ft, v\ w, n + l)a for which pocket solutions

exist.

Vol. XXL No. VI. 22
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168 MAJOR MACMAHON, THE OPERATOR RECIPROCANTS OF

These are

I. (fl, v] 1, TC+1).

II. (1, 0; 7w, n+ 1).

III. (fi,v; n + 2, w + 1).

IV. (m, 1; m, 1).

Art. 36. To resume the argument of Art. 35 I remark that the simultaneous solutions

of the two equations

(1,1; 1,1), = 0, .

(4,1; 2, l)o = 0,

also satisfy the equation

(2,1; 2,2)a=0,

since the alternant of (1, 1; 1, l)a and (4, 1; 2, l)a is (2, 1; 2, 2)a.

Transforming these three equations we obtain

(1,0; 2, 1)5 = 0,

(2,1; 1, 1)6 = 0,

(1,0; 2,2)6 = 0,

and it will be noted that pocket solutions can be given of each of these three equations.

The first equation has the solution

1

bQ + M + M2 + b3u3 + ...'

and since = —;— = 1 — kjU + k2u2 — k3uz •+■...,

&0+M+62%2+63w3+...

where k8 is the homogeneous product sum of order s of the roots of the equation

b0vr - bxvr-1 + b2vr~2 - b3vr-* -f ... = 0,

we see that every solution is a function of k2, ks, k4, ....

The third equation has the same pocket solution, but here k2 is not a solution; hence

every solution is a function of kl9 ks, kA, k5, ....

Hence the simultaneous solutions of the two equations

(1,0; 2, 1)& = 0,

(1,0; 2, 2)6 = 0,

are functions of k3, k4i k5} ....

Art. 37. What functions of these elements then satisfy the second equation

(2,1; 1,1)& = 0?

The equation is

= 2b0dh 4- SJhdb% + ±b2dh + ... = 0,
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and writing b„ + bxu + b2u? + ... = B,

= -^(2uB + u*dttB)

.*. Nb(l— kYu + k2u2 - k3v? + ...) = (— 2w + m29m) (1 —kjU + k^u3 — &3w8 + ...)>

.-. N^, = - 2, Nbk2 = k1} Nbk3 = 0, Nbk4 = -k3,

and Nbk8 = — (5 — 3) A^.

Hence AT& operating upon a function of k3) k4) k5f ...

is equivalent to &39j. + 2&4dfr + 3fc53fc +

1 4 5 6

and this establishes that principiants are seminvariants, qud the elements

k3i kiy k5} ....

It will be remembered that Sylvester and Hammond shewed that principiants were

seminvariant functions

(1) of seminvariantive elements,

(2) of reciprocantive elements.

In each case the law defining the elements was one which connected three successive

elements by a formula involving a partial differential operation—nothing more was known

of their internal structure. The present research shews that the semin variantive elements

above referred to are by the 'advanced' substitution converted into the well-known forms

k-s, ki} k5) ...,

which can be written down currenti calamo in terms of the functions b0)blf b2, —

In fact Sylvester's elements AQi Au A2, ... are by that substitution converted into

— k3i k4, — k5) ....

Art. 38. This most interesting development has a parallel in the homographic reciprocants

of Rogers; he shewed that such satisfy the two partial differential equations

(1, 1; 1, 0), = 0,

(1,0; 2,0)* = 0.

Now observe that by the transformation theorem

(1,1; l,0)e = -2(l,0; 2, 0)T,

shewing that every reciprocant that satisfies

(1,1; 1,0), = 0

also satisfies (1, 0; 2, 0)* = 0,

and that in any case every solution of the former is by an interchange of the variables con-

verted into a solution of the latter and vice versd.
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170 MAJOR MACMAHOJST, OPERATOR RECIPROCALS OF SYLVESTER.

The solution of the simultaneous equations

(1,1; 1,0)* = 0,

(1,0; 2, 0)t = 0,

is easily obtained. The latter possesses the pocket solution

(t 4- a0u + 4-

in such wise that writing

t (t + a0u + axu2 + = 1 — jxu +j2u2 -j3u3 + ...,

every solution is a function of t, j2, js, j4)

js being the homogeneous product sums of the roots of an equation

txn - a0xn"1 + a^x71'2 - ... = 0.

Now it is easy to shew that

t t

(1' 15 0)t « + a0« + alM2+... = (u*du ~ U) t + atu + a1u*+...'

and thence that

(1,1; 1, 0), jw = -(*-l)j,.

Hence (1, 1; 1, 0)* operating upon a function of t, j2, J3, ji}... is equivalent to

We have thus confirmed the result of Rogers that the simultaneous solutions of the equations

(1,1; 1, 0)t = 0,

(1,0; 2, 0), = 0,

are seminvariant functions of the elements j2, j3, jA, —

These solutions are necessarily reciprocants because the interchange of x and y converts

(1, 1; 1, 0)t into (1, 0; 2, 0)T,

and (1, 0; 2, 0)t into (1, 1; 1, 0)T.

Apart altogether from invariant theory it is not, I think, possible to over-estimate the

importance of the transformation involved in the formulae for the interchange of the variables.

The group of multilinear operators now possess the two cardinal properties:

(i) they form a group qua alternation;

(ii) they form a group qua the transformation which interchanges the variables, the

formulae being regarded merely as giving a substitution proceeding from one suffixed set of

letters a to another suffixed set b, and having no essential connexion with variables x and y.

I hope to discuss subsequently the operator invariants appertaining to the trans-

formation of Halphen.
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VII. The solution of Linear Differential Equations by means

of Definite Integrals*.

By H. Bateman, M.A., Trinity College.

Received Nov. 27, 1908. Read 25 January, 1909.

1. The solution of a linear differential equation by means of a definite integral of a

specified type, e.g.

f(x)=jfc(x> t)<f>(t)dt,

is a problem which is closely allied to that of the inversion of a definite integral. The integral

equation connecting f{x) and <f> (t) may be regarded as one expression of a linear relation

between the two functions. In order to solve the second problem we must obtain an equation

in which (j> (t) is derived directly from f(x) by means of a distributive operation. The first

problem will be considered as solved when a functional equation to be satisfied by </>(£) is

obtained by means of a distributive operation f from the differential equation satisfied by f(x).

The function k(x} t) will be regarded as the nucleus of a transformation which makes

the function f(x) correspond to (£), the differential equation satisfied by f(x) to a functional

equation (usually a differential equation) satisfied by <j> (t). When definite limits are assigned

in the integral there is a further correspondence between the linear conditions satisfied by f(x)

and the linear conditions satisfied by <f> (t).

To illustrate this let us put

f(x)= \b k{x, t)<j>(t)dt,

J a

rd

and suppose that I /(#)%(#) d# = ^,

J c

rd

then if g(t)= I % (x) k (x, t) dx,

* This paper has originated from one portion of a f The general theory of distributive operations has been

Smith's prize essay (1905). The work has now been developed by Pincherle. S. Pincherle e U. Amaldi, "Le

brought to a more complete stage but the main ideas have operazione funzionali distributive," Bologna (1901), Ency-

been unaltered. klopddie der Mathematischen IVissenschaften, Band n. 1,

Heft 6.

Vol. XXI. No. VII. 23
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172 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

and all the functions under consideration are continuous, we must have

1 f

b

g (t) (t) dt = X.

The linear condition to be satisfied by is thus derived immediately from the one

satisfied by / (%).

2. The transformation of a differential equation or functional equation by means of the

nucleus k (a, t) depends upon the formation of a relation of the type

Lx [k 0, t)] = Mt [fc O, t)],

dnu dn~hi

is the given differential equation, and Mt (u) is either a differential equation or linear functional

equation.

For if the integral f(x) = j/c (%, t) cj> (t) dt

can be differentiated n times by the rule of Leibnitz, we have

Mt[fc(cc, t)].<f>(t)dt

In order then that / may be a solution of Lx (/) = 0, the function <f> (t) must be chosen

so that the quantity on the right hand side is zero. If Mt is a differential equation we

may take $ (t) to be an integrating factor, so that the quantity under the integral sign is a

perfect differential. If Mt is a difference equation we choose <£(£) so that the quantity under

the integral sign is a perfect difference. In either case is a solution of the equation

adjoint to Mt(u) = 0.

Finally, to ensure that Lx{f) = Oi the limits or path of integration must be chosen so

that the integral on the right hand side is zero. The introduction of double circuit integrals

has made the method much more effective, for we are now able to obtain, in general,

representations of all the solutions of an equation. The choice of a contour appropriate to a

particular solution of the equation has become quite an art*.

In the present paper we shall endeavour to trace out the connection between relations

of the typef

Lx(«) = Mt(v)

and the theory of definite integrals. The principal objects that will be kept in view are

* The following list of papers dealing with this part (lithographed), Gottingen (1894); Math. Ann. (1891),

of the subject may prove useful: t. xxxvni. pp. 144—152.

Jordan, Gours d. Analyse, t. in. pp. 240—276. Barnes, Proc. Lond. Math. Soc, Ser. 2, vol. vi. Part 2

Pochhammer, Math. Ann., t. xxxv. pp. 470—494, 495—526; (1908), p. 141.

t. xxxvh. pp. 500—511. f The importance of relations of this type in the present

Hobson, Phil. Trans. Boy. Soc. (A), vol. clxxxvii. p. 493. subject was pointed out by Schlesinger in his Theorie der

Klein,4' Vorlesungen iiber die hypergeometrische Funktion'' linear en Differ entialgleichungen.
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 173

the formation of inversion formulae, i.e. the discovery of a transformation which is the inverse

of a given one and the construction of periodic transformations*.

3. The following properties of two adjoint differential expressions will be required in

the course of the work; for proofs we may refer to Forsyth's Theory of Differential Equations,

Part in. vol. iv. pp. 252—254.

(1) If Mt{u) and Mt(v) are two adjoint differential equations we have the identity

vMt 0) - uMt (v) = j R (u, v\

where R (u, v) is the bilinear concomitant.

(2) If Mt(u) = 0 be a composite equation, i.e. if

M{u) = m-L. m2... mr (u),

then Mt(u) will also be a composite equation and will be composed of the adjoint factors

in the reverse order.

The whole theory of definite integrals is closely related to the theory of functional relations

of the type

In the case when Lx(u) and Mt(v) are differential equations this analogy may be developed

as follows:

First, consider the property that transformations of the type

f(x) =j/e O, t) (/> (t) dt = K(<f>)

form a group f.

Let k (%, t) be the nucleus of a transformation from a differential equation Lx (u) = 0

satisfied by f(x) to a differential equation Mt (v) = 0 satisfied by cf> (t) and h {t, y) the nucleus

of a transformation from Mt (v) = 0 to Ny (w) = 0. Then we have

Z*(*) = Jft(v),

where k and v are functions of x and ty

h „ to „ „ „ t „ y.

Let g (w, y)=j* (w, t) h (t, y) dt,

where the path of integration is at first unspecified.

* This problem has been discussed by Levi-Civita, "Sur

les groupes d'operations fonctionnelles et sur Pinversion

des integrates d6finies," Bendiconti Instituto Lombardo,

t. xxvii. (1895), pp. 529—544, 565—577.

t Pincherle, Acta Mathematical vol. x. p. 153.

23—2
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174 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

We have in general Lx(g) = ^Lx{tc)h(t, y)dt

= jMt(v)h(t, y)dt

= jv.Mt(h)dt + \^tR(% h)dt

by the first property of the adjoint equation.

Now let the path of integration be chosen so that

'dR

/

then Lx(g)=jv.Mt(h)dt = jv.Ny(w)dt

= Nyjv(a), t) w (t, y) dt

= Nv(e).

Hence there is a relation of the type

Lx(g) = Ny{e\

or a transformation connecting Lx and Ny of which g(x, y) is the nucleus.

It should be noticed that the existence of the relation

Lx(«) = Mt(v)

implies that v (oc, t) is the nucleus of a transformation from Mt (v) = 0 to 4 (#) = 0.

Next, let Lx(tc) = Mt(v),

P*(*c) = Qt(v),

then [Lx + Px](K) = [Mt + Qt](v).

Now the equation adjoint to [Mt + Qt] (v) = 0 is [Mt -f Qt] (v) = 0, hence Lx + Px is trans-

formed into Mt + Qt by means of the transformation with the nucleus k (x> t). This shows

that the operation by which we pass from Lx to Mt is in general distributive.

This remark is important because it enables us to construct very general relations of

the type

L9(K) = Mt(v)

bit by bit. For every integral of the given type will in general furnish us with a relation

of this form, and if suitable changes are made to keep v and k the same, we may multiply

all the different relations that are known by arbitrary constants and add them together.

This is really another step towards the solution of the problem of representing a function

f{s) by means of a definite integral of the type

f(8)=J*(89 t)<f>(t)dt,

because the solution of \LX (u) + /jlPx (u) = 0

is in general not a linear combination of the solutions of Lx (u) = 0 and Px (u) = 0, thus the
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 175

representation of a function which is linearly independent of those whose representations

are already known, can be obtained.

Next consider the effect of various operations upon the equation

Lx(*) = Mt(v).

Let Px be a differential operator such that

P*(v) = Qt(w)f

then P»L9(k) = MtPx(v) = MtQt (w).

Now the differential equation adjoint to MtQt(w) is QtMt(w), hence Px-Lx corresponds to

QtMt in the transformation of nucleus k. The most interesting case occurs when w = v, because

then the transformation from PX.LX to QtMt is of exactly the same type as before.

In the case of the Laplace transformation K = v = ^ct> and we have

The equation adjoint to y{r (^j is -v/r ^— ^ } accordingly

P*

»bk (x) •u] corresponds to Qt. i/r ^— v,

and ^{x).Px(u) „ „ ^["jt)Qt(^

4. The problem of the inversion of a definite integral may be considered as partially

solved when a transformation depending upon a function jc(t,x) can be found such that*

Mt [ic (t, x)} = Ls {v (t, a))}.

The first inversion formula of this type was discovered by Cauchyf for the case of the

Laplace transformation.

If the quantities anm are quite arbitrary and

Lx(u)= SScw^^,

m n WiA,

m n m

U = K {x, t) = 6*',

we have Lx (u) — Mt {u\

Lx(v) = Mt(v),

where v = e~xt.

It is difficult to construct reciprocal relations of the above type by a direct method and

so we are obliged to use definite integrals to guide us to the result.

Consider, for instance, the case in which the nucleus is of the form F(x + y), we may

then proceed as follows.

* See a paper by the author, Proceedings of the London t Exercices de Math., vol. n. Paris (1827), p. 157.

Mathematical Society, ser. 2, vol. iv. Parts 6 and 7, p. 486.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



176 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

Let /(#)=JW(0*,

then we shall in general have a relation of the type

Z„ (/) = #(*),

where Mt is derived from Lx by means of the Laplace transformation, i.e.

Now alter the variable in the equation Mt (<f>) = 0 putting

<f>(t) = h(t).g(t),

and let g•(t)=j&+(y)dy,

then f{x) = jje1^ h (t) f (y) dydt,

accordingly, if F(x + y)=jh (t) dt,

we have f{x) = jF(cc + y)yfr(y) dy.

This suggests that there is a transformation depending on the nucleus F(x + y) by means

of which we can pass from the differential equation Lx{f) satisfied by f{x) to the differential

equation Ny (yjr) = 0 satisfied by \Jr, in accordance with the group property investigated above.

When we are given the function F(w + y) a differential equation satisfied by h(t) can

be deduced by means of the Laplace transformation or in some cases the function h(t) itself

may be derived from F{x) by means of Pincherle's inversion formula

F(w)=( etxh(t) dt,

J c

h

The transformation from Lx(f) to Ny(yfr) is then built up as follows:

(1) A Laplace transformation from Lx(f) to Mt(cf>).

(2) A change in the dependent variable from <j>(t) to h(t)g(t).

(3) A Laplace transformation from the new equation to Ny(^)t

Inverting the order of proceedings we can build up the transformation from Nyty) to

Lx(f) as follows:

(1) An inverse Laplace transformation.

(2) A change in the dependent variable from g(t) to

(3) An inverse Laplace transformation.
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 177

It is clear that the nucleus of the inverse transformation is also of the form F(x + y)*.

If H denote the operation of multiplying the dependent variable by h (t), the trans-

formation and its inverse may be written in the symbolical forms

T = AHA,

We shall now follow out the work in detail in the case when F(x + y) — (x + y)~n~1.

The definite integral to be used in solving differential equations is then of the form

Integrals of this type were used by Euler to solve linear differential equations, the

transformation arising from the nucleus {x + y)~[nJrl) has consequently been named after

him t although the analysis of the transformation is chiefly due to Heine \.

It will be convenient to replace y by — t, the nucleus then takes the form (x — t)n+1

usually used in Euler's transformation.

Let the differential equation satisfied by f{oo) be

T> I \ 4 i KdmW

m=0 k=0 WiAs

The equation derived from this by means of the transformation of Laplace is

2 2 ( a

w.=0k=0

Changing the sign of the independent variable and writing u = xnv, we obtain the

equation

The lowest power of z in this equation is in general zn~v, but there are two cases in

which it is of a higher order:

(1) when a0)5 = 0, (2) when n is a positive integer less than q—1. •

Qz(u)= 2 2_(-1)"a*,.^(*»«).

* The general inversion formula given by Sonine, _ tq~l , . T , , «. ,. re

b , ,-,.„, , from —rrrr by inverse Laplace transformations. If we

Acta Mathematica, vol. iv. p. 171, is closely connected jc(V\

with this result. \t J

put

Let k{t) = l + c1t + c2t2+... , tff-i

oo /» xm 1 /I \

00 d x11 ^ ^' an(* remark that if Mt (v) is the Laplace transformed

^ (a;) =ar«JS^ r ^_^ + j , equation of Lx(u), then Mt (tu) is the Laplace transformed

^en' ^ ra equation of Lx (<j^) , the analogy is complete.

/(*)-/(«)=/ is(x-\)<t>(\)d\, V**'

J a f Cf. Schlesinger, Theorie der linear en Differentiat-

es , gleichwigen, vol. n. p. 415.

0(X)=Ja t G^ Band 60 (1862), p. 252; Band 61 (1863),

. , „ „ 1f /1\ 3 , , x p. 356; Band 62 (1863), p. 110. Handbuch der Kugel-

The function <r (*) is obtained from t^k ^-J and ^ (x) funkHonen^ yoL ^ 2nd edU Berlin (1881)> Parfc m> p 466>
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Dealing first with the case when n is not a positive integer <(s-l) let zn-f> be the

lowest power of z in R(v). Dividing throughout by zn~p the equation takes the form

^'•>=J,AJ,<-i>-»-H(:-,),(-+n)-(T+"-'-+1>—£3-

The equation obtained from this by Laplace's transformation is the adjoint of

and will be called Euler's transformed equation.

Since (x tY~^ _(n-p + l)(n-f + 2)...(n + m-f)

we find that

= 2 t(n-p + l)...n.am]caf-ni(ie-t)-~-1

= (n- p + 1) ... n . Px[(x - 0"n_1].

This relation (n - p + 1) ... n Px [(x - t)'71'1] = St [(x - O'"7'"1]

indicates that there is a transformation depending upon the nucleus (x — t)~n~l from Px{w)

to St (w), it also indicates the existence of a transformation depending on the nucleus

(#_£)P-«-i from St(u) to P*(tO*

In the case when n is & positive integer less than p the equation just obtained reduces to

and the method breaks down. It appears then that the lowest differential coefficient in

St is at least of order p — n.

To obtain the right relation in this case we write n + e in place of n and equate

coefficients of e when e is very small. The relation is

d_

'dn 1

St + e^St

[{x - ty~n-i {1 - e log (x -1)}] = (n - p + e + 1) ... (n + e) Px [(x - t)~n^l

Now (x - ty-n~* = 0,

because the lowest differential coefficient in =- St is also at least of order p—n, thus on

dn r

equating coefficients of e we obtain

St [(a? - ty~n~l Log (x - t)] = (- iy~n n\(p - n - 1)! P* [(a? - tf)-91-1]*

one of the numbers (n — p + e +1) ... (n-f e) on the right hand side of the previous equation

being equal to e.

As before there is a transformation depending on the nucleus (x — £)~n-1 from Px(w)

to St (w\ so that in all cases St (w) may be called Euler's transformed equation. The

transformation from St\u) to Px{u\ however, now depends on the nucleus

(x - ty-71-1 log o -1).

* Cf. Sehlesinger, Theorie der linearen Differentialgleichungen, vol. n. p. 416.
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The equation St (u) does not contain a differential coefficient of order less than p — ny

dp~nu

it may be reduced to the usual form by writing ^p,n =v- The quantity u may be expressed

as a definite integral by means of the transformation and v derived from it by differentiation.

If Xn denotes the operation of multiplying the dependent variable of a differential

equation by xn and A-1 denotes the inverse of Laplace's transformation, i.e. a Laplace's

transformation combined with a change in sign of the independent variable, Euler's trans-

formation En can be expressed in the symbolical form

En = A~*XnA.

Hence EnEm = A~lXnA. A~lXm A

= A~lXnXmA = A^I^A

= -Em+rn

so that the operation En possesses the addition theorem

EnEm = En+m.

The transformation inverse to En is E_n according to what has gone before, so we

may expect to find relations of the type

f(x) = f(x-tY-i<l>(t)dt,

<f>(t) = \j(x- ty^fix) dx.

f fit)

Cauchy's integral 2irifix) = j-^-

dt

is the most famous formula of this kind. Webb* has shown that when ?i = 0 the general

hypergeometric equation of the pth. order is transformed into itself by means of Euler's

transformation, so that relations of the type

connecting two different solutions of the equation may be sought.

To illustrate this we may consider the hypergeometric equation of the fourth order

satisfied by the functions

Pn 0) Pm 0*0, Pn 0*0 Qm O), Pm O) Qn 0), Qm (#) Qn

it is easy to prove that

Pn (*) Qm <*) = h Pm(C)P"' U) dp,

J —i X — fJb

where m and n are integers and m^nf.

* Phil. Trans. Boy. Soc, Ser. A, vol. cciv. pp. 481—497. _ f+i Pm fr)

t^WI V ^) — 2 I CLfJ^

f This may be deduced very easily from the integral J -l x-p

by induction, using the addition formula for Pn (ar).

Vol. XXL No. VII. * 24
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The addition formula for the operation En is closely connected with the fact that En

and the operation of differentiation obey the commutative law*, and is in harmony with

Riemann's representation f of a fractional differentiation

1)8« O) = tT-t-^ x Dm - z)m~s~l ol (z) dz.

v; T (m - s) J v 7 v'

In this formula the variable enters into the limits of the integral. In general the

formulae for the transformation of the differential equations are the same whether the

variable appears in the limits or not, provided the integral can be obtained as the limit

of a contour integral. Thus we have an illustration of the inversion formula ^ = E_n in

Abel's formula

smmr p ft (a)

J o

da,

a fix) dx

= / i« > 1 > w > 0,

'(a - x)n'

If

1 rt+i\li-t2

then 6 (t) = - A (1 - 2fc + s2)1'"1 [*>/0) + sf (*)] ds.

when the last equation is differentiated with regard to a. Another formula of inversion

has been obtained by the author J.

1 rt+iji-t2

To reduce this to the standard form we must put

s + - = 2x,

s

2vsvf(s)=F(x\

we then get 1?(x) = jPf^,

where C is a certain contour which starts at the point x = t and finishes up there. If we

put

s = t + i*Jl—t2 cos a,

the contour is traced out by the point

x = \

£ + i Vl - £2 cos a + 7== >

t + i VI — £2cosol

as a varies between 0 and 7r. It is evidently a loop which cuts the axis at the point

-*(*+?)'

i.e. at a point beyond the singularity x=\.

* Pincherle, Eneyklopadie der Matheviatischen Wissen- % Proceedings of the London Mathematical Society,

schaften, Band n. 1, Heft 6. Ser. 2, vol. iv. Parts 6, 7, p. 469.

f Werke, ed. Dedekind und Weber, p. 331.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



EQUATIONS BY MEANS OF DEFINITE INTEGRALS.

181

Another special case of the inversion formula is

4>(t)=~.—I—f f(s){s-ty-

T v' 47r sin mr Jc

where G is a double loop contour round the points 0 and t. The restrictions to be laid on

f(s) and <j> (t) in order that this formula may hold have not been found. The theorem is

certainly true when

/(»)-(-^r(B+r7^g"TO),

for we have Pochhammer's formula*.

There is evidently much room for research in this direction, if a general inversion

formula could be found the result would be of considerable importance in the theory of

integral equations.

5. Transformations of the type

f(x) = J" (t) dt

have been applied to linear differential equations by Mellin f and Cailler J.

Mellin's result is that if satisfies the equation

which is of Laplace's type, then there is a transformation depending on the nucleus k (x — t)

from

an equation of Laplace's type, to

d

/=0,

which is also an equation of Laplace's type.

<f> = 0,

From our point of view this transformation depends upon the fact that the partial

differential equation

f-

-['(-aM-D-«(-X-a)'

w,

* Math. Ann. xxxv. (1890), pp. 495—526. (1896).

f Acta Societatis scientiarum Fennicae, t. xxi. No. 6 % Darboux's Bulletin, xxm.

24—2
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182 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

is satisfied by w = k (x -1). If we put G ^- ^ w = v the expression on the right hand side

may be written

[*(-s)-«(-a)'>

which is adjoint to the equation satisfied by </>.

M. Cailler's result is somewhat simpler, it depends upon the fact that the partial

differential equation

r ../d\ d\ d\l

w

{dx,

w =

is satisfied by w = k {x — t) = /c (z), if

it thus gives a transformation from

\f=o

.(1),

w = 0.

to

0

<£ = 0

by means of a nucleus /c(x — t) = K (z) which satisfies equation (k).

If the equations satisfied by /, <f> and k are

dn~r f

respectively, the relation between the parameters is

J)f ~~~ fop ~~ bp j

a" — ar + a/ — (n — r + 1)

Transformations which are applicable to equations not of Laplace's type may be con-

structed by means of the artifice explained at the beginning. Mellin has given the formula

k (% — t) = k (z)>

d\ „{d"

F

dzt

{F> (e) e* {D+p- (b) is) <*e -*■>+F' {£) a"~ (b) +ff - F) <*e " P>

+... P.(A) [*G + («-1)F]...[«<?- F]}/-0.

* This equation is adjoint to the one on the right hand side of (1).
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If we denote the last equation by Lx(f\ it is clear that the equation

dy

«*(-*)«

is satisfied by k(x — t).

This can be regarded as the fundamental relation of type

on which the transformation depends.

As we have remarked before this relation is the same when the variable x appears

in the upper limit of the integral. Integrals of the type

f(x) = T K{x-t)<b(t) dt

Jo

may be conveniently studied in connection with a theorem of Borel's* which states that if

/•oo f oo

u 0) = e~zt k (t) dt, v(z) = e~zt $ (t) dt,

Jo Jo

then u (z) v(z)=( e~ztf (t) dt,

J o

where f(t) is connected with k (t) and <f> (t) by the above equation.

If we know the differential equations satisfied by k (t) and <j> (i) we can find the

differential equations satisfied by u(z) and v(z) and deduce a differential equation satisfied

by u(z) v(z). The function f(t) will then satisfy the equation obtained from this last one

by the inverse of Laplace's transformation.

As an illustration of the above formula we may take

*(t) = Jm(t), <j>(t) = J^,

we then have u (z) = . ,

Vl + z*

v (z) = I (Vl +z2 - z]n,

:. u(z)v(z) = - L -

n Vl +

which corresponds to f(t) = -Jm+n(t), hence we have the formula f

( Jm(x- t) Jn (t) ™ = \ Jm+n (x).

Jo in

6. The transformations depending on the nucleus x(xt) may evidently be derived

from those depending on a nucleus F(u + v) by writing x = eu, t = e°. They have been

* Legons sur les Series Divergentes, p. 104. A more t For another derivation of this result see a paper by

general proof is given by E. Cunningham, Proc. Lond. the author. Proc. Lond. Math. Soc. Ser. 2, vol. in. Part 2.

Math. Soc. Ser. 2, vol. in. (1904), p. 161.
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studied in detail by Mellin (op. cit. pp. 39—46), who gives a formula for a very general

type of transformation. This formula, however, does not cover all possible cases and we

shall find it more convenient to construct relations of the type Lx (u) = Mt (u) directly by

special artifices.

In the first place it is clear that if

u — k (xt) = k (z)}

ax J

Now the equation

■'(«s)"*('s)-

x-F(x4-) + g(x d

dx.

is satisfied by u = k (xt) = k (z), if

dx.

u —

Git

dt

u = 0,

accordingly there is a transformation depending on the nucleus ic(xt) from

d\ . r, ( d\

u = 0

to the diffd ntial equation which is the adjoint equation of

.d\ TT f.d

'dt) +

These equations are all of PfafFs type*.

Application to the hyper geometric equation. The equation

w x dhc 7 -, x ^ -> du 7 , f- >x dhi , 7 ,v du

x2 (x — 1) + {(a + b + 1) x" — cx\ ^ + abxu == t (1 — t) ^ + (a — ct) -

'dx''

is satisfied by u — /c(xt) = k(z), if

dt"

dt

du

z(z-l)-^ + {(a + b + l)z — d}-j^ + abu = 0.

Now td~l (1 — £)c~d-:L is an integrating factor of

and the boundary condition

*(1_0_+(rf_c0_.

^ (l - oc_d

du

dt

= 0

is satisfied by t0 = 0, tx = 0 provided cZ> 0, c> 0, thus we obtain the equation

Jo

dt

T(d)T(c-d)

F(a, b} c, x).

io r(c)

When cZ=6, F(a, b, d, xt) = F(a, b, b, xt) = (l — xt)~a\ and the above reduces to Euler's

formula

f V1 (1 - *)c'6-] (1 -dt = r(6)nr/(t^)^6> c>

Jo I (c)

* Cf. Boole's Differential Equations, p. 420.
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If in the previous equation we put x = l and replace F(a, b, c, 1) by its value

T(c)T(c-a-b)

we find that

[V-i (i _ ty-d-i jp(a> b} ^ t) dt =

Jo

T(c-b)T(c-a)9

T(d)r(c-d)T(c-a-b)

r(c-b)r(c-a)

Again, the partial differential equation

u— —

u=0.

"^e)+^°(*£).

is satisfied by u = k {set) = k (z\ if

[<■'(■*)+

Hence in this case there is a transformation depending on the nucleus /c(wt) from a

differential equation

of PfafFs type to the adjoint equation.

Example. The equation

dhc du ( n2\ . dhi du (, n2\

is satisfied by u = tc (xt), if

0 d-u du , , ov A

A solution of this equation is given by u = J2n(2^z)) while

dht du I n2\ „

X h~T~ + [X ) It = 0

ax* ax \ xj

is a self adjoint differential equation satisfied by Jn (x). We are thus led to the formula

Jn («) = [ Jm (2 VS) Jn (t) dt,

J 0

which appears to hold for real -f values of x and for values of n such that

22 (*)>-*•

method of obtaining it will not be out of place here. V7ri i / *, «4\

Starting with the formula (Nielsen, Handbuch der j e~zHf(z)zdz--e 2 Jv[ j I e ^v *7

Cylinderfunktionen, p. 184) ^ 0

Jo * M /, w * (f), =| • £ r t (£) e'n.

R{t)>0, R{v)>-1, Now

we put y=^9 and integrate with regard to x between f" e-««T»(2a«)d«=i/y/^ JV i^)^¥t

0 and oo , then if

f00 /a2s\ and Lerch has shown (.4cta Math., 1903)

f(z) = J^Jv (xz) Jv ^— J <fcr, one continuous function f (2)? such that

O2 VTTX

2 .
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186 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

The formula

Jm (2u) = I Jn (^j Jn (v) dv

admits of some interesting applications.

If in the expansion

S (v + *) P/ (cos 0) Jv+S {ax) Jv+S {ax) = — ^

s=0

[a2 - 2aa cos 6 + a2]2

we put a = - and integrate with regard to a between 0 and oo, we obtain

(L

xy zzl

Jv x\/ a2 + — — 2z2cos 6

|_ V a2

z4

a2 + -~

w

Now if F{a) is an even function

/;4-f)^/;*>)c*a,

Tv (x kJw

2z2 cos 6

da.

r o *4

a2+--

a2

^- — 2#2 cos i

2*2 cos 0

da =

0\

2 -f 4z2 sin2

. 0Y-

a2 + 4^r2sm2^ 2

da.

Again,

f° Jv{x\/a2 + b2)j I it Jv-\Q>x)

(a2 + 62)2

for if we write the integral on the left hand side equal to /(#), we have

f e~^x^f{x)dx= f fe-*H J^1-(~a2~lb2h^dxda,

(a2 + 62)2

but

\ e~z2tf (z) zdz = & given function of f,

Jo

accordingly, we must have

zf(z) = J2v(2az).

This gives the equation

J2v (2az) = z J Jv (xz) Jv {^-^j dx.

Putting az=u9 xz = v, this takes the simpler form

J2v (2u) = J ^ Jv ^) Jv(v)dv (1).

If on the other hand we write a2z = b the formula may

be written

J2v(2s/bz) = z j Jv (xz)Jv dx.

Now Hankel has shown that if

/•oo

f {z)= j Jp (xz) <p (x) x dx,

J o

fee

then 0 (x)= I Jv (xz) f(z) zdz.

J o

Applying this to the present case we obtain

I jv {^j = j™ Jv (xz) J2V (2 Jbz) dz.

Putting xz = t, b = xy, we

Jv

the formula in question.

„ (y) = j J2v (2slyt) Jv (t) dt.

•(2),
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consequently the double integral becomes

r00 a2-f&2

Now

Jo

(2*y + i

hence since there is only one function /(#) which leads to a given function of t, we

must have

i.e.

Jo

(a2 + &2)§

V-i

This gives

2*2eos0

a2+--2^2cos0 2

a2

j , /7T Ji/-4(2#£sin 0)

— rfa-V 2^"(2^sin^-i'

We thus arrive at the expansion

Putting z — 1 it takes the simpler form

J„-4(2#sin0) r(v)/2\2" S , , N ^ , r x

, V = U 2(? + 8)P,v(cos 0) J2„+2S (2a?).

(#Sin0) 2 V7T W 5=0

This formula is a particular case of a more general expansion given in Nielsen's Handbuch

der CylinderfunJctionen. The simplification that occurs in this particular case appears to have

been overlooked.

7. We shall now consider the problem of constructing transformations which are simply

periodic.

Let L8(u) and Ls{u) be two adjoint linear differential expressions and let w(s, t) be a

solution of the partial differential equation*

Ls (w) = Lt (w).

Consider the integral f(s) = jw(s,t)<l> (t) dt,

the path of integration and the function <f> (t) being at present arbitrary except that they must

be such as to allow the integral to be differentiated a suitable number of times by the rule of

Leibnitz. We then have

L8(f)=jL9(w)4>(t)dt

= jLt(w)cf>(t)dt

= fw(s, t)Lt (<f>) dt-j jtR (</>, w)dt,

where R is the bilinear concomitant.

Vol. XXL No. VII.

Levi Civita, op. cit.
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Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

Now let the path of integration and the function </> be chosen so that the second integral

is zero for all values of s in a given interval or domain, then we have the relation

Ls(f)=jiv(8,t)Lt(<l>)dt,

which indicates that the distributive operations Ls(<j>) and

Wsifr^fwis, t)<f>(t) dt

obey the commutative law.

In what follows we shall suppose the integral is taken along a real path from a

to b and that the linear conditions imposed on cf> are such that the above equation is

satisfied for all values of s in the interval (a, 6).

Now let (j> (t) be a solution of the differential equation

Lt (u) + \n = 0, <

and let us suppose that the linear conditions to be satisfied by <j> (t) are such that they can

only be satisfied by a solution of the above equation for certain particular isolated values

of X. We shall call these the conditions "G" and shall assume that they are sufficient

to determine a solution of the differential equation uniquely except for an arbitrary constant

multiplier.

Further, let w (s, t) be chosen so that it satisfies the conditions G when considered as

a function of s; the function f(s) will then also satisfy these conditions, provided

and w (s, t) are continuous. Moreover, since

Ls(f) = f\v(sy t) Lt (<f>)dt

J a

= - \ (b w (s, t) (j> (t) dt = - X/,

J a

f(s) is a solution of Lg(f) + \f=0, hence it must be a constant multiple of and

so we have the relation

<f)(s) = fjL( w (5, t) <f> (t) dt,

J a

where the value of fi depends in some way on the corresponding value of \.

This is a homogeneous integral equation of the first kind which is satisfied by all the

solutions of L8(f) + \f=Q which satisfy the given conditions. The values of /jl correspond-

ing to the different singular values of X are the characteristic values of fi for the integral

equation.

If the function w (s> t) be properly chosen the solutions of the adjoint integral

equation

rb

^(t) = fi\ yfr(s)w (s, t) ds

J a

will be solutions of the adjoint differential equation

Lt (u) + \u = 0,
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 189

and will satisfy a set of linear conditions which are satisfied by w(s, t) when considered

as a function of t We shall come across some illustrations of this presently. The con-

ditions to be satisfied in this case may be regarded as adjoint to the previous set.

For the sake of simplicity we shall now suppose that Ls (u) is a differential equation

of the second order. Such an equation can be made self adjoint by multiplying throughout

by a suitable factor p (s). Let

Hs (u) =p (s) Ls (u),

then, since

v (s) p (s) Ls (u) - u 0) Ls [v (s) p (s)] = jsR[u, vp\

and v (s) Hs (u) - u (s) Hs (v) = ~?,

we must have Hs (v) = Ls [v (s)p (s)].

Thus the partial differential equation satisfied by w may be written

Now write k (s, t) = t^Jw (s, t),

then k (s, t) is a solution of

where Ms(u) denotes the self adjoint differential expression

u

p(s) L^

Vp (s) 6 L(s)_

This partial differential equation is symmetrical in s and t and it will be convenient

to assume that k (s, t) is also symmetrical in s and t. The relations between the linear

conditions satisfied by w (s, t), when considered as a function of s and when considered

as a function of t, are obtained at once from the expression of w (s} t) in terms of k (s, t\

In the case of the function k(s, t) the two sets of conditions are the same.

If the conditions satisfied by k (s} t) are the following,

k (a, t) = 0, k (6, t) = 0, k (s, a) = 0, k (s, b) = 0,

the conditions satisfied by w($, t) are evidently of the same type.

If k (Sj t) remains finite at s = a and s = b, but p (s) becomes zero when s = a like

(s — ay, then it is clear that

p

(s — a)2 w (s, t) is finite when s = a,

_p

(t — a) 2 w (s, t) is finite when t = a.

If k (s, t) becomes infinite like (s — a)~r when s = a, and like (t — ay* when £ = a, then

w (s, t) will become infinite like (s — a) 2 when 5 = a, and like (t-a) 2 when i = a.

25—2
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190 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

The integral equation

X0) = /J k(s, t)x(t)dt

J a

is transformed by means of the substitution

x(*) = Vp(0*(0

into 4> (s) = fM [ w (s, t) <j> (t) dt

Now is a solution of an equation of the type

i.e. of -7^= Ht 1-7^=1 + Xv = 0,

i.e. of V^)Z,[^]+XX = 0,

or Lt [<f>] + \<f> = 0,

and satisfies the conditions (7.

On the other hand, if we put

*(0='/p(0x(*)>

we get ylr(s) = fi ( ty(t)w (t, s) dt,

J a

aBd vFP) z< [V^} * (*)]+Xx=0>

i.e. Z( (^r) -f X^|r = 0.

Hence the two adjoint linear differential equations

Zt(<£) + X<£ = 0,

Zt(^r) + X>|r=0,

possess solutions satisfying the two adjoint sets of linear conditions for the same particular

values of X and are solutions of the two adjoint integral equations

(f>(s) = pi w (sy t) <f> (t) dt,

J a

rb

f(t) = fi\ ^(s)w(s,t)dt.

J a

Moreover, since x(s)=fJLi K (5» 0 % (t) dt9

J a

where k (s, t) is a symmetric function, the singular values of are all real.

8. It is easy to construct a partial differential equation of the type

Ps(w) = Qt(w)

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



EQUATIONS BY MEANS OF DEFINITE INTEGKALS.

191

that is satisfied by the function w = epst by taking

Ps(w) = XXamnpnsn

dmw

dsm

,dnu

m n dZ

where the quantities amn are constants.

Let Ps(w) = Qs(w) = {\ -s2)^+ {n-m--(m + n)s} ^ + {p2s2-p(m-n)s + \}w9

then the above requirements are evidently satisfied. The equation Ps (w) is not self adjoint,

but if we write

tc (s, t) = Va (5) a (t) . w (s, £)>

a (s) = (1 + s)71-1 (1 - s)m-\

we have Ms (*) = Mt (*),

where Ms(u) denotes the self adjoint expression

du2

Since is a self adjoint differential equation whose first term is (l—s2)-^, we

have

where # is some function of s. Accordingly, if v is any function of t,

'du

dv\

-<•>»•!(;

udt)_

(i

•an

J dt

~ dt'

1

n-1

m-l

m-l

In this equation put

u=ic(8,t) = (l + 8) a (1 + 0 2 (1-5) 2 (1-0 2 e**,

and choose fl(0 to be a function which has the forms

n-l

(1 + 0 2 [o0 + a1(l + *) + ],

(1-0 2 [&0 + M1-O + ]>

in the neighbourhood of the points t = — l, £ = + 1 respectively. The quantity R will then

vanish at both limits provided n > 0, ra > 0. Accordingly, if

= J ie(«,«)ife(i;)cft+J ^A,

k (s, t) Mt (v) dt.
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192 Mr BATEMAN, THE SOLUTION OF LINEAR DIFFERENTIAL

If \ is chosen so that a function of type v can be found for which

we shall have Jfs(%) = 0, and since % satisfies the same linear conditions as v it must be a

multiple of v, consequently

r+i

X(s) = /J> ] t)x(t)dt.

Putting x(*) = Va(s)^(s), we find that <j)(s) is a solution of Ps(<f>) = 0, which remains

finite at the limits s = ± 1 and is a solution of an integral equation of the type

<f>(s) = fi j+1 ei>st (1 + t)'1-1 (1 - t)m~l <f> (t) dt

Again, if we put i/r (s) = Va (5) % (5),

we find that ^(s) vanishes to the orders (n— 1), (m — 1) at the points s = — 1, s = + l

respectively, and is a solution of the equation adjoint to Ps(u) = 0. This equation may be

written

(ffin du

Ps (u) = (l - s2)-^- [n - m - (m + n - 4) s] ^ + [/>2s2-p (m - ?i) $ + ra + n - 2 + A.] w = 0,

and the corresponding integral equation is

r+i

^ (0 = J % («) e3^ (i + O""1 (i - ^.

If we put 2 — n for ?i, 2 — m for ??i and change the sign of p, this differential equation

takes the same form as Ps(u>) except that the value of X is different.

Combining the two results we have the following theorem.

If \ be chosen so that the differential equation

d?nb dzc

(1 — §P) + {n — m — (m + n) s] ^ + {p2s2 — p (m — n) s + \} u = 0

possesses a solution u=<f>(s) which is finite for s—±l} (n^O, m^O), cj>(s) will satisfy an

integral equation of the type

0 (s) = fi J e*>st (1 +1)71-1 (1 - 0m_1 </> (0 dt;

if on the other hand, X be chosen so that m = ^(s) is zero to the orders 1 — n, 1 — m at the

points 5 = — 1, s = +1 respectively with (n^2, 2), % (s) luill satisfy an integral equation

of the type

r+i

+1 e-prf (1 + s)l~n (1 -sY~mf(t)dt

When n=0 the first part of the theorem still holds provided <j>(t) is chosen to be a

solution of the differential equation which vanishes to the first order at the point t = — 1,

similarly, if ra = 0, (j>(t) must vanish to the first order at £ = + 1.

The second part of the theorem holds for ?i = 2 if i/r (t) remains finite for t= — l,

similarly, it holds for m = 2, if ty(t) remains finite for £= + 1.
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 193

The particular case in which m = n has been discussed by Max Abraham {Math. Ann.

Bd. 52, pp. 81—112), and the asymptotic expansions of the functions

0 (S) = (+1 e*« (1 + 0n_1 (1 - <t> 00 dt,

co(s) = j e-*st (1 + sy~n (1 - s)1-™ ^ (t) dt,

have been investigated. The functions and yfr(t) are now the analytic functions defined

by the equations

<j>(s) = fj, j+l eP8t (1 + tf~l (1 - ty-1 <j> (t) dt,

+1 e~P8t (1 + sy~n (1 - s)1-71 i|r (t) dt,

for all finite values of s. The derivation of the principal terms in the asymptotic expan-

sions of 0(s) and co(s) as performed by Abraham must be considered as an important

departure in applications of integral equations to analysis.

It should be noticed that when m = n — \ the differential equation (1) reduces to the

equation of the elliptic cylinder. The above theorem is then a particular case of the

following, which was communicated to the author by E. T. Whittaker four years ago.

It is known that the differential equation

d2u d'2u ^n ~

is satisfied by* u= PV**008"**8*11 «)f(pj) da.

J o

Let us put x = cosh oy cos <j>, y = sinh co sin <f>, then the differential equation becomes

%^ + W + x*(cos2 * ~cosh2 w) u=0>

and is satisfied by u = E (<o) F(<f>) if

~'■- (X2 cosh2 o) -p)E=0,

*l + (Xcos*<f>-p)F = 0.

The definite integral is now

Jo

and is in general a periodic function of </> of period 2tt. We shall now endeavour to choose

/(a) so that the integral may satisfy the second differential equation, but it is clear that p

must be chosen so that the equation possesses a periodic solution.

* E. T. Whittaker, Math. Ann. (1903), pp. 333—355.
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194 MR BATEMẠN, THE SOLUTION OF LIN EAB; DIFFEBENTIAL

We have ẵgễ = F” [X2 {sinh (L) cos (I) sin a - cosh (0 sin (Í) cos OL}2

O

- Ä {cosh (0 cos gb cos ot + sinh (0 sin (Í) Sin a}] e^ì́°°Sh́W081”°°S“+SỈ“h̉°>SỈ“d'Sì́““ì́ƒ(a) (Zu.

Now (sinh co cos (1) sin ot - cosh 60 sin cl) cos 01)?

= (sinh ca sin (I) cos ot - cosh (A) cos (Í) sin ot)2 + cos? 0: - cos? gb.

2 27:' 2

Th́erefore % = -Í-O [X2 (cose a __ C082 +a%q] eìx {coSh aa cosộcos a+sỈnh (osin d› sin aL}f (a) da,

and So %+(7\2COSẼçIJ-19)”

“Í2“[(7\”c0s2a- >ƒ(› ” M ' )^Z+f(a)Ô M 2”

_ 0 Ì) oL+f (a)]e +[-ƒ(oLe ể́ảe ìo,

Where Z = cosh (0 cos (Í) cos ot + sinh co sin (Í) sin ot.

If then f(ot) is chosen to be a solution of

de

dT`Ị+(Ầ2cos2a-p)f= O,

Which has the period 272-, the quantity between the limits will disappear and n Will be a

solution of the differential equation

ẵ†ỆẼ+(Ầ2cos2ộ-p)2t=O.

Let this solution be denoted by F(‹Ị›), then We must have

E(m) = -[Bư e¡\{coSh(ucos‹ƒ›cOsa.+Sinho›sỈnd›sì́na} dm

0

This is a homogeneous integral equation of the second kind for the determination of

F(‹i>).°

If We put ‹0='IỊ1Ịr, the integral on the right hand side is a symmetrical function of ợ)

and Hừ, accordingly, E(ủ›) should be a constant multiple of F(\tr). We thus have the

formula

μF F = ‹/'21re¡\ ỉcos \.'l cos tb cos aL+z' Sin tl! Sind) sin aL} F (Q) dm

0

The Solutions of this equation for the different possible values of μ. are the periodic

solutions of `

%:ẵ;+(Ầ?coS2Ộ-p)u=O

for the different possible values of P.

If Fm ((1)) and Fn ((Í>) are the solutions for two different values of ll. we have

ÍĨ'Fm(ộ›Fn(ộ)0Zợ›=0,
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EQUATIONS BY MEANS OF DEFINITE INTEGRALS. 195

this suggests the existence of an expansion of the type

eA{cosh(0cos*cosa+sinha,sin<|,sina}==2cw(X)^ (a>)Fn(<f>)Fn(a) *

The equation of the elliptic cylinder may also be dealt with as follows.

The equation

is satisfied by V=f(ocy)=f(z), if

This gives /= A cos 2 *lhz + B sin 2 *Jbz.

Now an integrating factor of the expression on the right hand side is

where 4>(y) is a solution of

y(y-l)p + (y-i)^ + (o + 6y)^-0.

The condition to be satisfied at the limits is

7)V\~\

= 0.

^y(i-y)(

By ^ dy

Put y = sin2t, # = sin2s, then two independent solutions of the equation are

00

<£(£)== 2 4p sin2?*, A0 = l,

o

o

The limits may be taken to be 0 and 1 and we have the equations

r2

0) = cos (2 V& sin s. sin t) (j> (t) dt,

Jo

<xjr(s)=( sin (2 *Jb sins. sin t)(j>(t)dt,

Jo

provided a is such that ^ is zero when £ = ^«

* We may obtain an expansion for F (<b) in powers of \ „ . . 0 p- , X2 , n X4 , m , ~]

bywriting i («) = Shr |_l + pooah2«-p-p(!,coah4»-8) + ...J ,

E (w) = ^0 + X/a1 + XV2+> but we are unable to establish the convergence of the

& (<f>) =/o (<t>) + Vi (<t>) + (0) +... , series. Similarly

and comparing coefficients of X, on the two sides of the r \2 \4 -i

integral equation, this gives F(*) = 2* |_l + -2cos2*-^3 cos4«>-2) +...j .

Vol. XXI. No. VII. 26
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If we take the more general equation

x^-^w^n{x-^^{a+h^v=y{y-l)d^+^-^%+(-a+hy) v=0>

we shall have a solution V=f(xy)=f(z) if

This is satisfied by

(2 *Jbzf^

accordingly the solutions of the integral equation

(«) = £ J^^V yr* (1 _ yT $ {y) dyf

are solutions of the differential equations of type

*(*-l)g + (2*-l)(m + l)g + (a + 6*)* = 0

for appropriate values of a. When m = 0 the integral equation takes the simple form

Jo
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VIII. The Irreducible Concomitants of two Quadratics in n Variables.
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VI. Special types of concomitants §§ 70—78

I. Introduction.

§ 1. In the following pages it is proposed to discuss one phase of the general

problem of Gordan's theorem on irreducible concomitants* applied to two quadratics in

n variables. We shall solve the problem in one sense, but shall not arrive at what

should be the final result. In fact we shall obtain a finite set of forms in terms of

which every concomitant may be rationally and integrally expressed, but the forms will

not be the most useful from a geometrical point of view, though for values of n less

than 5 they are either identical with or simpler than those usually given. The symbolic

method will be exclusively used, so that we must at the outset establish certain identities

of which the binary and ternary identities are particular cases. We shall then state

and prove a series of propositions resulting in the determination of a finite set of forms

necessarily including the irreducible system. Finally we shall touch on the problem of

reducing the number of these forms to a minimum, investigating in particular the in-

variants, covariants, and contravariants of the irreducible system, and making a few

applications of the theory to special cases.

* Grace and Young, Algebra of Invariants, ch. vi.

Yol. XXI. No. VIII.

27
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198 Mr TTJRNBULL, THE IRREDUCIBLE CONCOMITANTS

§ 2. Notation. The general quantic of order p in n variables is conveniently written

M1 12- ••• 'n* 1

the summation extending to all possible different values of the integers rk which satisfy the

condition.

In agreement with the symbols introduced for binary and ternary forms* we shall

represent f by the umbral expression

^2 aka^= <xxp,

so that aTri a2r*... af« = arir2... rn,

and any product of as of degree unequal to p is meaningless.

As in the case of binary forms we introduce symbols /3, 7, ... equivalent to a and let

f=«xP = /3x* = yxP = ....

If in writing any function of the coefficients a in terms of a, /3, y, ... we never

allow the degree of the symbols a in any term to exceed p, we may use the symbolic

instead of the algebraic form of any function of the coefficients a, without fear of intro-

ducing any inconsistencies or contradictions *.

§ 3. The Coordinates. Let

ax, bx, cX) ... kX) ux®, ux®,... uj?-v (1),

be n linear tt-ary forms written symbolically. Then their jacobian with regard to % may be

conveniently written

(abc ... hiy ...uP-l)) (2).

Suppose that x represents point coordinates in Sn-X dimensions and suppose that the

quantities a, b, ... k are fixed in value, but u, ... w(r-1) are variable.

We may look on the linear forms (1) as representing certain linear fi^s in Sn-x space.

The quantities u(1) = u1} u2, ... un

U®=Uj® un®

may be considered as $n_2-coordinates—the reciprocals of point-coordinates, and the relation

ux — 0,

as the incidence of a certain $^-2 whose coordinates are (u) with the point (00).

Now a linear space Sn-r is the intersection of r — 1 linear spaces Sn-2 and therefore

should be completely defined by r —1 sets of variables (u). It is easily proved f to have

coordinates given by quantities

(uWu® ... u«-V)

^ n in number, being the minors formed from the last r-\ columns of the deter-

minant (2).

* Grace and Young, Algebra of Invariants, ch. 1. t ibid., last chapter.
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OF TWO QUADRATICS IN n VARIABLES.
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The Sn-r is the reciprocal of the space in n — 1 dimensions and the number of

coordinates necessary and sufficient to define either of these is the same. The condition

that the one should be incident with the other is of type

2^ = 0,

where pi and qi are corresponding coordinates.

§ 4. If ^ = Vi represent n coordinates for spaces of type $n_2

(u1u2) = v2 „ nC2 „ „ „

7l(73 j, „ „ $n—4

(u1u2...un-1)=vn-1 = oc „ n „ „ „ S0 or point,

we have a complete set of linear coordinates for space.

§ 5. Fundamental Theorem. Any concomitant of any system of forms whose coeffi-

cients may be typified by a and whose variables are included in the set vlt v2, ... cc is

a function of type F(a, vlf v2> ... x) or is obtained from this by polarization. Further, any

concomitant of a set of forms axn, bxm, ... is expressible as a sum of terms composed

entirely of factors such as

• • • ^n, ^n—»,)>

(where aly a2... are symbols of type a, 6, ...), or else can be derived from such terms by

polarization.

This theorem, which may be proved like that for ternary forms, will be assumed,

and we shall only deal with concomitants which are not polarized from factors such as

Thus we may assume that the number of different u symbols is limited to n— 1

and that, as far as these symbols are concerned, a single term concomitant consists of

brackets containing

where r may be 0, 1, ... n— 1; so that the number of symbols ur occurring in a con-

comitant is not less than the number of symbols us provided r < s. Moreover when the

symbols u occur in this way they are arranged most suitably for geometrical applications,

since each set of symbols u in any bracket represents a definite type of coordinate Sp and

since there is one, and one only, set of ^-coordinates for each value of p <n—l.

§ 6. In the search for an irreducible system of concomitants for given ground forms

it is necessary to apply identities which change the constituent symbols of a bracket

factor. It would therefore appear best that as far as possible identities should only be

used which leave the symbols of type u unaltered in a bracket, or at the most only

disarrange them temporarily.

For example, in ternary forms there are two u symbols Uj and u2, but they occur in

the form

ul = u

27—2
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Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

We need not use the identity

(abc) dx = (abc) (du^u^ = (abd) (cuxu2) — (abih) (cdu2) + (abu^) (cdv^),

for the theory may be developed without decomposing x in this way.

But in quaternary forms* it is useful sometimes to apply the identity

(abah) (v^a) — (abcu2) (t^a) + (bcp) (act) + (cap) (ba) + (abp) (ca) = 0,

where (u1u<d = p> the line coordinate.

This identity is used to decompose p but sooner or later a similar identity may be

employed to unite the symbols u^, u2 and form them into p again.

§ 7. The question arises, is it possible to maintain this grouping of u symbols in

dealing with forms of higher dimensions? This paper does not answer this question for

the grouping of the u symbols will be disregarded except in the single case of x. We

shall obtain a set of forms Px of type

F(uu u2, ...un__2, x) (1)

in terms of which all concomitants of two quadratics may be expressed rationally and

integrally; whereas the canonical set P2 of irreducible forms would be of type

POi, y^u2, ... vn_2, x) (2).

The forms (1) for the special case of quaternary forms are simpler than the irreducible

system given by Gordan in M. A. Bd. lvl, and it might be comparatively easy to obtain

the system (2) from (1), but for higher dimensions great complications arise.

Two reasons may be urged in favour of the system (1). Type (1) is identical with

(2) as regards the irreducible invariants, covariants and contravariants since and x are

the only variables occurring, and secondly the terms of type (1) are simpler than those of

type (2).

On the other hand the irreducible concomitants of type F(vr) are not given explicitly

by forms (1). We might call these, pure concomitants as opposed to mixed concomitants.

From a geometrical standpoint the pure concomitants are the most interesting as the

interpretation of mixed concomitants is usually very obscure. Analytically the set of forms

(1) is preferable to (2) because they are simpler.

§ 8. If it were possible, and it may be, to build up all irreducible forms of type

F(vr) of (2) from forms of (1) for all values of r, it would appear that forms (1) are

best to take for the irreducible system. If not, then seeing that forms (1) do not give

the most satisfactory solution of Gordan's theorem we are led to the further question,

whether it is possible to extend the method used by Gordan for the case when n = 4

to the general case and thus obtain forms of type (2), which are the proper solution

of the problem. This problem has not been attempted in these pages.

§ 9. To illustrate that the system P1 of type (1) is simpler than P2 of type (2),

consider this example. For quaternary forms there is a certain quadratic complex

which is equivalent, neglecting reducible terms to

((hbAbs) {(hbp) Og&A&s) ((h bp)f.

* Gordan, Math. Ann. Bd. lvi. § 15. f ibid. Bd. lvi. p. 3.
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This is a member of the irreducible system of type (2). But the methods of the

following paper, viz.:—those which lead to the irreducible system (1), would reduce this

concomitant to terms of type

(a^bui) (a^buj) x (fcAMfc) {b^b^ui),

and reducible terms in which p has not been decomposed.

In this expression i, j, k, I stand for 1, 1, 2, 2 in some order, and p^^u^).

Thus in the system (1) Ff would be considered reducible, but we should have terms

in (1) of type

(a^bva) (axa2bu2)

which do not come in (2).

These are simpler than Fx2. On the other hand it is not at all easy to reverse

the steps and find what combinations of these terms, involving and u2 separated from

each other, are required to give the terms involving no variable but p, which are irre-

ducible if p is not to be decomposed.

II. Notation.

§ 10. Assuming the truth of the fundamental theorem there are two kinds of symbolic

factors in a concomitant, the bracket factor and the linear factor ax.

In a bracket factor n symbols must occur and they are either of type u or of

type a; u standing for the variable and a for the coefficient.

Thus each bracket is of form

{axa2... aniuYu2... un2); rij^ + r^^n.

If n2 = n — 1 we call this ax so that the 2nd type of factor is really a special form

of the 1st type. If h symbols a1a2...a1c stand in a bracket, the expression a1a2...aj. will

be called the 'product' of the symbols a.

We shall invariably use the following convention. Arabic letters stand for ordinary

symbols, n of which compose a bracket; Greek letters, capitals and the symbol v stand

for products of these symbols.

Thus we abbreviate (a^ ... a^u^u^... un2) to (0^*9) where ani stands for a symbols

and for n2 u symbols. We define Oq as unity.

The Greek letters require a suffix to denote the number or extent of Arabic letters

which they include.

If we wish to divide up the a symbols more particularly we use more than one

Greek letter to represent them. Thus we might write the bracket as {oim^m^m^n^)

where m1 + m2 + m3 =7^, but in all cases the full expression for the bracket is written out

in the same order as the condensed expression.

The bracket (arfikVs) means that there are r a symbols followed by h like symbols

followed by s like symbols. These symbols belong to definite ground forms /i,/2, ... which

are of course known.
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202 Mr TURNBTJLL, THE IRREDUCIBLE CONCOMITANTS

§11. The bracket (ar@hys) is really a determinant of the (r + k + s)th or nth order;

each symbol stands for a column and the order of the symbols is the order of the

columns.

It follows that (ttrfikrys) = (-')kr(l3k<*ry8)

= (-)^(fc+r)(7aA«r),

since these operations are identical with those of interchanging columns of a determinant.

Let Or = OiC&a••• <*>r when written in full.

Then a*. = e^a^a^... akr where ku Jc2... are the suffixes 1, 2, ... r in some order and

e*2=l.

In fact the sign e& is (—)« where q is the number of inversions of pairs of letters necessary

to get from the order 1, 2, ... r to kly k2, ... kr.

This is obvious from the definition of the symbol ocr remembering that (arA) is a deter-

minant.

Thus the full expression for ob? may be written in r ! orders.

§ 12. Determinantal permutations. Consider the determinant

0!« a2«...arw b^ &,« ...&,«

a2® ...ar® V2) b2® ...b8®

a^r+s)

Let it be typified by (a^... ... bs) or (ar/3s). We may expand it in a form in which

each term consists of a pair of minors, one containing nothing but symbols from the first r rows

and the other, symbols from the last s rows.

(T -+- $\

T J

If the first term is called (ar) (/3S) another term is — (a^... ar-ibi) (arb2... bs), another is

-f (ajtta... ar_262^i) (ayOy-A ... bs), and so on.

(r + s\

^ J pairs of brackets of symbols, each pair having a definite

sign and a definite order (though each bracket has either r I or si equivalent orders) and this

series is formed completely and uniquely on being given a single term of it, (ar) (/3S)*

Such an operation is called a determinantal permutation of the two groups of letters

ar and fis.

For example, given a^cts, bj)2, there are (^j terms in the determinantal permutations and

the full series is

a1a2a3, bjb2 a2a3b1} b2ax

a1a2bly b2a3 a2a3b2> Ox&i

a1a2b2y a3bj (hbib2, a2a3

axOsfci, a2b2 a2b1b2, a3Oa

axa3b2> b^2 (hb^, a^a2.
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OF TWO QUADRATICS IN n VARIABLES. 203

The number of equivalent arrangements of each term is 3 ! 2 ! = 12.

Observation. If r or s = 1 it may be necessary to use negative signs for certain terms.

For example, the series due to a, b is

a, 6, — 6, a.

§ 13. The method is applicable to groups of three or more letters. Just as we may

expand the determinant

(a^a^b^)

in the form of a series

X(axa2az) (M2) (0,

so we may permute the three sets of symbols

6!

determinantally. In this case there are g j 21 11 *erms *n series- The general case is obvious.

§ 14 Application to the theory of invariants. Suppose that we have a product of

symbolic letters (Aor) (/3g5) M where A stands for n — r symbols of type u or <z, where B stands

for n — s similar symbols, and where M stands for bracket or x factors.

Let oir = a±a2... ar,

/<r _j_ $\

We may permute a,., /3g determinantally into the ( J different terms, one of which is

6ry <f>s say. Corresponding to this we may write down the series

^(Adr)(<f>sB)M

consisting of I J terms.

This series is unique on being given a single term of it (Aa?) (j3sB) because the per-

mutations of the letters 6r or <£s amongst themselves do not alter the value of the term.

This process of forming a series from a given term will be called the R (a,., /3S) process and

will be written as

2 (Air) (&B) Mart (Adr) B^j M,

where in the first form a dot is placed over each symbol which undergoes a change. If ar is

written in the form jnK2 ••• (?i + r2... = r) all the symbols 7, S,... will receive a dot.

We shall sometimes write R (r, s) for R (a,., /3S) where there is no ambiguity.

§ 15. Similarly if we start with several factors

(Aar)^gB){ltG)...

we form a series by the R (r, s, t, ...) process and call it

2 (Adr) 08.5) (7,C)...,

where the ;—. ,f *"/' terms in the series correspond to the equal number of determinantal

r ! s! t I ...

permutations of aV) /3S, yt> —
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204 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

For example, the operation of R (1, 1) on (A a) (bE) gives

(Aa) (bB)-(Ab) (aB).

Again, if On+1 = a3... an+1,

2(dn)

is an+1, a; — (cin-j an+1) aW| a + ..,.

Once more R(%> 2) on (^^^(agC^I?)

is 2, (Aa^) (a3a4B),

and is (.Aa^) (a3a4B) - {Aal a3) (a2a4B) + (Aa^) (a2a3S)...

when written in full.

Note. If 6T) $s is a determinantal permutation of ari fis the series is expressible either as

t(Adr)0sB) or as X (Adr) (<f>8B).

§ 16. Properties of the process R (r, s). (1) If any number of these operations are applied

to some or all of the symbols

+ a1a2 ...Op

which originally occur in this order, and if any term in the result is

{-yaixah ... a*, f

where i^... ip are the numbers 1, 2, ...p in some order, the sign of this term is (—)* where q

is the number of interchanges two and two required to pass from the original term to this

or vice versa.

This follows at once from the theory of determinants.

(2) Again, the result of applying the operation R(r, s) to the symbols of the bracket

(«r/3s0) is a series of ( J terms each equal to {arfi86).

For a typical term in the series is

where q is the number of inversions necessary to pass from the order of symbols in arfis to that

in

But by the theory of determinants

6) = {aTp8d).

Thus each term is the same.

Lemma I. If to the first r + s — 1 symbols of ar, fis-ib we apply the operation

J2(r, s— 1) and if we operate on each term of the resulting series with R (r + s — 1, 1),

we obtain the terms of the series due to R (r, s) each s times over.

Let 6r<t>8-i be a determinantal permutation of (a,., Suppose that the terms of

(rir, are written down in a column, and that rows are made opposite each term

by operating with R (r + s — 1, 1) upon the term, in such a way that r + s columns are
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formed. There will then be a rectangular diagram of f J rows and r + s columns.

The first column contains terms of type 0r<j)s_1b; the next 5 — 1 columns may be taken as

due to (0r<j)8-l3 b) and the last r columns as due to (0r<£*-i>

Terms of 5 — 1 columns due to r columns due to

(r, 5-1) (6>4s-i,b).

The first 5 columns are identical because the last s symbols of each term form the

second member of the pair 0r) <f>8. Cp. (2) of this paragraph.

In the first column a typical member is 0r-iC, say, and there are just 5 members

having 0r^ common to each other, c taking up the remaining possible 5 values. Let b be

the (r + 5)th symbol. Then in any row which begins 0r_ac, one and only one first member

0r-ib of a term is found in the last r columns, viz.:—the one where c and b have been

interchanged. Thus in the last r columns the term (0r-ib, ...) occurs s times, once on

each row beginning (#,._!c, ...).

We can therefore pick out of the last r columns the terms sS(0r-ib, ...), where 0 takes

all possible different values.

Now 0r-j is formed in ( J ways. Therefore we have picked out s I ^ J

terms from the last r columns. But the number of terms in these r columns is

Hence we have accounted for all the terms of these r columns in

52 (9r-ib, <j>s).

Thus the full operation leads to the terms

52 (dr, /3s^b)+st (dr-ib, /3sd),

the first series being due to the first s columns, and the second, to the next r columns.

These series are equivalent to 52 (dr, ft_j6). Q. E. d.

For example, let ar = ], 2 and fts = S, 4. The first operation is (i2, 34), the second is

R (ijky I); i,j, k, I = 1, 2, 3, 4 in some order.

1st Operation 1 Column 2 Columns

12, 34 -12, 43 14, 23 42, 13

23, 14 -23, 41 24, 31 43, 21

31, 24 -31, 42 34, 12 41, 32

The second column reproduces the first, and the last two (r = 2) give terms of (i4, 23)

twice. The result is 2 (i2, 34).

Lemma II. If we have r+1+5 symbols ara/3s and form the series (ard, Bs), and if

upon the first r + 1 symbols of each term we operate with (r, 1) and then prefix the last

of these r 4-1 symbols in each term to the s remaining symbols, we form a series of terms

equivalent to

(5+l)2(dr,(X&).

Vol. XXI. No. VIII. 28

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



206 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

As before let the terms of (drd, $s) be arranged in a column, and the series (r, 1)

due to each term be set out in a row opposite the particular term. There will then

be r + 1 columns and rows.

Consider any term of the first column, (0rc, ji) say. There are s + 1 terms in this column

with the same 0r but different c and in the corresponding rows there is one and only one

term in which 0r is the leading portion. Hence we can find 5 + 1 terms beginning 0r.

fr + s + 1>

The number of ways of forming 0r is

r

We have therefore accounted for (s + 1) f j terms. But this is the total number

of terms since it is equal to (r + 1) ( ). Thus the total number of terms may be

arranged as

(s + 1) times 2 (0r, </>m)

or (5+1)2 (dr, d/3s). Q. E. d.

For example, take c^a,, a3i a4. The diagram is

a1a2»s, ^4 aoftgaj^ a3a1a2a4,

axa±a2, as a4a.2«1a3 a^a^a*

a4a3a2, aY a3a2a4a1 a2a4a3(X1

aYa3a^ a2 a.^a^a^ aYaza±a2.

§ 17. Fundamental Identities. There are two ways of reducing a symbolical expression

if it is a concomitant of given ground forms,

(1) by the interchange of equivalent symbols;

(2) by the use of the fundamental identities.

(1) If Op and dp are two sets of p equivalent symbols belonging to a form

f=axm = a'xm =

we may interchange ap and dp without affecting the value of the concomitant.

If CCp = CCpi • • • ^Pk>

the interchange of ap and dp is a condensed way of saying that aPr is interchanged with

dPr for r = 1, 2, ... k.

(2) We shall now proceed to establish the linear identities.

§ 18. As in the case of binary forms we have the identity

(a2a3... an+1) alx - (a1 as... an+1) a2x + (a1 a2a4... an+1) a3x - ... = 0,

the series containing n + 1 terms.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



OF TWO QUADRATICS IN n VARIABLES. 207

This is deduced from the vanishing determinant

&\X &2X ••• ^'71+1, X

where alx = a1i^wl 4- ax(2) x2 + ... + ci^n) xn.

We observe that we may write this identity as (—)7l+12 (dn) an+1)X = 0 on writing

an+l for c^cu ... an+j and letting an+1 = arar+1... an+1 for all values of r.

If we write /? for x where (3 is of extent n — 1 in letters of type or a we may express

this identity as

2 (dn) (dw/3) =0 Identity I.

If we write ux for an+1, we have

S(dn) (i^/S) = 0

or 2 (dn-!^) (d„£) = 0.

Hence 2 (d^u^ (anfi) = (an) (ih/3) Identity II

A special case of this is

(bcu) ax + (can) bx + (aba) cx = (abc) ux.

Writing u2 for an, we have by Identity II

2 (an-i^i) - (0^-1^2) = 0

Or - 2 (dn-aUzUi) (ctn^/3) - (a7lr-1U2) (ih/3) = 0

or - 2 (An-vUzUi) (dn-1/8) + (a«-iMi) (w2/S) - (a^ w2) (i^/3) = 0,

hence 2 (dn_2 uxu2) (dn^/3) 4- 2 (an-!^) (u2/3) = 0 Identity III.

§ 19. In general if ap = a2 a2... ap

and Uq — ula2 ... w7,

where _p + # - 1 = n,

2(dp_1*7g)(dp/3) + (-)«2(^^^ Identity A,

q being the number of displacements of ap in order to get from the order of letters in the

first term of the first series to that in the first term of the second.

This may be proved by induction, observing that it is already established for q = 1 or 2.

Assume 2 (dpU^) (dp+1/3) + (-)q~*2 (ap+1Uq^2) (u^fi) = 0; write uq for ap+1.

Then 2 (dpUq^) (uq/3) + 2 (apuqUq_2) (iiq_^) = 0,

or (-)* 2 (dp.! U^ug) (dp/3) + 2 (opW9 J7,_2) (Vi)8) = 0,

or (-)* 2 (d^U,) (dp/3) + (-)2*(op-x^DV-O + (-)*-* 2 (op^^) (u^fi) = 0,

or 2 (d^ CT9) (dp £) + (-)« 2 («p t7,_i) (£9£) = 0,

which is Identity A It is therefore true by induction.

28—2
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208 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

§ 20. We are now in a position to establish the fundamental linear identity of which

all the previous identities are particular cases.

Theorem. The effect of the operation R(r, s, t,...) upon a single term of symbolic brackets

(arA)(/3sB)(ytC)...

is to form a series which may be equated to a series, each term of which has a bracket

of type

unless 2r > n. In this case the second series is replaced by zero.

We shall first prove it for two brackets and shew that if r + s<n

Z (arA) (/3sB) = eZ(ar&$)(<}>),

where 6 and cj> contain the symbols of A and B and where e2 = l.

This has just been proved for the case when 5 = 1; it is then Identity A. Assume

it true when /3 is of extent 5—1, and let A be Uq.

Then we assume

2 (drUq) 08M£) + e2 (%/3M Uq-S+1) (= 0,

where Uq.s+1Vs^ = Uq, and e =

Let B = bsB' and /3S_;A = /3S.

Then X (drUq) (ft-^) + eS (arft_2Uq-s+i) {Vs-,bsB') = 0.

Now permute (ar(3s-i, b8) determinantally for each term of these two series.

Consider the first series. We have a term {pirTJq){j3s-1bsBf) to which R(ar, ^8M) is

applied followed by R(ar/3s-i, bs). The result is s times the result of operating with

R(ar, /3S). [Lemma I.

Thus the first series is replaced by

st(arUq)(f3sB').

Consider the second series. The term (arps_lUq_s+^){Vs_1bsBr) is now replaced by

which is equal to (—2 (ar/3sUq_s) (ii9_s+1 £') by Identity A.

Thus the second series is formed from the single term €(ar/3sUq^s)(VsB/) by applying

E(Uq_s+1,

and then by making the first set of letters in the pair one less in number by operating with

R(q — s, 1) upon this first set and prefixing the one end letter to the second set.

Therefore the whole operation is equivalent to obtaining the series

(-)«-' se2 («r/3s{7?_s) (VSB'). [Lemma II.

But e = (-)«(s-", hence (-)« e = (-)«».

Combining these results we have

2 («r 17,) (J3.R) + (-r 2 («r/3s (Jq-S) (VSB') = 0 Identity B.
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OF TWO QUADRATICS IN n VARIABLES. 209

Thus since this is true for 5 = 1 and since the assumption of its truth for the value s — 1

implies its truth for s, it is by induction generally true, provided r + s%>n.

If r + s = n the second series is the term

The application of R(ar(3S) b) to this gives zero by the first identity. Similarly for

values of r + s > n the second series is always zero.

Thus 2 (irUq) = 0 if r + s > n,

and 2 fa Uq) 0SB') + (-)«« 2 (a, ft ^_s) (FSS') = 0 Identity B,

if r -f s n.

§ 21. The general identity may be stated thus:

2(^0 (dr2A2) ... (drpAp) + e2 (arAu) (Ar%A2) ... (i^^) = 0,

where ar= ariOr2... arp and jIj = AnAr2An ... J.rp.

The proof follows directly from the case for p = 2. In fact the first series is obtained

by applying the process Rfa + r,, r3, ... rp) to each term of the series obtained from R(rl7 r2).

The effect of the latter operation may be written as

(ari ar2A12) (Ar,A2) (ar3A3)...

on using the previous identity.

The process R{rl-\-r2i rs...rp) is equivalent to

R (n + r2 + r3, r4,...rp)R (r, + r2, r3).

Proceeding in this way and applying Identity B at each step we obtain what we want.

We calLthis general identity, Identity C. As before, if r1 + r2 + r3 ... > n the second series

is replaced by zero.

§ 22. Observation. The effect of this operation on p — 1 brackets is to replace the original

permuted symbols by an equal number of symbols out of the remaining bracket without

altering the other symbols of these p — 1 brackets. We may also choose any one of the

p brackets as that into which all ar is to come, provided that the one chosen is not of type ax.

The identity applies if any of the suffixes r2, rs, ... rp are unity and the corresponding brackets

replaced by factors ax.

But the identity fails if all the suffixes rx ... rp are unity and the corresponding brackets

are of type ax. It applies howTever if one or more of the corresponding brackets is not of

type ax.

For example the identity does not apply to

2da; bx cx,

but does, to %(dpqr)bxcx in quaternary forms.
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210 Mr TURKBULL, THE IRREDUCIBLE CONCOMITANTS

§ 23. There is a useful special case of this identity. If we have the series

2 (Mi) (d202) (an-A-i),

we may write it as equal to

#i d2... 0n-i\ Ctn-i = (h<*>2 • • •

where the determinant is of an order reciprocal to that of (a101). The proof is exactly the same

as that for ternary forms, in which case the identity is

aPbq — aqbp = (abpq).

If 01 = p1p2... pn_1} we may write

(«n-i #i #2 • • • #n-i) = - 2 Q>i an-i) (.M2) •. • (Pn-i

Also ^ 62... 0n^) = -{0, an_, 02... 0n_x).

III. Complete system for linear forms and for one quadratic.

§ 24. Lineai" Forms. Let f = ax = bx—cx= ... be a linear form.

Since the bracket (ab 0n-2) = — (ba0n_2) and since the symbols a and b are interchangeable

it follows that the only concomitant of a linear form is itself.

Similarly the complete system for k linear forms

fi — aiX) fi — U2x> • • • fk~ ®kz

is given by the various values of

{QjiQj2 ... Clp'lliU2 ...

where p takes the values 1, 2, ... k or n whichever is least.

§ 25. Quadratic Forms. The theory of quadratic forms of more than two dimensions,

treated symbolically, depends upon the following theorem, to which the preceding identities

have been leading. In fact it gives as an immediate consequence the complete system for a

single quadratic and is the underlying principle to work upon in finding all possible irreducible

forms for two quadratics.

Theorem. If f— a\x = a22z = ... is a quadratic in n variables and if P = (oLrys)g2g3... gw

is a concomitant of this quadratic and any other forms (where ar = a^a2 ... ar, <ys refers to

symbols u or b not belonging to f, and each g stands for a symbolic factor), then P is expressible

as a sum of terms Q of type (oLrys) (arSs) g3'... gw\ where the letters a^a2... ar, complementary

to those of ar in the first bracket, figure together in another bracket.

Let r2 of these as occur in g2)

^2 3j » » » » gz>

and so on.

Consider the series 2 (arVs) •••) (<*r2 ...)••• 9w>

If the order of permuted symbols in any term of this series is (—0ri0r2 we may inter-

change these symbols back to the order in the first term, ariar2..., by q interchanges. The
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OF TWO QUADRATICS IN n VARIABLES. 211

complementary symbols all lie in the first bracket and when they are interchanged the bracket

is unaltered except that it is multiplied by (—y. The whole effect of the interchange is to

reproduce the first term, since the sign is (-)2? and therefore positive.

The series is therefore equal to ^ J j P.

By Identity C this operation also leads to the product of (otrys) and a series in which the

symbols ar all figure in one bracket for each term, since r$>?i, unless all the symbols

complementary to ar occur with x (§ 22).

Therefore ( T ) P = 2 (aTy!) (arSs)g/ ... gw' where hs may contain symbols belonging

to/

In the exceptional case P = 0 if r > 1 for

{add) axax M = 0,

as is seen by interchanging a and a'. If r=l, P is of form (ay8) axM which satisfies the

theorem.

In general if ar8s = a,.+&8S' where 8S> is independent of /, we may transform P again to

contain another bracket containing ar+k. Ultimately we express P as 2 (<V7S") (#r'SS") M where

r ^ r and y and $ contain no symbol of /.

Suppose that P is a single term concomitant of / and other forms. Then this theorem

shews that P may be expressed as where P1 consists of two bracket or x factors, each

containing the same set of symbols belonging to /. Similarly Q1 is expressible as 2P2Q2

where P2 is of type Pj. Proceeding in this way we finally express P as 2Pi...P&Q where

Pr consists of two bracket or x factors containing the same ar, and nothing more, belonging

to f, and where Q is independent of symbols of f.

We say that P is prepared mod./*, when written in this way, and express it as

P = 2P„;

Pa = On Ysx) («ri K) (aV27^2) 0'r2S'S2) ... Q,

where 7, 8, ... Q are independent of symbols of/.

When we are collecting together symbols ar out of brackets gpgqgr gu say into e^,

as far as all the other brackets are concerned the initial and final expressions are alike.

The only alteration in gp ... gu is that certain symbols from gp have taken the place of whatever

symbols of ar were in them originally. Cp. § 22.

§26. Complete system for one quadratic. Let /= a\x = a22X = ... be the quadratic.

The only possible constituents of a concomitant are (arUn_r) and ax, where r may be

2, 3, ...n; in fact if r=I the two are the same.

If P = (cLTUn-r) M is a concomitant, where r is the greatest suffix of a in P and r > 2,

P is expressible as (arJ7n_r) (arrU/nr^r') M' where by the previous theorem.
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212 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

If r = r, P has now a factor (arUn-r)(<zrU'n_r) and is reducible. If r' >r we proceed in

the same way and ultimately obtain a factor of form

K^_s)(asCTn_s),

since s cannot be greater that n.

M' may be treated similarly to P.

Thus every form is reducible to products of forms such as (ar Un_r) (ar TJ'n^) and a2x.

Or, neglecting polar forms, the complete irreducible system of a quadratic is

There is one invariant, an2, the discriminant and the other concomitants considered

geometrically are the equations of the quadric in point, line, plane,... Sn—2 coordinates.

This is the irreducible system of type (2) § 7. Cp. Gordan, M. A., Bd. LVI.

IV. The system for two quadratics.

§ 27. Preliminary Theorems. We shall now find a finite system of forms in terms of

which all concomitants of two quadratics may be expressed. It will be assumed, in accordance

with §7, that any bracket factor in a form containing less than n— 1 u symbols may be trans-

formed by means of the identities, but that factors of type ax must always remain unaltered

as far as x is concerned.

As regards the actual number of irreducible forms, the cases of n = 2, 3, 4 have been

completely worked out.

For n = 2 there are 6 concomitants*,

?i = 2 „ „ 20 „ *,

n = 4t „ „ 580 „ f.

We know a priori that the number in the general case is finite and we shall prove that

the number (n + 1) of pure invariants is equal to the number of covariants and also contra-

variants.

§ 28. Notation. Let /2 = a\x = a?2x = ... ax2 = ax2 = ... ,

fo= b\x = b\x = ... bx2=bx2 = ... ,

be the two quadratics.

We shall invariably use the symbols a, a, A to belong to /i; the symbols b, B, fi, y, 8, %

will invariably refer to f2; the symbols u, v will refer to the variables i^iu ... u71r_1} x\ the

symbols 6} t/r will usually refer to a, b or u.

The convention of § 10 concerning Greek and Arabic letters holds.

A bracket will usually be written in the form

* Grace and Young, Algebra of Invariants.

f Gordan, M. A., Bd. lvi.
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OF TWO QUADRATICS IN n VARIABLES. 213

and in this case it is understood that the suffix of v is n —p — q, and when v occurs several

times in a concomitant it need not refer to the same set of u symbols each time.

Suppose we have a symbol an in a concomitant. If we wish to consider this symbolic

product as made up of k' sets of fewer as we write it

If the symbols 6P and 0q occur simultaneously they usually refer to p + q different symbols

of type a, b or u, unless a definite statement is made to the contrary.

Finally, we use O, C, ... to stand for the total number of symbols in a bracket which are

not of type b, so that any bracket must be of form (/3r(7), j3ny or (G).

The symbols g, glf g2 .-.g', denote bracket or x factors and whenever we write a single

term concomitant as

P = g1g2...grM,

gk is understood to mean the kth. bracket from the left of the last concomitant in which

that particular bracket is fully written out.

The symbols M, M\ ... are used to indicate that part of a single term concomitant

which is not explicitly written out.

Sometimes the symbol X is used to denote the whole product of factors of type

ax or bx in a concomitant.

§ 29. Reducibility. We shall consider a concomitant P of two quadratics to be reducible

if it may be expressed in the form SPiQi, where P^ and Q1 contain no symbol of type a or b

in common.

For example, Pl might be (ar^kvs) (orfikW), where vs and v/ are not necessarily the

same, but each consist of s symbols of type u.

We shall denote the number of bracket factors of P by w, the weight of P.

§ 30. Theorem I. Let P be any concomitant of two quadratics. If P contain a factor

«n or @n ^ is reducible.

For in the first case P is of form

and the n symbols a complementary to those of <xn either lie in M in the form ax or one

at least is situated in an ordinary bracket. In the former case P is zero as is seen by inter-

changing two as, and in the latter case P may be prepared in the form

tan\ M' or anKlM\

which is reducible.

Hence P is reducible if it contain the factor an.

Similarly it is if /3n figure in it.

§ 31. Theorem II. Again, if P contain two bracket factors of type

or (apv) (aqv), (2)

Vol. XXI. No. VIII. 29
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214 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

P is reducible provided that one symbol or more is common to f}p, /3q or c^, aq in the

respective cases.

In the first case take P to be

03Pl3rv)(l3qi3rv)M,

where /3P> fiq, /3r are entirely different.

If p = 0, q = 0, P is at once reducible.

If p > 0 and r>0 we may express P as a sum of terms

where /3qi is part or none of @q, (§ 25).

If ql = 0, Q is reducible. But if ^ > 0 we may bracket the complementary symbols

to fiqi with /3q/3r in gly since the same symbols occur all together in g2. Thus Q is

expressible as a sum of terms

R = (/3p/3r/3qiv)(t3p/3r/3qiv')M or (Bv)(Bv')My

all of which are reducible.

Hence P is reducible.

Exactly the same argument applies to a concomitant with factors of type (2).

This argument is useless if the symbols u are not allowed to be separated (Cp. type (2), § 7).

§ 32. Suppose that we consider concomitants in their prepared forms mod. fx. Then

as a rule a single term concomitant of this type would be

P = (dr^kjsvt)(^kBSlvtl)M (1),

where represents whatever b symbols are common to the two brackets written out in full;

where a refers to fx\ /3, 7, S to f2, and v to the variables.

We may suppose that s^sx.

The exceptional cases are (1) when r='l, ^ = ^ = 0,

and P = (aysvt) axM (la),

and (2) when P = ax*M = reducible.

If we call any concomitant of type (1)

P(r; k, s, s,)

we shall prove the following theorem:

Theorem III. Every term of type P(r; k, s, sx) where s^slf r>l is either zero or

expressible as a sum of terms of the following types,

I. P (/; ly m, n), r > r,

II. P(r; Jc', m\ n')9 k'' > Jc,

III. P(V; k, m", Si), Si <s1}

the suffixes r, Jc, s, Si being supposed to admit these inequalities, and $x being at least equal to 2.

If P is reducible we shall say P = R.
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OP TWO QUADRATICS IN n VARIABLES. 215

If P is expressible in terms of types I—III, except for terms of type Q, we shall say

P=2Q mod. I—III.

Thus the theorem to be proved is that

P (r; k, s, sx) = 0 mod. I—III,

provided r > 0, s ^ s1 > 1.

§ 33. We take P in the form

JP = («r/3kysv)(ar/3kS8lv)M (1)

and suppose ctrfik = 0.

Consider the s symbols complementary to ys. Each of them must occur in M} either

in a bracket or in the form gx. If two occur in the latter form P is zero since

Thus if s > 1 one at least of the s symbols of 7^ occurs in a bracket. P may therefore

be prepared (§ 25) so that all the symbols complementary to ys occur in this bracket; so

that P=ltP1 where

P1^{6fi9v){eh9lv){fiBBC)M (2),

where B denotes symbols of f2 and 0, symbols of fY or v.

If P contain two brackets only and s1 > 1, P is therefore zero. We assume P to

have more than two brackets and investigate terms such as P2.

The symbol B may contain some in common with 88l. We therefore write P1 as

(erysv)(0S8iv)(ys8Sn0klG)M (20,

where ph8Sn = B and 8Sn88l2 = 88r

§ 34 Lemma I. If in the form (2') sn > 0, P2 = 0 mod. Ill and the theorem is

proved.

For if su > 0, since the symbols <ys8Sll are all equivalent b symbols bracketed in

gz, we may bracket the complementary symbols <ys and 8Sll out of g1 and g2 into gL. The

result expresses P1 as

2 (~ 7.O (^.» (vA AO jf, (§ 25),

0 \ * /

where 0 denotes sn symbols chosen from 6 and v.

If # contain any symbol of 0 whether of type a or 6, the bracket contains two like

symbols and the term is zero; for (bb<f>) M = 0.

Hence the only possible non-zero terms of this summation are those in which z consists

entirely of us and these only come when the number of us in g1 is originally ^sn.

Thus P1 is replaced by t(0y888llv)(088l2v)g3M.

V

Each of these terms is of type P(r; k, ..., s12) with s12<s1} that is to say, type III.

Hence Px = 0 mod. III. Q. E. D.
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The theorem is now proved unless sn = 0. We therefore take P to be of the form

P = (orfty.1/) V) (ys^tG)M (3),

where fikl represents all the b symbols included with ys in gz and where j3k> y8, SSl, fikl

are entirely different.

§ 35. Lemma II. If in the form (3) ^<5l, P = 0 mod. I—III.

For since s1 and s are > 0 we may apply the operation R y8) to g2 and #3 and

obtain by Identity B, § 20,

Sflrx 0) if + S<* (s,l7s ^) M = 0.

The first series consists of the term P and terms in which some of the symbols of ys

and S8l have been interchanged. Such terms contain r like symbols a and more than

k like symbols 6 in g1 and They are therefore of type II. In the second series z

represents 5X symbols from ftklC and if k1<81, z must include symbols of C, i.e. symbols

of type a or u. If z include p a symbols, ap say, g2 contains arap and g1} o^. Since

r>0 we may prepare ^ and ^2 so that each contains arOp. Such terms are of type I. In

the remaining terms z includes some of /3fcl, f3ku say, and some u symbols. Thus

P + ^1(ar/3,/3,11i;)(SSl7sftia(7)if=0 mod. I, II.

where fiknfiki2 = Ph-

Since &u ^> kx < sx, all these terms except P are of type III.

Therefore P=0 mod. I—III. Q. e.d.

Thus Lemmas I and II cover all cases except when

P = (0y8v)(6SSlv)(ys^klG)Mt k^s^l.

The symbols complementary to @ki are more than one in number and therefore may be

bracketed together in a fourth bracket or else lie in factors bx; so that P = 0. Hence the

theorem is proved for concomitants of not more than three brackets.

We therefore consider with perfect generality forms such as

P = (0ysv) (dS8lv) (y8/3h G) (fi^BC) M (4),

where s^s1} k^Sx, 0 = ar/3&.

Here B may include some symbols of S8l. Let B8l = S8nS8l2 and B = SSnB\ Then we

write P as

(0Snv)(ys^G)(fl^RC)M (*').

§36. Lemma III. If in the form (4') su>0, P = 0 mod. I—III.

For since in (4') the symbols f3kl and B8ll are bracketed in g4, the complementary symbols

B8n and /3kl may be taken from g2 and gs and bracketed in g3—supposing that kx > 0

and *u>0 (§25).

In this way we express P as

where z consists of su symbols from ysG
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If z include any symbols of ys the corresponding term has r like as, more like 6s in gxg2

and is therefore of type II.

If z include any symbol a from C, g2 will contain more than r a symbols; we may then

bracket the set complementary to these in gx since r > 0 (§ 25) and obtain nothing but

terms of type I. The only other possibility is for z to be of type v entirely. The

corresponding terms will be of type P(r; k, s, s12) or type III, since < S\.

Thus P = 0 mod. I—III. Q. e. d.

§ 37. Hence every form P satisfies the theorem except those of form (4') with sn = 0.

If P contains four brackets only and su = 0, the symbols complementary to SSl must be entirely

in factors like dx, and since s1>l, P is zero. Assume P to have five brackets at least and

let the symbols complementary to B8l in g2 be bracketed in a fifth bracket. We consider forms

of type

(0y8v) (0SSl v) (/3hy90) (/3hBC) (8^0") M .(5).

Let the symbols common to B and B' be fa and let B = /3p/3if B' = fa fa.

Then P = (0y9v) (0S8lv) (fay8G) (fafafrC) (fafa8SlC") M (A)

= 9x9*9*9 *9*M>

where r>0, s^s1) k^s^ sl>\.

Either p — 0 or is >0.

(1) Let p > 0. We may then bracket fa with fa from g3g5 in g5 since the complementary

symbols are bracketed in g4 and both kx and p are > 0. P is then replaced by terms of type

9& (7.^*,) M (6).

If z contain any symbol from SSj Lemma I applies.

We therefore consider terms of type (6) with z = /3mi 0/', where /3mi/3m2 = fa, C" = C"C£.

On writing 0 for CC/' and C" for C2" and fa for fa fa (6) takes the form

^(faMifa^ifafa^G^M (60.

In this form we may consider m^sx, otherwise Lemma II applies. Thus if m<sly it

follows that m1 < sx and P = 0 mod. I—III.

(2) But suppose that p = 0. If we apply the process R(fa, Ss) to g3) g5 we obtain

the following identity:

^9M^sG)9^rnKG) M + Xgig2(zysC)g4 (faS, ^) M = 0.

In every term of the first series except the first (= P) some symbols of Ss occur in gs with

y8 and Lemma I applies. Every term of the second series is either =0 mod. I—III or of

form (6') as in the previous case.

Therefore the last identity expresses

P=2 forms (6') mod. I—III.
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§ 38. Thus both cases come to the same thing and we must consider terms of type

(8Js v) (d8Sl v) (/3miysC) (0,W) WP-M, C") M (6'),

where and s are both ^ sly and p' is at least = k, and therefore > 1.

We may therefore bracket S8l from g2 with fip> in g4 since they are also bracketed in g5.

If I < the resulting terms must each have some symbols from C to take the place of ZH in g2

and, as before, are all of type I and III. Thus if I < s1 the theorem is proved.

Take l^s, and let fii= fi^fi^. The operation here indicated replaces (6') by a series

of forms

2 (d^ v) (6/3Slv) oemi7sC) (^Jh&) (PtKPmfi") m.

Terms of this series in which some symbols of C appear in g2 are of types I, III, as before.

All other terms are of type

9l (fivKW) (£A M-

Interchange the equivalent symbols /3S, and BSi in this and we have the result that the

concomitant P is = 0 mod. I—III + terms of type

or (ffy.v) (08* v) (^miysG)(^^hC) (/V&*2C")M (7),

where = /3P' SSl, and where the symbols complementary to SSl/3mi/3m2 and fii2 lie in M.

Since p" > 0 we may bracket /3p"/3z2 in g5 as well as g4 and express (7) as terms such as

gig& (AfAiWH M,

where ft^ is part of /3m2.

Finally if % > 0 we may bracket the set complementary to /3m21 of g5 in g± and writing B

for /5P"/3^/3m21 obtain in all cases terms of type

(Oy.v) (0SSl v) (/3miysG) (BO,) (BC2) M (8),

where d = arfik, r>0; s, m^s^ and the number of 6s in B is ^p", i.e. >0.

§ 39. This form (8) reproduces form (3) with one difference, namely that in (8) there

are two brackets more prepared mod. f2 than there were in (3). To see this, suppose that 2k

brackets were prepared mod./2 in (3). Such brackets must lie in M. All the processes

through which (3) went to arrive at the form (8) never altered a bracket in M except such

as included any symbols complementary to the symbols fi^ and later /3j and /3m; such

brackets therefore could not be prepared mod. f2. Thus the final form of M in (8) is the

same as the form of M in (3) as regards brackets prepared mod. /2. Thus (8) includes 2k

prepared brackets and the two new ones g± and g5.

If in the form (3) the number of brackets is 2& + 3 4- k\ the number of brackets in (8)

in which symbols complementary to S8l and j3mi may lie is k' — 2, whereas it was k' in the

case of (3).

Similarly if we operate on (8) as we did on (3) we obtain terms of types I—III or else

terms such as

(0vsv)(68Slv)(/3^8C)M (80,

where the number of brackets prepared mod. f2 in M is two more than in (8), i.e. is 2k 4- 4.
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§ 40. Proceeding in this way we come after a finite number of stages to one at which

no terms except I—III appear, or if any others do they are of form (8') where all but one

or else two brackets of M are prepared mod./2, according as k' is odd or even.

(i) If there is one bracket unprepared it must contain all symbols complementary to

S8l and fi^ which do not lie in x factors. Hence either the term is zero, since ^x > sx > 1

or we may bracket all /3Ml in this bracket and obtain the term

where denotes brackets prepared mod./2, and ddf ... hSn = S8l.

Since s1>l, either sn > 0 or more than one d occurs with x.

Thus either Lemma III applies or the term is zero.

Hence if hf is odd P = 0 mod. I—III.

(ii) If there are two brackets left unprepared in M, the argument is exactly the same

as that which led up to the form (5)-and we either have zero terms or those to which

Lemma III applies or else forms

(0ysv) (eSHv) 03^.0')(fiHBO")(BSlB'C") MbCX (9),

where X denotes only factors of type ax or bX) G denotes brackets with no b, and Mb, brackets

prepared mod. /2.

If any symbols B, B' appear in g4y g5 they are either complementary to one another or else

their complements are in X.

We may therefore write (9) as

M^^ftAC'K^^^niY^I (10),

where the complements of /3j and /3m occur in the form bx.

If I > 1 or m > 1 this form is therefore zero.

Hence I ^ 1, m ^ 1. l<s1 and m < sx. But if m < sx this term = 0 mod. I—III (§ 35).

Therefore in all cases whether the number of brackets in P is odd or even, P = 0 mod. I—

III, which proves the theorem.

This theorem is true of P(r; k, s, sx) provided that r > 0, s^slf s2 > 1.

§ 41. Suppose that we apply this theorem to each term I—III which arises from this

reduction of P(r; k, s, sj. Since the terms which arise are of the same type P(—; —,—,-),

with either an increase in r, or r + k, or no change in r + k and a diminution in su it follows

that after a finite number of steps, in which we apply the theorem to whatever term arises, we

ultimately express P (r; k, s, $2) in terms of

(1) P(n; 0, 0, 0),

(2) P(V; n -r', 0, 0),

(3) P(r'; A', 1).

The first two of these sets are terms with invariants an2 or (ay /Sn-r')2 for factors. Thus

they are reducible. The third set which arises from s2 diminishing to its lower limit may be

taken one step further.
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220 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

§ 42. Take any form P of type (3) and apply the theorem to it.

Let P = (orPkysv) (arfikdv) M.

I. Suppose s > 1. As in the general case we may bracket 7$ again in P and take P as

If the complement of d lie in #3, Lemma I reduces P to the form P(r; 5 + 1, 0), or

(y8+1ys^)M, say.

If = 0, Lemma II applies.

If > 1, either P = 0 or /3kl may be bracketed in another bracket.

If Jd = 1, either fikl is in a bracket factor or with x.

In the latter case P = (dr/3kysv) (ar/3kdv) (bysG) bxM say.

On applying R (d, b) to g29 g3 we obtain the identity

P-gi (»rAM + % (Orfaiv) (db^j bxM = 0,

or P-(7,^)^ + 1, II, 111=0,

where (y8Vs) = (0ysv) (#i/6) 6^, which we shall call type IV, and where III has the factor

(ysys) = (dysv)(ev).

In the other cases @kl (whether kY is one or more) is bracketed twice and we have forms

such as

P = {Odv) (f3klysC) (ft, W) M.

If d occurs in g4 Lemma III applies and reduces P to types I—III. If not, either d lies

in another bracket gB or with x. The latter form is of type IV.

Thus P = Q mod. I—IV, where Q is

(0ysv) (6dv) (/3klysG) (ft^ftC) <J3p0mdC") M,

as in the general case.

§ 43. If we operate on this form as in the general case we obtain the same results unless

at any time the symbol d or the symbols fikl, /3mi, /3Ml occur with x. Such cases only lead

to forms I—IV as they are the same as those discussed above (§ 42). The main case is the

same as when s1>l until we come to form (10) in the general theorem. In this case since

m may be 1 and s1 = 1 we have to consider the form

(fly.i/) (ddv) (/3,l7eC) (fin&fo) (/3pdbC") bxM,

in which b = fim (m = 1), and I is either zero or unity, is at least unity. Cp. § 40.

If ^>0, we bracket /3Ml/3p in g5 from gz and g5 and as before obtain terms of types I—

III, and

9i9>(bysC) (p^Pp frC) (p^dC") bxM,

in which g3 is of a form already discussed {kY = 1), so that the term is reducible to I—IV.

Hence the theorem applies to P(r; s, 1) if s > 1 if we include IV with I—III.
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OF TWO QUADRATICS IN n VARIABLES. 221

§ 44. II. Take s = l. P may be either

(oLr/3kgv) (cirfadv) gxM,

or (otrfagv) (<*r/3kdv) (g/3klG) M.

The second case may be treated exactly as in the case when s > 1. The first case is

of the form M, say.

Lastly, if sx = 0, P necessarily has the factor (ysys) (see beginning of §42), or else s = 0

and P has the factor

(ar/3kv) (<xr/3kv).

§ 45. Combining all these results, we see that the first two factors of P (r; k, s, s2) may

be taken to be either a concomitant of weight two of type

(ar/3kv) (arpkv')y r > 0 and < n + 1,

or else (#7su)(0u)>

or (6ysv) (8dv\

and in this case the complement of d occurs with oo.

We may state these results in the following form:

Theorem IV. If a concomitant of two quadratics is expressible as

P = (arBv) (o,.£V)ilf,

it is expressible in terms of

(A) (orfavsv) («r/3kdv) dx M,

(B) (arl3kvsv)(arf3kv)M}

where both k and s may be zero, but r must be > 0 (§ 32).

Form (A) is written (ys^) M, and (B) (<ysys) M9 but we usually denote both y and rj by f,

so that (ys^s)M stands for (A) and (B).

§ 46. Observation. By no possibility can a term (y£) turn up of the form

(ayv) (av) or (ayv) aX)

for the number of different symbols u is n - 2 when x is looked upon as an indecomposible

coordinate, so that (av) = 0 since two at least of the symbols included in v must be identical.

The notation (y^) = (yOv) (0vb)bx is used for (7^) and the symbol b means that b may

either .be present or absent from the term, so that both forms (A) and (B) are included.

§ 47. Theorem V. If by any process we have arrived at concomitants of the type

P^U(ys^Sr)M (1),

and if M contain two brackets prepared mod. fJ} P is expressible as a sum of terms

9+1

n(7*fc)tf' (2),

and reducible terms.

Vol. XXI. No. VIII. 30
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222 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

Let us write (oLr/3kysv) («A8Slv) M for M, where r > 0 by hypothesis, and let P be

written as

(«r£w) i/n^z (3).

We shall say that a concomitant having two initial factors of this type and q factors

each involving £, is of type

P(r;k, slSl) IV.

If, however, instead of factors (/3S£S) II has factors (a/3£) we shall write it as IIa&.

We have r>0 by hypothesis and we may suppose

Our object will be to prove that P is expressible in the following types f

I. P(r'; )n*, r>r,

II. P(r;k\ ...)II9, k'>k,

III. P(r;&, Sl')W, s1,<8l9

IV. P(r;k,s\...)m, s<s.

§ 48. Suppose that sx = 0, then the two first factors are of form (y8ys) and the proposition

is proved. Assume s1 > 0. Then s > 0.

The symbols complementary to ys of P lie either wholly in X and II or not, X

denoting all factors ax or bx. If not, we may bracket them in an ordinary bracket outside

II without altering the form of II except possibly introducing symbols a or a for whatever

symbols of 7 were originally in II (§ 22).

Therefore II& may become IIa&M. But u does not affect II,

for ) = (cl/3v0v') {6v"b) bx

= (a/3H say.

Hence Uabu is of type Tlab.

Thus P may be taken in the form either

(0ysv)(eSSlv)(/3klvsC)Mnab*,

or <7i#2^f [all 7s in XII].

As in the previous work none of 8Sl lie in g3 else Lemma I applies. After using Lemma II,

either ^ may be bracketed again without altering the type of Habq or all lies in X and II.

Next Lemma III applies and either SSl may be bracketed again without altering the type

of IIa&2 or all S8l lies in X and II.

Thus P is reduced to types I—III (by application of the Lemmas) and the four following

types:

(1) (Ojs v) (0 V) 08*7.0) (ft A&C) (fiP/3mShO") MU^X,

as in § 37.

(2) When P admits of previous treatment up to the 4th bracket but the symbols

complementary to BSl lie in II or X.

(3) When the symbols complementary to /3kl lie in IIX
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(4) When the complements of y8 lie in TIX.

In the 3rd case all terms are of form

(eysvUO^vWMtyMtf^ in nx}.

Apply the process R(BSl1 ys) to g2 and g3.

This gives

%(< v)WklysO) M{...} + 29l (6zSlv) (S8l7s ^) M {...} = 0,

and as before all the terms of these series are of types I—III except P and those in which zH

is entirely chosen from $kv Thus if fiSl = zSl = part of /3kl

P = I-III mod. (8Slys/3kl-SlC)M{fikl in IIX}.

Interchange /3Sl and

Therefore P = % (<9SSlu) (ys/3klC) M {SSi in IIX} mod. I—III.

Thus terms of classes (2) and (3) above are either I—III or (6ysv) (6$Slv) MUX, where all

the symbols complementary to SSl lie in IIX. Unless some lie in II either P = 0 or Sj < 2 and

we obtain from the first two brackets an extra factor for II and the theorem is proved. Thus

some of 8Si lie in II.

Let 8ai be a part of SSl which lies in a definite factor £.

P must then be of form

(0ysv) (OKy) (K^'v) (ffvl) bxMXW-i

where the particular £ factor is (S^e^) and e stands for a or b symbols, where #' = 0^/3^ and

b implies that b is present supposing £ to be of form tj, or absent, supposing £ to be of form y

(see § 45). The two cases may be worked together.

§ 49. In & 7*! is > 0 but kx may be zero (§ 45).

I. Suppose k1>0. Let SSl= SaiSa2. We may bracket /3kl and 8ffl in g4 since they also

occur in gz of (4) and replace P by terms

2 (6ysv) (0Sa2arnbv) (8ai€a2ari^klv)(ari2^h8aibv) bxM,

where 0LrnaTl2 = an and rn ^> ov

If rn = 0 each of these terms is of type III unless ^ = 1 and the symbol b has been

changed from the bracket g4 to g2.

This exception is

gx (0hO2bv) (fae.w) (o^fav) bxM (5),

where ^ = ^kl80l.

If ru>0 we may prepare g^g2 mod./i and obtain

2 (ar«m^*27«8v) (ar«ruAA2&v) (a^^e^/S^^u) (ari2@vbv) bxM (6),

where /3&2/3*8 = £*, 7s27s3 = 7a and *8 + 58 ^ru.

Each term of this series is of type I since the 3rd and 4th brackets of (6) are of type (a/3£).

Hence if any of B8l occur in II, P = 0 mod. I—III or is of type (5), and (5) is of type III

unless b turns up in g2.

30—2
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But in (5) the symbols complementary to 8<,2 by hypothesis lie in IIX, or <r2 = 0. If they

lie in X there must be at least two symbols of type b in g2 found also with X, for there is one

already, namely 6, so that the term is zero. If <r2 = 0 the first two factors of (5) with bx form a

new £ factor and the theorem is proved. The only alternative is for 8<,2 to lie in II entirely.

The preceding reduction then applies again since k' >k> 0, and expresses P in terms of I—

III and also terms corresponding to (5), namely,

g1(08jb/v)bxbx,MmX,

where a3< <r2< sl.

Such terms are either zero or

g1(0SOsbu) bxMWX.

Unless cr3 = 0 we continue in this way applying the same arguments till finally we must

have exhausted the symbols 8 from g2 and we have the same case as when cr2 = 0 above.

Thus P is expressible as I—III or U^+1M.

II. Suppose that kx = 0, P is then of form

(0ysv) (08Slv) (B^^v) (arivb) bxMUb^X (40.

Since g4 cannot be of form ax (§ 46) it is always possible to use R (80l, arivb) on g2 and g4. The

result of this gives terms such as

all of which except P have been discussed in the previous case of &2 > 0, since in these &a is

common to gB and g4.

Thus the theorem is proved for concomitants coming under cases (2) and (3).

§ 50. Now in this proof for case (2) we have not used the fact that s1 ^ s except in saying

that terms occur of type III or P(r; k, ...} Si)TL, < s1. The proof therefore applies to case

(4) (in which the symbols ys bear the same relation to II that 8Sl bore in case (2)) provided that

we introduce a type IV or P(r; Jc, s', ...)$'<& If in IV s < sx we interchange the first two

brackets and call the term type III.

Hence concomitants coming under cases (2), (3), (4) are expressible in types I—IV and

§ 51. The only other type to be considered is that of class (i).

Let P = (0ysv) (08Sl v) (ys/3hC) (fi^W) (8Sl^mGf/) XMU^ (i)

be such a concomitant.

As in the previous theorem if p >0 we bracket from g5, g3 in g5 since their comple-

ments are found in gr4.

But if p = 0 we apply the process R{fikv 8Sl) on g3, g5 and in both cases obtain terms of

types I—III, and

$919* (ysPmfi) IfitfPnfi') (h^W) MXILrt* (ii)

where /3Wl/Sm2 = /3m and = fip/3^, so that p' > 0 in both cases.
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OF TWO QUADRATICS IN n VARIABLES. 225

Since sx > 0 we may bracket SSl and in g4 as before, and by repeating precisely the

reduction of the previous theorem we obtain a sum of terms

(Oysv) (08Slv) (7,^0) (5(7/) (PC/') MXW (iii),

to which terms (ii) are equivalent, mod. I—III (§ 38).

Now B = fipfticfisfiisfimn- Hence a certain number of symbols a, u from C and G" in (ii)

have been displaced in (iii) by symbols complementary to and /3mj and have taken up the

places vacated by the latter symbols in MXHa^. Some of these a and u symbols may therefore

lie in II? of (iii).

As regards u symbols this makes no difference to the form of IIa& for any factor, since (a/3f£)

is of type (a/3£) (§ 48).

Now suppose that P had originally k pairs of factors prepared mod. /2. They must occur

in the portion of P which we call M and in (iii) we have k + l such pairs, for none of the

operations through which P has gone have altered the original h pairs. If we write, the

original k pairs as

k

II (Bm Gm) (Bm Cm')

i

we should now write (iii) as

(Ojsv) (0BSlv) (ys(3miC)*n (BmGm) (PmCw') MXUab« (iiia).

i

§ 52. This form (iii a) is of exactly the same type as the original concomitant except that

it has two more brackets prepared mod./2J and HabQ for Ufl.

If we call it Q, we may sum up the previous work by saying that

P, the original concomitant = XQ mod. I—IV, IIIa^+15 or = 2Q for short.

Similarly since Q is of the same type as P it is expressible as

Q =

where Q' has 2k + 4 brackets prepared mod./2.

Similarly Q' = %Q"9 Q" =

We proceed in this way obtaining more brackets prepared mod./a at each stage till

either all the terms Qm are = 0 by Lemmas I—III or till terms are either of this form or

such that it is impossible to form more brackets prepared mod./2.

§ 53. The latter case means that we replace P by terms of type (iii a) in which M contains

one or no bracket involving b symbols.

If M contains one such bracket, we write (iii a) as

(0y*v) (6BSlv) (7t/8wO) 08^/8,00 PbYXUtt^ (iv),

where P& denotes brackets prepared mod. f2 and where Y contains a and u symbols only, and

/3„u is part of /3M1 and S8n of S8l.

If /uLu > 0 we bracket f3H in gA as in gZi and obtain terms

9x9*9* 08*8^0)P^Zra^.
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If sn > 0 Lemma III applies.

If sn = 0 then the symbols complementary to Ss lie in IL3T and the case has been discussed.

Thus if fin > 0, (iii a) = 0 mod. I—IV, m+\

Take pu = 0. Then all the symbols complementary to /3H lie in IIX and we have case (2)

of § 48.

The same applies if there is no bracket g4, i.e. if (iii a) is replaced by

Thus in all cases

§ 54. If we perform the same reductions over and over again as many times as is possible

upon terms of types I—IV, as in the previous theorem (III), the relation (v) implies that

for we have proved relation (v) supposing r > 0, s ^ s1} s1 > 0.

In fact we obtain ultimately nothing but type Habq+1> For (1) and (2) are of this type and

are reducible if in the factor (ys£s), 5 = 0.

§ 55. Finally we may express a term Ua^M as a sum of terms II62+1M and thus establish

the theorem completely.

There is no reason to suppose that the a symbols arising explicitly in 11^ are all different.

Suppose that two f factors of IIa& have symbols ap in common.

We may take these two factors to be

where 0 = ari yS^ and r2 > 0 by hypothesis.

Bracketing ap with ari in the second bracket since they are bracketed in the first, we

replace these four brackets by

certainly are of this form for other possible values of zp.

Doing the same for every pair of like sets of a symbols explicitly stated in IIa&, we express

the concomitant as

P = 0mod. I—IV, IIS+1

(v).

P (r; k, s, Sj) Ub^ is expressible in terms of

(1) P(r; k, 0, 0) TIab9, i.e. reducible terms,

(2) P(r; M,0)n^,

(arnapMv) {evb){ar„cLpl3he'v){6'vV) bxb\
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OF TWO QUADRATICS IN n VARIABLES. 227

§ 56. Consider a typical factor of Uab with no a explicitly found in common to two

brackets, •

(apPqan/3klv) (<*ripklvb) bx (1).

The complementary symbols of ap by hypothesis do not occur in but must occur in

MX, supposing P to be m+1MX.

If p > 0, since rx > 0 we may bracket ap and a.n together in the second of the factors (1).

The result is to obtain a factor

(aPctriPq/3klv)(apari/3knvb)bx or (/3q0kl^),

where /3kl = fiknfikl2 and some symbols, fikl2, of /3kl have taken the place of ap in MX.

If we do the same for each factor of IIa& containing as explicitly we thus revert to the

form Ub.

§ 57. Thus we have expressed the concomitant

fl M

1

in terms of concomitants II (^8r^sr)M/ and reducible terms, on the assumption that M contains

i

a pair of brackets prepared mod.fi. This proves the theorem V.

Corollary. The only type of reducible term which has arisen in the course of the proof of

the theorem is II (/3Sr%Sr)M, where one (or more) suffix sr is zero. The reducible factor may

i

be conveniently written £0 or (0v)(Ovb)bx.

V. The irreducible system.

§ 58. We are now in a position to find a system which includes all irreducible forms

for two quadratics.

If P is any concomitant it may be prepared mod./i. Factors of P may be paired

off either as

(otr/3v) (ar/3'v) r= I, ... n (1),

or (a/3v) ax (2),

or a«» (3).

Taking the first alternative we may apply theorem IV (§ 45) and obtain a factor (/3S£)

instead of these two brackets, with reducible terms which are included in (/3S£) if s may be zero.

P may now be replaced by

(J3&M or (^)Ma%

where Ma is prepared mod./i, since M contains no a symbol in common with (/3£).

If Ma contains a bracket pair of form (1) the last theorem proves that we may take P to

be of form

2 (J3H&(&2&2) Jf, where su *a > 0, « n - 1.
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228 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

Similarly if M be prepared mod. /x and any pair of brackets of type (1) arise we may apply

the theorem and obtain a third £ factor or reducible terms with factor f0.

Proceeding in this way we must necessarily use up all pairs of brackets of type (1).

It follows that any single term concomitant of two quadratics may be expressed in the

form 2Q, where

Q = ft (ftr&r) n {(ak/3v) akx) M ... (A),

r=1 1

where M contains no symbol of/j.

§ 59. Theorem VI. In the forms (A) we may assume all the symbols included in the sets

fta ... ft, to differ.

For if ftx and ft2 had some in common, the corresponding £ factors would be of the form

(ftft^i/) (0vi)(J3p/3Hl0,v) {6'vV) bxbxf (i),

d = arfik> ^/ = ar'ft'-

If 6' contain no b symbol, i.e. k' = 0, we apply 22 (ft,, g4) to gx and g4 and obtain terms

of type

(aPll3pJSu6vbf) {6vb) (ftft^Haft^fc') bxbx'.

Here g1 contains ctp^r,

g% » Upi'

We may therefore bracket ar<zPl from g2 and gs in g2 and obtain

2 (a'ft2ftntffcvi)(ftft21ft>u) (apPlvV) bxW (ii),

where a = aPlar and ft = ftxft2.

These terms are the same in type as (i) where & contains some bs. Thus both cases unite

and we consider the case k' > 0.

Since gs of (i) contains ftft> we may bracket the complementary set in g4 and obtain

terms such as

(ftu&V^) (0vh (Pp08*l<*t'fav) {ZrjPpPk'vb') bxbX)

where ari'Or2' = <V-

If r/ = 0 this is of type (/3£) (ftf ) where ft and ft have no common symbol. For V in the

first bracket does not alter the type of £. In fact (y8b^) is either (ys&£) or (ysuf;)> i-e- (7s£)•

If r/ > 0 we prepare ^ and #2 mod./i and obtain

(*n'*r0k&8llb'v) (Orj'ttrftjiA) (ftft^^fta'H (ar2,ftft>u&') &A' (iii),

which is of form (/3£) (ft£) where /3 and ft have k2 symbols in common, and k2 ^ r{ <

Repeating this reduction we obtain more like as in the first two brackets and more like 6s

in the second two. This may go on till either ft or ar> is exhausted.

If ar> is exhausted g3g4 are of type (ftftv) (ftftu) and the concomitant is reducible (§ 31).

We need not perform the reduction but put g3g4 in with M of form (A) § 57 and this

theorem is still true.
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OF TWO QUADRATICS IN n VARIABLES. 229

If ^ is exhausted, another application of this process eliminates all like 6s from the two

£ factors since /3& supplies them in (iii).

A similar treatment applies to all other pairs of £ factors with like symbols. Thus finally

Q is expressible as a sum of terms of type A where no two 6 symbols in @Sl... fiSq are the same.

Q. E. D.

Hence any single term concomitant of two quadratics fx and f2 is expressible as a sum of

terms Q of type

Q = n(7^Sr)n {(ah/3v)akx}M (A'),

1 k=l

where all the 2sr b symbols included explicitly in the first product are different and where M is

independent of a.

It follows that the complements of the b symbols ySr are either in the second product

or in M.

q

§ 60. If a term Q contain a pair of brackets not included in n (7^) with one or more

1

identical b symbol in them, Q is reducible.

For these brackets must be of type

either (Prfipav) (fir/3qdv) axaX)

or (/3rPPav) ax,

or (/3rfiPv)(0rM

and by preparing them mod. f2—which is possible since r > 0—we express Q as a sum of terms

of types

(/3r>av) axax'M',

(psav){pfv)axM\

all of which are reducible, being of type R x M\ Cp. § 29.

§ 61. Consider any one bracket gm of (A') not of type (7^). It must contain two or more

symbols of type a or b. It cannot contain more than one a since the partner occurs in the

form ax; it must therefore have at least one b.

It may therefore be written

(PpPjjav), or else (fipfifv),

where the complementary a, if a exist, occurs in the form ax, (cp. form (A7)); and where

the symbols /3P are complementary to symbols in II (y£) and ftp to symbols in the other

brackets or X. But in the last paragraph we have shewn that no b may be common

to two of these brackets not of type (7^). Hence the partners of the p symbols ftp>

must occur in X. Hence p' < 2, else the form vanishes.

Thus a typical final bracket gm of Q in form (A') is

(Ppbdv) bxax (1),

Yol. XXI. No. YIH. 31
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Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

where b and a may be present or absent and where f3p is complementary to p symbols amongst

7*i — Y*-

If p = 0 this form (1) is a complete concomitant, and Q is therefore reducible.

§62. Hence some symbols from y^-.-Ysg must occur in each bracket of the final set

in Q. As at least one of the symbols ys contributes to /3P> suppose that ySl is one, the order

of su s2 ... sq being immaterial. We may then bracket all the symbols complementary to ySl in

this bracket gm and express Q as a sum of terms

1

(ySk$abv)axbxMf (1).

If M' contain any brackets, similar remarks apply to them, and to any definite bracket

of it gm> say.

We therefore find that gm> necessarily contains some symbols from yS2 ...7^, unless q=l,

and selecting one particular set represented, <y§2 say, we bracket them in gm> and obtain a sum

of terms

Q = n (ysMr) (Js^db) axbx (yS2/3'a'b') a^M" (2)

1

q ~

= n . gmgm>axbxax'bx say.

1

These terms are reducible. For if /3 and contain a common symbol the reduction is

already established (§ 60).

If not let the process R{ySvgm) be applied to the brackets (y^) and gm. This leads to

the identity

or+$or=o;

where Q" is the same as Q' except that certain symbols <y§2 from (yS2£2) have been interchanged

with an equal number of symbols of gm. Thus every term Q" has some symbols alike in

gm and gm', viz., some of yS2, and is therefore reducible (§ 60). Hence Q' is reducible by

means of factors of lower weight.

If q = 1 the remark at the end of § 61 applies to gm>.

The only alternative to these is that in (1) M' has no bracket factors.

Thus no irreducible term Q can have more than one bracket factor other than those

included in

<7

11 (Y*r?«r)

1

when Q is written in the form (Ar). We shall call this bracket, if it exist, the Final Bracket,

and it may always be taken to contain one complete set of symbols ySk at least, as was shewn

above for gm.

§ 63. Hence we have shewn that every possible irreducible concomitant including one or

more pairs of brackets prepared mod./! is expressible either as

(lo) = (arft v) {ar/3kvb) bXi

or
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OF TWO QUADRATICS IN n VARIABLES. 231

for the latter is the most general form with only one final bracket. Moreover any one of

Ys!> '",7sq may be taken to stand completely in the final bracket, §62.

Here 62 ... bi denote some symbols from ySl... y8q.

§ 64. Case of no final bracket.

When a concomitant contains no bracket except those of type (yg) the symbols comple-

mentary to (7) must occur with x. If the suffix of 7 is greater than unity the concomitant

is zero, for

(WVf)W=o.

Further if there are two or more £ factors the concomitant is only a product of simpler ones

If there are no £ factors the only irreducible concomitants are flf f2.

Thus the only possible irreducible concomitants with no final bracket are

(1) (&)=(6v)(6vb)lX9 where 6 = <xrfiki

(2) (g£)g* = (Ogv)(0vb)gxbx,

(3) f± = ax\ f2 = bx* (3).

§ 65. We may now write down a set of forms which is bound to contain all possible

irreducible forms. We shall consider them in ascending order of total number of bracket

factors. This number is called the weight (§ 29).

By § 63 it will follow that any concomitant of weight w is a rational integral function of the

concomitants of weight w — 1, ... 3, 2, 1, 0 retained in the system.

Moreover every form of the system except forms (3) of § 64 have a final bracket.

1. Zero weight. fx = ax2, f2 = 6s2.

2. Weight one. There can be no £ factor, since any £ factor is of weight two, and

therefore the final bracket alone exists and we have, by § 61,

(abvn-2) axbx.

3. Weight two. There must be one £ factor and no final bracket. The only possibilities

are (§ 64)

(0v){0x/), {6v)(6v'b)bXi (evb)(0i/V)bM.

4. Weight three. There must be one f factor and one final bracket,

(t£s)(Vsal>v)axbx

is the only possibility (§ 63).

5. Any even weight greater than two is impossible for there is necessarily a final bracket

for concomitants of weight > 2 and therefore an odd number of brackets [see form I].

6. w = 5.

(7*i£n) (7*2(Vstfiabv) axbxVX)

where fib' = y§2. There are two types since fi may be yS2 or y^zi. And so on.

31-—2
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232 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

§ 66. The number of £ factors is For if there were q £ factors, the concomitant

would be

q ~

bix by (I),

where /3&!&2 ^ are complementary to ySl... 7«Jfc_17sfc+1 ... ySq and no two symbols 6X ... 6^ are

complementary to two in one £ factor, else P = 0.

Hence Ssr — i 'fyn— 1, otherwise the final bracket would be of form fin and the concomitant

reducible.

Also the concomitant is reducible if any symbol bx... hi is complementary to one of 7^ ... y8q,

i.e. if s1 say = 1 and bL = ySl, for P would have the factor (&ifi) blx. Hence i < n, otherwise there

would be too many symbols to be included in the final bracket.

Thus 2sr $2n-l.

Further at least one symbol complementary to ySr lies in the final bracket and therefore

ql^n — 1, else the final bracket would be of form f3n.

Thus w = 2q+l provided q > 0 and hence

This proves that the system of § 65 is finite as well as complete, for the number of different

forms which (I) can take up for any definite value of w is manifestly finite,

Note. We may choose s& to be the greatest suffix in the £ factors. If s& = n — 1 there can

only be one £ factor for the extent of /3 is at most n — 1 — Sk.

§ 67. Summing up, we have shewn that every possibly irreducible concomitant of two

quadratics is expressible as a sum of terms

B.F.X,

E denoting a product of q factors (0ysv)(6vb) bx,

F denoting (7^"'^g abvj ,

X denoting axbxblx ... b{X;

with the exception of those of weight two, (6vb) (6vV) bxbx\

Further that the symbols b^... bi refer to i different sets ySlys2 ••• 7* an(i ^ > 1, ... s$ > 1,

q >i and

Hence we have incidentally proved Gordan's Theorem for this case and have also established

a method of writing down a set of forms which is bound to contain ail irreducible ones.

On being given n it is comparatively simple to write down the various types which occur.

For example n = 5.

§ 68. Application to Quinary Forms.

The £ factors may contain symbols 7 of suffix 1, 2, 3 or 4. Let (s) denote a £ factor of

suffix s and [ ] denote the final bracket.
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The irreducibles are included in

(1) w = 0, fl9f2,

(2) w = 1, (abv) azbX)

(3) w=2, (evb)(8v'V)bxbx\

(4) w = 3, (7.S(7.SM^-

(5) w = 5, (7^) (7,2B (7«l7««a6u) ttA,

(7*i 10 (7*2£) (ys1Js21abxv) axbxgX) where 7s21# = 7^,

(6) w = 7, (7^) (7^) (7»sf) (7*i7*87«3S^)

» (7«i7«2l7«31«V)«»7^2-*7«32-*»

(7) w = 9, (g^) (g2£) {g£) (#4£) (g^g^an) ax.

(5), (6), (7) give the following nine types:

(3) (2) [3, 1] 1,

where [3, 1] 1 means that 73 and one of y2 occur in the final bracket, the other of y2 occurring

with oo,

(3) (1) [3, 1],

for if (3) occurs as a £ factor its complement may be written in the final bracket (note, § 66) and

there is only room for one more symbol of f in [ ], since n — 1 =4 in this case,

(2) (2) [2, 2],

(2) (2) [2, 1] 1,

(2)(1)(1)[2, 1,1],

(2) (1) [2, 1],

(1)(1) (1)(1)[1, 1, 1, 1]*,

(1) (1) (1) [1, 1, 1],

(1) (1) [1, 1].

§ 69. As regards the terms left in the irreducible system many are reducible. It is

however difficult to establish any general principles of reducing these terms further, but we

shall give one proposition regarding the nature of the symbols arfik paired in a £ factor.

Theorem. Any £ factor (7^) must have at least one symbol a. Let it then be written

(BrpPkpJspV) (*rP&kpvb) bx.

Then the concomitant (I) is reducible unless one and only one symbol kp is zero.

This at once diminishes the number of possible irreducible forms of low weight considerably.

g

Proof. Suppose that II (ys%s)F.X is written

1

(<Zr/3jcysv) (ctr/3kbv) (ari/3klySlv) (anfiklbiu)... (y8y8ny8n Va,v)X,

where ySrl is complementary to all or all but one of the symbols 75r and where the complements

of b, Z>! ... occur with x if the symbols exist at all.

* In general the concomitants of highest weight are always of this type.
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234 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

Then either one of the suffixes k is zero or we may reduce this to forms in which the first

k is zero.

If k =|=0 we may bracket /3& with ys in the final bracket since they are bracketed in gly

and obtain a set of forms

9i (arysmVs2n abv)g3g4... (/3kysySll2yS2n... C')X,

Since kj > 0 we may bracket PiClySl in g4 as in g3 and do the same sort of thing with k2> k3....

Thus we express the original form as a sum of terms

where ^n^r^r^n, = «n, A'™ = £*m7«m> m = 0, 1, ...,

and arjfc4 occurs in X.

Terms in which &2 has been transferred to g2 have been omitted since they are either of

the form just written or zero.

For (8Cbb')bxW is either 0 or (6Cb)bx.

We now bracket oirnccr2l ... with ar in g± and obtain terms

(«/^01u)(cv6u) (arwarwaru^^i^^a^Siv) (foo,^ ... C") Z,

where A02... h ft, = 0*7,: call /^01, /3r.

Now prepare #3#4, ##6> mod./.

Thus we have terms

fafcv) (a/bv) (a,,ft^t/) (cvAh M ... (J3rfam... #,12... 0') Z.

These are of original type with & = 0 in g^2.

Hence we may always take one k at least to be zero.

But two suffixes k must not be zero.

For consider the form which is now proved to include all possible irreducibles,

(Cirysv) (arbv) (Ctr^jc^v) (a^fafii v) ... (7*017*n • • • C) X

where 7S7§1... are entirely different.

Since the symbols complementary to 7S occur in the final bracket partly we may collect

them all into it and consider terms such as

(arysv)(arbv)g3g4... (ysySu ... C) Z,

where sn ... are all > 0.

If any one of k1} k2i ... is zero, kx say, this is reducible. For since sn > 0 we may collect ys

and ySn from gx and g3 into g3 and obtain

(OrZv) (Orlv) 7^7,) (d^v) ... X,

where 7sn7$12 = 7fil. But either 6*12 = 0 or 1 since the complementary symbols to it occur in Z.

Therefore 7§12 = V say.
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OF TWO QUADRATICS IN n VARIABLES. 235

These terras are now of type

(drOr^v) (a^l/) ... X.

Preparing the first two brackets mod./j we express these as

2 {OrOrJ/v) (Or*rJ>v) lxlx M.

These are all reducible. Q. E. d.

VI. Special types of Irreducible Concomitants.

§ 70. Invariants. These have bracket factors alone of type (ar/3s) and therefore have only

£ factors provided 5 = 0, for (ys^s) contains s u symbols or 5 — 1 u symbols and one x. Hence the

only irreducible invariants are the n + 1 terms

(OrfJn-rY, r = 0, 1, ... 71.

In fact they form the coefficients of tc/\ in the discriminant of

The proof of theorem III above applies to invariants and reduces them to be rational

integral functions of these n +1 very directly.

§ 71. Govariants. The only factors in a covariant are of type (a/3) or aXi bx.

Hence the £ factors must either be invariants or (0b) (6V) bx = (&£).

The typical possible irreducible covariant has q | factors and a final bracket. Since s = l,

for each £ factor the covariant is either reducible to type

(6b){6bf)bxbx\

or each symbol bracketed with £ occurs in the final bracket. Thus the covariant is of type

fl(bPZp)(/3qa/3)X,

P=i

where bx... bq = (3q, and a, ft have complementary symbols in X.

Thus a consists of one a symbol at most,

and /3 b

But if a did not appear the final bracket would be of form /3n and the covariant would be

reducible.

Thus there is one a in the final bracket.

Since the sum of the suffixes of the bracket is n, therefore q + l= norn — 1 and the only

possibilities are

£ n (6p£p)J (IS*-!a) ax; /3n-i = 6^6^... bn^,

r«-2 "I

and IT (bpip) (/3n_2a&) bxaX)

where (bp^p) = (aTp0kpbp)(arp/3kpbp/)b,piX and rp>0.
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236 Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

Calling arp/3jcPy 6P, the covariant is either

nu\bp6p). (J3^a) li\bp'0p) Ub'pxax,

1 1

or n2(6p0p) (/3n_2a&) n\bp'Op) UVpxaxbx.

i i

These are equivalent to a numerical multiple of

(&M . ft . ft ... ftw) (ft V) (ft V)... (ft«(/3n-ia) 0» ... ,

and (ft^ft ... 0n-2x) (ftV)... (ft^oft) X (§ 23).

If 01=ar/3k and ft i-e- if two symbols 0 are constituted in like manner from a

and by the covariant is zero.

For if G = (A^ftft ...) (&«a) (ft&/) (ft&/) if,

it is unaltered by interchanging ar and «/, /3& and /3fc', 6/ and 62'. These interchanges are

equivalent to interchanging ft and ft, 6/ and 62'. G becomes

(Ai-iftft ...) (A-ia) (ftfc/Hft&O

which is the same as before except for the first bracket.

Since (/^ftft©) = - (/3n-iftft®)> this interchange implies that G =-(7.

Thus 0=0.

Hence for non-zero covariants all the symbols 6 must differ in kind. But any 6 may only

be ar/3&, where r = l, 2, ...ft — 1. Thus there are ft — 1 different kinds of 0.

Further if r = 1 the covariant is reducible.

In fact G is now (afi^b) ("3^V)M.

Preparing this mod./2 we introduce b into g2 for a or 6'. In the first case g2 is of form fin

and in the second case gxg2 = (a/3n-.2b)2. Thus C is reducible, for both these cases are reducible.

Thus r may only be 2, 3,... ft — 1 and therefore each symbol 9 may have n — 2 values.

Hence since the 0s in an irreducible covariant are all different, their number is ^> n— 2.

There is therefore just one possibility namely

(fi^a) (y8n-iftft ... e^x) (ftV) (#n-A-2') &i* ... ,

where each 6 is different and ft = ar+1/3n-r-2l r = 1, 2,... n — 2.

This may be reducible too but it certainly is not for n = 3.

Thus the number of irreducible covariants is ft 4- 1.

For there are the n — 2 quadratic covariants

(Ob)(0b')bxbx'9 e = ar/3k) r = 2...w-l,

besides /x and /2, and this covariant of the ftth order just found.

These n — 2 quadratic covariants together with an2/2 and ftnfi form the n coefficients of

powers of k/\ in the expression for the point equation of the system of quadrics

KUa2 + Xt^2.
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OF TWO QUADRATICS IN n VARIABLES.
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The covariant of the wth order represents the point equation of the polyhedron self con-

jugate to both of the quadrics fY and f2.

§72. Contravariants. We shall now find the irreducible contravariants of/2 and f2. They

will turn out to be the n +1 reciprocals of the irreducible covariants.

These concomitants are made up of factors (scry8n_r) and (ar/3n_r_1t^).

Thus a £ factor must be of the form

(0b)(0u\ i.e. (s=l),

or else (6u)2.

The general irreducible form is

i

where F is the final bracket, since there are no x symbols.

Moreover F is of form (a/3u) or (a/3). But since no x symbols arise, a must be non-existent

and therefore F is (/3u) or The latter is reducible. Thus F is (fin).

Hence a contravariant is either (0u)2 or

n-l

i.e,

n

i

n km*) (Ml (§63),

1

where ^= arp&kP and one and only one of the suffixes &p is zero.

The latter type of contravariant is

(/3n-10102... 0nM

or (0,0,... 0n)(01u) ... (0nw)> whergj

Suppose that both 02 a

^)..., (§23),

Interchange

But this

Thus

But

The:

n values

may be 0, 1,... n— 1.

Let #j = ap/3Q) 02 = <zp'and

ariant is unaltered in value,

and #2.

... (0nw).

zero term. But 0r can only have the
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Mr TURNBULL, THE IRREDUCIBLE CONCOMITANTS

Thus, since the only other irreducible contravariants are (0u)2, i.e. the n terms obtained by

taking the tangential equation of the quadrics

*/i+v->

there are only n -f 1 possible irreducible contravariants—ail but one being of class 2, the last

being of class n.

§73. The last one represents the tangential equation of the ?z-cornered polyhedron self

conjugate to both quadrics.

This is most easily seen by taking the jacobian of the n quadrics (6riif.

All these quadrics have a common self conjugate polyhedron provided that there is a

proper ?z-cornered polyhedron self conjugate to the first two as we see by taking it for the

polyhedron of reference and writing

f1 = 2 krxr2, ua~ = X%ur2/kT)

The jacobian of n linearly independent quadrics of type is proportional to II xr and that

l

of the reciprocal quadrics is proportional to Tlur.

But the jacobian of the n quadrics (0ruf where 5J. = Qf,.)8n_1_r, r = 0, 1, ..., n - 1, is

(diu) (02u)... (#i#2 ••• On), which is the irreducible contravariant in question.

Thus it represents the polyhedron of reference.

Similarly the irreducible covariant of the ?ith order is the jacobian of the n irreducible

covariants of the second order, all of whf

therefore represents the point equation of

are entirely reciprocal.

§ 74. Once more, consider concomita;

and (aftii^u).

Let {u{ti^)=p\ these concomitants an

Our reductions may have separ,

as many %s as u2s in a concomitant of t.

The only possibilities are {Opf,

there are no x factors.

Now (ys&) may be (0y2)(0p):

The final bracket may contain^

1. If it contain there are

in the £ factors. Hence n — 2 m

2. If it have ux or u2 sing

in the £ factors. Hence n — 1

common self conjugate polyhedron. It

id the contravariants and covariants

,ctors alone of types (a/3)

of lines,

always be

. v), since

uY or u2

s ux or u2
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OF TWO QUADRATICS IN n VARIABLES.
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It follows that unless n is even there are no concomitants of this type except such as can be

expressed in terms of invariants, (Op)2, and of (Ou^) (0u2).

and where the number of symbols ux occurring in a bracket with no symbol u2 is equal to that of

u2 with no symbol ux.

§75. Further than this it is difficult to find irreducible forms for special sets of u symbols.

§ 76. In conclusion it is interesting to observe that supposing we were to consider x

as made up of n — 1 u symbols and were to allow it to be decomposed (§ 7), the complete system

for two quadratics might be established on the same lines as above more readily and simply.

In fact, every constituent of a concomitant might now be considered as a bracket factor

where r 4- h + s = n and s might take the values 0, 1,... n — 1.

The general irreducible term would be simply

q could not be > (n— 1) and the number of terms to be considered is obviously much less than

in the former case since each £ factor is now of one type only instead of two.

Further, the number of symbols u may be unlimited, so that (1) practically gives the

irreducible system for two quadratics and any number of linear forms. For in all the work,

except for contravariants, we never use the fact that the number of different u symbols is n — 1

or less, except when n — 1 of them occur together and are called and in § 46 which would be

unnecessary if x were decomposible.

§ 77. For example, take ternary forms.

Let u1} u2... be the variables and (u1u2) = x.

The only possible irreducibles except those of type (1) are

fi = ax, f2 = bx2, (aafui)(aafUj), (abut) (abuj), (Wui) (bb'uj), aa\ af, ba2, bp2.

The possible £ factors are

or

where

n(7sr&r)(7»i ••• 7«gy)

i

(1),

(1) (ab){cLu) \

(2) (aW)(aM)f=(&&

(3) (auj)) ax j

(4) (a(3)ax = (/3£).

The final bracket may contain two b symbols at most, by (1); for %s ^ n — 1.

Therefore the only possible irreducible forms of type (1) are

(i) (bg)bx, (ii) 080(010, (iii) Q>$(Vt){Wu).
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240 Mr TURNBULL, IRREDUCIBLE CONCOMITANTS OF TWO QUADRATICS.

By § 69 the latter form must contain (rib) (au) once and once only. The only possibilities

for it are therefore

(ab) (au) (abj)') (ab,u) (bb'u) (5),

and (ab) (au) (auV) (ax) (bb'u) (6).

By bracketing bb' in the third bracket of (6) we at once reduce it. Thus (5) alone remains

and we have the set

(i) (h^)(ba)), i.e. (ab)(au)bx, (abfi) (ab^u) bx, (aub) axbx,

(ii) (fig) (flu), i.e. (a/3)ax(/3u\

(iii) {ab) (au) (abj>') (ab,u) (bb'u).

But (abjb) (abiU) bx = (abj)) (bbxu) ax mod. reducible terms.

Hence every irreducible is included in the four invariants and the set of forms

(aui) (auj), (abui) (abuj), (fai) (fiuj), (auiUj) (aukUi), (bu^uj) (bukui), («&) (a^) (H'%)>

(abut) (aujuk) (buium), (aft) (/3ui) (aUjUk), (ab) (aui) (abj)') (aMj) (bb'uk),

where i, j, k, I, m take up all possible values 1, 2, p being the number of variables u.

Thus there are only these 13 types of concomitants of two quadratics and any number of

linear forms.

If this number p is 2 and % = (uu') we see that the usual 20 irreducibles may be expressed

in terms of these 13 forms

V, ba\ V,

(em)2, (abu)\ (Pu)\ ax\ bx\

(ab) (au) bX) (abu) axbx, (a/3) (fiu) aX)

and (ab) (au) (abfi) (ab^) (bb'u),

and of terms derived from these by polarization with regard to

u'-

du'

[§ 78.] Several papers have been written at various times dealing with the geometry of two

quadrics in n dimensions, among which the most important is by Segre (Mem. R. Accademia

delle Scienze di Torino, serie n, vol. xxxvi (1884), pp. 3—86).

Quite recently a paper has been published by Brusotti* in which the symbolic notation is

employed and the geometry connected with the irreducible forms of type

(«r&vt)2\ t=Q, 1,

is developed. A full list of references to other papers on two quadrics is given.

[ ] Added April 21, 1909.

* Brusotti, Palermo, Rendiconti, xxiii, p. 265.
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, ivhich must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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IX. On Uniform Oscillation. By W. H. Young, Sc.D., F.R.S.

[Received and read March 8, 1909.]

§ 1. In a paper* published in the Proceedings of the London Mathematical Society last year

I initiated what in order to distinguish its nature from that of the valuable work of Borel and

others may be called a direct attack on the theory of non-converging series. The applications

of results there obtained which I have myself already madef to the Theory of Fourier Series and

of Non-differentiable Functions seem of themselves sufficient to justify the use of this new

mode of procedure. In the paper in question I introduced the concepts of uniform and non-

uniform oscillation above and below, shewing that at a point where the upper (lower) oscillation

is uniform, the upper (lower) function of the series is upper (lower) semi-continuous, and that

such points necessarily fill up the continuum excepting at most a set of the first category.

The possibility of the presence of the exceptional set of the first category often prevents

our drawing certain general conclusions as to the presence or not of exceptional points of

divergence or oscillation in discussing a series which is not known to converge. It becomes

therefore of importance to devise tests for the uniformity of the oscillation of a series. On the

other hand from the practical point of view, we naturally wish to have some guide as to how to

construct series which oscillate uniformly, either above or below or both, throughout an interval.

One way in which uniformly oscillating series naturally arise is when we integrate term-by-

term an oscillating series of functions whose partial summations have in their ensemble a finite

upper (lower) bound. The integrated series then oscillates uniformly above (below). I have

already had occasion to discuss the properties of such series elsewhere. The main object of the

present note is to give a general test for uniformity above (below) of a series, which corresponds

precisely to the test for uniform convergence of series known as the Dirichlet Test.

The theorem proved is the following:

If the series of constant terms

a0 + a1 + ...

have a finite upper (lower) limit, the series

a«/o («0 + Oi/i 0*0 + •••

oscillates uniformly above (below), provided the functions /0,/i, ... form a monotone non-increasing

sequence of non-negative continuous functions; and a similar statement is true if the constants be

replaced by continuous functions of any number of variables, provided the series so obtained itself

oscillates uniformly above (below),

* "On Oscillating Successions of Continuous Func- Derivates of Non-differentiable Functions," Mess, of Math.

tions," Proc. L. M. S., Ser. 2, vol. vi. (1908), pp. 298—320. (1908), pp. 44—48 and 65—69.

t "Note on Trigonometrical Series," and <;On the

Yol. XXI. No. IX. 33
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242

Dr w. h. young, on uniform oscillation.

Even when the upper (lower) function is upper (lower) semi-continuous, there may be points

at which the oscillation is not uniform above (below), though I have proved**that these form

at most a set of the first category. There is one case however in which such "invisible" points

of non-uniform oscillation cannot occur, and the final theorems of the present paper are

concerned with this fact. I point out that if the successive partial summations s0, s19 ... are all

of them monotone increasing (decreasing) functions of x, then such invisible points of non-uniform

oscillation are absent. Thus at a point at which the upper (lower) function is upper (lower)

semi-continuous, the oscillation above (below) is uniform. This result is implicitly contained in

the paper above quoted, but I venture to call attention to it here and to the particular case

of it when there is convergence, because I have been unable to find this latter in any of the

most recent text-books which deal with uniform convergence. It is possible therefore that it is

here stated for the first time.

It will be noticed that I have confined my attention to oscillating series. It is obvious

that the results which have been obtained must have their parallel in the Theory of the

Oscillation of Infinite or Improper Integrals.

In conclusion I may remark that the very fact that the results here obtained are generali-

sations of, and lead immediately to, corresponding results for series which do not oscillate but

converge, forms of itself evidence that the introduction of the peak and chasm functions and of

the concepts of uniform and non-uniform oscillation was not an artificial one, but one enjoined

by the very nature of mathematical reasoning, that it constitutes in fact an inevitable step in

the development of the Theory of Limits.

§ 2. I begin by filling a small lacuna in the theory as so far presented, by proving a

theorem from which follows as a corollary that the relative values of the peak, chasm, upper and

lower functions of a series are unaffected by the omission of any finite number of terms of a non-

converging series. The necessity for this theorem at once became evident as soon as I passed

from the consideration of successions of functions to that of series.

Theorem 1. If

and UQ + ETj. + ...

are two series of continuous functions of any number of variables x, of which the latter converges

uniformly at any particular point, then the upper, lower, peak and chasm functions of the series

(U0 + u0) + (U1 + u1)+ ...

are got by adding the sum of the second series to the corresponding functions of the first series.

In particular therefore the differences of the upper, lower, peak and chasm functions of a

series of continuous functions are unaltered by the omission of any finite number of terms of

the series.

This Theorem is an immediate consequence of the following Lemma,

* Loc. cit.
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Lemma. If we omit the restriction that the second series converges uniformly at the point

in question, and denote the upper, lower, peak and chasm functions of the three series by

fa f^ and %> Fu F2} II and X, A, B, G and D,

then we have f + F2^A + Fl9

f2 + F2^B^f2 + Fly

Tr+x^a^Tr + n,

% + x^D^^ + n.

The proof of these inequalities is immediate. It will be sufficient to prove the third. We have

TT0+Uo+ J7! + Wi + ... + Un + un=(U0+ J72+ ... + Un) + (u0 + u1+ ... + un);

thus the upper bound of the left-hand side in any region Q

^ upper bound of (U0 + Ul + ... + Un) + upper bound of (uQ + + ... + un).

Hence, letting n increase indefinitely, and denoting by Mq the highest limit,

MQ of (U0 + Uo+ ...)^MQ of (U0+...) + MQ of (w0+ ...).

Letting the region Q shrink up to a point, we get, by the definition of the peak function,

o^n + 7r.

Similarly, since

upper bound of the left-hand side of the above equality

^ lower bound of ( U0 + U1 + ... 4- Un) + upper bound of (u0 + Uj 4-... + un),

a^x + 7r,

which proves the third inequality in the enunciation.

§ 3. We now proceed to obtain certain extensions of theorems respecting series of constant

terms. As the case in which such a series does not converge or properly diverge is not always

clearly discussed in the text-books, and as there is more than one method of defining the upper

and lower limits of such a series, we begin with a short preliminary discussion of what we mean

by oscillation of a series of constant terms.

When we say that a series of constant terms

a0+ Oj + a2+ ...

oscillates, we mean that, bracketing the terms suitably together, so as to give a law by which

the positive integer n describes a suitable sequence, the sum sn of the first n terms may be made

to have a unique limit, which varies with the mode, of bracketing. The highest and lowest

limits* so obtainable are called the upper limit and the lower limit respectively of the series, and

their difference is called the magnitude of the oscillation of the series.

An alternative definition more in consonance with the modern theory of limits is the

following:

* A set of limits, in the language of the Theory of consist of a finite number of values, or may fill up a closed

Sets of Points, must be a closed set and may be any closed continuum, but, being a closed set, always have a highest

set; in particular the limits of an oscillating series may and lowest.

33—2
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244 Dr W. H. YOUNG, ON UNIFORM OSCILLATION.

Let Ut and Li be the upper and lower bounds of all the partial summations from and after

the ith, and let U be the lower bound of the quantities Ui, and L the upper bound of the quantities

Li, then U is called the upper limit and L the lower limit of the series.

To shew the equivalence of these two definitions, we notice that, from their definition,

U^U^U^...

form a monotone decreasing sequence and have therefore their lower bound TF as unique limit.

Since for all values of n > i

sn ^ Uif

it follows that, denoting by V the upper limit of the series defined in the first manner,

and therefore V^U.

But, since a limit of limits of quantities is itself a limit of those quantities, 17 is a limit of

the quantities sn, so that it cannot be greater than V, whence

V= U.

Similarly the lower limits defined in the two manners are equal, which proves the equiva-

lence of the two definitions.

Hence also, if U0 is finite, U is finite or — oo (in which case the series diverges properly to

— oo ), and conversely, if U is finite or — oo , U0 is finite.

The first of these statements is obvious, since U is the limit of the monotone decreasing

sequence U0, U1} .... The second follows from the definition of U0 as the upper bound of all

the quantities sn, so that it is either itself one of the quantities sn, and therefore finite, or is one

of their limits, and therefore, their highest possible limit U.

§4. Theorem 2. If the series

a0 + ai + (1)

has M for the magnitude of its oscillation, and

&o ^ &i ^ &2 ^ • • •

is a monotone decreasing sequence of positive quantities, whose unique limit is k, then

I. The series

a0k0 + a1Jc1 + (2)

has an oscillation whose magnitude is JcM (provided kM is definite), and therefore converges if, and

only if k is zero, or the aseries converges;

II. When M is infinite, but the lower (upper) limit of the aseries is finite, so is the lower

(upper) limit of the (a, k)-series, or else the latter diverges properly to -f oo (- oo); the other

extreme limits of both series are infinite with the same sign;

III. When the lower and upper limits of the a-series are respectively — oo and + oo , one at

least, but not necessarily both, of the extreme limits of the (a, k)-series is infinite, if k be not zero;

but if k be zero the (a, k)-series may be convergent;
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■%

IV. If k be not zero, and the first series diverges to + oo (— oo ) so does the second series; but

if k be zero, we cannot make any such statement

For, denoting by s0, slf ... the partial summations of the a-series, and by 80> Sx those of the

(a, &)-series,

Sn = (Xo^0 + ... -f~ ankn = kQSQ 4- ki (si — Sq) + • • • 4* kn (sn — sn—i)

= S0 (k0 — k^) + Si (^l ^2) + • • • + Sn—1 (kn—l — ^n) 4" Sn ^n*

Since the quantities in brackets are all positive or zero, we have, using u0 and l0 for the

upper and lower bounds of the partial summations of the a-series, for all values of n,

toko ^ Sn ^ u0kQ,

so that all the limits of the (a, &)-series lie between l0k0 and uQk0.

But, as pointed out at the end of the preceding article, if the upper limit of the a-series is

finite, so is u0, and therefore the partial summations Sn of the (a, &)-series are bounded above, so

that the (a, &)-series has a finite upper limit unless, as in Ex. 1 below, it diverges properly to

— oo. This proves one half of the first statement of II, and similarly the other half follows.

To prove (I), we have from the above, denoting by M' the oscillation of the (a, &)-series,

Now omit a0 from the first series, and therefore a0k0 from the second series; in this way

we do not alter the oscillation of either series. We change, however, Si into Si+1— a0, and

therefore alter u0 and lQ into ux — a0 and ^ — a0, by which u0 — l0 becomes - llt Hence, by the

above reasoning,

M' k) K

Similarly for all integers n}

M ^ (un — ln) kn,

whence, M'^(u — l)k^ Mk.

Since the oscillation is a non-negative quantity, this shews that if

.*=0,

the (a, &)-series converges.

If k is different from zero, write

kn — k -f- e^i,

then the quantities en have zero as limit, and therefore the series

a0eQ + a1e1 +...

converges; let its sum be E. We have

a0k0 + a^i + ... + ankn = a0e0 + a^ + ... + anen + k (a0 + a2 + ... -f an),

letting n proceed towards infinity along various sequences, the right-hand side of this equality

has for upper and lower limit respectively E+ku and E + kl, which are therefore respectively

the upper and lower limits of the left-hand side, that is of the (a, &)-series, so that the oscillation

of this latter series is precisely kM, which proves I.

To prove the final statement in II. Suppose for definiteness that the upper limit of the

a-series is + oo. Then we proceed to shew that the upper limit of (2) is also + oo .
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246 Dr W. H. YOUNG, ON UNIFORM OSCILLATION.

We have, denoting the partial summations of the series (2) by S0, 8lt ...

a0 + Oi + ... + an = -7T- + -j- +... + -r-

k$ .

where L0 is the lower bound and Z70 the upper bound of all the partial summations of the

(a, &)-series, so that L0 is finite by what has been proved above. Hence, if k is not zero, since

one of the limits of the left-hand side is + oo , it follows that U0 is + oo, whence also the upper

limit of the (a, &)-series is + oo .

That when k = 0, the (a, /c)-series may converge even when the upper and lower limits of

the a-series are + oo and — oo respectively, is shewn by considering the series whose general

term is

On=(-2)»,

and the sequence of multipliers

To prove the final statement III we have as in the preceding proof the double inequality

Uo(l-i) + L0y^al) + a1+... + an4L<) (prl+^p

\n>Q tvn/ thn \/Vq tvn/ tvn

whence it follows that if both the upper and the lower limit of the (a, &)-series, and therefore

also U0 and L0i are finite, all the limits of the a-series (1) are finite. This proves that under the

given circumstances at least one of the extreme limits of the (a, &)-series must be infinite.

That it is unnecessary for both the extreme limits to be infinite, indeed that the (a, &)-series

may, under the given circumstances, properly diverge, and not oscillate, is shewn by Ex. 2.

To prove IV we may, without loss of generality, assume that the upper limit of the a-series

is + oo, as we can, in the other case, ensure this by changing all the signs of the a's.

This being so we can determine an integer q such that for m> q, sm > s0y and therefore the

lower bound say V of the first m quantities Si remains fixed as n increases.

But by the former argument we have

a0k0 + + ... + ankn ^ (kQ - km) V + km lm.

Hence all the limits of the (a, &)-series are ^ the right-hand side of this inequality, and this

is true for each chosen value of m. Now make m increase indefinitely, then the first term has,

since V remains constant, a finite limit, while the second member has the limit -f oo, since lm

has the limit + oo . This proves that the (a, &)-series, like the a-series, has the unique limit + oo .

Ex. 3 shews that when k is zero, a properly divergent a-series may even be converted into an

(a, &)-series which oscillates finitely.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



Dr w. h. young, on UNIFORM OSCILLATION. 247

V

§ 5. Thus, if k is zero, finite oscillation is converted into convergence, and as we saw infinite

oscillation may be converted into proper divergence. The following example shews that this

latter may even be the case whether k has the value zero or not. If not converted into proper

divergence, the oscillation remains, of course, infinite.

Ex. 1. Consider the series

-1-1, +1 + 1, -1-1-1-1, +1+1 + 1+1,

the number of positive and negative terms doubling in each successive group.

Suppose kl = k2 = k + \,

k% = &4== k + ^,

k$ = ... = &s= & + i >

k9 = ... =kl6 = k + ^, and so on.

It is evident that the first series oscillates between — oo and 0, whereas the modified series

diverges to — oo , whatever be the value of k. In fact, when the first series is bracketed so as to

have zero for unique limit, the second series, bracketed in the same way, has the value

-£* -£> ~h ad inf->

that is — oo, while any other mode of bracketing leads us still more rapidly down the negative

scale.

Ex.2. Let ^ = 1, a2 = -2,..., am+1 = (n + 1)2m+\ am+2 = -(n+l)22n+1-1,

&1 = lj = f > • • • , km+1 — h + 2271+1 > ^2?l+2 = i + 22TC+2 *

The a-series then oscillates between + oo and — oo, and k = J, but the second series

diverges properly to + oo, since Sm+i — Sm > 1, while

<wAn+i + <W2&2*m-2 = i(w + !) - i - 2^+2 > i (w —

so that, from and after n = 3, fi^+a — /S^+i is greater than 1.

Ex. 3. Let the a-series be

3 - 21 + 9 - 8£ + ... + (2SW+1 + 1) - (22w+1 + i) + ...,

which diverges properly to + oo.

Let the sequence of multipliers be

1111 11

22' 22' 24' 24' "*' 22n+2' 22n+2' *"'

The (a, &)-series is therefore

+ + (2 + 22^+2) (2 + 2^1"3) ~*~ '"'

whose oscillation is \, since it is obtained from the series 1 — 1+1 — 1 + ... by a sequence of

multipliers whose limit is \.
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Dr w. h. young, on uniform oscillation.

The preceding theorem serves to shew that any mode of bracketing the terms which gives

the upper limit U of the a-series, serves also to give the upper limit of the (a, k)-series. For

the series

(k0 — k) a0 + (&! — k) a2 4- ...

converges to a definite limit K, since

k§ k ^ ki —* k ^ • *.

is a monotone decreasing sequence with zero as limit.

Hence, if we choose any mode of bracketing which gives for the a-series an unique limit v,

this same mode of bracketing gives for the (a, &)-series the unique limit K + kv, and conversely

any mode of bracketing which gives for the (a, &)-series the unique limit K + kv} gives for the

a-series the unique limit v.

Hence it follows that the upper limit of the (a, &)-series is K + ku, and is given by any

mode of bracketing which gives for the a-series its upper limit u.

§ 6. Theorem 3. If

a0 + a1+ (1)

be a series of constant terms, the magnitude of whose oscillation is M, where M is finite, and

M*)>fi(x), >/.(*), > (2)

be a monotone decreasing sequence of continuous, nowhere negative, functions of any number of

variables x, whose limiting function is f(x), then the series

afo (#) + <hfi <» + (3)

oscillates uniformly both above and below, so that its upper and lower functions are at

every point respectively upper and lower semi-continuous.

Moreover the oscillation function of the (a, f)-series (3) is Mf{x), so that

(I) if f(x) is continuous at any point, the upper and lower functions are continuous

at the same point;

(II) if f(x) is zero at any point, the upper and lower functions agree at that point,

and the series (3) converges uniformly {in the extended sense*) at that point, so that, once

again, the upper and lower functions are continuous there, which is in accordance with the

fact that such a zero of f{x) is necessarily a point of continuity of f(x), since this

function is non-negative and upper semi-continuous.

(III) if M is zero, the series (3) converges uniformly everywhere, and therefore

represents a continuous function. p

Let U (x) and L (x) denote the upper and lower functions of the series (3), and

denote by Sn(x) the sum of the first n+ 1 terms of (3).

Then by Theorem 2 the oscillation function U(x)—L(x) is Mf(x).

Next to prove that the oscillation is uniform both above and below, we consider the peak

* Applicable to oscillating series.
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249

and chasm functions U (x) and X (a?). As usual I denote by Mnq the upper bound of Sn(x)

and by LntQ the lower bound of the same, in a region Q having a chosen point P inside it.

Mq denotes the upper limit of Mntq as n increase indefinitely, and Lq the lower limit of LntQ.

It will be remembered that the peak function II (x) is at once the unique limit and the

lower bound of all the MQ's as the regions shrink up to the point P, and the chasm function

is the unique limit and at the same time the upper bound of LQ.

We have then as in the proof of Theorem 2, if l0 and n0 be the lower and upper bounds of

the partial summations of the a-series, the inequalities

kfo O) ^ sn (x) ^ Wo/0 0).

Let xn be the point of the region Q at which the continuous function sn{x) assumes its

upper bound Mn^ it then follows that

If n describe any sequence of positive integers, the points xn will have one or more limiting

points, and, if y is one of these, we may so choose the sequence of n s that y is the unique

limiting point. The point y is evidently a point of the closed region Q. Thus

MQ ^ u0f0 (y\

whence also, letting the region Q shrink up to the point P,

U(P)^uJ0(P),

as f0 is continuous at P.

Similarly X (P) > l0f0 (P),

and therefore II (P) - X (P) ^ (u0 - lQ) f0 (P).

But though the peak and chasm functions themselves will be affected by omitting any

finite number of terms from the series (3), their difference will not. Thus omitting the first

n terms of (1) and (3)

U{P)-X(P)^{un-ln)fn{P).

This being true for all values of n, we get in the limit

U(P)-X(P)^M/(P).

But the upper and lower functions both lie between the peak and chasm functions, and we

have just proved that their difference is precisely Mf(P). Therefore not only must we in the

inequality just obtained take the sign of equality, but further the peak function necessarily

everywhere coincides with the upper function and the chasm function with the lower function,

so that there is uniform oscillation everywhere both above and below.

The remaining statements in the enunciation of the theorem at once follow. For, by the

theory of uniform oscillation above and below, the peak function is an upper semi-continuous

function and the chasm function is a lower semi-continuous function, so that in this case the

same is true respectively of the upper and lower functions.

Further at a point at which f{x) is continuous,

U(x) = L(x) + Mf(x)

Vol. XXI. No. IX. 34
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250 Dr W. H. YOUNG, ON UNIFORM OSCILLATION.

has necessarily the same kind of semi-continuity as L (#), therefore it is lower semi-continuous;

but it is upper semi-continuous everywhere, therefore it is continuous.

(II) follows at once from the theory of uniform oscillation, and (III) is obviously a special

case of our theorem.

§ 7. Theorem 3a. If in Theorem 3 only the upper {lower) limit of the a-series is finite}

so that M is not finite, then the (a, f)-series oscillates uniformly above (below) so that its upper

(lower) function is everywhere upper (lower) semi-continuous.

As before we get

U(P)^u0fQ(P).

We now put zero for all the a's before an. The peak function will then be obtained

by adding to the peak function of this new series the sum of the first n terms of the (a, /)-series.

We thus get

II (P) ^ a0f0 + a.f + ... + an^fn_Y + (un - a0 - a1 - ... - an^)fn,

where the coefficient of fn is the upper bound of the partial summations of the new series of the

a's. Thus un is the upper bound of all the summations after the nth. of the original a-series (1),

and hence if we make n describe such a sequence that we get the upper limit for series (1), the

coefficient of fn in the preceding inequality will have zero as limit. Hence we get

whence the required result follows.

It should be noticed that it does not follow because the (a,/)-series oscillates everywhere

uniformly above (for example) that it oscillates everywhere finitely. It might, as follows from

Theorem 2, diverge properly to — oo above or more points.

§ 8. Theorem 4. If

be a series of continuous functions of any number of variables, denoted by oc, and

be a monotone decreasing sequence of continuous, never negative, functions of the variables x,

whose limiting function is f{%), then at any point at which the v-series has a unique limiting

function or oscillates uniformly above (beloift) the same is true of the series

%/o+Vi+ ••• •

Indeed it follows at once from Theorem 1 that, denoting the upper, lower, peak and chasm

functions of the v-series by u, I, ir and ^, and using the corresponding large letters to refer to

the (v,/)-series,

U-L=(u-l)f,

provided the right-hand side of this equation is definite. This proves the first of the above

statements, since if u= I, we must have U = L. To prove the remaining statements we proceed

to prove the inequality

n-U<(7r-u)fi
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from which the corresponding inequality

L-X^(l-X)f

follows by analogy.

For, denoting by sn and Sn the sums of the first (n + 1) terms of the ^-series and the

(v, /)-series respectively,

8n = %fo + Vi/i + + Vnfn

— Si + (Si^ — Si)/^ + . • • + (sn — Sn—i)fn

= Si~ Sifi+i + Sf+i {fi+i ~~fi-tfi) + • • • + Sn-i (fn—i ~ fix) + 8nfw

Now the f's and their successive differences are never negative; hence, denoting by bi+1

the upper bound in some closed region Q containing the point % in question, of all the

partial summations Si+2> •••

Sn ~~ Si + Sifi+1 ^ bi+ifi+i.

Now denoting by M^q the upper bound of Sn in the region Q, there is a point xn of that

region at which Sn attains its upper bound, since it is continuous. Hence

Mn>Q - Si (xn) + *< («n) <

Now if we let n increase without limit in such a way as to give the upper limit MQ of Mn>Qy

the points xn have at least one limiting point y, which, since the points xn all lie inside the

region Q, also belongs to the region Q, and we may confine our attention to such a sequence of

the values of n in question, that the point y is the unique limiting point of the points xn. We

thus get

mq ~ Si (y) + Si (y)fi+1 (y) ^ bi+1fi+1 (y),

since the functions Si, Si,fi and fi+l are continuous.

Letting the region Q shrink up to the point x, we then have, by the definition of the peak

function,

II - Si (x) + Si (x)fi O) ^ bi+Ji+i (x),

in which 6t-+1 has been retained, since in the process of shrinkage, the corresponding coefficient

never increases.

Now, by the definition of bi+l it is the upper bound of mntQ for all values of n > i +1, where

mntQ is the upper bound of sn in the region Q. Hence, by what was pointed out in § 3 about

upper limits, the quantities bn form a monotone non-increasing sequence whose limit is the

upper limit mQ of the quantities mntQ. Hence, allowing the integer % to describe such a sequence

that Si(x) has the unique limit u(x), we get

n - U (x) + u (x)f(x) ^ mQf(x),

since Si (x) will have a limit or limits less than U (x).

Since this is true for all regions Q containing the point x,

U(X)-U (X) + U (X)/(X) ^ 7T (X)J(X\

that is

n (x) - U (x) ^ {tt (x) - u (*)}/(*).

34—2
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But at a point where the oscillation above is uniform the peak function is equal to the

upper function, so that the preceding equation shews that where the i*-series oscillates uniformly

above, so does the (u, /)-series, since the peak function is never less than the upper function.

Similarly the statement about the lower oscillation may be proved.

§ 9. The proof of Theorem 4 at once gives us the following additional theorem:

Theorem 4 a. At a point at which f(x) has the value zero and the peak and chasm functions

of the v-series are finite, the (v,f)-series converges uniformly* and therefore the upper and lower

functions are equal and continuous there.

The following theorem follows, by reasoning similar to that employed in proving the later

statements of Theorem 2.

Theorem 46. If f is different from zero and the measure of the non-uniformity of the

oscillation above (below) is finite, so is that of the (v,f)-series, and if the former is infinite so is

the latter, provided one only of the oscillations, above or below, of the v-series is infinite. If both

measures are infinite, so that 7r = -f oo , % = — 00 > either II = + oo or X = — oo .

The first statement is an immediate result of the inequality

n-D^TT-tO/,

established in the course of the proof of Theorem 4, or the independent inequality

To prove the remaining statements we take the case of infinite non-uniform oscillation

above and write

o _ ^o/o , ^ifi , , Vnfn _S0 f Sj- S0 f Sn — £n_x

Sn — —p I -p r ... i > — ~p -i 7. r • • • i 7

Jo Ji Jn Jo Ji Jn

= $o \ -J — 7 f + • • • + >Sn_! { 7; ^-1 + Sn -j- .

l/o JiJ t/n-i fn\ fn

Let xa be the point of a region Q containing the point P at which the continuous function

sn assumes its upper bound mntQ} and let Sj(xn) be the least of the quantities Sr(xn), for values

of r less than n, or, if this is not unique, that one whose index r is the greatest. Then, since the

coefficients of S0,... #n_x 1^ the preceding equation are all negative or zero, we get

mn,Q ^ Sj On) ( fj^r^ ~ f ]m \ ) + Sn (®n) 1

fio (®n) fn ipn)/ fn (%n)

1

^ Sj (xn) kn + MUiq ,

Jn \pn)

where kn lies between 0 and x — n *~ . .

J\pn) fo (Xn)

Now if we let n describe such a sequence of integers that mUiQ has its upper limit mQ, the

points xn will have one or more limiting points, and, if y be one of these, we may confine our

attention to such a sequence of ris that y is the unique limiting point of the points xn. The

coefficient kn will then have a limit or limits lying between 0 and

1 1

Ay)

and we may confine our attention to such a sequence of integers n that kn has a unique limit k.

* In the extended sense applicable to oscillating series.
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As to the integer j two things may occur:

(i) it may have a finite upper bound J. In this case, from and after a certain value of

n, j = J always;

(ii) j may have no finite upper bound; Sj (xn) is then greater than or equal to its lower

bound in the region Q, that is LjtQ) and therefore has a limit greater than or equal to the lower

limit LQ of LjtQ.

Thus we get either

™Q < - (V) k + MQ(k + ^) ,

or mQ^-LQk + MQ(k + j^j.

Now if 7r(P) is + oo, so is mQ) and therefore, if the former of these two inequalities holds,

so is Mq, since the remaining quantities involved are finite; in this case, therefore, II(P) = -f oo .

But if the second of these inequalities holds either LQ = — oo or Mq = + oo, so that either

X(P) = -oo or n(P) = +oo.

But if the measure of the non-uniformity of the oscillation below is finite for the ^-series,

so it is for the (v,/)-series, and therefore X(P) is finite, so that in this case II(P) = -f oo, as

stated in the enunciation.

§ 10. The two theorems which follow are again an immediate consequence of the

proof of Theorem 4.

Theorem 4 c. If any point of continuity of f (x) is also a point of continuity of the oscillation

function (u — I) of the v-series, the upper and lower functions of the (v, f)-series are continuous at

this point.

Theorem 4d If the v-series converges everywhere uniformly, so does the (v,f)-series} and

therefore represents a continuous function*.

Attention is called to the special case of these theorems when the multipliers f0) fu ... are

constants.

| 11. As an illustration of the use of the results arrived at, we may notice the simple

example of a power series which converges when x < r, and oscillates when x = r. Here

so that f(x) is zero when x is less than r, and unity when x = r.

It then follows from Theorem 4 that the upper function of the power series is upper semi-

continuous and the lower function lower semi-continuous at the point x = r, while they of course

coincide and are continuous elsewhere. Hence from the very definition of upper and lower

semi-continuity, the upper and lower limits of the series of constant terms obtained by putting

* This is a generalisation of Abel's and Dirichlet's test for uniform convergence, see Bromwich, Introduction

to the Study of Infinite Series, Macmillan (1908), pp. 113, 114.
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x — r are respectively ^ and ^ all the limits of the sum-function for all modes of approach of x

to the value r.

This result is, of course, well-known, it is merely given here as shewing how a whole class

of results become self-evident in the light of the theorems we have proved.

§ 12. I now pass to one of the obvious consequences of the results of the paper on

"Oscillating Successions of Continuous Functions," referred to in § 19 of that paper, viz. to a

particular case of the result given in Ex. 1, § 17, p. 317. We there found that when the functions

fi (x)> f (x)> • • • which represent the successive sums of an oscillating series, are monotone, the peak

function is the associated upper limiting function of the upper function and the chasm function is

the associated lower limiting function of the lower function. It of course immediately follows that

if the upper function is upper semi-continuous at a point P the oscillation above at P is uniform,

and similarly for the lower function. In other words, there are no invisible points of non-uniform

oscillation.

As a very particular case of the example in question we have the following theorem:

Theorem 5. If f (x), f2 (x), ... form a sequence of continuous monotone increasing (or

decreasing) functions, having as unique limit a function f(x), then at any point at which the

function f is continuous, the sequence necessarily converges uniformly. Moreover at a point at

which it is continuous in the extended sense in which we distinguish + oo from — oo the sequence

diverges uniformly.

Anyone who has taken the trouble to master the ideas of the peak and chasm function will

hardly, I think, fail to see the intuitiveness of this result. It is often, however, a satisfaction to

have a result, obtained by a new method, confirmed by the use of au old one. I now give

therefore a proof which depends on the use of the e-machinery and the original definition of

uniform convergence at a point.

Let a be a point of continuity of the limiting function f(x), and choose the interval (a, b)

so that

0^\f(a)-f{b)\^e (1),

and choose m so that for all integers n^m,

\fn(a) -f(a)\<\e (2),

and also \fn(b)-f(b) \ < \e (3).

Also bearing in mind that f(x) is itself, like a monotone function, we see that fn (x)

lies between /n(&) and fn(b), and f(x) between f(a) and f(b), if x is any point of the interval

(a, b), and accordingly that

fn 0) -/O)

lies between fn(b)-f(a) and fn(a)—/(ft).

But from (1) and (3), \fn (b) -f(a) \ < e,

and from (1) and (2), \fn (a) -f(b) \ < e.

Hence \fn (x) -f(x) |,
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being necessarily less than the greater of these two moduli, is less than e. Thus, corresponding

to the point a and the value e, we have found an interval d on one side of a, and an m, so that

for all points x inside d and for all values of n ^ m

| &n 0) I ^

Taking similarly an interval on the other side, the two form a whole interval surrounding

the point a for which this is true. Hence by the definition of uniform convergence at a point,

the sequence converges uniformly at the point a. Q. E. D.

It will be noticed that the above proof, like all e-proofs, requires suitable modification if a

is a point of continuity in the extended sense.

§ 13. This theorem may be compared with the known theorem that a monotone sequence of

continuous functions has no invisible points of non-uniform convergence.

The student who is at home with double limits will recognise that both these theorems are

an immediate consequence of the following simple theorem:

Theorem 6. If f(x, y) is a monotone increasing {or decreasing) function of y at all points

of a closed (+, -\-\neighbourhood * of the point P, and is continuous with respect to x on the

ordinate of P, and also with respect to y at P itself, it is a continuous f function of the ensemble

(x, y) at the point P.

For let It be any point on the ordinate of P (Fig. 1), and let the parallels r S

to the #-axis through P and It meet the ordinate of any point T in Q and S. 9 # #

Since f(x, y) is monotone with respect to y,f(T) lies between /(Q) • T', J

and /(#). But, as T moves up to P in any manner, Q moves up to P and p*#*#*q** *

S to It: therefore, since / is continuous with respect to x at the points P Fig< 1>

and R,f(Q) and/($) have respectively the unique limits>/(P) and f(R), so

that all the limits of/(r) lie between f(P) and/(P).

Since this is true for all positions of the point R on the ordinate of P, and f is continuous

at P with respect to y, it follows that f(T) has the unique limit f(P), which proves the

theorem t.

* That is a neighbourhood bounded below and on the

left by the axial cross through P.

f That is continuous in as far as the (+, +) -neighbour-

hood is concerned. There is no assumption and therefore

no result as to continuity with respect to the other

quadrants. Of course if / is defined all round P, and

similar conditions hold in all four quadrants separately,

or in a whole region with P as internal point, we shall

get complete continuity at P. In the same way the

continuity demanded with respect to x and to y is only

one-sided, viz. on the right for x and above for y. More-

over continuity here does not include finitude, infinite

values are allowed, and the two infinities, + oo and - oo ,

are distinguished from one another.

X It will be noticed from the proof that it is not really

necessary that / should be continuous with respect to x

except at P itself, provided the upper and lower limits

of / (x, y) for constant y when x has for limit the abscissa

of P, have, when the point R approaches P as limiting

point, / (P) as unique limit.

The corresponding theorem for double series is evidently

as follows:

If Snun is monotone for each fixed value of m as n

increases, and if its repeated limits

Lt Lit Snhn and Lt Lit Smn

771= so 7l=co 71= co m = <»

are all equal, then a unique double limit of Sm>n exists,

that is,

Lt Sm.,n.

i— co 1 1

is unique, whatever sequence (m^, wt) of integers be chosen.

Since finishing this paper I found a statement of a

theorem on double series by Bromwich, substantially the

same as this, and differing from it only in so far that the

condition of finiteness is required.
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X. The determination of solutions of the equation of wave motion involving an

arbitrary function of three variables which satisfies a partial differential

equation.

By H. Bateman, M.A., Fellow of Trinity College, Cambridge, and Reader in

Mathematical Physics at the University of Manchester.

Received October 29, 1909.

Read November 8, 1909.

§ 1. The transformations of coordinates which enable us to pass from any given solution

of the equation of wave motion to another Lave already been investigated*, they form a very

limited class and are characterized by the property that

(dx2 + dy2 + dz2 - c2dr2) = \ (dx'2 + dy'2 + dz'2 - c2dr'2).

Besides these, however, there are large classes of transformations which can be applied to

solutions which satisfy certain linear conditions, but cannot be applied to an arbitrary solution

of the equation. These transformations may be divided into two classes. A transformation of

the first class may be illustrated by means of an identical relation of the typef

dx2 + dy2 + dz2 - c2dr2 - (pdx + qdy + rdz + scdr)2

= dx'2 + dy'2 + dz'2 - c2dr2 (1),

in which p2 + q2 + r2 = s2.

Such a transformation enables us to pass from a solution of

dfV d*V d^V__ld^V

daf+ dy2+ dz2 "c2 dr2'

XT • ^ 1 dV dV dV SdV

satisfying the relation ^dx"^^dy^'r~dz:=cd

c d2V d2V d2V 1 d2V

to a solution of .

* Proceedings of the London Mathematical Society, which satisfies the relation

Vol. 7, Ser. 2, p. 70 (1909). dV dV dV

f There are similar transformations which can be 2' +^ dy^7

applied to solutions of Laplace's equation. . , „ , . , , .. „

rr x- i 1S transformed into a solution ol

If

d2V d2V d2V rt

dx2 + dy2 + dz2 - (pdx + qdy+rdz)2 = dx'2 + dy'2 + dz'2, dx^ + dy72 + dz7"2 =

r *' A more general result may be obtained by considering

then a solution of a transformation for which

d2V d2V d2V dx2 + dy2 + dz2-{pdx + qdy+ rdz)2

dx2Jrdy2 + dz^~i =\ (dx'2 + dy'2 + dz'2).

Yol. XXI. No. X. 35
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A transformation of the second class is characterized by means of a relation of the type

(p2 + f + r2 + s2) (doc? + dy2 + dz2 + dt2)-(pdx + qdy + rdz + sdt)2

= dX2 + dY2 + dZ2 (2),

where t is written in place of icr.

It can be shewn that if p, q, r, s satisfy certain conditions the transformation enables us to

pass from a solution of

d*v d*v a*7 <y_0

dx2 + dy2 + dz2 + dt2 ~'

that satisfies a certain linear relation of the type

37, dV dV dV Tr A

to a solution of

d2V 3*7 d^V_

dX* + dY* + dZ*~"'

and vice versa.

It is the transformations of the second class which form the subject of this paper. The

problem to be solved may be enunciated as follows.

To determine three functions X, Y, Z and a fourth function W, such that if F (X, Y, Z) is a

solution of

d2F ofF (PF_

dX2 + dY2 + dZ2''

the function V=WF(X, 7, Z\

ffy ffy fty

may be a solution of — + ^ + ^ + — = 0.

In attacking this problem it is convenient to consider a problem of a more general nature

in which the object is to construct solutions of the form

V=WF(Xy 7, Z\

where F is any solution of a certain partial differential equation having X, 7, Z as independent

variables.

In solving this problem I have made use of some theorems on the multiplication and

transformation of integral forms given in my paper on the transformation of the electro-

dynamical equations*.

Transformations possessing the property (2) are analogous to conformal transformations, for

if we take elements through a point (%, y, z} t) which satisfy the relation

pdx + qdy + rdz + sdt = 0,

they are evidently proportional to the corresponding elements in the (X, 7, Z) space.

§ 2. The direct treatment of the problem and the fundamental equations.

The conditions to be satisfied in order that the differential equation

* Proceedings of the London Mathematical Society (1910).
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where a is an arbitrary constant, then

is a solution of the equations

d*Z d*Z

da? + dy> + dz2 ~~

A second solution of these equations is given by

so that in this case

V =

W =

a — xpl (u) — yq! (u) — zrf (u)'

a — xpl (u) — yq' (u) — zr (u)'

§ 3. The transformation of the differential equations.

Let a fourth quantity T be associated with X, Y, Z in such a way that x, y} z, t can be

expressed in terms of X, Y, Z, T; then we may write

\ox J \oy J \oz J \ot J

"bzy

dx

+

Jyj

dT

dt

= 6

dYdZ dYdZ dYdZ dYd_Z =

dx dx dy dy dz dz dt dt

dZd_X dZdX d_ZdX_ dZdX_

dx dx dy dy dz dz dt dt ^

d_X d_Y d_Xd_Y d_XdY dXdY=h

dx dx dy dy dz dz dt dt

d_XdT dXdT axar dXdr_

dx dx dy dy dz dz dt dt

dYdJ^ + dYd^ + dYd_T + dYdT = v

dx dx dy dy dz dz dt dt

dZdT d_Zd_T dZdT dZdT =

dx dx dy dy dz dz dt dt

Multiplying these equations by

d%_dr)_

dX dX'

djdri

dYdY'"

9£ dji 9f l\n

dYdZ^dZdf'

.(3).
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and adding we obtain the relation

djjfy + dj[dy ^dj^ch) dl; dr)

dx dx dy dy dz dz dt dt

adX dX + 0dYdY + cdZdZ + vdTdT

^J \dYdZ + dZdYj+

dX dT ^rp ^v''

.(4).

dTdXJ

Now take six arbitrary functions £2, f3, 77^ 77^ 773 and form a determinant with the

elements

3# 3# 3y 3y 3^ 9# 3£ dt

The value of this determinant is easily seen to be

d(gi» £3) 9 Oh, V2, Vs) d £3) 3 fa, 7}3)

3 (y, 0 ' 3 (y, 0 3 a?, 0 3 (z, x, t)

3 0, y, 0 3 y,t) ^ d (x, y, 3 (x, y, z)

while the value of the determinant formed by the quantities on the right-hand side is*

(5),

a d(£> gs) d (Vi, Vi, Vs)

3(F,^T) d(Y,Z, T)

+ F

3(£l, &, &) 3 fa, *?2, *?8) 3 (fl, £2, fs) 3 fa, *?2,

...(6),

_3(£,X, T)d(X, Y,T)^d(X, Y,T)d(Z,X, T) J

where -4, i?, (7, J7, G, H, U, V, W, © are the cofactors of a, b, c, f, g, h, u, v} w, 9 in the

determinant

a h g u

h b f v

g f c w

u v w 6

Now let dx, dy, dz, dt be increments of x, y, z, t when £x, £2, £3 are kept constant,

dX, dY, dZ, dT the corresponding increments in X, Y, Z, T. Since £2, £3 are arbitrary

functions the increments dx, dy, dz, dt are really arbitrary. We have

dJbdx+fdy + dJkdz+tjLdt = Q>

dx dy dz dt

dfidx+d£dy + dfidz + %dt = 0,

dx dy J dz dt

dJkdx+dAdv+dJkdz + dJkdt = Q

dxaoo+dy y+dz a + dt M °'

therefore

3 fa ^)

cite

,3 (g, #, <Q

3 (a?, y, t) iHxTy^W __

dz dt

The -farms containing 77, F, W have a negative sign

= k, say.
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OF THE EQUATION OF WAVE MOTION 263

dJ&>l*iM atfi.fc.fe) 9(gi.gt,g.) a(&,g.,f»)

simiinriv 8(^^y) a(^xr) ,a(z,F,r) a(x, f,£)

bimilarly ^ _ ^ ^ ^ A.

Again, if Bx, By, Bz} Bt; BX, BY, BZ, BT are increments in the variables when tj1} tj2, rjs are

kept constant, we can express them in terms of r}lt rj2, rj3 by a repetition of the above process.

Substituting ttdx, tc'Sx, KdX, K'SX, etc. for

in the expressions (5) and (6) we obtain the relation

■~ [dxBx + dyBy + dzBz + dtBt] = AdXSX + BdYBY

+ GdZBZ + <ddTBT + F (dYBZ + dZBY) + G (dZBX + dXBZ)

+ H(dXBY+ dYSX) + U(dXBT+ BXdT) + V(dYBT + BYdT)

+ W(dZBT + BZdT) (7).

/

fCfC

Putting dx = Bx, etc., j^jp = \ we get

X [dx2 + dtf 4- dz* + dt2] = AdX2 + BdY2 4- GdZ2 + ©d2'2

4- 2FdYdZ + 2GdZdX + 2HdXdY + WdXdT

4- 2 FdFdT 4- 2 TTdZrfT (8).

This is the characteristic relation of the transformation. The quantities A, B, G, F, G, H are

linear functions of 0, thus

A = 0 (be -f2) - v2c - w2b + 2fvw;

the quadratic differential form on the right-hand side can therefore be written

0 [(be - f2) dX2 + (ca - g2) dY2 + (oft - A2) dZ2

+ 2(gh- af) dYdZ + 2 (A/- bg) dZdX + 2(fg- ch) dXdY]

- [(v2c 4- w26 - 2fvw) dX2 + (w2a + w2c - 2#wu) <ZF2

4- (u2b + v2a - 2huv) dZ2 + (abc 4- 2/$rA - a/2 - bg2 - ch2) dT2 .

4- 2 (Aw2 4- ciw — — fwu) dXdY4-

+ 2 jtt (6c -/2) + v (/# - cA) 4- w (A/- fy)} dXcM7].

Now the second half of this expression is a perfect square if the single condition

(be -f2) u2 + (ca - g2) v2 + (ab - A2) w2

+ 2(gh- af) vw + 2 (hf- bg) wu + 2 (fg - ch)uv = 0 (9),

is satisfied. We shall suppose that this condition is satisfied * and that the expression is the

square of

PdX + QdY+ RdZ + SdT.

Let the equivalent of this in terms of the variables x, y, z, t be pdoc 4- qdy + rdz + sdt, then

equation (8) may be replaced by the equation

X [dx2 4- dy2 4- dz2 4- dt2] - (pdx 4- qdy 4- rck 4- sdt)2

= [(fc ~/2) ^2 + (pa - ^2) dF2 4- (ab - A2) d^2

+ 2(gh- af) dYdZ+ 2 (hf- bg) dZdX+ 2 (fg - ch) dXdY] 0 ...(10).

* The condition may be regarded as a differential equation for determining T and by a suitable choice of

T the equation may be satisfied.
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Since the quantities a, b, c>f g, h are all proportional to functions of X, F, Z, the coefficients of

the quadratic form on the right-hand side can be reduced to functions of X, F, Z by multiplying

them all by a certain factor <£. The quantity X may be determined by the fact that the

quadratic form on the left-hand side of the equation can be expressed as the sum of three

squares, the discriminant is therefore zero and so

\=p2 + q2 + r2 + s2.

Absorbing a suitable factor from the right-hand side of the equation into p, q> r, s, the meanings

of these quantities being now slightly different from before, the equation takes the form

(p2 + q2 + r2 + s2) (dx2 + dy2 + dz2 + dt2) - (pdx + qdy + rdz + sdt)2

= a'dX2 + b'dY2 + c'dZ2 + 2f'dYdZ + 2g'dZdX + IKdXdY. (11),

where the coefficients of the quadratic form on the right-hand side are functions of X, F, Z alone.

In the particular case when a = b = c, /=-• g = h = 0 the equation can be reduced to the simple

form

(p2 + q2 + r2 + s2) (dx2 + dy2 + dz2 + dt2) - (pdx + qdy + rdz + sdt)2

= dX2 + dY2 + dZ2 (12).

In the general case we can find a transformation of the X, F, Z coordinates which reduces the

quadratic differential form on the right-hand side to the sum of three squares. The equation

then becomes

(p2 + q2 + r2 + s2) (dx2 + dy2 + dz2 + dt2) - (pdx + qdy + rdz + sdt)2

= IdX2 + mdY2 + ndZ* (13),

where I, m, n are functions of X} Y} Z.

The problem of determining transformations of coordinates which can be applied to the

equation of wave motion is thus reduced to that of finding functions p, qy r, s such that the

quadratic form on the left-hand side can be expressed in the form given on the right.

§ 4. The determination of the functions p, q} r, s.

When equation (7) of § 3 is transformed m the same way as (8) it eventually takes the*

form

(p2 + q2 + r2 + s2) (dxhx + dySy + dzlz + dtSt)

— (pdx + qdy + rdz + sdt) (pSx + qSy + rBz + sSt)

= IdXhX + mdYSY + ndZSZ (14),

corresponding to (13).

We shall now have occasion to use the method of multiplying integral forms described in

my paper on the transformation of the electrodynamical equations*.

In this method of multiplication the sign of a product such as dxdydz depends upon the

order of the terms so that dxdydz — — dydxdz. The product of two terms containing the same

constituent, e.g. Adxdy and Bdxdz, is consequently zero. On this account the product of a

number of integral forms usually takes a very simple form.

* Proceedings of the London Mathematical Society.
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Applying this method of multiplication to the integral forms occurring in equation (14) and

cubing the equation we obtain

(p2 + q2 + r2 + s2)2 [pdydzdt + qdzdxdt + rdxdydt — sdxdydz']

[pSySzSt + qSzSxBt + rSxSySt — sSxBySz]

= ImndXdYdZSXSYSZ.

Putting dx = Sx, etc. and extracting the square root we have

Pdydzdt + Qdzdxdt + Rdxdydt — Sdxdydz

= slhrmdXdYdZ (15),

where P = p (p2 + q2 + r2 + s2), R = r (p2 + q2 + r2 + s2),

Q = J (^ + ^2 + r2 + S2)? £ = ^ (^2 + q2 + r2 + ^

Again, + +

and it is known that the law of multiplication holds also for integral forms of this type. Now

\Jlmn is independent of T, therefore

g + *Q + |? +1^ dxdydzdt = - ~(vW) dXdYdZdT= 0.

8.P 80 3J2 9$

This gives the relation 9^+9y+9^ + W = ^

This is a condition which must be satisfied in order that the bilinear integral form on the left

of (14) may be expressible in the form given on the right where l} ra, n are independent of T.

Next let F(X, F, Z) be any function of X, Y} Z; then

_dx + _dy + _dz + Ttdt=^dX+-dY+^dZ (17).

Multiplying this equation by

Pdydzdt + Qdzdxdt + Rdxdydt — Sdxdydz = sllmn dXdYdZ,

according to the given rule, we obtain the relation

^+^+rd^+sdt=0 (18>-

Again, on multiplying (17) by the square of (14) we get

( BF dF\SS:if dF dF\ t .4

|>2 + 22 + r2 + s2] cfyffecft + ... = [mn ^ SFS^ + ?y S£6\X

\dXdYdZ (19).

Vol. XXI. No. X. 36
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Mr BATEMAN, THE DETERMINATION OF SOLUTIONS

Simplifying this by means of equation (18), we obtain

dF dF

Pdt ~sdx

dF

dt

dF\

dy)

2 *7 " 8 id ^x + ir %~ s I?) tefy

^ SyBz

( dF dF\^ . / dF dF\& s, / dF dF\. ■

(« - r WJ * + V dx - P Tz ) * U + [P dy ~«ai"j& *

[pdytfocft + qdzdxdt + rdxdydt — sdxdydz] [p2 + q2 + r2 + s2]

= \{mn) ^ + (nl)d^SZBX + (Im) ^ SZSF

dXdYdZ.

Rejecting the factor 'JlmndXdYdZ and its equivalent the equation becomes

/ dF

[Pdi"

dj\

dxi

dF

dz'

dF\

dy,

dF\st s_ / dF

rdyl)mt + \rdx-

0

-(y™)i?s™+

Let this equation be multiplied by

8XSY (20).

^ dx + ^dy + ^dz + ^dt = dX +

ftp T3y ^aiw_9X

according to the rule explained above, then

wdY+izdz+wdT>

d_F_ dF_

dt [P dt S dx

dy

dJF_ dF

P dy ^ dx

d_F_ dF

dz dx P dz.

HndF

mdY,

ImdF

n dZ

d_Fd_

dTdT

SySzSt +

SX8YBZ

d_ I /mm. dF\ d_ I ll

dX W I dXJ + 3FVV mdYJ ' dZ

<2»-

8Z8X8T

If l9 m, n are independent of T the coefficients of 8Y8Z8T, 8Z8X8T and 8X8Y8T will

disappear. Hence the necessary and sufficient condition that I, m, n should be independent of T

is that the integral form on the left-hand side should reduce to a multiple of 8X8Y8Z, i.e. to a

multiple of

p8y8z8t + q8z8x8t 4- r8x8y8t — s8x8y8z.

Now the coefficient of 8y8z8t on the left-hand side is equal to

d2F

■ + s—)

dxdz dxdt)

/d2F d2F &F d2F\ f d2F d2F

p W + dy2 + dz2 + dt2) " \p w+qdxty+r i

\dx dx dydy dz dz dt dt J dx\dx dy dz dt)'

Since

dF

dx

dF

dy

dF

'dz

dF

dt

the second bracket may be replaced by

dpdF+dqdF dr dF ds_d_F

dx dx dx dy dx dz dx dt'
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We now require the conditions that the expression on the left-hand side of (21) may contain

pdydzdt + qdz dxdt + rdxdydt — sdxdydz

as a factor. Let the other factor be

then we must have

da? + df + dz" + dt2 + * dx + Vdy + ? dz + T dt'

dp dq dr ds „ , ^

dp dr u

.(22),

9p + cte

3£ 3#

: Tp -H Xs;

the additional terms Xp, X^, Xr, Xs being introduced because an arbitrary multiple of

dF dF dF dF

^ dx ^ dy T dz S dt

can be added to the coefficient of SySzSt.

The term SzBxSt gives a similar set of equations

dq _ dr ds dp

dy dz dt dx

= vq + m>

dq dr

dz + dy = tq + ^

dq ds

and similarly for SxSySt, 8%8y8z.

Comparing the two expressions for ^ + we see *na* tne f°ur systems of equations

are consistent with one another if

= £ f* = V> f = £ R = t.

We thus obtain the system of equations

dq dr

3p__3£_3r__3£_9/:

3# 3y 3* dt ~ *P

dy dz dt dx~ vq

3r _ 3s dp dq

dz dt dx dy

3s _ dp _ dq _ dr _ ^ ^

3£ 3# 3y 3#

3s 3?? ^

ds dq

3s 3r

2£r

.(I).

36—2
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268 Mr BATEMAN, THE DETERMINATION OF SOLUTIONS

The expression

W W ^dF dF dF dF

da? df + Bz* dt* + * die + v dy + * dz + T dt

can be reduced to the form

if

32F . 32F . 82F d2V\

dzT + ~df)

*~ 6dz + 6'

_ld0 as

T~6dt + 6'

K = <J~0,

K\dx* + df +

..130 op

* 0dx + 0'

_ld6 <xq

v e dy + e'

V= V<? F,

where a is some function of x, y, z, t. The terms involving a in (22) disappear on account of

the relation

dF dF dF dF .

dee ^dy dz dt

Making these substitutions the equations take the form

3 fs

d /q\ d Ir

dz\e) + dy \e,

dx \d) dz\e)

dy\e)^doo\e.

2 4(1)

dy\e)

d (r

o r P

—s

-s« i +

2d-(S-

dt\e

= 2a(;

\J9) '0

Adding the last four equations we obtain

\.l(P\-9* P

dx\0) + dt\0j~ Za0- 0

dy\e) ^ dt\0j~ 0 - e

s(l)+IS) = 2ag- d

dp _^ dq ^ dr ds

dx dy dz dt

"dp + dq ^ dr ds

dx dy dz dt]

dp ^ dq ^ dr ds'

dx dy dz dt

dp dq dr ds

dx dy dz dt]

|(pff) + %(qB) +~(r0)+ (s0) + a(p> + f + r* + S2) = 0

If we put

q -

a(p2 + 22 + r2 + s2) = - p

9 L

3* 3*

dx y dy V dz S dt

d<t>'

where <j> is some function of x, y, z} t, equation (23) may be written

I ipOf) + | W) +1 (r**) + | (sty) = 0,

and this is satisfied by taking

, = (p* + q* + r* + s*)f(X, 7,Z),

■(H).

.(23).
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269

for we have

d [p (p2+q2+^ + *2)] + ly [q (p2 + q2 +r2 +s2)]

dx

7\ 7)

+ jz {r(f + <? + ^ + s2)] + ztls (P* + <f + r2 + s2)l = °>

df df df df A

When the equation (21) has been simplified by means of the identity

(pdydzdt + qdzdxdt + rdxdydt — sdxdydz) (p2 + q2 + r2 + s2) = VImndXdYdZ,

it takes the form

Yd^F cPF d^F d^F dF d_F dF dFl 1

[a#2 + dy2 * dz2 + dt2 + * dx+Vdy + ^dz + T dt jp2 + ?2 + r2 + s2

*Jlmn

~82

or

(p2 + g2 + r2 + s2) V#

8#5

"d ( Imn dF\ d__ / /rd dF\ d_f Am aF\

V0) +12 (W*) + g (i^) 4- g (*V0)

..(24),

"_9_

ax

/ /mndF\ 3 / f^dF\ df /l^dF

W TdXJ + dYW mdYj + dZ\V n dZ

...(25).

can be reduced to the form

If by a transformation of the X, F, Z coordinates the quadratic differential form

ldX2 + mdY2 + ndZ2

dX2 + dY2 + dZ2,

the expression on the right-hand side of (25) reduces to

^ ^ a2^

ax^ay^a^2- 1'

and we have the result that if F(X1} Yl9 Z^ is a solution of this equation V2F=0 the function

r= V0. f

dW dW_ dW_ d^V =

dx2 + dy2 + a*2 + df

is a solution of the equation

It should be remarked that the system of equations (I) provide us with the necessary and

sufficient conditions that the quadratic differential form

(dx2 + dy2 + dz2 + dt2) (p2 + q2 + r2 + s2) - (pdx + qdy + rdz + sdt)2

can be reduced to the form

adX2 + bdY2 + cdZ2 + 2fdYdZ+ 2gdZdX + 2hdXdY,

where a, 6, c, /, g, h are functions of X> Y, Z alone.
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To prove this we take three independent functions X, Y, Z satisfying the equations*

dX dX dX dX A

dY dY BY dY .

dz dz dz dZ .

and a fourth function T which is independent of X, F, Z. Expressing x, y, z, t in terms of

the independent variables X, Y, Z, T; we may write

(dx2 + dy2 + dz2 + dt2) (p2 + q2 + r2 + s2) -(pdx + qdy + rdz + sdt)2

= adX2 + bdY2 + cdZ2 + 2fdYdZ+ 2gdZdX + 2hdXdY

+ 2udXdT+ 2vdYdT+2wdZdT + 6dT\

and polarising this equation we obtain

(dxBx + dyBy + dzBz + dtBt) (p2 + q2 + r2 + s2)

— (pdx + qdy + rdz + sdt) (pBx + qBy + rBz + sBt)

= adXBX + bdYBY+ cdZBZ + f(dYBZ+dZBY)

+ g (dZBX + dXBZ) + h (dXBY+ dYBX)

+ u (dXBT + BXdT) + v(d YBT + BYdT)

+ w(dZBT+BZdT) + 6dTBT (26).

Cubing this equation according to our rule we obtain

(pdydzdt + qdzdxdt + rdxdydt — sdxdydz)

(pByBzBt + qBzBxBt + rBxByBt -sBxByBz) (p2 + q2 + r2 + s2)2

= AdYdZdTBYBZBT+BdZdXdTBZBXBT+

+ F[BZBXBTdXdYdT+dZdXdTBX BYBT] + (27),

where A, B, G} F, G, H, U9 V, W, © are the minors of a, 6, c, /, gy h, u, v, w, 6 in the

determinant

a h g u

h b f v

9 f o w

u v w 6

= A.

Now since the quadratic form can be expressed as the sum of three squares A = 0 and

we have

BG = F\ GA = G\ AB = H2)

A<d=U'\ B®=V2, C® = W2) (28^'

The bicubic integral form on the right-hand side of (27) may therefore be written

['/AdYdZdT+ \/BdZdXdT+ ^GdXdYdT- \/®dXdYdZ]

[xJABYBZBT + *JBBZBXBT + ^GBXBYBT - *J®BXBYBZ\

* This is possible on account of a fundamental theorem distinct solutions; see Forsyth's Theory of Differential

in partial differential equations which states that a complete Equations, Part iv. Vol. 5, pp. 53—83.

system of m linear equations inm+n variables possesses n
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OF THE EQUATION OF WAVE MOTION 271

Putting dx = 8x, etc. in (27) and extracting the square root we get

[pdydzdt + qdzdxdt 4- rdocdydt — sdxdydz] (p2 + q2 + r2 + s2)

= \/AdYdZdT + >s/BdZdXdT+\/CdXdYdT-\f®dXdYdZ.

This equation gives

LPd(Y,Z,T) + qd(Y, Z,T) 9(F, T) *d(7, Z, T)\ KV +q +

y#=L 3(y.M) +q a («.«.*) +r a(«,y,*) _g 3(*,y,*) 1(p> + 0,+ T4 + <>)

^ l/^^.*.^)?9(^,x,r>+ a(^,z,r) sa(z,x,r>J^ +9 + +s)'

V°"Li'a(X,7)2') + g9(Z, F,T) + ra(Z>F)T) *3(Z,F,r)J^ + 2 + + >

9Xcte 8Z9y 9X9* 9X 9^ _

W dx dY+ dy dY+ dz dY+ dt dY~'

dXdx dXdy dXdz dXfo_

dx dZ+ dy dZ + dz dZ+ dt dZ~'

dXdx dXdy dXdz aZM =

dx dT+ dy dT+ dz dT+ dt dT~'

9 (y, z, t) d (z, x, t) d Q, y, t) _ 9 Q, y, z)

d(Y,Z,T) d(Y, Z, T)_d(Y, Z, T) d(Y,Z,T)

dX 9Z dX dl **» Say>

dx dy dz dt

This gives

Similarly £=(7=0 and equations (28) then give

F=G = H= U = V=W=A = B=C = 0.

Now on referring to the values of these minors in terms of a, 6, c, /*, g, h, u, v, w, 0 it is

easy to see that the above equations can only be satisfied if either

u = v = w = 6 = 0,

or a = b = c = /= g = h= 0.

The second alternative may be rejected for it would imply that the quadratic form could be

reduced to the sum of two squares. We may therefore put u = v = w= 0 = 0, hence

(p2 + q2 + r2 + s2) (cfc2 + dy2 + c£z2 + dt2) - (pcfc -f qdy + rdz + scft)2

= adX2 + fcdF2 + cdZ2 + 2fdYdZ + 2gdZdX + 2hdXdY (29).

To prove that if py q, r, s satisfy equations (I) the quantities a, 6, c,/, g, h are independent

therefore
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of T we have only to repeat the process of pp. 265—266. The expression on the right-hand side

of (20) however is now replaced by

tYBZ [(6c -/*)g + (fy - ck) § + (hf - bg)%] ^

+ BZSX [(fg - ch) g + (ca - ?)™ + (gh - af) |] J=

+ 8XSY

(hf- bg) ^ + (gh- af) ^+ (ab - h?) g

where

1

V3f'

M =

and when we multiply by

a h g

h b f

g f c

£xBX + ASY+lzBZ+ir*T

the coefficients of SY8Z8T, hZZXhT, SXSYST will vanish if

[(bc-f>) d^ + (fg-ch)d^+(hf-bg) g

(fg-ch)^j + (ca-g^) — + (gh-af)^

and

['

[(¥-b9)^ + (9h-af)^+(ab-h>) dF

dZ

1

1

V3T

1

75'

are independent of T.

Now these coefficients are known to vanish if the equations (I) are satisfied, for then the

integral form on the left-hand side of (21) reduces to a multiple of

phyhzht + qhzhxht + rSocSySt — s8%8y$z,

i.e. to a multiple of 8X&Y8Z. Moreover the function F is arbitrary, hence if equations (I)

are satisfied

be —f2 ca — g2 ab — h2 gh — af hf— bg fg — ch

are independent of T. Since

(ca-g2)(ab-h2)-{gh-af)2

M

= a,

it follows that a, b, c, f gy h are also independent of T. This establishes the theorem.

It can be shown that equation (16) is a consequence of the system of equations (I), for

if we multiply the equations by 2qr, 2rp, 2pq, 2ps, 2qs, 2rs, p2} q2, r2, s2 respectively and add

we obtain

7) 7) 7)

P dec ^ + q2 + ^ + ^ + q^>^ + q2 + r2 + S^ + Tz~(p2 + q2 + r2 + S^

dy

dzy

+ s ^O2 + f + r2 + *2) = 2 (i>2 + £2 + r2 + 5s) (pf + qV + rf + sr)

+ <^+^>(|+g+g+g);
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OF THE EQUATION OF WAVE MOTION

while on adding the last four equations we obtain

* , . $- , /9p dq dr t ds\

These two equations combined give

fa [P (P2 +q2 + r2 + s2)] + ^ [q (p2 + q2 + r2 + s2)]

+ [r (P2 + q2 + r2 + s2)] + ^ [> (p2 + #2 + r2 + s2)] = 0,

which is equation (16).

§ 5. Particular solutions of the system of differential equations.

It is easy to construct particular solutions of the system of equations

k (§)+ h S)= 2a i' *' ^ S)+1(1)= 2a r I'

4(5)+i(f)=2a5-l' 4®+I(l)=24-I'

^(1)=2a?• I> =2al-5'

*s(5)-*(5),+»|JM+H]-

„ 3 /s\ _ /s\2 1 T3» 3? 3r 3s"]

For instance, we may take

p = 6xf(x2 + y2 + z2 + t2) = 0xf(R% q=0yf(R2\ r = 0zf(R2), s = 0tf(R2).

The equations are then satisfied if

a [/(#)]»= 2/'

[*/<#) + (,|+ y| + , * + ,£) */<*)] ,

i.e. if 6f(R2) is a homogeneous function of degree — 2.

In particular, if we take f(R2)=\> 0 = * the conditions are satisfied and V?T

a solution of

dx2 + dy2 + dz2 + dt2

The problem is then reduced to that of expressing

R2(£ + ty [O2 + f + z* + *2) + + + - (xdx + ^ + +tdtW

Vol. XXI. No. X. 37
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274 Me BATEMAN, THE DETERMINATION OF SOLUTIONS

in the form IdX* + mdY' + ndZ\ This may be solved by taking

Y x V 7= Z ■

R + t' R + t' R + t'

the quadratic form then becomes dX2 + dY2 + dZ*.

We have then the result that if F(X, Y, Z) is a solution of

d*F (?f a^ = n

dX* + BY* + dZ2'

the function V = —^, ^)

is a solution of _+ _ + _ + = 0.

Another solution may be obtained from this by inversion, for if we replace

« by J* V by * hJ J> * by ;g» and V by ~,

we obtain the solution

v= 1 F( x y z \

R^R^t \R + t' R + t9 R + tl'

It should be remarked that in general we cannot reduce the quadratic form to the simple

form dX2 + dY2 + dZ2. In order that this may be possible a number of additional equations

must be satisfied by the functions p, q, r, s.

For instance, if we take

d=w *i-b- Fi=i'

we have

dx' + df + d^ + df-dR* = dX, , + dz^_^J^(XidXi + 7ldY, + Z,dZx)\

where R2 = X2 + Y2 + Z*.

This quadratic form however cannot be reduced to the form d%2 + drf -b c?f2; for if this were

possible we should have

d? + dv2 + d? = (^)2 [dX2 + dY2 + dZ2l

where X, Y, Z are the functions defined in the previous example.

Now = 7v2—172^ ~,—TV an(l so we should have

V R ) (X2+ Y2 + Z2 + iy

d? + drj> + d? = (X,+ F,4+^ + 1)2 (dX1 + dF» + ^2).

This relation, however, would give a conformal transformation of the (£, 77, £) space into the

(X, F, J?) space; but there is no transformation in which the multiplier is of the above form,

for if

df + drf + d? = \(dX2 + dY* + dZ2),

the equations X = 0, X = 00 must represent point-spheres or planes touching the circle at

infinity.
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OF THE EQUATION OF WAVE MOTION 275

It is easy to form a partial differential equation which must be satisfied by the function F

in order that

V-^F<Xlt Tlt Zd-^Ffa |, £)

may be a solutum of _ + _ + _ + _ = 0.

Another set of solutions of equations (II) are obtained by putting a = 0,

^= ax + hy + gz + ut,

| == — hx + ay + fz+vt,

v

g = — gx — fy + az -\- wt,

s

- = — ux — vy — wz + at,

2a-J

4ad + (ax + hy + gz + ut)^ + (-hx + ay +fz + vt) ^

+ (- gx -fy + az + wt) ^ + (- ux-vy-wz + at) ^

If a = 0 this equation may be satisfied by taking 0 — 1. We have then to express

[(hy + gz + ut)2 + (-hx+fz + vt)2 + (-gx—fy + wt)2 + (ux + vy + wz)2]

[dx2 + dy2 + ds2 + di52] - [(hy + gz + ut) dx + (- hx +fz + vt) dy

+ (— gx —fy + wt) dz — (ux + vy + wz) cfe]2

in terms of three variables. For the sake of simplicity we shall consider the case in which

f=u = l, g = h = v = w = 0,

the quadratic form then becomes

(x2 + y2 + z2 +12) (dx2 + dy2 + dz2 + cfa2) - (J da? + -ydz- xdt)2.

To express this in terms of three variables we must find three solutions of the equation

jx dx dx dx A

^ + ^-^-^ = a

Now this equation may be satisfied by taking

X = y2 + z2 - x2 -12, Y= 2 (xy + zt), Z=2(xz- yt\

and we easily find that

4 (x2 + y2 + z2 +12) (dx2 + dy2 + dz2 + dt2) -4>(tdx + zdy -ydz- xdt)2

= dX2 + dY2 + dZ\

Hence we have the result that if F(X, F, Z) is a solution of

it is also a solution of

d2F d'zF d2F A

dX* + dY2 + dZ*~0'

d^F d^F d^F d^F_

dx2 + dy2 + dz2 + d¥ ~

37—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



276

Mr BATEMAN, THE DETERMINATION OF SOLUTIONS

If we put

y — r cos 0 cos <£, z = r cos 0 sin cf>, x = r sin 9 cos -\|r, £ = r* sin 0 sin

we have X = r*2cos20, F=r2sin 2<9cos(<£-<i/r), Z = r2 sin 20 sin

and if we change into polar coordinates by putting

X = iicos©, F=iJ sin ©cos*, ^ = ii sin © sin 4>,

we obtain the result that if f{Ry ©, <&) is a solution of Laplace's equation, then /(r2, 20, (fr-ty)

is a solution of

dx2 ^ df dz2 a*2

Other solutions of our problem may be derived from those already obtained by applying

a conformal transformation to the variables y, z> t. For instance if we put*

x

v' r'2-a? , r'2 + a2

Z = ~ T~, r-77, t = -Er7Z

^T^' y z'-it" Z 2a(z'-it')y L 2ia(z'-it'Y

where r'2 = x'2 + y'2 + z'2 + tf\

and apply the transformation

g _ 00 y= y z — z

we obtain *• + *' *■ + *' '+

Y __ iaoo' v= jay' i(r'*-a*)

* ~ r'* + a2 - W r'2 + a2-2cwr" 2 (/2 + a2 - 2cm')'

r'* + a? - 2reCT'

r+ 2to (/-»*')'

where *r'2 = z'2 + *'2.

Now we know that if V(j-, 17, £, t) is a solution of

c^F (TV d^V =

+ dV* + + 9t2 *

then W=-r^V

y

r'2 - a? r'2 + a?

-it [/-it' z'-it" 2a(2? -it')' 2ia(z'-it'\

32TF 82Tf 32Tf 3'W_n

is a solution of ^ + g^ + ~api+9^i'_u-

Now V=-rL= F( X y-

V + t' r + t' r + t

if F(X, Y, Z) is a solution of

d2V d'V d*Vd2V_n

is a solution of 9^ + ^+ g^-«.

9^ d2.F 92.F _

8Z2 + 3F2 + 322

Hence

1 / z'-it' / 2ma/ 2iay' i(r'*-a?) \

yZIit' V r'2 + a2 - 2cm' W'2 + a2 - 2cwj'' r'2 + a2-2aw;' r'2 + a2 - 2aw7

, . 32Tf d>W 32F , 32Tf .

is a solution of ^ + "ay?+ a?2"+"9T2"

* Proc. Lond. Math. Soc, Ser. 2, Vol. 7, p. 70 (1909).
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Dropping the dashes and removing the factor i from each of the arguments of F, we

obtain the result that if F (X, F, Z) is a solution of Laplace's equation

1 FI 2aa? 2ay

V\z-it) (r*+a2-2a<m) Vr2 + a2-2a^' r2 + a2-2a^r

is a solution of

^7 d*V d*V d2V_

dx2 + dy2 + 3*2 + 9£2"

r2 - a2 \

'r2-f a2 - 2aW

Putting r5 = p2 -f- -or2, # = 'sr cos <f>, t = sin <£, we obtain the two real solutions

2a# 2ay p2 + ^2 - a2

cos-

— *T—^

- a)2 LP2 +

VWp2 + (*7-a)2 ~ L/>2 + (^-a)2' p« + («r _<*)»' [p2 + (OT_a)2]

2a#

sm-

Vp2 + (t

Again, if we put

—— F

- a)2 Li

2ay

X =

p2 + (>-a)2' p2 + (*7-a)2' [p2 + (>-a)2l

2/

F =

r + x' r -\- x' r + x1

and perform the same transformation to the x\ y\ z', t' variables we obtain the solution

F

y

r2 — a2

x-^itx* 2a (x -h inr)' 2ia

r2 + a2

i (x + w) J'

v7 (z — i£) + tV)

Putting t = icT we obtain the following solution of the equation of wave motion

F

2ay

x2 + y2 + z2-c2r2-a2 a? + y2 + z2-c2t2 + a2

? + Vc2t2-^2

J (z + CT)\X + VC2T2 — £s

i^(X, F, Z) being a solution of Laplace's equation

In particular, we have the solutions

x + sIo2t2-z2

ix + i*Jc2r2- z2

, f\<C + VW2-*2],

N z + ct J L J

V 0 + CT) (#2 + 2/2 + Z2 - C2T2)

f

X + */c2T2-Z2

Lx2 + y2 + z2-c2r2A

The first of these depends only on x} z, ty and indicates that if -sr = \A/2 + z2,

V= , 1 f(x±va)

is a solution of

Vfz±iy

d2V d2V=Q

a^2 + ay2 + "*

§ 6. three-dimensional problem.

The problem of constructing solutions of Laplace's equation having the form WF(X, Y)

may be solved in a similar way by considering the quadratic differential form

(p2 + q2 + r2) (cfo2 + cfy2 + dz2) -(pdx + qdy + rdzf (1).
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If this can be expressed in the form dX* + dY2 we must have

(p2 + <f + r2) (dxBx + dyhy + dzSz) — (pdx + qdy + rdz) (pBx + qBy + rSz)

= dX?8X + dY8Y. (2).

Squaring this we obtain

(p2 + f + r2) (pdydz + qdzdx + rdxdy) (pSyBz + qSzBx + rhxZy) = dXdYSXBY,

therefore ( pdydz + qdzdx + rdxdy) v/(p3 + q* + r2) = dXdY (3).

(pdydz + qdzdx + rdxdy) \/(p2 + q2 + r2) = dXdY.

Let F(X, Y) be any function of X and F, then

^dx+^dy + ^dz=MdX + wdY

Multiplying by (3) we obtain

p

dF dF

dF

dx + ^ dy + T dz

= 0

•(5).

Multiplying (4) by (2) we obtain

dydz

dF dF~\

{(p2 + f) 8z -rpBx- rqhy) ^ - {(r2 + f) - qphx- qrhz)

+

■ dXdY

Simplifying by means of (5)

W dF

dXS7-dYBX

[7 dF dF\ „ f dF dF\ ~. / dF dF\ ,,

( pdydz + qdzdx + rdxdy) \(q^ - r ^ J Bx + (r^ - p ^ j 8y + [p ^ - q ^ j hz

= dXdY

and dividing out by (4) we get

dF dF\ * I dF dF\ „ , / dF dF\ ."

*Tz-rTy)*x+(rte-PTz)By+{Pd^-*te) Bz.

Now let this equation be multiplied by

'dF dF

(f + q, + rriJ^BY-d^BX.

L^y+!zs^disx+wB7+

dZ

zz.

If we write P =

8y8z

P

, etc., the resulting equation is

+ ...

WF , d*F\ ,v

Ui + gp.) dXdY-

"Jp^ + q'+r"

_dy\ dy dx J dz\ dx dz J

The coefficient of 8y8z is

(&F ?PF d*F\ _d_F (dP dQ dR\ (dP dF dP dF dP dF\

W + df + dzV dx [dx + dy + dz) + \dx dx + dy dy dz dz)

(vd*F\n *F ■ p d*F

~Vdx~*+qdxty+ dxdz)>

the last term of which may be replaced by

dP dF dQdF dRd£

dx dx dx dy dx dz'
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This coefficient is equal to

if

d*F . d2F

\jw + dy

dF

a dP /dP dQ dR\ „„ n „

dx

T*+di=sp+aB+KPR

These lead as before to a system of equations

2?l_(dJL + d_Q + dA

dx \dx dy dz

dQ

dy

dR

2d_K_(dP + dQ+dR\

dz \dx dy dz J

dP+d_Q

dy dec

2{R + ,cR\

ZQ + vP + kPQ,

dz+\-^R + ^ + ^R

If

we have the equation

1 30

edx'

dQ+dR

Z i

6dy'

V =

? edz'

1

Hence if V0 is a solution of Laplace's equation and F is a solution of

d*F &F_

3X°- + dY*'

the function */6F(X, Y) is a solution of Laplace's equation.

The equations for P, Q, R may now be written

dx\6 J 0 \dx dy dz J 0

d_ (R

dy\6

Putting

0~w> 0

■V,

R

e
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they take the simple form

dw dv

x—h = nvw, etc.,

oy oz

2 L = nu2, etc.

ox

Particular solutions of these equations may be obtained without difficulty, for instance

we may take

0 = 1, k = 0, P=hy-gzy Q =fz - hx9 R=gx-fy.

Two independent solutions of the equation

pf + qf + nf = 0

ox dy oz

are given by fx + gy + hz and a? + y2 + z\ hence we have the result that it is possible to

find solutions of Laplace's equation of the form

F(fe + gy + hz, x2 + y2 + z2),

where F (X, Y) satisfies a certain partial differential equation. This of course is well

known.

Other solutions are given by 0 = 1, P= Q = -, R = ~9 X = X , Y = ^ and

r r r z + r z+r

we may deduce that if F (X} Y) is a solution of

d2F d2F

dX2 + dY2~~'

it is also a solution of + ^ + ^ = 0

cb2 oy2 oz2

and F) is another solution of this equation.

Another solution which is not so well known is obtained by taking

we then have the result that if F{X, Y) is a solution of
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XI. The Continuations of Functions defined by Generalised

Hyper geometric Series,

By G. N. Watson, B.A.5 Trinity College, Cambridge.

[Received and Read Nov. 22, 1909.]

1. Let p be any complex quantity; and let [ri] denote (pn— l)/(p — 1), so that when

p = l, [n] reduces to n. The quantity [n] is termed a basic number, p being termed the

base.

It has been shewn by Rev. F. H. Jackson in a series of papers* that various functions

may be formed in which the quantities [1], [2], [3], ... occupy the place of the natural

numbers in the ordinary functions of analysis.

I propose to develop, very briefly, the theory of the functions analogous to the hyper-

geometric function, by means of the theory of contour integration. The contour integrals

which will be employed are very similar to those employed by Dr Barnes f in dealing with

the theory of the ordinary hypergeometric functions.

The functions, which will be considered, do not exist when the modulus of the base is

unity, unless the base is actually equal to unity J.

We shall assume that |jp|<l, and when we wish to employ a base greater than unity,

we shall denote the base by q where q=p~*.

Further, we shall put

log p = — log q = — co = — + ico2)

where co, colt co2 are definite quantities, &>! and co2 being real; and since |_p|< 1, co1>0.

We shall prove all the theorems, which will be obtained, for base p, and deduce from

them the corresponding theorems when the modulus of the base is greater than unity by

making use of the properties of the inverse base. We cannot employ the ordinary methods

of analytic continuation, since the circle j p | = 1 is a barrier for the analytic functions which

will be introduced.

* Keference may be made especially to the following: t Proc. Lond.Math. Soc, Ser. 2, Vol. 5 (1907), pp. 59—

Proc. Roy. Soc, Vol. lxxiv. (1905), pp. 64—72; Proc. 118; Vol. 6 (1908), pp. 141—177.

Lond. Math. Soc, Ser. 2, Vol. 1 (1904), pp. 63—88; Vol. 2 % When the functions reduce to the ordinary functions

(1905), pp. 192—220. of analysis.

Vol. XXL No. XI. 38
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282 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

The basic hypergeometric function will be defined by the series

prrai rfli- m- ^-1 . M [ft r , M [« +1] [fl [ft +*] ^ , m

*•([«], L/9], M, 'r)-1 + [^nT]a;+-[7][7 + i][i][2] ^+

It converges when | x \ < 1 if the base be p, but when | x \ < \ gv+i-*-0 | if the base

be q.

The basic gamma function is defined as a Weierstrassian product by the equation

ir,([*])}-* = [x] exp (Qx)1 + f exp (-^)J (2)

= (i - p)*-1 n (i - / n (i -ps)}

s=0 I s=l

where Q -p + g + £ +... - + | + f + ...}

and | arg (1 — £>) | < ^7r.

We define an associated function Gp(x) by the equation

{Gp(x)}-i=Il(l-p*+%

so that Gp(x + l) = (l-px)Gp(x) (2a),

and Gp (x) = (1 -jp)*-i I ft (1 _1 rp (a?) (26).

We shall need the asymptotic expansion of the function Gp (x) for large values of | x |.

It has been given by Littlewood *, as follows:

(i) When R(cox) is large and positive, Gp(x) tends uniformly to unity as | x | tends

to infinity.

(ii) When R (cox) is large and negative, and j x — x0 | > e, where x0 denotes any pole

of Gp(x\ and e is an assigned quantity which is not zero,

R log Gp (x) = - 0 - {R (cox)}" - \R (cox) + J (3),

where | / | does not exceed a finite quantity depending on e.

We shall need the following formula due to Heine*)-, true when |^~a_/3|< 1:

'<M-Mhlr~'>-t$f:Xi;z% <«*

If /3 be a negative integer, the right-hand side is a rational function of pa, pi, p; and

so also is the left-hand side; the result must then be an identity for all values of pa, pv, p.

We may consequently write q in place of p in this case; and we have

**([«]. [£]; M; 9^)=^ [l~qy-^) <base ?>•

Putting q = p~1, this becomes

^(M.M;M;,>-^4;^-;:g (base,)

w,

* Proc. Lond. Math. Soc, Ser. 2, Vol. 5 (1907), pp. 395—398. t Heine, Kugelfunctionen, Bd. 1. (1878), p. 107.
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 283

provided that /3 (or a) is a negative integer. If neither a nor /3 be a negative integer the

theorem is not true.

2. We shall need the following Lemma, which proves to be of considerable importance.

Lemma A. If there be any series

CO 00

V (z) = 2 U^UY ... UnfCnZn = 2 OLnZny

such that un and Kn can be expanded in the convergent series

un=l + A1pn + A2ptn+...

fcn = B0pmn + B,p <w+1> n + ...

for all integer values of n greater than a certain finite value n09 it being supposed that

Au A2) Blf B2) are independent of n and that m is not necessarily an integer, the

only possible singularities of the analytic function (z) in the finite part of the plane are

simple poles at the points z =p~m, p-m-1, p"m_2, ....

To prove the lemma we observe that as n-^oo OLn/an+1 -^p~m; hence W (z) has a

singularity* at z=p~m; but it has no singularities inside the circle | z \ = | p~m |.

When | z \ < \ p~m |,

(1 - ZP™) W(z) = a0 + i (Ctn+i -pmCtn) Zn+\

and otn+1 — pman = u^ ... unKn'

where we may write Kn' = B0' P(m+1) n + B^p(m+2) n + ...,

and some of the quantities B0', BJ, may vanishf; this expansion for is valid when

n > n0 + 1.

Hence the function (1 — zpm)^ (z) is regular within the circle \z\ = {p-™*1 |.

Consequently (z) has a simple pole at z=p~m.

Treating the functions (1 - zpm) (z),

(1 - zpm) (1 - zpm+1) ¥ (z), ...

in a similar manner, the lemma follows by induction.

PART I.

The theory of the ordinary basic hyper geometric function.

3. We shall now consider the analytic continuation of the function ^([a], [/3]; [7]; z\

From Lemma A, it follows that the only possible singularities of the function in the finite

part of the plane are simple poles at #=1, p'1, p~2, and that the function is uniform

over the whole plane.

* Hadamard, La Serie de Taylor (Scientia), p. 19. + If B0' vanishes, the function has no singularity at z=p~m~1.
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284 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

We proceed to obtain an asymptotic expansion for ^([a], [/3]; [7]; z) when | z | is

large.

Consider the contour integral

/ = _1_ f Qp(a+x)Gp(/3 + x) ir(-zf dx

Z7rijcGp(y + x)Gp(l + x) sin^Tr V'

taken along a contour C which is parallel to the line R (cox) = 0 with a loop, if necessary to

ensure that the points 0, 1, 2, ... lie to the right of the contour*, while the polesf of

Gp (a + x) and Gp (/3 + #) lie to the left of the contour.

The integral converges if R [x log (— z) — log sin (x7r)] is negative for large values of | x \

on the contour; i.e. if

I {arg(— z) — <w2a>i_1 log |^|}|<7T (5a).

[This restriction means that the z plane has a cross-cut in the shape of an equiangular

spiral, the equation to which is r = exip (00^/co2) in polar coordinates.]

Consider the integral (5) taken along a contour C" consisting of an arc of a large circle

the centre of which is at the origin; the arc lies to the right of G and is terminated by C,

and it does not pass infinitesimally near the poles of cosec(#7r).

Consider also the integral taken along three contours A, A\ B, the equations to

which are

A; R (— ix) = m0, A'; R (— ix) = — m1, B; R (cox) = — s0o>i>

where m0, ml) s0 are large positive quantities, so chosen that the lines A, A\ B are at a

distance, from each pole and zero of

Gp (a + x) Gp (ft + x)

Gp(y + x)Gp(l+x)

at least equal to e, where e is some preassigned (non-zero) quantity.

The lines A, A\ B are supposed to be terminated by each other and by C.

From the asymptotic expansion (3) of the function Gp it follows that when j z | < 1, the

value of the integral taken along C can be made as small as we please, by taking the radius

of the circle C sufficiently large.

Hence, by Cauchy's theorem, when | z \ < 1, I is equal to the sum of the residues of the

integrand at its poles on the right of G.

Evaluating these residues we get

I = Qlty)%(a)F{[al m M; Z) When M<1m

On the other hand, when | z \ > \ py+1~a~^ |, the value of the integral taken along the

contours A, A', B can be made as small as we please, by taking mft, mly s0 sufficiently large;

this follows from (3).

Hence, by Cauchy's theorem, when \z\> \ py+l~°--^ |, / is equal to minus the sum of

the residues of the integrand at its poles to the left of G.

* We shall always use the symbol C to denote a contour of this nature.

t These points are given by x = - a - s + 27na>_1m, - /3 - s + 2irior1m, where m is any integer, and « any positive

integer (including zero).
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 285

The residue of the integrand at — a — s + 2mm/co is

Gp(/3-a-s)\Gp(l)Y 7r (-*)-«-*

x exp {2mirico~1 log (— z)} cosec {2?7iirHco~1 — a7r).

Hence, after some slight reductions we find that, when | z | > | py+l-a~-& |,

cc

/ = 2 cosec {air — 2mirHco~1) exp {2m7riew_1 log (— #)}

m= - cc

x.^(-:)ta-V-g)"^([a]' [a-7+1]; [a-/3+1]; ^r+1_a_3)

4- a similar expression with a and /3 interchanged (5c).

We have assumed that a — /3 is not an integer; when a — /3 is an integer, the necessary

modifications are easily made.

We now require the sum of series of the type

2 cosec {air — 2mirHa)-1) exp {2rairico~1 log (— #)}

which converge when the z plane has a cross-cut in accordance with the inequality

| {arg (- z) - co2w{~1 log | z |} | < ir.

To sum such a series, we consider the integral of (5) when modified by putting /3 = 7-

Comparing (56) and (5c), we see that the analytic continuation of

|^([«]. [£]; [£]; z)

CO

is 2 cosec {air — 2mirH(o~l) exp {2m7rift>-1 log (— z))

But, by a well known theorem *',

^(W. L8]; [/8]; = fi (1 - - 5 (1 - zp-) (6),

and these products converge for all values of \z\, while their asymptotic expansions, when

| z | is large, have been obtained. Hence we find, without difficulty, that

CO

2 cosec {air — 2mirHco~1) . exp [2miri(o~l log (— z)}. (— z)~a

m—— co

<oGp(a)Gp{l-a) • (l-zp-**){l-sr>

Making use of these results, we see that the analytic continuation of the series which

defines F{[a], [ft]; [7]; z) is given by the equation:

= Gp(a)Gp(/3-a) f « (1 _ j?([a]; [a + j-j . [a _/S + j]. z-ipy+i-«-^

GP (7 -«) U=o J

+ gp(g -ft> j n (1 - «.p?+») (1 - ^jo^+»)l JPfljg], [/3-7 +1]; [8 - a +1]; *-»p»+i-~*)

(7),

* Jackson, Proc. Lonrf. Koi/i. Soc, Ser. 2, Vol. 2 (1905), p. 193.
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286 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

where the symbol "=" is used in the sense "is the analytic continuation of." The functions

involved in this result being uniform, the restriction (5a) may be removed.

Putting gr=p~1, we get the corresponding theorem for a base with modulus greater than

unity;

r,(M) rg ([/3]) | g _ (1 _ ,-lqy-a-^n)) F ([a]? ^ . [y] . z)

Tq (m) U=0 J

= qa 0-y) ^([a]) ^^ -- a]) | g (1 - zqt-y-^) (1 - ^gr-*-*)l

rg(L7~aJ) '»=o )

F{[a\, [a-7 + 1]; [«-/3+l]; ^?r+i-^)

4-a similar expression with a, /3 interchanged (7a),

where Yq denotes Jackson's gamma function for a base whose modulus is > 1.

Putting z=py~a~p in (7) we find, on using Heine's theorem, that when | py~a~^ | < 1,

4- a similar expression with a, ft interchanged

Gp(tt) °PJ^l o^([a], [/3]; [y];py-~>)

Gp(a)Gp(/3)

Gp(l-y+a + l3) Gp(y-a) Gp (7- /8)'

Putting a = ot1 + /31, /3 = a1 + /32, 7 = a1 —a2 + l, this may be expressed in the form

g'(a'gff^8"A)j,([g' + A]' [fl9+A]; + ?)

+ a similar expression with ft, ft interchanged

GP(«i + a, + A + A) ^ ;*

By the theory of analytic continuation this result holds for all values of a1} or2, ft, ft

which do not make the equation meaningless.

4. This result is of use in proving the following Lemma which provides another repre-

sentation of the analytic continuation of F ([a], [/3]; [7]; z).

Lemma B. If the contour of integration, D, be drawn parallel to the line J? (coos) = 0

with loops, if necessary, to ensure that the poles of Gp (a2 + x) Gp (a2 + ®) lie to the left of the

contour while the points ft, ft + 1, & + 2, ft, ft+1, ... lie to the right of the contour,

then for all complex values of au a2, ft, ft for which the contour can be drawn

__ J_ t Gp(a1 + x)Gp(a2+x) ir^j^dx

1 ~ Ziri J z> Gp(l- ft + #) Gp (1 - ft 4- x) sin (ft - a?) 7r sin (ft -x)tt

wpPi+fe^-p^+a,^, ([a, + ft]) rg (+ ft]) iy ([«2+ft]) ry (p2+ft])

sin (ft- ft)7r. (j^-j*) Tp ([ft - ft]) Fp ([ft - ft]) r„ + a2 + ft + ft])'

For, by using the asymptotic expansion of the function Gp> it follows that the contour can

be bent round to enclose the sequences of points ft, ft + 1, ft + 2, ft, ft2+l, ft + 2, ...;
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 287

and, consequently, by Cauchy's theorem, IY is equal to the sum of the residues of the

integrand at these points; hence

T _ Tip* Gp (ttj + ft) Gp («2 + ft) F(r , R n r , nn. n p ,01,^

^"sh^ft-ft)^ G;(l) 0,(1-/8,+ ft) ^ + + P)

+ a similar expression with ft, ft interchanged.

On employing the theorem (8), and changing the functions Gp to Jackson's gamma

functions, we obtain the required result immediately. This proves the Lemma.

We now consider the integral

r = J_ [ Gp(y-«-/3 + s)Gp(s) Try f • /l-qp»+"\|

±2 2m] jg Gp(l-a + s)Gp(l-/3 + s) sin (a - s) Trsin (/3 - s)tt U=0 V 1 - *pn J)'

E, the contour of integration being parallel to the line R (cos) = 0 with loops, if necessary to

ensure that the poles of Gp (y — a — + s) Gv (s) lie to the left of the contour, while the points

a, a + 1, a+2, ...; ft /3 +1, /3 + 2; ... lie to the right of the contour.

We shall shew that

_ (i-P)y rp ([«]) r„ ([#]) rp ([7 - «]) rp ([7 - /?]) . .

i2-sin(a-/3)7r^-^ ^([^([a-fl^^-a]) * {W' W> M> Z)

On making use of the asymptotic expansion of the function Gp, it is readily seen that

the integral exists and that it will be legitimate to bend round the contour until it encloses the

poles of r(a-s)rOS-s).

Evaluating the integral, thus modified, by Cauchy's theorem, we get

+ n+m\

V \l'v ~r * P VL-"- 1 h' 1 ,vAJ\m=\j \ *■ zpm'

+ a similar expression with a, /3 interchanged (9a).

(These two series always converge unless z=l, p~~\ p~2....)

Also, making use of the result (a particular case of formula 5b)

\ r; pyi *'nss0\l-zpn J 2m]cGp(L-x) sin^vr

we get

J = / i yrr Gp(i)Gp(y-a-/3 + s) Try gp (s - x) y(-*)-xdxdc

2 \27tv ]] Gp (1 — a + s) Gp (1 - /3 -r s) sin (a — s)tt sin (ft — s)7r Gv (1 — x) sin xtt ''

where the s contour lies to the right of the x contour both being parallel to R(cox)=0, with

loops to ensure that both contours are to the right of the poles of T (x) Gv (y — a — /3 4- x) and

to the left of the poles of V (a — x) T (0 — x).

An easy, but slightly tedious, investigation shews that we may invert the order of

integration, and, employing Lemma B, we then get

1 /■ Gp(i) ^(-^Tr^a-^r^^-^r^^-^r^^-^r^gy-a])

1% im)QP(\-iB) smxTr sin (a - fi) it. (p« - pf>) Vp ([a - ft) Tp ([/3 - a]) Tp([7 - «])

along a contour parallel to R (cox) = 0.

_ tt(1 -jo)v-2 2 rp([y-/8-n])rp([a+w]) f j° /l - zp"

2 sm(o-/8)irBt0ri,([n+l])rj,([l + a-/8 + n])U=oV 1 - *i
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Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

Modifying the contour when | z \ < 1 to enclose the poles of T(x) we find the result (9) stated

above.

A comparison of (9) and (9a) gives the theorem, already known, that ^([a], [/3]; [7]; z) is a

uniform function with simple poles at the points 1, p~\ p~~2, ;while if \py+1~a~P\> I it

affords an indication of the nature of F([a], [/3]; [y]; z) in the ring-shaped region given by

1 < I z I < I %)y+1~a~P I which is not given by formula (7).

This completes the theory of the ordinary basic hypergeometric function.

PAST II.

The theory of generalised basic hypergeometric functions.

0. We define two hypergeometric functions of order (r}s) by the equations

= 5 TP ([«i + n])TP (K + n])...Vp ([«, + n])

*=o Tp(bi + n])Tp ([p2 + n])...Tp ([ps + *]) TP{[1 + n])

= rJFs(K],...W; [pi],...OJ; *) (10);

and we write, for the sake of brevity,

s + 1 — r = fi.

The above series converges when \z \ <|(1 — p)\~^

The theory is simplest when fju is zero or a negative integer.

To the consideration of this case we now proceed.

We put y = z (1 — pY

and suppose that | {arg (— y) - <*>2 ^i"1 log | y \] \ < tt.

We then consider the integral

t = J_ [ n fg*(g« + *>] Tr(-y)xdx

3 2tt^c/=i sin (^tt).6^(1+^) ^

along a contour similar to the contour of § 3; where

rf[ Gp(*t + x)

t=i Gp (pt + x)

is written in place of

I fi Gp (at + *)J + I £l Gp (pe + * )}.

The integral is convergent; when | y \ < 1, we may bend round the contour so as to embrace

the line on which the poles of T(— x) lie, and we find, by Cauchy's theorem,

/.=rjM[«J. - Kl; [pil - ips]; *) x a - p)s*-s»-1+» {G,(i)}-».

Also, if either (i) | z \ >\p^p-^\ when fju = 0, or (ii) if \z\ be finite when /j, is a negative

integer, we may shew that Js is equal to minus the sum of the residues of the integrand

at those poles of the integrand which lie to the left of the contour (just as in § 3).
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 289

Putting ([a]) Tp ([1 — a]) = {S (a)}-1, we get, for the range of values of | z \ under

consideration

T = 4 Trexp\(fi + pat + 2a - Sp) log <*t log (- y)}

* f /2mm \og(-y)\ ( 2mir

2 i exp —^ cosec fy7r

m=-oo ( V « / V a>

iS(l-Ai + ^)...g(l-pa + at)i8f(«t)

y § fgCC1 + + Fp([l -pg + gt + n]) , NnMg-royi-nf/i^ + Sa-Zp-l^-^wtn + l)

wf0r2)([l-«1+a, + ^)...ri>([l-a). + a, + ^)v;

the asterisk denoting the term 8 (at — at) is to be omitted.

Consequently, substituting for the cosecant-exponential series, we see that the analytic

continuation of the series denoted by

riF.([«J,...[«r]; W,..•!>.]; *)

is given by the aggregate of series

X 2 ill ^ ^" + * + "jH T (fa + W]) ( , ft. z - n p-n {m + 2a - - 1) - (n +1) t ^ a (lla)

where y = z(l —p)*.

We observe that each member of the aggregate of series is an integral function of

z~x when fi<0.

6. The theory when ll is a positive integer (zero excluded) is more complicated. We

shall not follow Barnesf by considering separately the cases when /x = 1 and when jjl > 1, as the

case when ll = 1 is not appreciably simpler than the case when fju > 1.

Our procedure will be as follows: we shall show that r linear combinations of s + 1

functions of the type rjpg possess asymptotic expansions, which can easily be obtained. We

shall then show, by rather elaborate arguments (similar to those in Barnes' memoir just quoted)

that fx other linear combinations of the same functions possess analytic continuations involving

known functions and convergent series whose coefficients may be calculated with sufficient

labour.

To obtain the r formulae of the first type, we consider the integral

/4 = -L ( Qp(x)Il%("-* + ]l . p*(l + 2p-2a)-h^(* + l)dx ...(12)

2m J c t=i Gp(x-at + l) sin (x - ol^tt^ v 7

where yx = (-^y = (-)/A~1 (1 -pfz.

The integral converges for all finite values of y1; for convenience we suppose that yx has a

definite argument.

t See Parts II. and III. of his memoir, Proc. Lond. Math. Soc, Ser. 2, Vol. 5 (1907), pp. 59—118.

Vol. XXI. No. XI. 39
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290 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

When | y \ < 1, the integral is equal to the sum of the residues at the poles of the integrand

which lie to the left of the contour; i.e. at the poles of

Gp(x) ft Gp(l-pt + x).

Consequently when | y \ < 1,

Z4 = } 0,(1) II G» (1 ~ PJ> rFs ([«,], ... [«,.]; [pj,...&>,]; z)

® t=l Up\± ~ at)

x 2 cosec(ot! + 2kmorl)'rr. exp{— 2fjbk27r2co~1 — 2&7n(2a — 2p + J^) + 2&7na)-1 log

+ I ?g, (1) In * ft(^ ~ *>1 Qp (Pn-l) exp {(1 - Pn) log y,}

X r^([ai-p7i + l],...[ar-pn + l]; [pi-/>n+l]-.. *.•-[>* ~ P» + 1], [2-p*L* *)

00

x 2 cosec (ttj — pn+1 4- 21c7rico~1)7r.exp {— 2fik2Tr2ar1— 2ybn(2a — 2/)— J/* + 4- 2&7nft)-1 log jh]

x exp (/ow - 1) (2a - 2p - 1 + (12a).

The cosecant-exponential series are very rapidly convergent for all finite values of \yx\. It

is not possible to express them in terms of functions more elementary than functions of the

type

We can now obtain the asymptotic expansion of I4 for large values of \z\ by considering the

integrand of J4 integrated along the lines (i) (7, (ii) I(x) =—sl9 (iii) R(cox) = lcolf (iv) I (x) = s2

where slt s2 are large positive quantities and co^1 R(col — coa^ is not an integer.

It may be shown without difficulty that the integral along the line (iii) is of order yrl.

Hence by Cauchy's theorem, if k be the greatest integer satisfying the inequality

R {&) (& —oti)} <Zg>i,

we get

74= I y1-"Gp(ai + n)n pt + n+^(-y1)^p^^P-^)-M^n)(a1 + n+l) + j

7i=o t=i bp («i — at + n + I)

(126)

where | y^1"1** J | tends uniformly to zero as | y1 | tends to infinity.

A comparison of the results (12a) and (126) on writing a3... OLr in turn for ax gives the r

asymptotic expansions of the first type.

7. We now require the s + 1 — r (= /jl) formulae of analytic continuation of the second

type.

To obtain them we consider the function rSs (x) defined by the following equation:

-■w" -6^+^)" °-(1 -*+-x)

(13).

We shall shew that rSs (x) possesses the following properties:
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 291

the poles of Gp (npr1 — x) IT Gp (1 — pt + n/jr1 — x\ (where n = 0,1,... fi - 1), are simple poles at

(I) The only singularities of rSs (x) in the finite part of the plane, besides simple poles at

poles of Gp (npr1

each of the poles of

Qw (fix - \p> + \ + 2p - 2«)

where the base vr^p1^; from this result, it will follow that rSs(x) is uniform over the whole of

the x plane.

(II) If x = r2 + n (a>2 + «i*)j ri and r2 being real, then the asymptotic expansions of r8s (x)

are the following:

(i) when 1^1 is large and r2 finite and x is such that its least distance from any of the

poles of rSs (x) is greater than an assigned quantity e,

| r8s(x)\<Jexp { - (n - /3)2 co, (Wl2 + o>22)};

(ii) when r2 is large and positive, and

(iii) when r2 is large and negative,

the same asymptotic expansion holds; where J, /3 are finite quantities depending on e.

(III) The residues of rSs(x) at the poles of G^ (fix — \fi + \ + 2p - 2a) can be calculated

with sufficient labour, should necessity arise.

These statements we proceed to prove.

(I) Let

rss(x,y) = p-^(*-v-*^p-2«) rff M^JZJ?) .rf(^y)

£=1

= 2 Gpjn^-x^ ?ff Gp(l-pt + nfi-1 - x) _^(a?_ 1} + wa?_i{n+a)_(g_w/rfft+Sp -Sct)

-° n 0, (^+¥-*)t=1 o^1-*** '*>

(14).

This definition of rSs (x} y) is valid when | ypx-1 + +s/> - 2a)//* | < 1; draw circles of radius e

•r

with centres at the poles of II Gp (1 — at + ft/yu — a?) (where n = 0,1,2,... //, — 1); let us exclude

the interior of these circles from consideration.

By Lemma A, rTs (x, y) qua function of y is a uniform function of y over the finite part of

the y plane, with simple poles at the points* y =p-x-x} p-^-1^, p~x~x"2^}...; and if we form the

product

fl (i-^+m/M) rT8(x,y),

m=0

CO

and arrange it in powers of y, so that it is equal to 2 <&i}n(x).yn, then for all the values of x

71 = 0

under consideration | ^n (x)/<&if7l+1 (x) \ | jp""A>—a5~"<z+1)| as n oo .

* We put - J + (J + S/3 - 2a)l/j,=X, for brevity.
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292 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

Now when \pK+*\ < 1, we see by putting y = 1 that

n (i _ pX+*+*/M) rss(x)

7)1 = 0

= -^(.-D-xd+Zp-a.) 'if Spa-*-*) i * (a.) (i5).

ft ft,(«/,.) ,"1&*(1"at~fl,)»-°

00

But 2 <J>i|W0») is absolutely and uniformly convergent when | pK+x \ < | pll,x

Consequently equation (15) £Ae analytic continuation of rSs(x) over the region

l^\pK+x\< \pllf*\~l-\

i

Now in this region, II (1 - jp*+&+*»//*)-i has simple poles (but no other singularities) at

m=0

the points given by

That is to say, the only singularities of rSs (x) within the region are simple poles at the

poles of Gv (fjuv + fjuX); but I is any finite integer; hence the theorem (I) is true.

(II) To prove (i) we notice that if k be the integer which satisfies the conditions

- 1 < t^tt-1 (cox2 + a>22) - 2k ^ 1,

and if £ = x - 2kir (a>2 - o^i)-1,

so that | is finite when r2 is finite, and px = then, when | px+* \ < 1,

rft(«)=rSi(»xii^K-*)«+*-1)+«-*)f1 + ^-&).

By the theory of analytic continuation this result is true when | pK+x | > 1.

Now rfifg (£) is less than a definite finite quantity; and hence we can deduce the asymptotic

expansion (i) by use of some elementary algebra.

The proofs of (ii) and (iii) are more difficult. We first shew that if

}.ys(«)=- z sin7r^—— #J.exp j — — 2mm (x + Zp — 2a — \)V

where XI, = [Gp (I) 0, (?) ... Gp

then

x p - (<P +1) + (2p - 2a) 0 - * siQ ^ (16)

along a contour (7 parallel to R (cox) = 0 with loops, if necessary, to ensure that the poles of

s

Op (<j>) II Gv (1 — pt + 4>) lie to the left of the contour, while the other poles of the integrand

t=i

lie to the right of the contour.

The integral converges for all finite values of | x |, certain isolated points excepted.

If R {<o (/jlx — ^/jl 4- \ + 2p — 2a)} > 0, i.e. if the series defining rSs (x) is convergent, we

may shew in the usual manner that the integral is equal to minus the sum of the residues of
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 293

■-rQsi®) 2 p-hw(x-l)+nx-b(n + x)-(x-nlp){i + 2p-2a) xijj

n=0 t=l q

the integrand at those poles which lie to the right of the contour. By writing down the residue

at any one of these poles, we at once obtain the theorem stated. We may also shew that, under

the same limitation as regards x9

ZTTl J Ct=l \ p ) *=1 /

(t + n\

'{ /* )

"rVl K )P Ov (1) Gm (| - ^ - iA* + Xp - Sa) {Lm)

on transforming to base (=jo1/**) and making use of the basic analogue of the binomial

theorem -j\

We may also shew that for all finite values of | x |, the integrals in equations (16) and

(16a) are equal to the sums of the residues of the integrands at the poles to the left of the

contour. From the first we get J:

co n=0 t=i Sp(pt) Gp(pt + n) Gp(l + n)

x 2 sm ^—-— ) exp | h 2mm (Zp — 2a—$/Lt)j

a=i ft> »=o ™x r rr r t=0 (Sp (pt-Pk + l) Gp(pt-p]c + n+l)

x 2 sin (1 — pk + L7/l—) yLfc7r . exp { — ^m^77* 4- 2mm (2p - 2a 4- \n - /ip&)

m=-oo \ ft) / ( ft)

+ i»(/)*-l)(22a-22p + Wt)J ...(166).

From the second, we find, after some algebra:

- 2 sm ^1 — /i<7 H exP | ~ 1" 2ra7n (2p — 2a — £ - porn

x exp {£&) (o- - pr1) (22a - 2S/> + pa- + pu -1)}

- 0 fart 19 - i"* I* ~ *) - * Pfr " 2a> ^ (i/^ - i + - SP + 2a)

where S,/ («) = {Q„ {x) G„ (1 - x)}~\

In this result put, in turn,

<r = pr1i prl-\ + pu prl-l+ps,

f See equation (6). + We put Gp (x) Gp (1 - a?) = {£/ (a;) J"1.
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294 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

and from the results so obtained substitute for the sine-exponential series in (166). We

then get

r8s(x).pi^(*-i)+*(i+2p-2») SJ + j _ ^ _ 2p + 2a)

»=o U=i <Sj, (pt-pt+1) G>(jO« -pfc + ?i+ 1)J

^ ,« ^ x ^w' (i - + W» - 2p + 2a)

+ 2

4 = 1

G,(n + l)i8i,'(2-pt)Gp(2-pt + »)'

We shall write this in the form

rSs («) = p - ^ <* ~ x> - * <x+s" - Sct> (* /i + £ - ^ - 2P + 2a)}-1 2 Tt (*) .. .(16e).

k=0

This formula gives the analytic continuation of r 8S (x) over the whole x plane; we observe

that as — oo , Tk (x) a finite limit. Using the asymptotic expansion of the function S^',.

we obtain theorem II (iii) without difficulty; while the theorem II (ii) is obtainable from the

same formula on observing that, when r2 is positive, | G^ (m — fjux) \ does not exceed a finite

quantity depending on e.

Theorem (III) may be proved as follows: put

Gv{n^-x) w Gpil-pt + nfi-i-ai) _ ( .

Gm(n + 1) ttxQ^l-Ot + n^-x)-^*'-

Then if n be sufficiently large one of the values of log %n (x) may be expanded in the

form

log %»(*)= 2 p™l"fm(a>),

m = l

where the functionsfm{x) may be calculated with sufficient labour; this result follows from the

expansion f

log^^ + a)^!^.

NOW II (l-yp*+*+™/*) £ Xn(x)ynpn(X+k) = 2 yitn(x)-yn (17)

?n=0 n=0 w=0

when | y | is sufficiently small; where

(»> - F ***< [x. («) - («) + -

+<->- "+1]w:.[[tr+21cir"-"^w+-}'

the coefficients of the functions % being the basic binomial coefficients with base vr.

Put x0 = — X — ?///,, and we find that

2 (- X - 1/m) = Lt jr {%„ (O - S (*„) + ...

+(-y[qM[l:w1]'*f(r-^^>+"-}'

the base being ot.

t Littlewood, Proc. Lond. Math. Soc, Ser. 2, Vol. 5 (1907), p. 395.
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 295

oo

Putting 2 pnmlllfm'{®) we find without difficulty from this formula that

£ ¥,,„(-x- ^) = (l - «0(i ... (l -*-»)./,'f i -1 +1 S« -i 2P ,

where the values of the functions /0', //, /2',... may be determined successively.

00

Putting 2/= 1 in (17) we observe that the residues of 2 Xn (x)pnix+K) at the points where

px+\ —p-m/n mav fog calculated with sufficient labour; that is to say that the residues of

rS8(x) at the poles of G^{iix — + £ + 2p — 2a) may be calculated with sufficient labour

should necessity arise.

Let the residue of rSs(x) at % =— X—be U(I).

Now consider the integral

By theorem (II) the integral converges for all finite values of | y1 | and arg (— y^). When

| y1 | < 1 we may shew, using theorem II (ii), that the integral is equal to the sum of the

residues of the integrand at those poles which lie to the right of the contour; and conse-

quently

-7*= ^ ^ . GGin + 1)(" ^ * Gil ~a\ **• <[«•]•- W' - *>

x exp j — + 2&7ri (2p — 2a + 1 — ^) + log (— y^

+ i I I ffi1* (-^w<"-x>(-y.)1-^ n* ^W-^>^(pOT-i)

w=l ^=o k=-oo (O irw.{n+ i) t=i brp (pm — at)

r^([«i-/t>m + l], ... [«r-/>i» +1]; [pi ~ />m + 1] ...*... [p8 ~ pm + 1], [2 - pm]; s)

x exp | - 2/X^2?r + 2km (2p - 2a +1 4- \n - + loo ("" 2/0 + *>(!- Pm)

(2p-2a+ 1 - i^pm)|.

On the other hand, using theorem II (iii), we may shew that when | yx \ > 1, I5 is equal to

minus the sum of the residues of the integrand at the poles of Gw {fix — |//, + £ -f 2p — 2a); so

that

78 = _(_yi)i-(i-2« + 2/»)/M | lT(w).(-y1)~w/'A

x 2 exp

/,■=-

- km log (- yO

a)

To get rid of the exponential series, we consider the integral

2m J c
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296 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

When 12/i | < | pa~x I > the integral is equal to minus the sum of the residues of the

integrand at poles to the right of the contour; when | yY \ > |, the integral is equal to

the sum of the residues of the integrand at poles to the left of the contour; hence, using the

basic analogue of the binomial theorem, we find that the analytic continuation of

<- y^ JS ^j-^^ log (- y.) + fait <2« + 1 - 2X) - J? (2x - « - l)}

is (_yi)-p/M I exp{-?^+^X2p + ^-l)- — log(-yi) + ^(2\ + p-l)l

00 {1 + (- y,)i/*» {1 + (- y,)-11* <eri+«-*+*}

X n=s0 {1 + (- ytfl* |1 + (- y,)-^ wi-p-a+*}

In this result put, in turn,

a = 0, 11 {1 -p^ fi(l-p2) ... fi(l-p8)

\=-p=2a-2p+^-^,

and taking note of the theorem (the basic analogue of the exponential theorem) that

.V 1(»+d— g^r).?,'1+<-^->

we find on comparing the two values of I5 that the analytic continuation of

X n )l+(-2/l)1/M07So-Sp-J+^ + »J {l+(_yi)-l/Mwi + Sp-2«-iM + ll}

»=0

+ | n* G*{(p™~0,(Pm-1),.i?s([a,-Pm +13, ... + +

...* ... [p«-pm + l], [2-/0m]; *)

w=0

is

"lapexp (S/0" 2a ~ ^+h) {tp ~la ~ ***+f)l n-o{1+(" ^

x £ U(n).(-yi)-^ (18).

There are fi different results concerning the same 5+1 basic hypergeometric functions con-

tained in this theorem. It was assumed that — y1 had a definite argument; if we write in turn

(_3/i)e27ri' (rVd^y ••• (—yi)e2^~l)lH in place of (— yj, the basic hypergeometric functions are

unaltered, but their coefficients are altered, giving the pu formulae required to complete this

portion of the theory.
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DEFINED BY GENERALISED HYPERGEOMETRIC SERIES. 297

8. The basic hypergeometric function rFs (base q) does not exist when fi < 0; if p = q~x

and fju^O, we have

^s([aJ, ... M; [pi], ... OJ; *) (base #)

= r^s([«i], [«r]; [>J, ... [p8}\ z\ (base p), say.

When fi = 0, r^pg is substantially ,.jPs, and has radius of convergence equal to |p2a-2p-i|.

when fi>0y r^s is an integral function of z.

We shall shew that r linear combinations of s 4-1 functions of the type r^s admit of

(convergent) asymptotic expansions of a simple type; and we shall shew how the (divergent)

asymptotic expansion of any one of these functions may be obtained.

Consider the integral

6 Virile t=i Gp(l -at- #) sin7r(# + ax)J2

where y2 = {-y~x p-v (1 —pfz.

i

The integral converges if | {arg (y2) — co2 oof1 log | y21} | < 7r.

For all finite values of | y2 | we may shew that the integral is equal to minus the sum of the

residues at the poles of the integrand which lie to the right of the contour.

Hence

1.-^0,(1) H ^^r^f(W, ... [«,]; [pxl ... [pj; M)

x 2 cosec ^ot! + j 7r . exp |—— log yaj

+ 2 ?g fl) II* f?(Pnm~Pj\Gp(Pm-l)ry.(K-p»+l], ...[Or-^+l];

x 2 cosec ^cii + 1 — pm H—— J tt . exp | ^ log y2|.

When | y2 | < 1, 76 is equal to the sum of the residues at the poles of the integrand which

lie to the left of the contour; i.e.

I. = yr-0, («,)&* rn"!'t!'!^^-(M- [i-fH + «J, - [!-/>.+«.];

— (xt + ax;

[1 -a, + 1] ... [1 - a, + aj; H*^"1).

Getting rid of the cosecant-exponential series by formula (6a), we see that the (convergent)
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298 Mr WATSON, THE CONTINUATIONS OF FUNCTIONS

asymptotic expansion of

"rn'fi^W^'W - W- - "a + ytf1""'+")(i + y.-1^+")

i=i trp — aS/) m=o

+ 2 II * ®p jp" ~ pj\ Gp (a, - p, + 1) Gp (Pn - a,) II (l + 2/2ijp»-.+»)(l+y2-1i>1-^-+M)

r^«([ai-/>n+l]. ••• [«r-f>n+l]; [pi ~ p» + 1] • * ... [p« - p» + 1], [2 - /0n]; *)

is ° rPn'Pjt^\ G* <?p (1) 5 (1 + yap""*) (1 + yrip»)

*=i (I — a* + ai; *»=o

Xm-*V-i([l-Pi + «J» ... [l-p. + aj, [aj; [1-0, + aJ ... [l-a, + aj; Hyr1),

On interchanging al9 a2, ... ar cyclically in this result, we get the (convergent) asymptotic

expansions as stated.

9. To obtain the asymptotic expansion of any one of the functions r^s we proceed as

follows:

Let rPs <«)- SJi^ + h-^- lp + ^cc) x(h+^p+Za)

sin + £ - fjuc - 2p + Sa) tt r

x | G™ (j*n-fix) J* gp (gt + ft) ntt+Zo- Za + - *u)

We shall denote the general term of the infinite series by Mn (#) and put

2 Mn(x) = M(a>).

Then we may shew: (I) that the only singularities of M (%) apart from simple poles at the

poles of 6rw (— H^) are simple poles at the poles of Gp (f + 2p — 2a + fioo — ^fi); and the residues

of itf (x) at these points may be calculated with sufficient labour.

(II) That if x = r2 + rx (co2 + coj), r2 and r2 being real, then the asymptotic expansions of

M (x) are the following:

(i) when \r1\ is large and | r2 | finite, | M (x) I < J;

(ii) when r2 is large and positive

\M (x)\<J exp (— \ fJLCOiTz2 -f ^GO^o)

where / is a finite quantity.

Theorem (I) and Theorem II (i) may be proved in precisely the same manner as Theorems

(I), (III) and II (i) of § 7. We shall not, therefore, give proofs of these theorems.

We denote the residue of rPs(#) at the point

11, , ^ , ^ 2k7ri 2g7ri

*' r r r- ft) /JUO)

where g is one of the integers, 0, 1, —1, by the symbol U (n, g); and we note that

U(n> g) is independent of k.

Theorem II (ii) may be proved as follows:

Let N be the integer such that iV^r2<iV+l.
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Then \M(x)\< I | Mn(x)\ + I \Mn(x)\.

When n ^ N we can find a finite quantity J independent of x such that

| Gv (mw - fix) | < J" exp ^ - {i? (am — a>#)}2 —' JjB (am - a>xfj .

Hence

| Jlfn (x) | < J' exp ( - £- (a>#)}2 + £i2 (awe) - ^ ?i2 - nR {<* (2 + tp - 2a - .

Consequently I | ifn (x) \ < J" exp f - ^ \R (cox)}2 + £i£ (©a?)) .

When n > N, j Gv (jm — fix) \ < J, and, taking into account the power of p involved in

Mn(x), we obtain the required theorem without difficulty.

We may then shew that, by II (i), the integral

{where y = z (1 — pYp~^} converges if

| {arg y — w2td{~x log | y | + (cdj2 -f &>22) cof1 R (iS/> — i2a)} | < fiir (19).

Also, the integral is equal to minus the sum of the residues of the integrand at those poles

which lie to the right of the contour, giving, after some algebra and the use of formula

(6a), the result that

* (-)^ym/^ - | (1 +3/1/^^)(l+y"1//x^n+1) |

x^)EIS)^([ai]'----w^

Also it may be shewn that the integral, when taken along the line R (cox) = — lco1} is of

order y~l; where I is finite and positive, and m is the largest integer such that m < I; we

deduce an asymptotic expansion, by Cauchy's theorem, in the form:

I7 + Jy~l = the sum of the residues at the poles of the integrand which lie between the contours

= -^- exp(-(i + ^-Sp + Sa)2!^^-1-^-2^2^ 1 V U(n, g)y-*p-^n(n-V-n&f>-Za)

flTTil^ (fl J n = Q g = Q

x g (l+y1/M^-^-^+2^-2a + fe exp 2g7rifi-1) (1 + ^-i/z^f+ ^+Sa-sP+fc exp - 2gm/ir1).

whence we obtain the asymptotic expansion of r3$s in terms of known functions.

This result completes the theory of generalised basic hypergeometric functions.
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facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.
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acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this
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XII. On a Class of Integral Functions.

By J. E. Littlewood, Fellow of Trinity College, Cambridge, and Eichardson

Lecturer in the University of Manchester.

Received September 11, 1909. Read October 25, 1909.

Introduction.

In the theory of elliptic ^--functions, the formulae of transformation from (v \ r) to

& (r~lv I — T-1) enable us, in the case when r is small (or when q = eulTT is nearly unity), to

find for the function (v | t) a simple expression which represents it with a very high

degree of approximation. In fact, in the notation which will be employed throughout the

present paper, if we write

i|r (0, co) = n (1 + e*l"*w) (1 + e-*L-sto),

5=1 5=0

where Rco > 0, and where co is supposed to be small, we easily obtain from the known

transformation formulae the equation,

+ (4>, + *(©)] exp [(1^-1^)0,--!^+ ^o>] (1),

where %(<w) is comparable in order with exp (— | co Since expdwl-1) is of a higher

type of order than | co the approximation given by (1) is extremely close.

The following considerations suggest that this formula may play an important part in

the problem of approximating for integral functions which satisfy appropriate conditions.

Suppose that we have an integral function, of order not greater than unity, defined by the

product-form II (1 + zja^, where the a's are arranged (as usual) in order of increasing moduli,

and where as is a naturally constructed function of s. Suppose z is large and equal to

aneK^ (where we suppose for simplicity that </> is real). The number n is evidently large.

We have

log F(z)- log

= 2 log f 1 + —) + log (1 + ^=-s) (2).

jXia2 ...a.

Now if log (an+s/an) is expansible in a power-series in s,

log (an+s/an) = sco (n) + s2^ (n) 4- ... ,

^ere o». <„) = __ y (log an).

Vol. XXI. No. XII. 40
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If an is of less order than eocp (en) for all values of e, co (n) will be small, and twr (n)

will be of order not greater than n~rco (?i). If now we assume that within a certain limit

for s we may replace an±s by an exp [±sco(n)]y neglecting the terms (of less order in n)

s2©! (n) + s?co2 (n)+ ..., and that beyond this limit for s we may neglect the terms

log (1 + z/an+8) and log (1 + an-sjz) altogether, the following expression suggests itself for

the right-hand side of (2):

00 CO

2 log (1 + e^'S(a) + 2 log (1 + e-L*-Sb>), or log ^ (cp, co).

s=l s=0

On using the formula (1) for yfr (<£, co) we obtain for log F (z) the approximation

log

jt1a2...

which is expressed in terms of z, and the n and <f> depending on z.

When we investigate the assumptions made in this method we find that, in order that

any of the terms furnished by log yfr (<f>, co) shall be relevant (i.e. of higher order than the

error) we must suppose that

lim | nco (n) | = oo .

n-*-<x>

We must confine ourselves, then, to the functions F (z) for which co(n) satisfies the two

conditions lim | nco (n) \ = oo and lim j co (n) \ = 0. The first condition requires the "order" of

F(z) to be zero, and the second requires that the ?ith zero of F(z), for all sufficiently

great values of n, is less than exp (en), however small the positive number e may be.

It is evident that further conditions for the <x's must be satisfied in order that our

method may be possible. It will, however, appear that we can find a set of conditions

which will be satisfied at any rate if F (z) is any integral function of zero order whose

nth zero is a naturally constructed function of n of less order than exp (en) for all positive

values of e*. Moreover, these conditions being assumed satisfied, a further development of

the idea outlined above leads to a general formula of approximation for log F(z) in

which the order of the terms descends as low as that of [co (n)]-1 [nco (n)]~^J where p

is any positive integerf. The remainder term in the expansion is the sum of two

terms, one comparable in order with [co (n)]_1 [nco (n)]'~p~1, and the other comparable with

exp {— [co (n)]~s] (S > 0). The former expression decreases, while the latter increases, as the

rate of decrease of co(n) becomes more and more slow, and the necessity of the two con-

ditions imposed on co(n) is evident from the forms of the two remainder terms. It is

further evident that the approximation for log F (z) is best when the order of co (n) is

neither high nor low in the range of order permitted by the conditions. In fact, if co(n)

is of order comparable with nk~l (0 < k < 1) [which is roughly equivalent to saying that an

is comparable in order with exp (nk)] it will be seen that the error term in the formula for

log F (z) is of order (log z)~r, where r is an arbitrary positive constant. If, however, we

* For example expression (2) of any finite number of terms of the series

exp [>» exp {(log k)1 (log log n)*} + Jn* (log nf (log log n)-*]. *2"i (») + s'^2 («) + -.

f It is found possible to determine the effect on the occurring in the expansion of log (an+Jan).
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have, for example, on the one hand to (n) = (log n)-1, or on the other hand co (n) = nr1 log n,

the approximation is of a different character, and is not so good.

In Part I of the paper, Section I is devoted to the consideration of the asymptotic

formula for logi^). After the formal proof (which occupies §§ 5—12) it is shown (§ 13)

that the conditions of the result are satisfied when F(z) is a naturally constructed product-

form in which the order of an is restricted in the manner explained above. A number of

particular functions F(z) are then discussed. The discussion serves incidentally to illustrate

the methods by which, in any particular case, the general formula involving z, n, and is

reduced, when this is possible, to an expression in terms of z alone. In certain of the

examples [those for which co (n) decreases very slowly as n increases] the error term of the

approximation assumes a somewhat remarkable form. For a discussion of this point the

reader is referred to § 22.

In Section II of Part I we consider the problem of finding an approximation for the

coefficient cn of zn in the Taylor-series of a function F(z) defined by a product-form. It

will be seen that provided F(z) belongs to a certain sub-class of the class of functions

considered in Section I, we can find a formula for cn of the type

C = [l+e(«)] •/(W>-

CLj 0*2 • • • &7l

where e (n) tends to zero as n tends to oo, and where f(n) is expressed in finite terms as

an explicit function of n. The main idea of the proof is to take for the contour C in

the equation

27ricn= f F(z)z~n-1dz)

J c

the circle \z\=an, and to use the approximation for F(z) in order to approximate for the

integral. It is necessary to add to the conditions of Section I, a further restriction on the aJs,

which is roughly equivalent to the condition that for some positive value of rj, \an \ is of

greater order than exp (ri*). [The new class of functions is thus characterised by the fact

that | an | is intermediate in order between exp (n77) and exp (en), for some value of rj, and

for all values of e.] It should be mentioned that the original form of the approximate

formula for log F (z) is not, by itself, sufficient for our new purpose. The necessary

modification is established in § 24.

The solubility of the two problems concerning product-forms, and especially that of

the second, suggests that it may be possible to develop some kind of theory for integral

functions F(z) defined by Taylor-series ?Zcnzn whose coefficients satisfy appropriate conditions.

The two corresponding problems presented by Taylor-series are to find approximate formulae

for F(z) when z is large, and for the nth zero of F(z) when n is large. It will be

seen in Part II that these problems are soluble provided the cs satisfy a certain set

of conditions. These conditions are satisfied, at any rate, by all naturally constructed

Taylor-series for which is of less order than exp (eii2) for all values of e, and of

greater order than exp (?i1+7?) for some value of rj. The functions of the class determined

40—2
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by the conditions are substantially the same as those of the class considered in Part I,

Section II*, and the degree of the approximation attained for each different type of

Taylor-series is the same as that attained for the corresponding type of product-form,

although the result is expressed in a different way.

With regard to the zeros of F(z), it is shown that we can find a set of circles T8t of

radii so small that (after a certain value of s) they are all external to each other, such

that when s is greater than a certain constant, the sth zero of F(z) (in order of increasing

moduli) lies inside Ts. This result leads incidentally to the interesting consequence that

in the case when the coefficients of F (z) are real, the integral function has only a finite

number of zeros which are not real.

Notation.—It will be found convenient to denote by a unique functional form any

function of x which tends to zero with x (or 1/x) more rapidly than any power of x (or 1/x),

just as we use e (x) to denote indiscriminately any function of x which tends to zero. We

shall, when it is convenient, write %(#) for any function f(x) of x such that lim \x~^f(x) \ = 0

in the case when x—► 0, or such that lim \xpf(x)\ = 0 in the case when x—► oo.

We shall write 0 [/(#)] for any function <j>(x) such that | | is less than a

finite constant for all values of x considered.

When we wish to express that \f(oo)\ remains less than some finite constant, we shall

write \f(x)\<K> always using the unique symbol K. We shall, moreover, extend the use

of this symbol. Thus we write

(1 + x-1) exp [(x + x*)2] < K exp (Kx3), exp x > K"1 exp (at*-1).

Either inequality is certainly satisfied (when x>\, say) provided the constant K is chosen

sufficiently large. Moreover if it is satisfied for any particular value of K, it will remain

satisfied when K is increased. Any particular K always makes its first appearance in an

inequality for which this is the case. Finally, in a sequence of inequalities, such as

(1 + x) exp (x) < exp (K1 x) < K2 exp (K2x2)

(where x may assume all positive values), we shall omit the suffixes. For the second inequality

to hold, K2 must evidently depend on K1: thus the K at the right-hand end of a sequence

of inequalities may depend on all previous K's. The convention of dropping the suffixes

is, however, unlikely to lead to ambiguityf.

* It will be found that the product-forms of Part I,

Section II (which are included among those of Section 1)

and the Taylor-series of Part II agree in the common

ground of their order in z. In fact all these functions are

of order in z comparable with that of exp [(log z)2+k] (where

k may have any positive or zero value), that is, for some

value of k, and for sufficiently large values of r,

exp [(log r)*+*-«] < M (r) < exp [(log r)2+*+e],

where M (r) is the maximum modulus of F (z) on the circle

\z | = r, and e i3 arbitrarily small.

t In exceptional cases different 2Ts are distinguished by

suffixes.
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Preliminary Formulae.

§ 1. The theory of Part I, Section I is essentially based on two formulae of approxima-

tion, both more or less connected with the theory of elliptic ^--functions. The first of these

is a simple deduction from the formulae of transformation from &(z^|t) to (t-1z/ | — t"1).

I. Let i|r(<£, co) = ft (1+ e^-SU)) II (1 + e~^-S0}), where 1R© >0, and where co may tend

S=l 5=0

to zero in any manner subject to the condition

3&co> K^\co\.

Then log yfr (</>, a>) = (£tt2 - \$>) ay-1 - + ^co + X (co),

provided <j> is subject to the following condition:—

Let <j> be put in the form 0 + ictco, where 6 and a are real*. Then we are to have

>ir-\6\>\co\i-8,

where 8 is an arbitrarily small positive constant

We have ^(cf>, co) = e~^ 2 cos\$ n [(1 (1 +

= e-^(qiq0)-1%(v^\T)i (1),

where q = erirL = e~'^, 2irv = <f>, qQ = IL (I - q*»).

s=l

Now,

^2 („ | T) = ci r - ie ~ 7r^r"1,'2 ^4 (t-1^ I - t-1) +

= (27rft)-1)4e"iw~l02[l - 2e-7riT~1cos(2OTT-1)+ ... + (-)"2e"7l%tT_1 cos (Zmrvr'1) + ... ]§

(2).

Now when n^l,

| e - nW1 cog ^t^t"1) \=\e~ 2^,^~1 cos (2tt?z^co-1) | = | e " ^'2ll^~l cos (2imi0ar* - 2mm) \

< i | exp (- 27TV-0)-1 + 27m0a>-1) | + J | exp (- 2ir2n2co~1 - 2™(9o)~1) |

< | exp [- 2tt2 (ti2 - w) co-1] |. | exp [- 2tt \ co l1"^-1] |,

since it — | 0 \ > \ co \1-s,

< | exp [- (n2 - n) co'1] |. exp [- K"1 \ co\~8]}

since, by the condition for co,

H27T | co I1"5*)-1 = 2tt I co I1"8.1 co |~2. 3ftft> > 2tt I co I1"3.1 ft) |-2. K-1 I ft) I.

Then

2 ( - )n 2e ~ 27rZn2(a~1 cos (27rnL(f)co-1)

<exp[-Z-1|ft)|-5].iT

< exp [- K~l\co\ "s] 2 | exp [- (n2 - w) to"1] |

* <p is, of course, not restricted to be real. Fonctions Elliptiques, t. n. p. 252, formula (6).

f Tannery and Molk, Elements de la Theorie des J ibid. p. 263, (8). § p. 252, (4).
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00 00

(since 2 | exp [— (n2 — n) arl~\ \ < 2 exp [— (n2 — n) K'1] < K),

n=l n-1

= X(») (3).

Now we clearly have log [1 + ^ (<o)] = ^ (<»).

Therefore, from (2),

X (v\t) = (27rW-1)i exp [- ^o)"1 + % (a>)] (4).

Again, we have the formulae

2irq03qi = %'(0\r)*

= [-t*.r.T*]-1V(0|-T-1)t

= [_ t4Tl]-i27rei <" *,T_1> [1 + 2 (-)» (2k +1) e~ n {n+1) ,rtT"1] +

n=]

= (27r»-1)*.27re-*'r2w"1[H- S (~)n (2» + 1) e-»(«+!) s^"1]

«=i

= (27TG)-1)1 • 27re-*7r2arl [1 + %(a>)] (5),

as is easily seen by a slight modification of the reasoning employed to establish (3). Hence

q0q^ = (27rG>-1)^ exp [ — ^tt2q)~1 -f %(<»)]

= (27T©-1)4 exp [- ^tt2*)-1 - ^« + X (»)] (6).

From (1), (4), and (6) we obtain the desired result.

§2. II. Provided that |a|<|§, where, as in § 1, $=0+ta&>, we have for the double

series

SPi q = 2 i (-)n_1 [e**1 - nPsv+Qe-*1"0,

n-l s=l

where p and q are positive integers, and p^O, q>% the formula

SP>q = (p + qV. [co-v-*-1 Aq+1 (<£) + BPtq] + x (*>),

where Am(<f>) is the polynomial in <f> which is the coefficient of xm in the expansion of

irx cosec (irx) ex<f}t,

and where BPi q = 0 if p > 0, and B0} q is the coefficient of x^+1 in the expansion of

xe?(l - ex)-\

Since | en*L e ~ mu) \ = | en0L ~ nau ~ nsu) \ ^ \ e ~71 (s ~ ® u |,

it is easily seen that, whether p and q are positive or negative, the series SP) q is absolutely

convergent, and uniformly convergent in the variable co. We may; then, differentiate the

series S-q>q term by term any number of times with respect to ©|| (since the resulting series

is uniformly convergent), and we obtain

/ (i \ P'rQ 20 p—no)

=r S »?, [e,i*'~e-n*'3 w_ffT^"-

* Tannery and Molk, Elements de la Thiorie des Fonc- § The number § might be replaced by any number

Hons Elliptiques, t. n. p. 257, (2). between ^ and 1, both exclusive,

f p. 263, (3). % p. 257, (1). II Regarding <f> as a constant.
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First let us suppose that a^O. Let

g—Zoo

Consider the integral ^- ( f[z^z taken round a large circle I z I = R, denoted by G Since

6 is real and | 6 | is less than tt, it is possible to make the circle G avoid the poles of

cosec wz in such a manner that we have, on the circle,

I el6z cosec nrz \ <K.

.(2).

Again, it is possible to make G avoid the poles of (1 — er^y-1 in such a manner that,

when HX (zco) ^ 0, we have

and when <& (zco) ^ 0,

1 - e~Z(

<K\ e-*(1+*)<*|

< K, since a ^ — J*,

p—azttt I

'<iT,6r«»|

10*" — 11

< if, since a^O* (3),

so that this inequality holds on the whole contour G. It is, moreover, easily proved that

G can be chosen to avoid the poles both of cosec itz and of (1 — e-*")-'1, in such a manner

that (2) and (3) hold simultaneously for all points of the contour Gf. Since i^ — lQ — aco,

it follows from (2) and (3) that for all points z of G

| f{z) cosec irz | < K | z |

and therefore, since K is independent of R and since we are supposing that q > 1,

lim f /(*)

B^aoJ G

cosec 7r£cfe = 0

.(4).

The singularities of (2c)~1f(z) cosec irz within C are at the points 0, ±m, ±2m7no)~1.

All except the first are simple poles. The sum of the residues at m and - m, when multi-

plied by 2tti, is

(-)»

1 -

_|_ e~m4>i ( _ m\-q

(-)mm~2

1 - emw

The sum of the residues at + 2m7rtco'1) when multiplied by 2-7™, is

7T&)-1 (2m7TL(o-1)-^ cosec (2m7r2ft)-1) [e-a»w*«"l-.(-)9e2,,,,r*w"1]

From (4), (5), and (6) we have

(6).

p UhVi

e(R)= 2 (-)mra-2 [e™^- (-)«e~m^] z. — + 2 (-)mm-^e-m^

+ TTO)"1. 2 (2m7r^-1)-? [e-2m^w_1 - (-Jse2*****"1] cosech (2m7r2o)~1) + i?0...(7),

where R0 is the residue of tt cosec 7nz ./(V) at 2 = 0.

* ifis here independent of R, but not of co. the procedure is fairly well-known, and a little tedious,

t I omit the detailed proofs of this result and of (2), as
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Now the first series in (7), when taken to infinity, is the series for — 8-qi Qi and

is convergent. The second series, taken to infinity, converges since rnrQ^mr* and

| g-ttfcfrt | «_ | ema | ^ 1 (a being negative or zero). Making R tend to infinity in (7) we see that

the third series converges (when taken to infinity) and that

<, = £<> + (-)* 2 (-)™m-<ie-^

m=l

+ tto)-1 £ (2m?rtft)-1)^ cosech (2m7r2co~1) [e-^^'1 - (~)qe*™**ri] (8).

It may be shown without any special difiiculty that the series resulting from the

differentiation term by term (p + q) times with respect to co, of the second series in (8),

is uniformly convergent. It is further obvious on a little consideration that the modulus

of the general term of the derived series is less than

K | co \~K. mK. | exp (- 2ra7r2fc>-1) |. [ | e-*m**«~l | + | e2m^~l \ ],

and therefore (since e2»i*<i><>>-1 = e^*-1 + *™™) that it is less than

K\a>\-K.mK.2\ exp[-2<7rma)-l(Tr-\0\)]\

<K\co\~K .mK .2 | exp( — 27rm | ca |1-5 &)"1) |, since ir — \ 0\>\co\1~s,

<K\co\~K. mK. 2 exp [— mK~l \ co \~8], since lllft)"1 = tftco♦ | co |~2 < K~l | co

00

Hence, since 2 ( —)m7nr^erm<>l is independent of co, we have, on differentiating (8) (p + q)

071 = 1

times,

R0 <\co\~K 2 (KmK) exp [- mZ"11 w \~s]

acoj m=i

<\co\~K S (Kem) exp [-mK'1 \ co I"6]

m=l

(where co is supposed so small that K ~l \ co |~6 > 1)

<J5T.|a>|-*. ex^i-K-^co |-* + l)/[l- exp(-Z-1|a)|-6 + l)].

This expression is evidently of the form %(a>). Therefore

/ d \ v+q

s*«=(-£) R°+x^

Now R0 is the residue at z = 0 of

. ^ ****

sin 7r^ ' 1 —'

or of co^z-W-v [i + Al (cf>)z + A2 (</>) ^ + . ] [1 + Cla>* + c2o)2^2 + ... ]

[where 2cn(— #)n is the expansion of (— #)e-(-^ [1 — e-*-20]-1 or — xe? {I — e*)-1],

and is therefore equal to

ftT-M^^-f coQcq+1+ [a polynomial in &> and cf> of degree 3 —1 in &>].
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Hence, if p > 0, we have

- R0 = (p + q)! <o-*>-»-*Aq+l (4>) (10)1;

/ d \ P+Q

and if p = 0, (- £ J 18o = (jp + ?)! (</>) - ?! Cfl+1 (10),.

From (9) and (10)^ (10)2, we obtain the desired result for SPi q. This result, however,

has so far been proved only for the case when a ^ 0. If a > 0 we take

Treating f(z) as before we obtain

(-)■

where R0' is the residue at z = 0 of

/ d \P+Q

g—Z<f>i gZio

sin ttz ' 1 -'

and is therefore equal to the residue at y = 0 of

sin (- Try) ' 1 - e~y"

Bq is thus equal to (—)qR0} and we obtain the same expression for SP)Q as^before.

PART I. PRODUCT-FORMS.

Section I. Asymptotic Expansions.

§ 3. We shall now attack the problem of approximating for log F(z) in the case when

F(z) is defined by a product-form.

Let F(z) = ) be an integral function of zero order. We shall suppose that

s=i \ aj

the a's satisfy the following conditions:

1°. When n is large and s^fi (ft), and when N is less than some (arbitrary) constant,

log (an±s/an) = (± s) co (n) + (± s)2^ (w) + ... + (± s)^coN^ (ft) + 0\[^n~Nco (n)],

where fi (ft) = [v (n)]$ \ co (n) z; (ft) = | ftw (n) |.

2°. lim | a) (ft) | = 0.

3°. lim v (ft) = oo .

4°. (ft) > if-11 a) (n) |, algebraically.

5°. TFAen r is £m £Acm some (arbitrary) constant,

| ft)r (n) | < jEn""*" j to (n) |.

Yol. XXI. No. XII. 41
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6°. \an\ 2 |on+i|-1 = |tt>(»)|-1x[i'(»)],

S=ju(«)-fl

71-1

and \ an\-1 2 | an_s | = | co (n) \-1 x [v (n)]*

Some remarks on the conditions may be found useful at this point.

The most important of the conditions are undoubtedly 2° and 3°, which limit the 'order5 of Qn. The

remaining conditions are satisfied in natural cases when these two are, and express the fact that the function

QK behaves like a naturally constructed function of n.

Writing co, fi, v, etc. for co (n\ /u(?i), v(n), etc., we have fi/n=v~t. (Thus fx is less than n when n is large.)

In the series in condition 1°, the modulus of the ratio of the term srcor_1(n) to the first term sco is (by

condition 5°) less than

Thus the first term is, for all values of s considered, of higher order than all succeeding terms (including, as is

easily seen, the remainder-term), and, in general, the succeeding terms decrease in a ratio which is certainly not

_ 2

greater than Kv 7.

It is supposed that, given any constant integer A, the functions o1(n), a>2(%), ... a>h(n) exist. It is evident,

by what is said above, that if the equation of 1° is true for any particular value of N (independent of n) it must

remain true when N is decreased, and it is in fact supposed in the statement of 1° that we may give any value

we please to JV, provided we do not make N depend on n.

The index \ which occurs in the definition of p(n) might be replaced by any number between 0 and J.

Practically no generality, however, is to be gained by allowing a choice of this index.

Condition 6° may appear somewhat unsatisfactory, but I believe it to be the simplest available. It will be

shown in § 13 that it (as well as the other five conditions) is satisfied in all natural cases.

Although lim | co in) |_1 = oo, the function \(o(n)\~1 may increaset more slowly than any assigned function

which tends to infinity. When | o> (t^) |— 1 increases very slowly v (n) increases nearly as fast as n, since

v(n) = \na>(n)\. In the same way v(n) may increase very slowly, and \co(n)\~1 will then increase nearly as

fast as n. Thus it is possible for | co(n) |-1 to increase more rapidly than f[v(n)] or more slowly than <j)[v (n)\

however rapidly /(#), or however slowly <t>(%) may increase with x. In particular we must be careful not to

assume that the expressions co_1x (v) occurring in 6° tend to zero as n tends to infinity. The independence in

the orders of v and | co | ~1 is the main cause of the complexity of the proof which follows, and should be borne in

mind throughout.

§4. Let n be the integer, depending on z, which is such that | (log | zjan \) \ is a

minimum J, and let z = anel<}). Let <f> be put in the form <£ = 0 + tao), where 0 and a are

real. It is then easily shown that we have |a|<| when n is large§.

* If u is not an integer it is supposed to be replaced, in or 0<3&tc6 <& log (an+llan) - &ic6,

each of the symbols 2J , S , by the greatest integer con- or> taking in condition 1°,

tainedinz, 8" ~ 0<H^<»[« + O(»-!«)-crt

f It is not assumed in the conditions that | co I*1 and v or 0«$1£ (- aw) <& [(1 + a) w+ 0 w)].

increase steadily with n; they may decrease for certain The first inequality gives a^O (since Ew>0), and the

ranges of n provided only that they tend to infinity second

with n. E(l + 2a)c>0(n-ic),

% If two values of n give equal values of this expression, 0r (since l^a^if-1 \o\)

either may be taken. 1 + 2a>0 (n~l \w\)

§ It is clear that | z | must lie between | an-x | and | an+11. > _ ^ ^ .g

If we suppose 2''

KW*l<l^il, sothat a>"i*

we have, by the definition of n, ln the same wa^ if

l*»-il<l*l<K!f

O^log L <logj^ <log fai.i wefindthat |>a>0>
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log F(z) = log

We proceed in the next eight articles to establish the following theorem:

Under the conditions 1° to 6° for the as, and with the condition for cf> that

7r-\0\>\a>(n)\is+[v (n)Y~\

where $ is an arbitrarily small positive constant,

nf 1 + tt"-2 - J V) [«(n)]~> - + (n) + X [»(»)]

+ [*> fo)]-1 r 2 iSp, ff (w) {[to (n)}-P-oAq+2(</>) + a, (n) Bp.h q+l] + 0(v~*x)

where X is an arbitrarily large integer, and where

^•*(n)(^y!

is the formal expansion of

exp [- x{y2^ (n) + y*co2 (n) + ...}]- 1,

so /3P> g (n) is a polynomial in ^(n), co2(n) ... cop+q-i (n).

No expansion for logF(z) can be valid in the whole extent of any region containing zeros of F(z). When z

is equal to the zero — an, <£=0=7r. The condition for <j> prevents the near approach of z to any zero.

Although a negative power of © occurs in the terms of the series 2 , the term j8Pj q (n) o>~p~^ is less[than

Kv~t{t>Q) in modulus. (This will appear later, but is easily seen if we remember that

|»r|<irn-r|fi)|<^-',|»|r + 1.)

The factor o>-1 outside the large bracket, however, is not neutralised, and may remain large (in the casejwhen

v (n) increase slowly) even when multiplied by v~\ where t is arbitrary.

§ o. We have

log log

8 = 1

a^a^.. • a?i

n-l

- log yfr (<f), ft))

= 2 log (1 + — ) + 2 log (l + ^) - 2 log (1 + e*-*«) - 2 log (1 +

= 2

.9 = 1

where

log (1 + —— ) — log (1 -+ e^~SOi)

+ Rl + R.2 + R1' + R2'*,

R,= 2 l0g(l+-^-V

R.2 = - 2 ]og(l + e^-*»),

s=l

+ 2

«=i

log (1 + ^=-s) - log (1 + e-+-*>)

n-l f n

i?/= t log(l+^

R; =- 2 log(l + e-**-*-)

S=fi+1

•(1),

We shall first dispose of the R's by showing that

\r1\ + \r1'\ + \r2\ + \rj\ = \co\-1x(v)

Consider R1} and let /jf be the greatest integer contained in fi. Then, by condition 1°,

I an/an+fJi> | = | exp [- yu/ft) + 0 Qi27Tla>)] \

<K |exp(— ^'ft))|, since //2?i-11 ay | ^ ^n*1 \ ay | ^ < K,

< K exp (- Z~V' I l)> since '&co>K-1\<d\)

< ^, when n is large,

* The term in the second summation corresponding to s = 0 is zero, since an/^ = c~l*.

.(2).

41—2
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since /*' | co | ^ (yu, — 1) | co \ > — K.

Hence, when s ^ p +1, we have

z

Z

<*.

It follows that*

Hence

log 1 + — <2

\Rl\^ 1" logfl +

S=(t+1 \

-■■)

an+8'

<2 2

< 2 | ane^ | 2 | an+s \ -1

S = IX + 1

= | co I -1 % (j/), by the first part of 6°, since j ^ | < iff.

In a similar manner it follows from the second part of 6° that

Again, it is easily seen after the above that when 5 > /j, + 1,

Therefore

S = /x + l

* = +!

<Z 2 e-'g-'H < g e •'

= | Q) |-1 x (")» since 1 — e-* > if-1* when % is small.

We have a similar formula for i£2', and the result (2) is established.

From (1) and (2)|we obtain

0 (z) = log F(z)-log f{^>, co)

= I

S=l

|log(l + -log (1+ *♦—)}

+ jlog (l+ log (1)

Up to the present we have made no use of the condition 77- — j 6\ > \ co^ + v8'1; the

result (A) therefore holds for all real values of 6. We shall, in Section II, have occasion to

return to this point.

§ 6. When l,f | zjan+s | and | an_sjz | are less than unity. Therefore

and

logfu^-Litl-lVM",

V &n+s/ m=l m \an+s/

V z ) m=i m \ z J

* It is a well-known result that if

|a?|<i, then | log (1 + x) | <2\x |.

More generally, if

lar^l-X,-1, then | log (1 + x)\<K2 \ x |.

+ For | el* | = | e~aw |, where | a j <|, and w is small.

J Capital letters are used to mark prominent stages in

the proof.
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Substituting these expansions in (A) we obtain

r A m ~1

co / \m—l /x

Q(z)=2 ^— 2

W=l ^ 5 = 1

co / \m—l /a

= 2 2

'f Z \m x fan-s\m

\an+s/ \ Z J

+ e- {exp [m (s2g>i - s3a)2 +...)]- 1}

+ (B).

We shall show that if we replace, in (B), the expression exp[— m(s2co1 + ssco2 +...)]— 1

by the polynomial PA (m, s) which consists of those terms of the formal expansion of that

expression which are of degree in s not greater than X, and if we replace

exp [m {s2<ox — s3co2 +...)]"" 1

by the corresponding polynomial, which is evidently PA(—m, —s), the error will be of the

form 0 (a)~1*>-Ai)> where \ is a positive number tending to infinity with \; so that

oo /_\m—1 fi

G(z)= 2 —— 2 [em^-ms<aPK (m, 5) + e-m^-™« PK (- m, - s)] + 0 (co'1 v~^) .. .(C).

This result exacts a proof of some length, and will be approached by three stages.

I. We shall determine a number p(n) such that the sum of all the terms of (B)

for which ms < p differs from the sum of the corresponding terms of (0) by an expression

of the form 0 (a)-1^-*1).

II. It will be showrn that the sum of the remaining terms of (B), i.e. those for which

ms^p, is of the form 0 (g)_1z>~Xi)-

III. The terms of (C) for which ms^p will be shown to give a sum 0((o"1v~^).

These three results evidently suffice to establish the truth of (C).

Let p (n) = v^\(o\~\ Then we shall show that

6-</x (\m—i

2 ^—L- [em^~ms<a (exp [- m (s2^ + sdco2 + ...)] -1 - Pk (™, s))

ms<p m

+ e-mfr-ms<o (exp[m(52ft)x-53ft)2+ ...)]-> 1 - PK(-m, -5))]= 0(©-1i/-xO ...(CX.

*~)m !f^t-«w» (exp [- m (s-w1 + s3&)2 + ...)]-1) + e-»*t-m*» (eXp [m(s2^ - ssa>2 + ...)]-!)]

= 0(a>-1^.) (C)2J

2 [^l-wsw PA (m, 5) + Px (- m, - 5)] = 0 (o)-1^) (C)3.

m

m

§7* In the case of (0)i, we have ms < p, s^fM. We shall first show that

exp [— m (s'co, + s3o>2 + ...)] = 1 + Pa (m, s) + 0 {(pcosn-i)^} (1).

* The following list may be found useful in what | w [i, p, n, are arranged in increasing order. v = n\<o\

follows: comes before «, but apart from this may have any place in

M = j/3 . l cj\-i = v~b ,p = v~% .n, the series.

P
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We have, by 1°,

| u | = | — m(s2w1 + ...) | = 01 ms2^"1 \

< Kms. /jl | ft) | n~l since s ^ fi,

< K. p . fM . | ft) |. ft"1 < if. rii/"~ i . nv ~ %. zm-1. < i£V ~ *

= (2).

Therefore

exp (u) = 1 + 2 — + 0 (ur+i)

r-l r -

k 1

= 1 4- 2 - [- m {$V + s3&>2 + ... + s^a.! + sA+10 (am-*)}]1, + 0 (msParr1)^1 (3)

(by a double application of 1°).

In (3) the remainder term 0 (ms2G>"~1ft~~1)x+1 is of the form

0 (pscon-1)^1 = 0 (psam"1)** (4),

since pstarr1 = 0 (p/Moon*1) = e

Again, any term of the expansion in powers of s of

[- m {s2^ + ... + 0 (om-A)}]r,

whose degree in 5 is greater than A,, is of the form

0 [(ms2^)^ (?n53ft)2)a2... (msk+1 con~k)a\\,

where 2^ + 3a2 + ... + (\ + 1) aA > A.

Since av=0(ftm~r) this expression is equal to

0 [(mSw)ai+a*+-~ (m-l)^+2a2 + Sa3.f ...J _ Q (5?r l)«i+2«2+.»] (5).

Now |/oft)|>l (when n is large), and ax + ... ^^-(2^ + 3a2 + ...)< ;also </m-1 < 1,

and aa + 2«2 + ... ^ £(2a1 + 3a2 + Hence the right-hand side of (5) is of the form

okh*^™-1)*] (6).

From this result, from (4), and from the definition of PK (m, 5), the equation (1) follows

immediately*.

To establish (G)l9 it is evidently sufficient to establish the relation

S<fl

ms<p

[exp {- m (s'co, + ...)}- 1 - PK (m, s)] em^~m8(a

= 0(ft)-V"A9,

m

together with an analogous result containing PK (— m, — 5). Now from (1) we have

T< 2 !T(pam~1)*x$ix|ew,*t-,M*w|

ms<p

< K {pwn-l)lh 2 s*Ag»* where <o'= Rco,

nis < p

< iST (pmnr1)^ *2 s*x e ~ K~hns 1 <° I,

* For all the terms of Pk (m, s) are evidently included among the terms in the expansion of (3).
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•(7),

since co > K~Y \ co |, and since s + a>s-f>is,

<K(p*n-y*X

s=l x

where we have written co" for K~1\co\) and performed the summation with respect to

m. Now it may be shown that*

00 i> p—8<»"

.(8)

Hence from (7), we have

7 < # (/m"1) - *x a)"1 < ifr - ix O)"1 (9).

In a similar manner we obtain

j / \m—l I

1 ^— [exp {m {s2cox - s3a>2 + ...)} - 1 - PA(- m, -5)] e< Kv " ^eo"1.. .(10).

r = 2

m

From (9) and (10) the result (C\ follows at once, provided we take Xx = £\.

§ 8. We must now enter upon the rather intricate analysis which is required to

establish (C)2. We shall not begin with the left-hand side of that equation, but shall

show that if 0^;#^1, then

\m\=

2 (-)m-1xme-

ms^p

em& exp {— m {s2coY + ...)}- e771^ + e~m^L exp {m (s2^ — ...)} - e~m<t"'

<i»rixw (cv.

where the %(i>) is independent of x. The left-hand side differs from that of (C)2 by

the introduction of xm and the suppression of 1/m in the general term of the latter formula.

The result will be established by separating the series into four series corresponding to

the four terms inside the large brackets, and by showing that each series satisfies an

inequality similar to (C)2'.

We have

xm exp [- m (s2^ + ...)]

2 2 xm (-)m-1 em^ ~ msui exp [- m (s2 cox + ...)]

s—l m^p/s

£ ± oo{pls} exp [\p/s] ($1 -soy- s2^ -...)]

s=i 1 + x exp [(f>t - sco — 52ft)x - ...]

< £ 1 exp[{p/s}(cf><,-sco-s2co1-...)]\

^ s=i 11 + 00 exp — sco — s2©! — ...] I

where {p/s} denotes the least integer containing p/s.

* When 0<£< 1, we have (1-e~x)~1<Kx~1, and when

x^l we have (1 - e-x)~l<K, so that for all values of x,

Hence

00 p — Sto"

S ,*A —

5=1

(1<JT+jK»-i.

«=i 8*1

00 /••+!

if 2 / a^e"^-1)""^

/•» /-ao

./ 0 Jo

< r (jx+1) (»") - ^ -1+r («") -1 - *A

<jr(«")-*x-1, since ew"<ii:.

dx
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First consider the numerator of the general term of this series. We have

B [{p/s} (<j>L -sco- s2^ -...)] = H [{pfs} {0i - aco - sco + s2 0 [con~1])]

= m [- {p/s} (a + s) co + {p/s} s2 0 (am"1)] (2).

Now {p/s} ^ p/s \ also a> — f, so that a + s>j5. Therefore (since <&&)>())

<d [- {/>/*} (a + s) co] < m (- ipeo) < - K^p \ co I (3).

Again, p/s>p//jL, and is large, so that {p/s} = 0 (p/s): therefore,

3ft [{p/s} s2 0 (can-1)] = 0 (pfi | a) | w-i) < i iTr1 />! a) | (4),

since purr1 K^K-^1 when n is large. From (3) and (4) we see that the right-hand side

of (2) is less than -\K{~1p\co\) or -\K{~lv?. Therefore

| exp [{p/s} (cf>L -sco- s'co, -...)] | < exp (- ^K^v*) < Xi 0) (5),

where ^ (v) is independent of x and s.

Considering now the denominator of the general term in (1), we shall show that

11 + x exp [$L-sco - s2co^ - ...] | > K~lv~l (6),

where K is independent of x.

Let us suppose that 6 is positive or zero. We have

exp (— s2&>j — 5-sa>2- ...)= exp [s2 0 (corr1)]

= 1 + s2 0 (con-1),

since | s2 0 (con-1) \ = 0 (^cov-1) = e (n).

Therefore 1+ x exp (<j>i -sco- s2^ -...) = 1 - a>e-*»-<»-*)1 [1 + s2 0 (am"1)] (7).

Now | e-*°s21 = e~s5aws2 is a maximum when s= 2 (3£lc«>)_1, and is of the form 0 [(^fto))-2] or

0(o)"2). Hence, from (7),

1 + #exp (cpL — sco — s2ft)j — ...)= 1 - #g-*»-Or-*)* + 0 (go-2am-1)

= 1 - a.e-(fi+a)W-(ir-0>i + 0 (8)#

Our next step in the proof of (6) is to show that

I 1 _ ffe-(« + a)W-Or-*)t | > K-l (tt - (?) (9).

First suppose that j (s + a) co | ^ J (tt — 0).

Then i the imaginary part of (s + a) co | < £ (7r — 0),

and therefore 11 - $-<«+«) | = | 1 - ?e^

where # is real and less than unity [since x^l, ill (s + a) <d >0], and |t|<|(7t — 0). Now

[for, as is evident from a figure, (1 — is a minimum for any real range of a/t when i/r

differs from zero or a multiple of 27r by as little as possible],

>K-'(iT-e\

(as is also evident from a figure).

If we suppose, on the other hand, that j (s -f a) co j ^ (7r — 0), we have

»[-(* + a) co] ><R [- (5 + a)^-1! co |] > if"1 (tt- 0),
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Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 317

and therefore 11 - | > Z"111 - exp [- K~l (tt - 6)} \

>K-1(tt-6).

The inequality (9) is therefore established.

From (8) and (9) we have

11 + x exp [cj>L -sco- - ...] | > Krl (tt - 0) - K2v~l (10).

Now since 7r - 9 > \ co |1_s + v8'1 > v8"1,

K2v~Y < ^K~x (7r — 6)y when n is large.

Therefore, from (10),

11 + xexp(<f>i — sco — s2g>! — K{~l{ir — 6) (ll)i

>K~iir1 (11)2.

The number 6 has been supposed positive or zero; if it is negative it is easily seen

that we obtain (ll)i with 6 replaced by \6\*, and therefore (11)2. We have therefore

established the result (6).

Returning now to equation (1), we have, from (5) and (6),

2 ^m(-)w-1em*t-msa,exp[-m(s2ft)1 +...)] < 2 }_x

< KH*vXi (*)t

<|«|-1%2(^) (12),,

where %2(f) is independent of x.

It is evident that the reasoning of the whole article is unaffected if we write cox = a>2 = ... = 0*

We therefore have

2 xm < I co j-i x („) (12)2.

It is also evident that the proof of (12)2 applies, mutatis mutandis, to the series

2 Xm (_)m-le-m^c-7^a, exp [m _ ^ + ...)].

ms^p

We thus have results (12)8 and (12)4 corresponding to (12)j and (12)2. From these four

results we obtain the equation (C)2\

§ 9. From (C)2' the result (C)2 follows without difficulty. The series f(x) is uniformly

convergent in x, and may be integrated term by term. We therefore have

2 ^— e~ms<* e^L exp {-m(s2co1+ ...)} - em^L + e-™^ exp {?7i -...)}- e~m^L

= 1 C f(x)dx ^ (1\f(x)\dx

\J 0 ./O

< f I ft) |-1%(i/)d^, where %(z>) is independent of

Jo

< \to\-1X{v\

< 0 (| w |_1 i>~Al) (whatever value may be given to the constant \),

which is the desired result (C)2.

* (ir + <j>) i is written for - (-tt - <p) l in equation (7). t For %i M is independent of s.

Vol. XXI. No. XII. 42
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318 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

10. There remains to be established the third of the results (C), viz.,

Let 0LPtqmpsp+Q be any term of ?7i~1Pk(m> s), so that jp^O, g>2. Consider the ex-

pression

aPiq=S2 (-)n-irn?s^te^-™» (1).

The right-hand side is the sum of {fi} series each uniformly convergent in co, and is therefore

equal to

\ dcoj s=i ms>?

= (-AY £ , ^e*p[W*l (2\

\ do)J s=j 1 + exp ((fx, — sco) ^

It will be seen on a little consideration that

i, vT f1= 2 OiN « -FT"; 7^ vT^-exp[ (^-5&))]f •••(8)>

VeW 1 + exp — 5o>) I Li5 J J [1 + exp (0t — sg>)]** r Lir/ JX7^ /JJ v /?

where i>!+^2 = P- Now by (9) of §9*, vvith x equal to unity,

11+ exp (<£* - sco) | > Z-1 (tt -1 (9 |) > Z-1*/-1.

Also, by (5) of the same article (with co1 = co2 — ... = 0)f

l«p[{p/*}(^-*©)]| = x W-

Hence, from (3),

y exp [{p/s} (<j>i - sco)] _ J? ft ^

<W 1 + exp (cf>c — sco) ~ Pl=o^ *V %'

p

= 2 pp x (v)> since s ^jjl< Kp,

2h = 0

Therefore, from (2),

\cTP)g\^i^pPX(v) = ^pPX(v)

= \a)\-ip+q+i)x(v) (4)

(since /jl and p are of the form va\co\~1).

Now we have

2 ^—er™»[0»*'Pk(m,8)]= 2 o^o-^ (5).

Therefore, by (4), if we can show that

0^ = 0 («*+») (6),

it will follow that the left-hand side of (5) is of the form

* This inequality, proved in the text for 0^0, is easily seen to be true when $ is negative if t-$ is replaced by

x-\e\.
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Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 319

and therefore of the form 0 (co_1v~^) (7),

whatever constant value may be given to \.

We proceed, then, to establish (6). Now a^ra^s^ is a term of the expansion in

powers of s of

m~l exp [— m + szco2 4-.. .)],

and is therefore of the form

0 [m^m^am-1)** (ms^con'2)**...],

where 2ax + 3a2+ ... =p + q, — 1 + ax + a2 4-... = p.

Hence ap>q is of the form

0 [(am"1)"1 (con-*)"* ... ] = 0 [(con) - ^ - 2a2 - ... ^ + 3a2 + ... j = q - } (2a, + 3a2 + ...) m w2ai + 3a, +... j

= 0(©P+*i/'*x) (8),

a result which incidentally proves (6), and to which we shall have occasion to return later.

We have seen that (7) follows from (6). The result, analogous to (7), concerning e~m(f>lPK (— m, — s)

evidently follows by a similar proof, and (C)3 then follows immediately.

§ 11. We have now the formula (C), viz.

oo fx (_ \m—l

G(z)= 2 2 ^;

*' PA (m, s) + e-™*1- PA (- m, - s)

>i=is=i m

where Xx tends to infinity with X (and may be taken to be We shall next show that

fJL CO

we may replace 2 by 2 in this formula.

S = l 5 = 1

If aP)qmPsp+Q be any term of m-1Px(m, s), we have, by the equation (8) above,

iap,ff| <K.

It is therefore sufficient to prove that

er'M= 2 2 mVsV+*\e±m^-ms"\ = \co\-P-(t-1x(v).

Now I g^m^L—msb) | ^ | Q—m (s— \a\) w | < g-ms<o'

where co = 1 co | *.

Then <7'Pf9 = 2 «p+« 2 m^te' (1).

CO p A rp

Now, if 0<«?<1, 2 = 2 t^-^t,. (2).

When x = 5 ^ fx, we have

and therefore | (1 — x)~^ \ < K.

For ^03>K~l I a |; *-|a|^s-f >Js.

42—2
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320 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

Hence, from (1) and (2),

*'p,q<K 2 sv+U-Si

S = fl + l

< K 2 x*+9<rW'*'dx < Re**' x^e^'dx

S = n+lJ$ J p

< (K) (a>')-p-<i-i. P° Ke^y. ervdy < K{m')-*-9-*. 2Ke~^^~1

<jr|o>|-^-^-ir"1lwi"1^lwl

= \co\-p-^x(v),

which is the desired result.

§ 12. We now have

G{z)= 2 2

Pk (m, 5) eMl*' + Pk (- ra, - s) e-«*cJe-»w» + 0 (g)-1!/-^) ...(D).

mpsp+q

Now PA(m,*)« 2 ^ftgW/w,^i»

is the expansion of exp [— x(y2a>1 + yzw2 +...)] — 1.

(We evidently have p ^ 1, q ^ 1.) Hence

(? (s) = 2 Pp>gV \ 2 2 (-^m^-1) S^-D + (9+i) _ e-m*i] e-ms<o + 0

#+<Z<A (P + ?) i m=l 5=1

Now the double series is Sp-hq+1 of § 2. The conditions for <f> in the result II of that

article are satisfied; therefore

= 2 (n) [a,-^-^^(<£) + ^a+I] + X («) + 0 (w-1^.) (1),

since, by (8) of §10, we have | PM (ri) \ < K.

If now, in the formula

logjFO) = log

>n ~|

'- + log ^r(0, »)+©(*),

. . . (ln J

we substitute for G(z) from (1), and for logi/r(<^>, o>) from the result 1 of § 1 (for which the

condition is satisfied), we obtain

log F{z) = log [ /" 1 + (K - i4>2) - W +

+ 2 0M (n) [^3+2(<£). «-*-«-« + ^-1)g+i] + % (») + 0 (o,-1^.) (2).
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The number \ tends to infinity with X. To obtain the complete form of our theorem

it remains only to prove that we may take \1 = -^X. Let any number \0 be assigned. Let

us choose the \ of (2) in such a manner that X2 > |\0. Then

log F{z) - log I" /" 1 - (K - #2) ** - tV*> - 2 &,9 [^s+2 (<£) a.-^f-1 + ^_liS+1]

_Ui a2 . •. c%j P+«<Ao

= (2-2 )/SA9[^+2(^)o,-^ + ^_1)4+1] + x («) + 0(»-'!/"**•) (3).

Now, by the result (8) of § 10, if p + q > \0>

Hence the right hand of (3) is of the form % (o>) + 0 (o)-1 i>~^x°). Since \0 is arbitrary the

desired result is established.

§ 13. We shall now give the promised proof that the conditions for the as are at any

rate satisfied if an is a naturally constructed function of n, of less order than exp (en)*, and

of greater order than nVe for all values of e, however small. The proof is necessarily of a rough

character, but in any particular case it is easy to make it rigorous.

We have a>(n)=^ (log an).

From the restrictions on the order of n it is seen that co(n) is intermediate in order between J^(e-1log^)

and ~ (cw)j or between €~ln~l and e. Hence lim | a> (n) |=0, lim n \ a> {n) | = oo, the conditions 2° and 3°.

Condition 4° will evidently be satisfied unless an is of the form exp \_fx (n) + if2(n)], where /2(w) is of higher

order in n than fi (n).

For a function f(%) which decreases with but not more rapidly than x~\ we have

/M(*)-0[/(*)*-»].

Thus, since o> (n) is intermediate in order between 1 and n'1, (or(n), which is of the order of ( « M> is of the

form 0 [a> (n) n~r\ Condition 5° is thus satisfied.

There remain to be considered conditions 1° and 6°.

We have (s being positive or negative) log an+8=f(7i+s\ where /(x) is intermediate in order between

€_1 log x and *x. If an is a naturally constructed function f{x) will have only a finite number of singularities.

Thus the Taylor-series in powers of 6' for f(n+s) will have a radius of convergence which differs from n by a

finite number, and which is therefore greater than hi when n is large. Then, since \i=nv~% is of less order

than n, we have when

/(»+*)-/(») +sf (n) + ... + jPj/W + /p^rjj/(»+*) ^

where the integral is taken round the circle | # |

* It should, perhaps, be mentioned in this connexion

that if we require an to be an analytic function of n of

order less than exp (en), we exclude certain forms of an

which might appear at first sight to be admissible. The

form exp (nk) (0 < k < 1), is obviously admissible, and it

might be concluded that (- l)n exp (nk) is equally so. This

form, however, is excluded by condition 4°. The fact is

that (-1)*, regarded as an analytic function of n, must

be considered to be of some such form as exp (7rm), which

falls in the same category as exp (n).
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322 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

Now since, for functions f(z) of less order than z, \f(z)\ varies only by a finite factor when \z\ remains

constant, and since the maximum modulus M(\%\) of \f(n+x)\ on the circle |#|=constant is an increasing

function of \x\

\f(n+x)\<Kf(\n+x\)<Kf(§n)

<*?(») • (ii),

since, when \f(z)\<z, we have |/(Kz) \<K\f{z)\.

From (ii) we see that the remainder-term in (i) is of the form

or 0[sN+1n-NG>(n)].

This is what is assumed in condition 1°*

We have finally to consider condition 6°. Since the integral function F(z) is of zero order, we have .

I «.!-»*(s),

where lim <fi (n) = oo.

In cases arising naturally <j)(n) is an increasing function. Also, with our assumptions as to the order of

an) <j)(n)<€n when n is large. We have

S = /x+l s = n+l s = n+l

since $ (n+^-^R-1 (fi(n + fjL), and <j> (n + p). (n+p)-1 -*0,

<Kn (n)]-1^ (*). (n + p) ~ * (n + ^ (1).

Now 2ftco = J^[$(w) \ogn]=n~1(t)(n)+logn(l),(7i) (2).

In the cases we are considering, one of the two following inequalities will hold for all large values of n:—

an'1 <f)(n)>logn<l>' (n) (a>3-e) (3)!,

Sn-1 <f)(n)<logn<l)'' (n) (3)2.

If (3)j holds we have, from (2)

^a) = a'n~14>(n) (4)1}

and if (3)2 holds we have 3&a> = U log n <£' (n) (4)2,

where a' and V lie between K~l and K.

Since | a> \ '^'^ia)>K~1 | <o |, we have in either case an equation for | o> | similar to that which holds for 1ft<o.

First let us assume (3)x to hold. We then have, from (1),

K|. 2 \aJl+8\-i<X\a>\-hi<f>W{n + fl)-<Ptn)

<K | © I"1 [(1 +pn-i) -"M-ynri^ (n)

<K | a, |"i [exp (- K~w I (since fin-^O)

<K\co\-lexv[-K-in\o\]

= |co|-iX(v).

* It is interesting to notice that, as a matter of fact, to any (constant) number of terms of the series, with a

1° does not assume that the series s<a+s2a1 +... is con- remainder of the order of the succeeding term.

vergent. All that is assumed is that log {an+Jan) is equal
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Me LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 323

£ [log <#» («)]>8 (»log >^ {log [(log w)3]},

Now let us assume (3)2 to hold. That inequality may be written

d n

so that we shall have (when ft is large)

<M*0>(iog-/03,

and therefore <f>' (ft) > 3 (log ft)2 n ~1 (5).

Then' i/ = | fta> |>ftA_1 logft<£'(ft), by (4)2,

>nK~l (\ogiifn-l>K-1 (logft)3 (6).

Now 0 (ft) - $ (ft+/*)=- ju<£' (ft+/*) + £ /u2 0" [ft+p+0 (- /*)],

(where 0 < 0 < 1) < - (ft+/*),

for <jf>'(ft) is a decreasing function [since $(ft) = e(ft)ft], and therefore <£"(#) <0. But <f> (n +fi)/cf)' (n)-$ 1 for

decreasing functions <£' satisfying (5). Therefore

cf) (ft) - <£ (ft + /*) < - K-1^' (ft)

< - A"" VI <»! (log ft)" \ from (4)2,

< _ ^-1 „ i (jfy J) -1, from (6),

<-Z~1v* (7).

Again n [0 (ft)]-1 = (ft)] -1 n [log 0 (ft)]

<[*'W]-1^i[log^]<[^(ft)]-1

<A|a,|-Uogft [by (4)] (8).

Hence from (1) we have

Kl 2 |an+s|-i<Aft[^(ft)]-i.^W-^(w + ^

< A | co | -1 log ft. ft - K~l v * by (7) and (8),

=l«|-1xW.

This equation, the first part of condition 6°, therefore holds in any case. The second part of the condition

may be established by a similar line of argument.

§ 14. We have seen that | co |_1 and v may be of the same or of different types of order in n.

The different possibilities may be classified roughly as follows. We may have either

(a) vK > j co I"1 > v~K~l>

or (6) co = x O),

or (c) v-1 = x

where each inequality is supposed to hold (if at all) for all sufficiently great values of n*. We

shall discuss the different forms which the remainder-term of our general expansion assumes, in

the three cases, for functions F(z) arising naturally.

The simplest of the three cases is (&), as we have there only one type of order to consider.

The function | co j_1 is, for some constant^ value of k, comparable with n}~k (0 < h < 1), v is thus

comparable with nk, and | an | with exp (nk). From the last fact it follows that | log z | is

comparable with nk, so that j co \ ~~\ v, n, and | log z | are all of the same type of order, and,

in particular,

% O) = X (log z\ ri^X 0) = X il°g z)> <»~l v~Xl = 0 0~v).

* The classification is not complete, for it is quite while another of the inequalities holds for another infinite

possible (under the conditions) for | w |_1 and v to be of number of ranges.

"irregular growth," in which case one of the above in- f That is, in natural cases. It is possible for k to vary

equalities may hold for an infinite number of ranges of ft, in different ranges of n.
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The remainder term of the general formula for \ogF(z) is therefore of the form 0 [(log z)~p]y

where p is any positive constant.

§ 15. As an example of case (a) let us take the function

F(z)= S [l + ^/exp{p/"+Pl/i + ... + ^A],

8 = 1

where k is a real number between 0 and 1,3ftp>0, px, p2,... are any complex constants, and 1 >k>3&k1 ^ &£2 ^ ....

By a rigorous proof on the lines of § 13 it may be shown that the conditions for the a's are satisfied.

l , ,

We have g> = 2 krprnKr A (&o=£> Po—p)>

r=0

r=0

The expression a>_i may be put in the form

o,-<=(^p)-«^(i-^)[l + 61^-ai + 62?i~a2 + ...] + 0(^-H

where Ai is an arbitrary positive number, the a's are rational functions of the #s arranged in order of

increasing real parts, and the frs are rational functions of the #s and p's.

Since fiPtg(ii) is a polynomial in a>u o)2, it follows that the expression

(**■*-Ws)»-1-i*' + A« + 2 &q(n)[Aq + i(4>)a>-P-*-i + Bp_hq + 1]

p+q<\

is of the form * n1" k [b0 + bY n ~ a* + b2 n ~ a2 + ...] + 0 {71 ~ xi) (1),

where the 6's are rational algebraic functions of 0 and the #s and p's, the a's are rational algebraic functions of

the &'s arranged in order of increasing real parts, and Xx is any positive constant t.

Now consider the term log =w0i+log — .

We have logT— —n*—~|=w 2 pr?A- 2 f 2 p,.A~|.

L«ia2.-. «nj r=0 s=lLr=0 J

Now 2 *p = —rr + inp+ 2 C^-'+C (+ 0 (n ~ xi);

therefore log \—^——1=w0*+n*+1 [60 + ^ w " ai + b2n ~ ^ +...] - 2p}. f (- *,.) + 0 (n ~ xi) (2).

Again we have xW=xW> a)"1* ~^x=0 (?i ~xi) (3).

From (1), (2), (3), and the general formula,

log F(z)=n*+i [b0 + b1n~ai+ ...]- 2p,f (-#r) + 0 (n ~xi) (4).

Now we have 2 pr?r>'=logs-0i.

From this relation we can deduce that J

(log z - 0t)k 1 [60 + 6X (log * - 00 " ai + ...] + 0 [(log 0 - 00 ~ Xl]

and thence that n=(log z)k 1 [60 + bx (log 2) ~ ai + ...] + 0 [(log 0)" xi].

* We know that approximation for log F {z) in terms of z alone turns on

I Pp»<i M <*~p~q I <Kv~%(P+Q\ the possibility or otherwise of obtaining, from the equation

The expression (£tt2 - \<p) w~i therefore gives the dominant an=ze~^, an approximate formula n=f(z, 0) of a sufficient

term. degree of accuracy.

t In what follows we shall write 60, bx ..., a1? a2 ..., X, The proof of the inversion formula for the particular

for any set of numbers such as the above. case above is based on the fact that k is greater than

X The problem of finding (in the general case) an etc.
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A similar formula is easily shown to hold for any positive or negative power of n. "We therefore obtain

from (4),

log^)=(log.)1 + A;~1[6o + &i(log^)"ai-f...]- i PrC (-^) + 0[(log*rXi] (5).

The indices a and coefficients b may be calculated when the #s and Xx are given numerically. If this be done in

any particular case, it will be found that disappears from the b% so that we obtain an approximation in terms

of z alone.

It is, as a matter of fact, possible to show that the $'s must disappear from the general formula (5), and,

further, to determine the values of the a's and 6's. The proof of this, it should be said, depends on results

derived from a totally different theory, and has no application to the other functions which we shall consider.

If we can in any manner obtain for log F{z) an expression of the form of the right-hand side of (5), in a case

where the k% p's, and <£, although subject to restrictions, may yet each assume an infinity of values, the a's and

6's in this expression and in (5) must be identical. For otherwise we obtain, by subtraction, an expression of the

form of the right-hand side of (5), which is equal to a multiple of 2ttl for all the values of the k% p's, and (f>

considered. Since the a's are rational algebraic functions of the k% and the 6Js are similar functions of the ^'s>

p's, and this is easily shown to be impossible.

I have shown elsewhere* that logF(z) possesses an asymptotic expansion of the form (5) in the case when

the &'s are real, prp~l is real, and §<k<\i. This expansion, which is now shown to hold under the conditions

0<£<1, &>3£Ui^1ft&2&/>>0, and the general condition for cf>, is as follows:—

■l0gJF(*)«- 2 PrC(-*r)-il°g*+- 2 C^mi^-nejip-Hogzf'1-6^1

x £r (dm - k-1 -1)+2^r (2s+6m - h-1 -1) 22-^T^ As (log z)"2*J,

where the B's are Bernoulli's numbers, and where 2CnaA is the expansion

i

m=0 a1+ou24-...-fa^ = WiLr=l I1 Kar+*■)) Kr=l ) J

arranged in order of increasing indices of x%.

§ 16. We must examine the nature of the restriction on z implied by the restriction on <£. Let us suppose,

in the completely general case of our theorem, a circle 08 drawn with each zero - a8 as centre, of radius

ft=i«.i{i«(«)i1-'+[»w]8-1}.

It may then be shown that if z is excluded from all the circles, the condition for (f> is satisfied. For, for some

value of n, the point z (when | z | is large) lies in the annulus formed by the circles

\z\ = \an exp[±|a)(w)]|.

The breadth of the annulus is less than K \ o (n) an |, and is therefore of the form e{n)pn. It is then evident from

a figure, after a little consideration, that when z is excluded from C», we have

7r-\6\>K-i{\a>(n)\1-8 + [»W]d-1}

>| a> (n) I1 ~ ±* + [v (n)]*8 ~ \ when n is large.

It may be shown that the circles overlap, and in such a manner that the space from which z is excluded is,

roughly speaking, a spiral strip.

In the particular problem before us, we have

| „ |1 - » + „» -1<Kn~ <X - *) d - *) +A*"* (1 - «).

Hence if we may take for the radius of the circle C8,

* Proc. London Math. Soc. Ser. 2, Vol. vn. p. 248. treatment of the problem.

(The notation is different from that of the present paper, + i.e. if pnt pn+1 are consecutive indices, we are to have

kr1, kjT1 {k>l) being written in place of k, kr.) ^Pn+i^^Pn-

f The case l>k>\ presents grave difficulties in this

Vol. XXI. No. XII. 43
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where 5 is an arbitrarily small positive constant; and if we may take

As regards the extent of the region from which z is excluded, it is easily seen that if we take a large circle

| z\ = R, the ratio of the area of the part of the strip included within the circle, to the area of the whole circle, is

of the order of

(\ogR)-h + d,

where h is the lesser of k and (1 -k). Thus the strip shrinks to its least dimensions when £=-|, and becomes

larger when k either increases or decreases from this value*.

§ 17. As a second example, let us take

F(z)= n [1+*/{«* exp(p**)}],

s=l

where l>k>^> and let us find an approximation for log F(z) with a remainder-term of the form e (s).

We may neglect in the general formula the terms

A«+2i8RflW[^«+2(*)«>-,,-«-1 + ^P-i>ff + i].

(It is easily seen that these terms are all of the form e(z) when k>%.)

We expand the remaining terms of the formula in descending powers of n t on the lines of the last article,

n

employing in the reduction of log («xa2 «n) the known asymptotic formulae for log(% !) and 2 sp. We have

s=i

then to substitute for n in terms of z and by means of the equation

p [nk+tr log n]=log z - t(f).

This equation gives

»=/(*, 0)+0[(log*)&_1-3+is],

where f(z, cf>) is an algebraic function of 0, log z and log (p-1 log z). On effecting the substitution we find that (j>

disappears from the final result, which may be written

logi^)=^(p-ilog^

+ [i(rV-1^-Mlog(p-Uog2)}Hj7r2/(;-V-1](p-1log^)^17^

-pf(-^)-io-log2^ + O{(log0)-/l+5})

where h is the lesser of {k~l - 2) and (1 - k~l).

118. We shall next consider case (6), in which o> = % (v). In this case, however large

the constant X may be taken, g)~1i/'"^x cannot be a small term. The function log \ an \ will be of

the form log n. @(ri), where 6 (n) tends to infinity, but more slowly than any power of n.

If we have 6 (ri) > K"1 (log n)^-1* v will be of the order of some positive power of

logn.0(n), or of logz. The general formula will therefore give for \ogF{z) an expression

of the form

iogr—^_i+a)-ip(^

& LOiOa... anJ

where P (z) is a series in which the ratio of any term to the preceding is of less order than

(log^)-^, where h is some positive constant.

. * It is interesting to notice that k=% is a critical value

for k in the analytic theory of the function F (z) developed

in the paper cited above.

f In this case terms in logn appear in addition to

simple powers of n.
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If, on the other hand, 6 (n) is of lower order than (log nf for all positive values of e, v will

be of lower order than (log z)*y and we shall have

r zn

log F(z) = log

+ C0~lP (s),

where P (z) is a series in which the ratio of any term to the preceding is of less order than

[£(#)]_1, where t(z) is a function of less order than any positive power of log#.

As an example let us take the typical function of the first of the two cases,

F(z)= 5 [l+s/exp{p(logs)(1 + fc)}] (jfc>0).

s=l

The function a> is p (l + k)7i~1 (logn)k, and a"1 is of order comparable with exp[(p-1log2)(1 + fc' *]. Let us

suppose that we wish to find an approximation for \ogF(z) with a remainder-term of the form

R(z) = € (z) (log z) ~2k(l + exp [(p ~ i log zft + ^ ].

The terms -i0*+iVfi) + sft>,ffM Bp-hq + i

may be neglected, and we have

log F(z)=pn (log n)l+k-p s (logs)l +k+ ncj)t +u^-*A->((!>) +R (z) (1).

s=l

We have

^exp^p-Mogs-p-^^ + ^'^-exp^^ ...(2),

where k' = {\+k)~l, t—p~l\ogz.

On performing the substitution (2) for n in (1) we obtain*

logJP(2) = exp[(p-ilog^)(1 + ^"1]

>(l+*;{(p-ilog*)*^^

where the series within crooked brackets is carried to the last term such that the index of (log z) is not less

than -2&(1 +Jc)~K

It is possible, when h is given numerically, to carry the series in large brackets as far as any numerically

assigned negative power of log z, i.e. it is possible to obtain any number of terms of a certain infinite series Q.

This infinite series is certainly divergent as it stands (on account of the divergence of the series in crooked

brackets), and is almost certainly divergent when the series in crooked brackets is suppressed, or replaced by the

equivalent integral

/■fe-11<*')(H*rl

exp[-(p"1log^i + ^ ] afi&dx.

J o

The formula log 2^*) = exp [(p"1 log^1"^"1] [§] (1)

is therefore the only asymptotic expansion for log F(z) (at any rate of a simple character) which is possible at *

all. We cannot, for example, obtain a formula such as

\ogF(z)=f(z) + €(z)

(where f(z) is expressed in finite terms), on account of the exponential factor in (1).

* We may replace, for our purposes, , , x [ i°s » _

by + I x*exdx.

n (log n)1+k - 2 (log s)1+fc 1

'8=i The reduction then presents no difficulties.
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log F(z) = log

§ 19. We shall finally discuss the case (c), in which v~x = x (&>)•

In this case all the terms

2 fiPt q (n) [Aq+2 (<j>) g>-p-*-> + Bp^ g+1]

are small. They give rise to a series in which the ratio of each term to the preceding is of the

order of a negative power of v, while the function v is of the form 0 (log z). But it is not

necessarily true that the x (co) which occurs in the general formula is a smaller term than

/3i,i(ft) Aq+2((j>) co~3^ the most important term of the /3-series. Unless this is the case, of course,

the terms of the /3-series are irrelevant.

It may be shown that the x (co) of the general theorem is, to a first approximation, the x (co)

occurring in the formula

log ^ (</>, co) = (^ - J 0») «-i - ±uf> + + % (ft)) (1).

It is easy to carry the approximation of § 1 one step further, and for the x (co) of (1) we have

X (co) = - 2 cos (27r^)£a)"1) ^ " 27r2w_1 + lower terms (2).

The general formula therefore becomes*

a^ ... an_

- 2 cos (27T^6)-1) e-2*-2""1 [l + € (5)] + 0 (ft)-1*/-^) (3).

We have now to consider the relative importance of the last two terms in this expression.

In what follows we shall suppose that the condition for cf> is replaced by the more stringent

.condition ir — \ 6 \ > 8.

Since cos (27rcf)ico~1) — cos (27t0lco~1 4- 27rcu),

it is seen that %1 (co) = [1 + e (*)] [- 2 cos (2^^) e " 2ir^~1]

is of the order of exp [- 2tt (it - | 81) eo-1].

Since 351ft) > if-11 © | > if-1 Hi ft), and since ir — \ 6 \ > S, we therefore have the following results:

(i) If lim | ft) | log v — 0,

2£ (to) is of less order than ft)-1z/-^ for all (constant) values of p, however large.

(ii) If lim | G) | log v = oo ,

^i(ft)) is of greater order than co^p-? for all values of p, however small.

(iii) If lim log zV(3JU>_1) = c,

where c is a (positive) non-zero constant, %i (&>) is of greater or less order than co~lv~p

according as

P £ 7T (tt - | (9 |) cr1,

and, in particular, %x (co) is of greater order than co~xv~^ for all values of 6 if p > 7r2c-1.

* The x (w) occurring in the formula II for SPfQ is of the on account of the factor ?-Hp+«) in &,,?(7i), is therefore of

order of the first term in (2), multiplied by some power less order than the first term in (2).

of w. The remainder-term furnished by faq (n) Sp^hq+1,
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Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 329

In case (i) the term %i (g>) in (1) may be absorbed into the 0 (ar-1^"^). The terms

of the /3-series are all relevant, and the expansion obtained is of the same type as that obtained

for the functions of case (a).

00

For example if F(z)= U [l+z/exp{Px8)]9 (&p>0),

5=1

where x8 is the real root of the equation xs (log xs)2=s,

we can obtain for \ogF(z) an expansion in terms of z with a remainder of the form 0[(log z)~p], where p is

arbitrary*.

§ 20. In case (ii) the /3-series in (1) of § 18 may be absorbed into the term

e 0) [- 2 cos (2tt0^-1) e ~ 27r2arl],

and we obtain

log F(z) = log

... ilnJ

As an example we may take

F(z)=ll [l+*/exp(pa;8)],

s=l

where t x8 (log xs)2=5.

The conditions 1° to 6° for the a's may be verified without difficulty.

We have o>=p [(logffn)i+i (log**)^[^T^J^^ + P

It may be shown that the Maclaurin-Bernoulli expansion is valid for the sum 2 x8, and we have

s-l

2 xn=A + [' nx[(logx)i + j;(logx)-%]dx + l>xn + ^ [(log^+J(log^n)-^]-i4- 0{n~^\

s=l J 0

where A is a numerical constant. When we substitute xn(logxn)* for n, and p_1(logz — up) for #n, we

obtain

rp-nogz

log F(z)=p J x (log a?)* efo - i log ^ + Jtt2p ~1 [log (p "1 log z)] 2 - PB

+ Tl57r2P"1[log(p~1log^)]"4-2cosh ^-^[log (p-Mog^} exp {-27r2p-1 [log (p"1 log*)]*}

+ lower terms,

where B is a numerical constant.

§ 21. As an example of case (iii), let us consider the function

F(z) = n [l+z/ex.p(pxs)l

s = l

where xslogxs=s.

We obtain

log F(z)=ip "1 {2 log (p "1 log z) -1} (log zf - J log z - PA + J 7r2p ~1 {log (p -1 log 2) +1}

4- *x (log *) " 2 + *2 (log 0) - 4 + ... + tp (log 0) - 2*

- [(ep -1 log 0) - 2^_1 (*■ + 0) + (6p -1 log 0) - ^1 (»-*)] + lower terms,

* In the absence of any proof to the contrary we must n [1 + z/exp {s (logs)-*}],

admit the possibility that <p may occur in this expansion in But in this case> the nature of the inversion fommla corre.

the form of a polynomial, but such occurrence is extremely o . _L(h , , , .

r, 1 j » ^ spondmg to an=e ^ is such that we cannot obtain a

Un J, , , , , , , • , , . formula of the type

For the methods to be adopted in the reduction, com-

pare §20. kg 2? (*)=/(*)+ €(s)f

t It might appear that a simpler function would be where / (z) is expressed in finite terms.
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where p is the greatest integer contained in ftn^p"1, A is a numerical constant, and the Z's are rational

algebraic functions of log(p_1log2) and (possibly) <£. In this expression, as | 6 | increases from 0 to n-d, the

term in square brackets becomes of greater order than the terms £p (log s)~2p, tp_i (log z)~'2P + 2i ... in succession,

and as each such term is thus overtaken, it may be absorbed into the remainder-term.

§ 22. In the examples just given of cases (ii) and (iii) a term Xi i00) occurs in which

the number cf> appears in the index. We shall try to account in a general manner for this

peculiarity.

Let us return to the general theory of §§ 5—12. Since log F(z) becomes infinite when

$ = + 7T (or z = — an), the order of remainder-term in the general formula for logi^(^) must

increase rapidly as $ approaches the value tt. Now in cases when n can be eliminated from the

final expression for logF(z)*, the remainder-term consists of two parts, (1) a term whose order

is independent of <£, corresponding roughly with the term 0 (corlv~^x) in the general formula,

and (2) the disturbing term % (o>) [corresponding with x («)] which becomes infinite at

<f) = ± 7r. The latter term, being supposed not to contain ?i, must necessarily involve </>. Now

it is found that the order of Xi(°>) increases with the order of an. If we subject <j> to the

condition it - \ 6 \ > Sf, then, when an is of less order than exp [en (log n)_1], %i (<o) is of less

importance than the terms furnished by the /3-series, and is absorbed into the other remainder-

term, while when the order of an is increased beyond this limit, Xi becomes of greater

importance than terms of the /3-series, and thus forces itself upon our notice.

In the functions considered in this paper Xi (w) is always small (when it — 6 \ > 8). The

increase of the order of Xi (&>) with the order of an) however, continues when an increases beyond

the limit exp (en) imposed here. It is possible to find asymptotic expressions in terms of

z and for the logarithms of various functions for which an is of higher order than exp(e-1?2)

(for all values of e). In every such expression there appears a term involving <f> (although not

necessarily as an index)J.

Section II. Taylor Coefficients.

§ 23. Let F(z) be one of the class of functions considered in the general theorem of

the last section, and let 2 cmzm be the Taylor-series for F (z). Then we have

__ J_ [ F(z)dz

Cm'27rJc Zm+1'

where G is a circle about the origin. It is natural to inquire whether, by taking G of large

radius, we can approximate for the integral when m is large by means of our asymptotic

formula for F(z). It will be seen that this is possible, not indeed in the general case, but when

F (z) belongs to one of the classes (a) and (c) of § 14, i.e. when an is of higher order than exp (n7*)

for some positive value of rj.

* In the present discussion we are, of course, only con- the condition tt - | 0 \ > 5 that is likely to be regarded as

cerned with such cases. unusual.

f If | 81 is permitted to approach more nearly to the X For a theory of functions whose nth zero is not of

value tt (as in the condition tt - | 0 |> | w I1-8-*-?5"1), Xi (w) lower order than exP M> see Proc- London Math. Soc.

disturbs the expression for log F(z) with a lower order of Ser. 2, Vol. v. pp. 361—410.

an. It is, however, a disturbance which takes place under
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To avoid the complication introduced by the difference of behaviour of F (z) in the cases

(a) and (c), we shall content ourselves with finding an approximation for cm of the form

[l + e (m)]/(m). With a remainder-term of this order it is possible to work the two cases

together.

In the theory of Section I the approximation for log F(z)-is expressed in terms of n and <£,

and is a polynomial in the latter variable. It is therefore obviously desirable to be able to keep

the n depending on z constant in integrating F(z) z~n~x round a contour, thus replacing the

2-contour by a ^-contour (not necessarily closed). Now it is true that for all points z of a circle (7,

with the origin as centre, the number n corresponding to z is constant. But in pursuing the

method outlined above we shall find that we must deform the contour G in such a manner that

the number n, as originally denned, does not remain constant. To meet this difficulty we shall

establish the following modification of the general theorem of the last Section, in which n

has a slightly different meaning.

Let us suppose that the as satisfy all the conditions of § 3 with the addition that 3° be

replaced by the more stringent condition*

'(3°)' \co(n)\>K-1n-K-\ •

Then there earists a positive constant 77, such that when

z = anel<f>, and \(j>\<2rj,

we have

log F(z) = log [—-^-1 + - W) »"1 - i** + A *

+ 2 ^,?(«)[«-^-^9+2(^) + JBJ_1,9+1]+X(a,) + 0(J/-n

p + q<\

where \ is arbitrary, and X depends on \.

§ 24. The proof of this theorem requires a different line of argument from that adopted in

Section I. Since 0 = 6 + iaco, the number a, under the new condition for <£, may be of the

order of \co\~1. \zjan+8\ and \an_8jz \ are not necessarily less than unity, and we cannot use

the expansions for log (1 + z/an+s) and log (1 + an-s/z). Further, the series SPi9 may be

divergent. The details of the proof, however, are very similar to those of the proof of the

original theorem, and certain simplifications may be effected by means of the new condition

(3°y. [For example, ct)_1%(^) is now of the form % iv)-\ ^e snall therefore, do no more than

indicate the main lines to be followed.

Since \ &*\<K when | | < 2rj, whatever value may be given to the constant 77, it is easily

seen that we still have the result (A) of § 5, viz.,

(?0)= logics)-log

= 2

s=l

axa2... an

z \

- log yfr ((f), co)

log (1 + —) - log (1 + e1*"*0)

+ 2

log(l + ^)-log(l+e-'*-*-)

(!)•

* This condition introduces the restriction that an is of greater order than exp (nv) for some value of t{.
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Since | to | > K^nr*'1, we have | co | > K"xv~K\ and the co"1 in the remainder-term of (1) may be

omitted.

It may be shown that, for any assigned constant X^, when s^jjl}

z\a>n+$ = &*~s<* exp [- s3©!- ...]

differs from

e4-So> exp [sp

by a number of the form 0 (v***), where P (s) is the sum of a number (depending on X2) of terms

of the expansion — sa)2 — s2co2.... Again, it may be shown that, for all values of s,

|i+e*t*-*»l> jsr-i (2),

provided the constant t] is chosen sufficiently small*.

Now | sP (s) | < Kv~K~l = e (n), when s^p. It therefore follows from (2) that

| log [1 + z/an+s] - log [1 + exp {<f>t -sco+sP (s)}] \

- W fl i zlan+s ~ exP W» ~sa) + sP (S)T\ L 1 w fi ^"^1 1

~ 10g[A + l+exp|>*-*» + P(*)] J| I gL ^Jl

= 0 (z/"A»).

A similar result holds when an^sjz is substituted for zjan+S) —<f> for <£, and P(—s) for P(s).

We therefore have

22 [log (1 + */an+«) - log (1 + ^"sw) + log (1 + an_8/z) - log (1 + e-*-~)]

= 2 log [1 + exp - sco + sP (s)}] - log (1 -f

*=i|_

+ log [1 + exp {- (pi - sco + sP (- 5)}] - log (1 + e-^~S(°)

+ 0(jiv-*) (3).

Now since 11 + ei*-*w \ >K~l, the radius of convergence of the Taylor-series about the

point x = tcf> — sco of the analytic function log (1 + e?\ is greater than K"1. Since

\sP(±s)\ = e(n),

and since | log (1 4- \ < K, we therefore have

log [1 + exp {<j)i -sco+sP (s)}] - log [1 + exp (cf)t — sco)]

* We have Eur1 > j^-i | w |.

Let 7) be so chosen that 2tj< \tc and

47?/(^7r-21?)<j:r1.

Then, when *>• | a> \^\ir- 2r),

the imaginary part of up - sw has a modulus less than

2tj + - 2t), or \ir,

so that 11+ | >1;

while, on the other hand, when

s | co|>Jtt-277,

we have

& (L<f> - s<o) < 2r) - sK^1 | u

< J ft* - 2t?) jrr1 - ft*- - 2^-1

<-i(i7r-277)^r1,

and therefore 114-el*_5w |
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Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 333

for any value of the constant integer X3;

when X8 is suitably chosen. We have similarly

log [1 + exp j — <j)i - seo — sP (s)j] — log [1 + exp (—<f>i — sco)]

i^ip^^M r^-1^!!_+0(^) .....(4)2.

On expanding { — sP(±s)}p in the form of a polynomial, and summing the right-hand sides

of (4)j and (4)2 from s = 1 to we therefore obtain, by means of (3),

2 [log (1 + —) - log (1 + 6*"*") + log (l + - log(1 + 0-*-*»)l

s=i |_ \ O^m+s/ \ Z J J

^h-^lr^y rr^+(-^+9-s© n^}J+o(^)...(5x

where 7^ is a polynomial in q)1} g>2 the summation with respect to p, q is taken over a

finite number of terms, and where, since P (s) has no term independent of s> we have q > 0.

Now it may be shown that

Therefore, since yp,q is of the form e(n) (being a polynomial in <Dlf a>2 we may replace

2 by 2 in (5). Since 0 (ixv~K*) = 0 (z>~Al) when X.2 is suitably chosen, we now have, from

S=l 6' = 1

(1) and (5),

W*)^- {(£) rA_+(-)«(^) rA_}j + 0(^)

- * h(w) (as) .5^ {r^= - TT^fJ+0 (6)-

§ 25. We next proceed to show that, when | <f> \ < 2rj,

d Y~

)t4> — su)

g — t<f) — Sto

™s (£J *rq+i -(-)p+9+i 1+

is equal to

where Q(<j>, co) is a polynomial in <\> and o>.

It is easily shown that f(<j>) is an analytic function of <f> in the region | cf> | < 2rj. We shall

show that

f(<f>) = «-«**«» Q ») +/> <*) (1)>

Vol. XXI. No. XII. 44
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where/! (cj>) is a certain function which must evidently be analytic in | <f> j < 2rj. Let us suppose

that <f> is real and | $ | < 2rj. We then have I g1*-** | < 1 for all values of s. Consequently*

d Y'1 2° f.

.(2),

V»Ci>/ s = l (r=l r=l

or, changing the order of summation,

oo pr~ru> ~

_?' =! 1 — 6 raJ

-<->«(£)'

d \2^+?

Now in the notation of § 2, the series within square brackets is S-(p+q+1)) p+q+i-

result (8) of that article we therefore have

f(<f>)=(-)p+9{£)

...(3).

By the

where i?0 is the residue of

/ d VP+Q

ez<f>i z-p-q-i e~

sin 1 — e

— at z = 0, and where (since # > 0)

Trey"1 2 (2??Z7T^-1)-^+5+D cosech (2??i7T2a>-1) l-(-)*>+<m e2™**" J

(5).

The first term on the right-hand side of (4) is easily seen to be of the form cw~(2^+3+1) Q (</>, co).

/i (<f>) also is an analytic function of in the region \<f>\ < 2rj. Since, then, the equation

(4) holds for all real values of <f> in the region | (j> \ < 2rj, it must hold throughout the whole

of that region, and the result (1) is established,/^) being given by (5).

§ 26. Now it may be shown that when | <j> j < 2r)f we have

/i (<#>) = *:(«>)•

It therefore follows from (6) of § 24, and (1) of § 25, that

G(z)= 1 %.(n)<y+0(v-^) + X(<*) (1).

where %(n) is a rational algebraic function of o>, wly co2and where the number of terms

in the summation is finite (and depends on X). Now in § 12 an expression was found for G{z)y

under the conditions for <£, it - \ 01 > I a |1-5 + v8'1, and | a \ < f, which is similar in form to (7)

except that 0(ft)_1i/ "^x) occurs in the place of 0 (v~K>). But since, when \ is suitably chosen,

0(g>~~1i>-*x) is of the form 0 (v~K')3 where \' is arbitrary this expression may be written

0 (z) = 2 V (n) p + 0 (ir*.) + %(*>) (2).

r=0

The forms (7) and (8) must be identical when <f> is real, and | <\> \ < 2r\. From this fact it is

easily proved that

%'(n)=%(n) + 0(v^) + X(<<>) - (3).

The legitimacy of the next three steps is established without difficulty.
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Now on referring to the theorem I of § 1 it will be seen that, under the condition

<j> | < 2?7, we still have

log ^ (fa ©) = (i^2 - h<t>2) *>_1 - h"f> + T2*> + X <»•

Since

0(*) = log log

our present theorem follows immediately from (2) and (3).

§ 27. Let F(z) be a function satisfying the conditions of Section I, and the modified

condition (3°)'. We shall establish for cn a formula of the type

CB=l + e(«)/(n)_

Cb\ Ct?2 • • •

The expressions -^co and /3P)Q (n) are of the form e (n). Hence, by a suitable choice of X, we

can ensure that

zn

JliCt2 Q>nJ

under either of the two conditions for <f>;

(a) a = 0, 7r — | 0 | > 7],

(b) \<j>\<2v.

log F(z) = log

+ (K-i**)»":i-it*+ s y8p,9(«)il8+,(^)»-*-9-1 + e(«)...'(l).

Now we have

2ttc,

>n . Ctj • • • — ^ I

J c

a^a^ ...an. F(z) dz

taken round any contour G enclosing the origin. Let us take for C the circle | z \ = | an

Writing z=anel<^, where <f> is real, we then have

27tcw . <xa a2... an — f F(z)

J — TT

(Xi\ &2 • • •

We divide this last integral into the two parts,

d<j>

.(2).

Cfc2 • • • (In

r-(C+J>«

d<j>

•(3X,

Cti &2 . . . Ctn

d<f>.

.(3)2,

where r) is the number of the condition | </> | < 277. It will be found that T = e (n) /, so that /

gives the important factor of cn. We proceed first to consider this integral.

The integrand is a regular function of <f> within the region | (j> | < 2tj: the integration from

— 77 to 7} may therefore be performed along any path for lying within this region.

Now ftwJ-W«-1-J^+ 2 /3Piq(7i)Aq+2(<j>)a>-P-*-i

is a polynomial in <£. Let this polynomial be written*

7o + 7i</> + 72</>2+ (4).

* We have

7o=i*"2 w_1 ~ 6a>2 w_4^4 (0) + lower terms,

7i = ~ iL ~ i171"2 w2 w~3 + lower terms,

72= - ^w-1 + lower terms,

Y3=!t7r2 w~3+lower terms,

74=aw2&r4 + lower terms, etc.

44—2
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Of the 7s, 70 and y2 are of highest order, 7! and 73 are of next highest order*, and the remainder

are of lower order than these four. Let us substitute <f> = <£' — <j>0 in (4), where <£0 is the root of

least modulus of the equation

Yi - 2Y2</> + 373<£2 + ... = 0 (5).

The resulting polynomial in <£' has then no term in <f>; let it be

Yo, + 72,tf>,2 + 73'4>,3+ (6)

[7o', 7i'> are> °f course, polynomials in <£0]. Sincey2 is of higher order than the other 7's

occurring in (5), it may be shown that </>0 tends to zero as n tends to infinity, and that as a first

approximation *f*

<£o = £7i72~1 (7).

We note also that

72,= 72 + 37s^0 = -J«-1[l+ e(?i)] (8),

and that 73', 7/, ... are of the form

Oicon-'o)-*) or 0{w-2rrl) (9).

From (1), (4), (6), and (3)l5 we have

F{z)

aYa2 ...a.

= exp [70' + 72'</>'2 + 73,<//3 + ... + € (n)],

= \ exp [70' + 72'</>/2 + ... + e (n)] d<\>

rv+<f><>

exp [7/ + 7/f2 + ... + e (ti)] dp (10).

J -ri+6*

-y+<t>o

§ 28. Let t = I o) \^~hf where A is a small positive constant. The path of integration in the

last integral may be taken to be the straight lines — rj 4- <f)0 to — r to +t to 77 -f- <^>0, since

the corresponding path — rj to — r — <j>0 to t — <£>0 to 77 for <f> lies within the region | cj> \ < 2rj. Thus

I = l1 + I2+I2' ax,

where Ix =j exp [7,,' + ry2'^- + ys'f3 + ... + e (n)] d-^r (1)2,

I2= [ exp [y„' + 72'^ + ... + e (n)] cty (1)3,

J, = J exp[70, + 7.2>2+... + e(n)]^ (1)4.

Let us first consider I11 which will be found to give the important part of /. When

\sfr\<T} we see from (9) of the last article that

7s>3 + 7/^4 + ... = 0 {r*co-2n-1) = 0 (co-^n-1)

= 0(ir-i), if i+8A<],

= e (w),

so that /1 = j exp [70' + y^2 + e (n)] dyfr

= jT exp (70' + 7/1/r2) df + j e (11) exp (7o' + 7/^) dyfr

= exp (V)

fT exp (72>2) dyfr + e (n) \* exp (3&72>2) (2).

. —j J —T _

* When w1w-3=e(7i), y1 is of higher order than 73, f A rigorous proof of a similar point will be found

otherwise yx and 73 are of the same order. in § 54.
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Now*

I exp (72' yjr2) d\fr = 2j exp (y./1/r2) dtyr - 2 j exp (7,/^2) sty

= 7T* (- 7/) - * + 0 exp(&7l'T>) I exp {1X7/ -f'2} dip

L Jo

From (2) and (3) we have

...(3).

...(4).

/, = exp (7o') tt4 (- 72')4 + {e(n) + 0 [exp <3Ety3't2)]} f exp (Ify/^2) efy

L J o

Now from (8) of last article,

»%' -at- [i + 6 <«)]} < - ir-1 j 7/!,

since Him > K'1 \ a>\. It follows that

f expfc'= i*r* (-IRy,')- * = 0 (- 7,')-*

and exp (Iffy/t2) < exp [- Z"11 a> |—11 w I1"5*] = x (») = e (n).

Hence, from (3) and (4), /, = exp (7o') [„-*(-7/) "4 {1 +e(n)}]

= exp(70') [ttH^-T Ml + «(«)}]. from (8) of § 27,

= (2irt»)* exp (7/). [1 + e (n)] (0).

We shall now show that I2 = x (w)-^i> A = X (w) -^i (6).

Since t is real and ^>0 = e (n), the angle which the path of the integral / makes with

the real axis is of the form e (n). Thus for any point <f>' of the path we have

<f>'=|f |[l + e(n)] (7).

Again, if p > 0, we have

I y',+p <f>'^ |/|72' f*1 < K(a,-2 «->)/1 - [1 + e (»)] | = e (»).

Also, [ 7/ f21 I - -^o)-1 [1 + e (n)]. t2 |

>z-i|a)|-i|w|i"<!/t>ir-1.

Therefore [ | y/f»1 + | 7/ f* | + ... + e(n)] /1 y,'<j>'* j = e(n) (8).

Therefore, from (7) and (8),

m [7/ 4>'2 + 1* 4>'3 + • • • + e (»)] = 1ft {7/ <^>'2 [1 + € (»)]}

= m{-ia,-M^i2[i + 6(«)]}

!<-f-'UK

Consequently we have in (1)3,

11,1 < f~T exp [« {7/ + 7,' + ... + e(«)}] I |

J -11+*.

< j exp (70') I. f_T exp [- K-1 | « | "*] | <fy' |

= % (©) exp (70')

(since the length of the path of integration is less than K)

= x (*>) (27r<y)4 exp (70')

* It should be remembered that &y2'<0.
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The second part of (6) is proved in the same way, From (1), (5), and (6) we now

obtain

Z = [1 + e (w)] (2iro)* exp (y0') .. (E).

29. Returning to the integral T of § 27, we shall show that

dcf> = e (n) I

.(F),

La!a2...an_

We have y0' = yQ — <f)0yi + 0o2Y2' • • •

since yl9 y2,... are not of higher order than y0, and <j)0 = e(n),

= ^tt26)-1 [l + e(n)].

It therefore follows from the form (E) for Z, that (F)x will be established if we can prove that

11' | < exp (Jtt2*)-1) exp [- iT"11 co I""1],

and therefore if we can prove a similar inequality for the integrands in Z', i.e. if we can prove

that

m {log^(*).,.iog [~] - h***-1} < - i»i- (i),

when cf> is real, and tt ^ | <f> | ^ rj. We proceed then to establish the result (1).

Since | (f> | may now increase up to the limit 7r, we cannot use the formula of the general

theorem of Section I. The result (A) of that section, however, does not involve any restriction

on 8 (which0 is here the value of </>). We thus have

Zn

= 2

.9 = 1

log F(z) - log I" - log A/r(4>, ®)

<Jj2 • • • LhiJ

log f 1 + —) - log (1 + e*-~) + log f 1 + a-_s) - log (1 + «-•*-••)

Now when s^/u,, we have

et*-ff» (eXp [0 (s^n-1)] - 1}

e-s»'.\ [0 (s^n-1)}

1-er

since | 0 (s^nr1) \ < K/jl2 \ co \ rr1 < K. It follows that

S I log (1 + —) - log (1 + e*-s")

by the proof of (8) of § 7,

co q2p-S<a'

<Z|«,|«-'.2 -

< zitoi^-1.!©!-3,

<iT|ft)|-2n-1

^e^leol-1

.(3).
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We have similarly

2

s=l

log "i +

log (1 -f e'^-8u>)

\ = e (n). | co | ~~l

From (2), (3), and (4) we now obtain

a1a0...an

= log yjr (<£, &>) + 6 (n). co~

, - 27r2/i2w-1

log F(z)~ log

Now on referring to § 1, we have

co) = e-^(qiq0)-^2(v\r)

= e-^(q±q0)-1(27rco-1)ie-^2u)~\ ^(t^v | - r"1)

= e-^(qiqo)-1 (27TO)-1)4e"i^ta~1 1-2

L »=i

= 0[(^%o)-1«-^"^2a,",]

since the modulus of the sum of the infinite series is less than

1 + 2 2 |0-2r*(n»-n)W-H

n=l 1 1

which is evidently less than K. Again, by (6) of § 1, we have

q0qi = (2w©-*)* exp [- ^tt2*)-1 + e (n)].

Therefore from (6) above

+ (</>, co) = 0 [exp (^ft)"1) . exp (- i^o)"1)]

=0 [exp (KO • exp (- i*?2*)-1)]

since <£2 ^ rf.

We now have from (2) and (7)

m{log^(^)-log

cos (2'7rn(j)cco~l)

CtiCf/2 • • • (%n

< 3& {- *Tft)"1 + e(n) a?-1

<-^-1lSft,-1

<-iT-1|ft)|-1.

This is the desired result (1).

.(4).

(5).

[by(i)]

[by (2)] (6),

•(7),

§ 30. From (E) and (F)j we now obtain

2ircn. a1a2...an = I + F= [1 + e(n)](2ira)$exp(70')

= [1 + e («)] (2to)* exp [y0 - ^o7l + tf>„Y - ...] (F).

The right-hand side contains the number <f>0, and we must show how to obtain for <f>0, and

its positive powers, approximations which may be substituted in (F) without altering the form

of that equation.
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(f>0 is the root of the equation

7l-2724> + 3734>2-... = 0 (1)

which has the least modulus. We have seen that a first approximation is </>j = hyij-i^1- Sub-

stituting <j) = fa 4- fa in (1), we have for fa an equation

7i" + 79"f + 7."£*+- = ° (2),

where 7/' = 873 (I7i72-1)2 + lower terms = 0 (rr1 o>~2),

72" = — 272 + lower terms = a>_1 4- lower terms,

and where 73", 7//... are of order not greater than 7l". The first approximation for fa is

02 = - 7i//(72//)"1-

Now I </>21 < if?!-11 &) |~2.1 (o I < .fiV-1. This result enables us to calculate fa, by successive

approximation, with an error of the form 0(i/~Xl), where \ is arbitrary. We have, in fact,

from (2),

f = - (72'T1 [7a"</>'2 + 7/V3 + • •.] (3),

and therefore (since fa is the first approximation for fa)

fa - 02 = 0 [(ft)"1)-1, ft-1©"2. *>~2] = 0 (v~3).

If, therefore, we substitute fa for <£' in the right-hand side of (3) we commit an error

in fa of the form 0 [(- 7a")"17s". </>' - $')]> or of the form 0 [(ft)-1)"1 ^a)"2. i/"1. ir*] or 0 (z>"5).

Let the approximation obtained be fa. We then substitute fa for fa* in the right-hand side of

(3), and obtain <£4 for fa, with an error 0 [(—<y2")~~1(Y3"fa (fa —fa)] or 0(i>~7)» Continuing this

process we can obtain for fa, and therefore for fa, an approximation with an error 0(v~kl).

Let us denote by yfr the approximation for <£0. Then by choosing Xx suitably we can

ensure that

(70 - 7100 + 72</>o2 -•••) = (7o ~ 7i^ + 72^2 - •••) + € (n\

and consequently

exp (7o - 7l</)0 +...) = [1 + e (n)] exp (7o - 7^ +...).

We may therefore replace fa by y}r in the equation (F).

§ 31. In the expression

[1 + e O)] exp (7o - yiyfr + ...)

we may evidently suppress all terms + which are of the form e (ri), for exp [e (n)] is of

the form 1 + e(n). There is a convenient rule to determine which 7's may be thus suppressed f,

which may be employed before the calculation of ^ We shall show that if yr v~r = e (71),

then yryjrr = e (n).

We have ^ = 0 (fa) = 0fr^-1]

= 0[{1 + H-«! *> r2} 1«1 ] = 0(| a, |) + 0(o ;...(i).

Now if r= 1, 3, 4,..

Therefore, from (1),

ayyr = 0 [a> {1 + n-J j o |~2}] = e (n).

7,tr = 7r [0 {j a, l-J + 0 {I co T1*-1} + ... + 0 {^)]

= €(n)+ 0(yrv-r) (2).

* But not, of course, for 02. suppressed in the equation for 0O.

f It should be remembered that these 7's must not be
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a [tor) exP[7o-7i^+.- ±Yi>^K]>

For the case omitted, r = 2, we have

= 0 (O)"1) [0 { | CO |2} + 0 {| CO | IT*} + 0 {l>-2}]

= e(>) + 0(a>-1i/-2)

= e(?0+0(72z,-2),

since 1y2 | = | [1 + e (n)] (- ico"1) \>K~l\co\ -1.

The equation (2) therefore holds for all values of r. Our rule then follows immediately.

§ 32. Summing up, we have the following theorem:

If the aJs satisfy the conditions of § 23, we have

_ l + €(ri) f co

Q*i a2 • • • an

where all the terms yr^r within the square brackets may be omitted for which we have

lrV-r = 6 (n),

and where is determined from the equation

7l - 272<£ + 3y3</>2 • • • + PJp^-1 = 0,

by the method of successive approximation explained in § 31, to such a point that

(To - + ± Yjp^P) = (?o - 710 + ••• ± 7p<I>p) + e 0).

The numbers y0, yli...yp are the coefficients of </>°, (/>*,... in the polynomial

-h<t> + (h*2-W)<»-l+ 2 /3Ptq{n)co-P-*-iAq+2(cf>),

P+q < A

where \ is chosen so large that

v~~x = e (n).

§ 33. The formula for cn involves the expression a1a2...an. In cases arising naturally

we can find an expression of the form [1 + e(n)]f(n) for a1a2...an, where f(n) is expressed

in terms of known functions and one indefinite integral. In fact, we have in all natural

cases*

n rn

log [fyOa... an] = 2 log as = log asds + A 4- £ log an + e (ri),

5 = 1 J

where A is a constant. When the integral cannot be evaluated, it is sometimes possible to

obtain for it an approximation with a remainder-term of the form e (n).

§ 34. As an example let us consider the function

F(z)= 5 [l+*/{^exp(p**)}],

5 = 1

where &p>0, \>k>\.

We may take

y0 = l7r2a)-1-6Q)2(o-4J4(0), yx = -\i-^Tr2^©-3, y2= -Ja)-1,

A^=t6) . j7T2a)1a)~3 = JtTT2©!©-2.

In the expression exp (7o - yx ^ + y2 — • • •) (1 )>

* This formula is a particular case of the Maelaurin- J^-(logau), or w(n). The formula is easily established

Bernoulli sum-formula. The e (n) is of the order of A. .

'm any particular case.
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342 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS,

we may suppress the terms y3\p, y^*, and may take

We have then to substitute

and we obtain a formula cn= ^ + €(n>L_ f(n). A number of terms may be suppressed in f(n)} and absorbed

into the factor l + € {n\ but the expression remains somewhat complicated.

If, however, we suppose that k> J, we may suppress more terms in f(n), and obtain

aiO.2 ••• an

xexp [Jtt2 (p^_1^~fc-^M/^)~2^^

In this expression we may write for {axa2... an)~\

(2irn)^(Texp{-p(k + l)-17ik + 1-a-n (logn-l)-^Pnk}.

§ 35. If an is of higher order than exp (e_1n^), the general formula for cn assumes a very

simple form. If, in fact, we assume, instead of (3)', the still more stringent condition

| co | = e (n) v~2y

it may be shown without difficulty that

— 7^ + y2iP = 0 (n~2co~3) = € (n), — y3yfr3 + y^ — ... = € (n),

and 7o = ^7r2&)_1 + e (ri).

The general formula therefore becomes

1 + e (n) (<o\K^n„2„-^*

As an example we may take the function considered in §34, with k>^. The term in nl~Zk may be

omitted in the square brackets in the expression for cn.

As another example, consider the function

F(z)= n {l+z/exp [p(s + l) {log(*+!)}-!]}.

5 = 1

We obtain l + / g_\* ft^-i). ^V1.

«ia2 • «n \2tt log V r V6 r'

For (o!«2 ••• we may write

exp[-re2/„"K+i^F1)}^+c'-i'l(losm)"1]'

where C is a numerical constant. The first term within the square brackets may be shown to be equal to

r\{2 \ogn)-r~l + 0{\ogn)-^-^

where p is an arbitrary (constant) integer. It is evidently impossible to replace this term by elementary

functions together with a remainder-term of order e(n).

* This formula is appropriate to the case when w de- , ",„

-1- where A.— II f 1 c— )•

creases slowly. It may be worth while to note the form 8=1 v '*

ot^"^W^^^"ln)~-v(v*m*'m^i>- TWS reSUlt foU0WS with°Ut diffiCUlty fr°m the asymP"

We en ave ^ ^ totic {Qrm for U(l + z/an) given in my paper cited on

c-=[1+e(B)]i^v p-330-
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§ 36. In the case of functions F(z) for which an is of less order than exp (?ie) for arbitrarily

small values of e, our methods do not lead to formulae for cn of any particular interest. The

asymptotic formula for \og F{z) gives

F(z)=f(z)exp[R(z)],

where all that is known concerning R (z) is that it is less than some known function of z, which

function tends in all cases to infinity with z. Our methods will certainly give an upper limit for

| cn |, but they cannot give a lower limit. In fact, for anything that we can show to the contrary,

cn may be zero. For since | R (z) | is large its imaginary part may vary with arg z in such

a manner that

\ f(z) exp [R (z)] z~n~l dz = 0.

J c

PART II. TAYLOR SERIES.

Section I. Asymptotic Expansions.

§ 37. In Part II we shall consider a class of integral functions F(z) defined by a Taylor-

series %cnzn, in which the coefficients c satisfy a set of conditions analogous to the conditions

imposed on the a's in Part I, and shall find asymptotic formulae for F (z) when z is large, and

for the Tith zero of F(z) when n is large. The conditions will be satisfied, at any rate, if cn is a

naturally constructed function of n such that | c^-11 is of less order than exp (e?i2) and of greater

order than exp (n1+ri), for all values of e and for some value of rj. It will appear that the nth. zero

of F(z) is of less order than exp (eft) and of greater order than exp (n1*), so that this range of order

is the same as that implied by the conditions of Part I, Section II. The class of functions

corresponding to the class (b) of § 14 is excluded from consideration, as class (6) was excluded in

the preceding Section, and for somewhat similar reasons.

§ 38. The conditions which we shall impose on the c's are the following:

1°. Given any positive e, then, when n is sufficiently large, there exists an analytic function

fn (%)> regular in the region \x\< e"1/-6, such that

fn(s) = log (cn/cn+8),

where fi = [co (ft)]"1 p\ v = n \ co (n) \.

Further, when \&\< e_1/x, we have, for any value of the constant integer N,

fn (x) = x£l (n) 4- ix2co (n) + x5^ (n) + ... + x^co^ {n) + xN0 [n~N+1 co (n)].

2°. lim | co (n) \ = 0.

3°. \co(n)\>K-1[v(n)]-K.

4°. 3fto) (n) > K"11 co (n) \, algebraically,

5°. For any value of the constant integer r,

I cor (n) | < Knrr \ co (n) |.

45—2
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344 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

6°. For any value of the constant h,

and

2

S = fi

n

2

^±-*exp [s {0(») + A© (n)}]

= 0[exp

? exp [- 5 {O (n) - hco (n)}'\ = 0 [exp {- K~1^ \ a) |}].

From 1°, 3°, and 4° it follows that*

lim 3BU1 (w) = oo (1).

Again, by condition 1°, we have

log (c?7+! cn) = ft (n) + £<o (ft) + 0 [n-1 co (ft)] = 12 (ft) + + e (ft)] co (ft),

and similarly log (cn_1cn+1) = - ft (ft + 1) + + e (ft)] co (n +1),

so that ft (n + 1) - [£ + ex (w +1)] g> (ft + 1) = ft (ft) + + e2 (ft)] <w (ft) (2),

where ex(ft), e2(w) tend to zero as n tends to infinity.

From (1) and (2) it follows that if z be any complex number, it is possible to choose n

so thatf

z = el* exp [ft (n)], <j> = 6 + iaco (ft), \

where 0 and a are real, and i (3).

\0\^TT, |«|<i + e(*0 J

For the present, however, we shall assume only that

£ = £^exp[ft (n)], | ^|< jKTx, \aco\<K2,

where Kl9 K2 are arbitrary positive constants.

§ 39. We have

^=[£c^]/[c^]

^nz 5=0

.(i).

* For from the equation (2) below it follows that

|&0(n + l)-!ftO(n)

=9&HW (n) + w(?i + l)] + e(n) w(?i)+e(w) w(n + l)

>Z-1|w(?i)|+i:-1|w(w + l)|

+ 6 (w) | «(w) | + e (n) | w (n +1) |, by 4°,

>JT-1|w(n)|.

Now from (3°), | u (n) \ > [n \ w (n) |]-*,

and therefore | oj (n) \ > K'1 n~1+K ~ \

We therefore have

M(7i + l)>/f-i 2 «(r)>JF-i 2

r=l r=l

which tends to infinity like ?i-s:~1.

t Since U (ti) oo there is, when z is large, a number m

such that

| exp [fi (m+1)] | > | z | > | exp [0 (m)] |.

It follows from (2) that we must have either

\e-xpQ(m+l)-{b + e1(m + l)}(o{m+l)\^\z\,

or | exp [Q (m) 4- {4 + *i (m)} co (m)] | > | z \.

In the former event we take n=m+l, and in the latter

n = m. Since {n) >0, the result (3) follows immediately.
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Since |^|±5 = |exp[+ s(£l— a©)]|, it is seen from condition 6° that the second and third

terms of (1) are of the form 0 [exp }— K~'1/j,2 | co |}]. We therefore have

F(z)

= 7,+ 0{exp[-iT-V|£B|]}>

where

.(G).

ft

2

S= -IX

§ 40. Consider the rectangular contour formed by the straight lines parallel to the real

axis and distant r from it, and the straight lines parallel to the ^ M + .|.+tT

imaginary axis and distant /jl + \ from it. Let the contour be

described counter-clockwise and let Llt L2 be the parts respec-

x I < e 1/jL.

tively above and below the real axis. Let Sfju be taken for 4

the number r, where 8 is a small positive constant. Then if n

is large, and if e is chosen sufficiently small, the contour lies within the region

Now within this region the function represented by

exp (x<f>t, — \x2(d — #3o>! — ...)

is regular [since it is equal to fn (x) exp (x<j)i + xCl)]. Cauchy's theory of residues therefore

gives

C dx f dx

.(1).

Writing

1

= - 1 - e2lrXL + -

or e-2irXL + -

according as x is a point of the contour' Lx or Z2, we obtain from (1),

T=271 + T2,

where

TY = - \ (1 + e2irXL) exp (#</h - %x2co - ...) dx + / *r27ra;t exp - J^2co - ...) dx

r qAuxi r Q—iTtxi

= jL i exp(fl<^-|a2Q)-...)c^+j^ e2nxi 1 exp (^-^2a>-...)cfc

...(H).

= 2V + TV

§ 41. We shall show that when | 6 \ < Itt — e, where € is an arbitrarily small positive

number,

T, = 0 [exp {- J©"1^ - K-1 j co I"1}] (K).

Consider first the part T2'. Let Gli 0/ be the parts of LY parallel to the imaginary

axis, C" the part parallel to the real axis. Then

(!)•
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346 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

It is easily shown* that, for points x of Cx and C/,

e27m _ i

exp (x(f>t — £#2ft> — ...)

<iTexp[--JT->2|a>|] (2).

Hence (J^ +J ^ _ 1 exp (xfa - ^ w - ...) dx

< 28/jl. exp [- jBT->2|ft)|]

< | © |. exp [- J5T"V \ ay |]

< Zexp (KX-

§ 42. We have now to consider the remaining integral in T2\ viz.

— exp (xcfri — \x>(*> - ...) dx = 2 exp (#<f>* — ^#2&> — ...) e2r7m

A 00

We shall divide the right-hand series into two parts, corresponding to 2 and 2 , and

r=2 r=h+l

shall show that these parts are severally of the form 0 [exp {— ^ar1^2 - K~l | &>

For points x of (7/' we may write x = y + ir. Then

| exp O^u - ^x°a> -...). e2r7m | < j exp [Kfi -%y2co- cryco + Kfjfn-1 \ co |] |. e~2r7rT

< exp [l^21 a) |]. e~2riTT (1),

where Kx is independent of r. Let us choose h so that

h7rr = K1fjL'2\o)\, or h = K1(>7r8)-1.v* (2).

Then, if r^A + 1, we have

| exp (x$i - ...) e2r?r£Kt | < e~r7rT,

and therefore

2

r=fi+l

\ exp(x<j)L-...) eM dx \< I 2 (//, + J).

J Ci" I r=h+l

< Kfi.e~hirT < KfM210) I. exp [- j^/*21 &> |]

= 0{exp[-Z-V|o)|]} (K)2.

§43. We shall now show that, when 2^r<h, we have

( exp (xct)i - ix2co - ...) e2rirXldx = 0 {exp [- ^co^cf)2 -K~1\cd I"1]} (1).

J Ci"

* We have | e^\{£*** -1) | < K. and #M < P^T1 I « I •

Also ^=±(^ + 4) + ^, Also 25/x2|w|<^r1A2|w|

where dp, so that | x \<Kfi, and therefore provided 8 is chosen less than t^r1. We tnus have from

ft (- *s Wl - a* a>2 - ...) < KtfTi-i | w | = e (n) ^2 | w | . e e (i). (i) and (ii)

AlgQ ft (a#i - 4a;2 w - x3 w2 - ...)

ft(^-4^)<^-ft[ia,(/,+*)2=ttw(/,+4)2/+42/2^] <-jrrVM+t*rVM<-tf-VM.

<JBfc - 0*+4)2+l * I Otc+i). 5M The result (3> above follows immediately-

JBTrV I I + 25/x2 | u | (ii). + The 8eries

Now when n is large 2 exP <** " ^w — •> ^

e (n) m2 | w | < P^r V I » is uniformlv convergent on the contour C/'.
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It will then follow that

h r

2 1 exp (xcf)i - ...) e2r7rXL dx = hO {exp [- ^co'1^ -K~l\co j"1]}

= 0 {exp [- ^co-ip - Z-1! co h1]} (K)3,

since h<Kv* [by (2) of § 42] < K \ co \~K~l [by condition 3°].

We have | rco~' j ^ h \ co j"1 < Kfi [by (2) of § 42] (2).

Let 2/i = AfM 4- (2r7r 4- </>) \ y2 = - 4- (2r7r 4- <£)

where A is a large constant. It is evident that, if e is properly chosen, yl and y2 lie within the

region \ x\<e~lfi, i.e. within the region in which exp(#<£t — \x~co — ...) is regular. The inte-

gration in (1) may therefore be taken along the straight lines (fi 4- i) 4- thfju to yx to y2 to

~~ 0* + 2) + L&H" On the straight line from (fi 4- ^) + cSfi to yx we have ^ = (/^ + + ^S/* 4- e^y,

where /3 and y are real and y is positive. By choosing A sufficiently large we can [by (2)] make

I /31 as small as we please.

Now 3ft&) < K~l I co I, and therefore | arg co \ < \ir — K~l. We have

ifU2*) = 3ft [0* + £ + *S/*)2 co + 2({jl + %+ tSfi) e^yco 4- e^y9©].

By choosing first S and then /3 sufficiently small, we can make

3ft [O + i + *fyO 61/3 *>] > °> *> > °-

We then have 3ft#2« > 3ft O 4- £ 4- tS/^)2 co > K~l fi2 \co\ (3),

provided S is chosen sufficiently small.

Again, when %= jjl + ^ + c8/jl, we have ISixt < 0, and when x — yY we have

36U* = 3ft [- (2nr 4- 0) to"1] = 3ft [- (2r7r 4- (9) a)"1] < 0.

It follows easily that 3ft#£ < 0 and | e2rmx \ < 1 for all points x on the straight line from fi + ^ + t8fi

to yx. We therefore have, by the help of (3),

I dx

\ exp {xc\>i - \x2co -...). e2r™L. dx < \ exp [Kfi - K~ V21 o> | 4- Z/a'w"1 j © |] . 1.

< iT/i. exp [Kfi - iT"1///2 j co \ + Kjjfn-1 \ co |]

(since the length of the path of integration is less than K\yj\ + K \ fi+% + cSfi j < Kfi)

= 0[exp{-A'-VI«il].

A similar result holds for the integral from y2 to — (fi 4- 4- L$fi- We therefore have

J exp (xcf>L - \x2co - ...) e2™ cte = /exp (#<^ -.'..) e2r7ra;t dx + 0 [exp {- iT"V | © |}].. .(4).

Now, writing # = y 4- (2r7r 4- </>) ico~l, we have

exp - ...) e2nm dx = exp [#t (<£ 4- 2rir) - h%2co 4- 0 (x^n^co)] dx

r-An

exp [- (2r7r 4- c/>)2 w"1 - ^©y2 4- <U {(2r7r 4- <^>) a)"1}2 4- 0 ({y 4-(2r?r 4- <£) ft)"1^3 rz"1©)] rfy

AfJL

(5)-
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Now it may be shown that*

0 {{y + (2rir + <f>) fcco"1}3 n~l co) = e (n) coy1 + e (w) (2rir + <f>)2 co~\

The right-hand side of (5) is therefore less than

I exp [- {J + e (w)} (2r7r + <£)2 to'1] |. | exp [- ft + 6 (w)} toy2] cfy |

< I exP [- {2 + e (n)} (2r7r + 0)2 a)"1] |. J5T j «

< | exp (- W«>~1) I • I exP [~ i*>-12r7r (2r7r + 20) + e (ti) (2r?r + cf>)2 co'1] j. K \ co \~* .. .(6).

Now 2ft [- (2r7T + 20) or1] = 3ft [- (2r7r + 2(9) ar1]

^lft[-(2r7r-27r + 6) a)"1]

< — jSl'V . Iftft)-1, since r ^ 2,

<-ir-v;a)|-1.

The right-hand side of (6) is therefore less than

| exp (- i^o)"1) !. exp [- K~lr2| a> I"1 + e (??) r21 co I"1] . JT | co |~*

< | exp (— ^>2a>_1) |. exp (— K~xr2 \ co K \ co |-^, if n is large,

< | exp (- itfco-1). exp (- K~l \ co |"x) | (7).

From (4) and (7) we have

j exp{x^L-\x2co- ...)e2rirXLdx = 0 {exp [-K'1 fi2 \ co j]} + 0 {exy[-ffico-1 - R-1 \co\-1]}

= 0{exp[-i(/>2a)-1-^-1|Wr]},

since /j,2 \ co \ — \ co We thus have the result (1), and therefore, as we have seen above, (K)3.

§ 44. From (K)2 and (K)3

2 ( exp (xcf>L - ^x2co - ...) e2r™ dx = 0 {exp [- ^a)"1 - K~l \ co I"1]},

r=2J d"

and, from this equation and (K)lt

T{ = exp (x<j>c - - ...) ^—- dx=0 {exp [- W^1 -K-^a I"1]}.

J lv 6 1

A similar equation holds for the second integral T2" in (H), and we obtain the result (K)

concerning T2.

We now return to T1 in the equation (H). In the integrals in the expression for T1 given

by that equation, the integrands are regular functions of x upon and within the contour Z2 +Z2.

The paths Lx and L2 may therefore be deformed into the part of the real axis between fx + \ and

— + 2) described respectively from right to left and from left to right. We therefore obtain

from (H)

Ti = 9 (<£) + g (2tt + <£) + g (- 2tt + 0),

* Wehave <Kfx . y^ + Kfi | (2r7r + 0)2a>-2|.

| {y+ {2r7r + <p) L(lj-1}3\<Kys + Ky^\(2rir + <p)LQj-1\ On multiplying each side of this inequality by n^w, we

+ Ky \ {2i'Tr + <p) to)-1 \z + K \ {2rir + up) a"1 \3 obtain the desired result, for fin'1 is of the form e (?i).

< J5fy2 + JT/i | w + Z j (2nr + 0) tw"112 [J+ JSTfc | a I"1]
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/>+*

where g (<£) = exp (x<j>L — %x2co — x3^ — ...) dx (1).

J -(/*+*)

Summing up from (G), (H) and (K), and recalling that

exp [- #-V | co |] = 0 {exp (- ^ay-1 - if"11 a> I"1)},

we have, when | 8 \ < 2ir — e,

F-~ = 9(<f>) + 9 (2tt + </»)+g(- &r + 0) + 0 {exp [-- | » j"1]} (L),

where is given by (1).

§45. The integral for #(</>) is very similar to the integral J exp (70 + 7i</> +...) dcj>

J -rj

discussed in § 28. The integrand in g (<£) contains an oscillating factor exp (x<pi). By a

substitution of the form x = x0 + y we may obtain an expression for xfa — \x2w — in which

the coefficient of y is zero. The approximation for g (</>) then proceeds on the lines of §§ 28—31

and is in all essential principles identical with the latter investigation. We shall content

ourselves by indicating the leading results.

The only condition which we shall impose on <j> is | <f> | < K.

By a sufficient number of successive approximations we may calculate a value x0 which

differs from the root (of least modulus) of

<pi — 2 . \x(o — Sx2^ — 4#3ft)2 — ... = 0 (1),

by an expression of the form 0 (v~x>), where \ is an arbitrary constant. We evidently have for

the first approximation

x0 = (friar1 + lower terms.

We now substitute x = x0 4- y in

X(j)C — ^X20) — X*^ —

which, when \x\< K/j,, becomes of the form

To+y*y2 + • • • + vk2yK* + 0 (v-k),

where y0 = x0<j)L — %x02o) - ... — #oA3a>A3_2>

72 = - 2w —sCiffo®!—^a^o8^— • • • - A3+2^oA8a>A3>

•(2),

where X2 and X3 depend on \.

It may next be shown that we have

gift =11+0(it*)] exp(70)/,

I=r exp[722/2 + 732/3-h...+7A22/A2]d2/

J -fi

For the integral / we may approximate as follows. Let

exp (y3y* + y4y* +...) = 1 + /332/3 + &2/4 +..

Vol. XXI. No. XII.
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350 Mr LITTLE WOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

Then, when \4 is chosen sufficiently large,

I = f exp (7^) [1 + fay* + ... + + 0 (v-K)] dy

J - GO

rjryi r1+- 1.3 (2,-i)^+ Q -

\~yJ L 2r=4 (~272)r

.(N).

§46. As we have now found <?(</>) save for a factor [l + 0(v~x)], it is easy to find an

asymptotic formula of the same type for F(z).

We shall suppose now that <f> satisfies the conditions

7T — | ^ i > i/*-1 + [ o> |\a\<K' (1),

where S is an arbitrarily small positive constant.

We have 7„ = - i^w"1 + 0 (n-'co^) = - ffico'1 + 0 (v^a,'1),

7.= [-i + e («)]», ftr (7.)^ =«(»)•

Therefore, from (M) and (N),

g (tf>) = [1 + 6 («)]. (£a>)-1 exp [- ^o.-1 + 0 (v^co-1)] (2),

with similar results in which <f> is replaced by + 27r + <j>. Thus we have

<7«>)

| < if|exp [Jtu-1 {<£2 - (2tt + <£)2} + 0 (p-'co-1)] |

< Z | exp [- 27TW-1 (tt ± <f>) + K..V-11 a> j-1] |

< |exp [- 27TW-1. (tt + 6) + K^v-11 m f1] |

< K | exp [- Krl |»I"1. (| » I1"* + Vs-') + K2v~l | o> |-'] |

(since tt-|0| > v»~l + \a M)

< if exp [- p^-11« |_1 (I <o I1-5 + f5"1)] < K exp (- if-11 <o

[since Z^"11 a h1 < iK,"11« I"1 (I » I1"4 +i^1)]

= x(») (3).

Now, from (1), we have

0 {exp [- i^o)"1 — 1 I"1]} = X(»)9(4>) (4).

From (L), and (3), (4) we have

F (z) = cnz"g (</>). [1 +%(*>)] (P).

Summing up from (M), (N), (P), we have the following theorem:

Let z he put in the form exp [O (w)], where (f> = 0 + i(xa), \ 0\^7r} \a\< K, and let z be

confined to the region defined by ir-\6\>\co{n) |1-5 + [v (n)]8~\ Then if X be any assigned

positive constant, we have

V— 72' L 2r=4 (— ^72/

where the fi's and ys are determined as follows.
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Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 351

x0 is determined by a certain number of successive approximations from the equation

<f)i — 2. \x<o — 3x2 (»!—... = 0,

so that x^ — x + 0 (v~Xl)." The ys are then determined so that

(xQ + y) <f>i-%Q) (x0 + yf - cox (x0 + yf - ... = 70 + 72y2 + + 7^ + 0

when \ y\< K/n. The are then the coefficients in the formal expansion

exp (7sy» + 742/4 +...) = !+ ft + Ay4 +... .

The numbers \, X2) X4 depend on A,. They are to be so chosen (which is always possible)

that the above expression for F (z) changes only by a factor of the form [1 + 0 (v~k)] when

\> ^2 j \ we increased in any manner,

§ 47. As an example, let us find an approximation of the form [1 -he (z)]f(z) for the function

F(z)= 2 exp(-ps1 + &)28,

where Ep>0, \<k<\.

The conditions 1° to 6° are easily shown to be satisfied.

We have f2 = (l+k) pnk, ca = Q.+k)kpnk-\ o)1=p1 + AC3^fe~2,

and we find that

#o==<£«»"~1 + 302a>1a>~3 + € (n\ y0= — J<£2g>_1 -\-(j)h(D1co~3+ e (n\ —y2 = $(o[l+€ (n)].

The general formula then gives

^(s) = [l + €(7i)](2»ra>-^ (1)

1 1\-k 1+k

-p-H^W'W*fc3sn

the terms in <j> disappearing when we substitute for n in (1) from the equation

(1 + k) pnk=a = log z - L(j).

The part of the plane from which z is excluded may be defined as follows. Let C8 be the circle with centre

at the point - exp [p (1 + k) s*] and of radius

p8=s5 exp [ftp (1+

where 8 is arbitrarily small, and h is the lesser of k and 1 - k. Then the formula (2) is valid when z is excluded

from all the circles G.

The circles overlap (after a certain value of s), and the aggregate of the points included by them forms,

roughly speaking, a spiral strip. The ratio of the part of this strip included within the circle \z\—R, to the

area of the whole circle, tends to zero with \jR. These results may be proved on the lines of § 16.

It is obvious that all but a finite number of the zeros of F{z) must lie within the strip. The more precise

determination of the position of the nth. zero of F(z) is a problem which, in its generality, will occupy us in

the next section of the paper.

If we assume that, in the more general case when we have 0 < k < 1, cf> disappears from the final result, the

formula (2) may be proved still valid. In the general theorem of § 46, we have, as a particular case,

F\z) =[1 + €(*)] (Sir*-*)* exp (7o) cnz\

In any case in which cj) disappears from the final result we may write 0=0; it is then easy to see that %0=0,

yo = 0. Then

F{z) = [1 + e (z)] (2™"!) cn exp [na

where for n we are to substitute formally in terms of z from the equation

Q (n)=\og z.

In the particular case before us this leads immediately to the equation (2).

46—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



352 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

§ 48. As in Part I, Section I, we have in our general formula for F(z) a remainder-term

of the form

0(v-") + x(<o) (!)•

The %(&>) is of less order than exp (— K~l \ <w |-5). If, however, we subject z to the conditions

(more stringent than those of § 46) 7r — | 01 > 8, | a | < iT, x (<°) is of less order than exp (— K~l | a>:

it may be shown, in fact, that*

x (a>) = {1 + e O)}. [exp {- 2tt (tt + <j>) co'1 + 0 (n-1*)"2)} + exp {- 2tt (tt - 0) w~l + 0 (n~la)"2)}].

As in Part I, we have a different form for the remainder-term according as exp (g>_1) is of

a type of order higher than, comparable with, or lower than that of v. The critical case

corresponding to that considered in § 22 occurs when cn is of the type of order

exp [— pn2 (log ri)'1].

As an example of the critical case let us take the function f

F(z) = 2 exp[-J^(2log^ + l)].^,

s=l

where 3fitp > 0, and x8 log x8 = s.

We have log z-1<£ = Q=pxn,

«=P^=p(log^n + l)_1,

and we obtain

F(z)=[27rp -1 log Op -1 log z)] % exp [p ~1 log (p - * log z). (log zf - Jp -1 (log *)2 ]

-l + TVpaog0)-2{log(ep-1log^)}-3[4 + 31og(p-nog^)] + O{(log.)-4}

+ {1 + € (*)} {(ep ~ i log z)' 2^_1 (' + *> + («p -1 log *)" ^ (' " *)}.

The terms containing (j> are of the form 0{(log2)~4} provided tt -1 6 \ > 2/(7r3&p_1). On the other hand, if

7T — \6\ is less than [ttS&p-1]-1, one of these terms is more important than the term in (log2)~2.

§ 49. In the case of the function

F{z)= 2 exp[-|p^{2(log^)2-2log^-l}]^,

s=l

where x8 (log x8 -1)2=s,

we obtain

i^H^Trp"1)* Pogfcp-Uog*)]* exp [Jp-i (logs)2 {2 (log {p"1 log*})2- 10 log {p-* log 4 + 1}]

x[l + ^(log^)-2 + ^2(log^)-4 + ...],

where the fa are algebraic functions of log (p-1 log z) and (as a theoretical possibility) We may calculate

tij t2 as far as any numerically assigned suffix. The remainder is then of the order of the succeeding term,

and the series is not disturbed by terms of the form exp [ - 27ra>-1 (w ± <£)].

Section II. The Zeros of F{z).

§ 50. Let us return to the formulae

= 9(4>) + 9 (2*+ $)+9 (-2tt+ $)+<) {exp [- £ 0»o>-> - K~> \ <o | -]) (L),

9(<f>)^)ieM7o) \l + ^•3-;(2:i1^+Q(^)1 (1),

V"" 72/ L 2r=4 {— V2) J

* The terms within square brackets are respectively + This function and that in the next article are chosen

furnished by g (27r + <£) and g (~2ir+ </>). Cf. the work of so that Q (n), instead of cn, may have a simple form.

§ 46.
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Mr LITTLE WOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 353

of which the latter is a direct combination of (M) and (N). It is easily seen that

(^/ = (v/[1 + 0(z;"1)]> ^(-T2)-r = 0(^-1).

We thus have from (1) g ((f)) = [1 4- 0 O"1)] (2-irco-1)^ exp (7o) (Q),

where the processes involved in the calculation of y0 need be carried only to such a point that

all terms added to y0 by further approximation are of the form 0 (y-1)- The equation (L) is

valid when | 0 | < 2tt — e, | aco \ < K, and (Q) [as also (1)] when | <f> | < K.

The formulae (L) and (Q) suggest at once a method of approximating for the nth zero.

Since y0 = — \ w"1 <f>2 + lower terms, it is easily seen from (Q) that

g (± 2tt + (f>)/g (cf>) = 0 fexp [- Zirw'1 (tt ± (f)) 4- lower terms]}.

Hence, from (L), in order for exp[fl(n)+ 1(f)] to be a zero of F(z), we must have

<fi = ± 7r + € (n).

Since exp (i<j>) has the period 2tt, we need consider only one of these forms,

(f> = — 7r + e(n) say. The terms g(— 2ir + <f>) and exp [— £ ftar1 — K~l \ co in (L) are then

easily seen to be of the form exp [— K~x \ co g ((f)) = e (ri)g ((f)). Now in (Q), y0 is a

polynomial Q (</>). We may thus expect that for some zero exp [O (n) + i(j)] of F(z), the

value of </> is approximately one given by

exp [Q ((f))] + exp [Q (2tt + </>)] = 0,

or by Q (2tt + </>)- Q ((f)) = - ttl (2).

Since Q((f)) — — \(*>~~l </>2 + z>_1 ft)-1 P (0)* we can obtain by a process of successive substitu-

tion, a value <£0 such that the two sides of (2) differ by 0 (i>-1) when <£0 is substituted for <£.

It may be expected, and it will appear in the sequel, that exp [fl (n) + i(j)0~] is an approxi-

mation for the nth zero of F(z). But apart from matters of detail several questions present

themselves which involve rather delicate considerations in their resolution.

l°-f*. Is there, (a) actually one, and (b) only one, zero corresponding to

exp [fl (n) + i(f)0]

when n is large?

2°. In the equation (2), — iri might equally well be replaced by (2r — 1) tt. When

r j= 0, can we identify the corresponding zero with exp [O (n) 4- t(f)0 where n'' ±nr(

3°. These questions being answered in the affirmative, it follows that ivhen n is large,

there corresponds exactly one zero to exp [12 (n) 4- i(f)0], and conversely, and hence that there

is a constant integer p (positive, negative, or zero) such that the (n+p)th zero

bn+p = exp [f! (n) + i<j>0].

Can we prove p =?

* P (<£), P± ((f)), etc. denote polynomials in which the that order,

modulus of each coefficient is less than K. % The result p = 0 is remarkable, for it implies that we

t These questions, which emphasize points that might can, in general, find the exact number of zeros contained

possibly be overlooked, do not follow the logical order of within a large circle \z\ = R.

the proof; they are, however, intended to provide a clue to
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354 Me LITTLE WOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

§ 51. The y0 occurring in (Q) being denoted by Q (<£), we shall give a method of

calculating <£0 such that

Q (2tt + <£0) - Q (<f>0) = - in + 0 (R).

Since Q (<f>) = - \ co"1 <f>2 + v'1 co'1 P (<£), the equation Q ((f)) - Q (2tt+ <£) = - iri may be

written

- 27T (TT + <f>) [(O-1 + V-1 CD-1 P1 ((f))] + V-1 CO-1 P2 ((f)) = - 7TL,

Or 7T + (f) = (27T)"1 [W* + P2 (<£)] . [1 + V-1 P, ((f))]~\

When | (p | < jST (so that | P1 ((f)) \ < K) this last expression is of the form

(27T)-1 [cOTTC + V^P2((f))] [1 + ^(-Yv-'iP^cl))}'] + 0 (v^) (1).

r=l

Since | co \ > Kv~K we can choose X so that 0 (v"~k) = 0 (cov1), and therefore

tt + 0 = u ((f)) + 0 (cov-1) (2),

where u(cp) is the first term in (1).

Let us substitute — it for </> in u((p) and call the result 7r + (j)1} then substitute fa for

in u((p) and call the result 7r + <£2, and so on. Then on account of the factor v~l which

multiplies Pi(<f>) and P2(<j>) m (1)> ^ is easily seen that after a certain number of substitu-

tions we arrive at a value fay which we shall call cf)0, such that nr + fa differs from u(fa)

by a number of the form 0 (cov*1), so that (as is easily seen)

Q (2tt + fa) - Q (fa) = - ttc + 0 (v-1),

the desired result.

§52. It is evident that fa is a polynomial in to"1, co, and the coefficients of v~1P1 (cf))}

v~lP2(fa\ therefore a polynomial in o>-1, co> and the coefficients of Q(fa)', and therefore a

polynomial in cd-1, go, c^, co2, — 7r + XAco^co^co^ say.

It is easily seen that for terms of this expression

a+Ptofx... = co±p [0 (n~l co))a* [0 (rr2co))a*.., = 0 (co) (1).

Now it may be shown that*

cor (n + 1) — cor (n) = e (n) [n~r co (n)] + e (n) [n~r co (n + 1)].

From this result and from (1) it follows easily that

{co (n + 1)}** {©! (n + 1)}"> {co2 (n + 1)}«« ...-{© (w)}*p {©! (??)}«> ... = e co (n) + e(n)co(n+ 1),

* In the expression . ... r+2

r+2 «r (w +1) = S ^, log (cn+a+1/cn+1) + 0 [n-^-ico (n)]

2 A8log (cn+Jcn) *-]

8=1 r+2 r+2

rt\j Otn\ rPl,2J i„\ *V 3 J t\ = S A*l°8(Cn+s+llCn)- 2 ^l0g(cn+1/cn)

= - 2 s^i8.12 (/i) - 2/ ^fiMg. w (n) - 2 s-Mg. w1 (n)... s=i «=i

8=1 8=1 r+2 8=1 +0[n-^-i«(n)] + 0[(n + l)-^-i«(n + l)]

- £^.«r (n) + 0 „ (»)], = Q {n) c _ {(, +1) _ i}]

we may choose the constants A so that the coefficients + 1}] +...

of fi(n), w(n), ... ^(n) vanish and the coefficient of +«r(w)[-24.{(« + l)r+2-l}]

«r(n) is unity. We thus have +0[n-^-i«(n)] + 0[n-^i«(n + l)]

r+2 = cor (n) + 0 [«-r-i w hi)"] + 0 [11-7-1 w (n +1 )1,

cor (n) = S ^8 log (cn+Jcn) + 0 [n-r-i co (11)]. . . , * . .1 , , 1 JJ'

r\ / » exnt-s/n; l \ u m virtue of the equations satisfied by the ul's. The desired

Changing n into n +1 we have result follows immediately.
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Mr LITTLE WOOD, ON A CLASS OF INTEGRAL FUNCTIONS. 355

and therefore that [denoting </>0 qua function of n by <j>0 (n)]

(f>0 (n + 1) - <j>0 (n) = e (n) co (n) + e (n) co (n + 1) (2).

Now it was shown in § 38 that functions €i(n), e2'{ri) (tending to zero) exist, such that

fl (n + 1) - {J + €/(n + 1)} &) O + 1) = H (n) + [\ + e2»} 6) (n).

It therefore follows from (2) that functions €1(n)f e2{n) exist, such that

w(w+l) = n(?i + l)4-^o(^+l)-{i+€i(w + l)}a)(w + l)

= ft 0) + ^0<» + {J + €2{n)} co (n).

§ 53. Let us denote by Gn+1 the circle | z | = | exp [v (n + 1)] |. We shall show that when

n is large the circle Gn contains exactly n zeros of F (z) (S).

Since, as was seen in the last article, cp0 = — 7r -f e {n), the conditions | 6 | < 2-rr — e.

| aco | < K, for the validity of (L), will be satisfied when

</> = a- + &+{i + e1(n)}i© (1),

where is real, and 0^S-^27r. For this value of <f> the corresponding value of z is

exp [fir + v (n)]y so that as increases from 0 to 27r, the point z describes the circle Cn.

Now since by (Q)

g (</>) = [1 + 0 (i/-1)] (27rft)-l)i exp [- %co^(f>> + ^-^P^)],

it follows easily that the term exp [— \ co~Y <f>2 — K~l \ co in (L) is of the form

0{exp [-K-^m\^}}c,(fa.

We therefore have from (L)

■ =[1 + 0 (ir-i)] (2™-1)* exP (*)} [1 + (1 + 0O_1)l exp {Q (2tt + </>)- Q(<£)}

+ {1 + 0 (jr->)| exp (- 2tt + </>)- Q (<f>)} + 0 {exp - | o> (S),.

We shall show that as ^ increases from 0 to 2ir the argument of the right-hand side

returns to its original value.

Let us first consider the factor [1 + 0 (f-1)] (2irco~1)i exp {Q (<£)}. As increases from 0 to

2tt the argument of this expression increases by

0 (v'1) + IQ [2tt + fa + {£ + e,(»)} t»] - 7Q [<£„ + i {1 + e,(n)} to]

= 0 (jr-i) + J{Q (2tt + <£0) - Q (fa)} +1 {Q (2tt + fa + 0a) - Q (2tt + fa)}

-I{Q(fa + /3co)-Q{fa)} (2),

where /3 is written for + e^n)} i. The second term is of the form — ir + e (n) in virtue

of (R). The fourth term is of the form

-I [- } + /3«)2 + v-^~xP(fa + f3a>) + ^o)-1^2 - ^a^P^o)]

= / [@fa - + v-> or*. £»P,(0)] = /[{£ + ei(n)} fai] + e (n).

Similarly it may be shown that the third term of (2) is of the form

-I[{i+e1(n)}(27r + fa)l] + e(n).

By addition it is seen that (2) is of the form e(n) (S).2.
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356 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

§ 54. Let us now consider the factor

h(**)=l +.[1+ 0 (v-1)] exp [Q (2tt + 0) - 0 (0)]

+ [1 + 0 (v'1)] exp [Q (- 2ir + 0) - Q (0)] + 0 {exp (- K~* \ co \~%

We divide the range = 0 to 2ir into 0 to 8, 8 to 2«7r - 8, and 27r — 8 to 27r, where S is a

small positive constant. When < 8, we have

| exp [Q (- 2tt + 0)] | = | exp [Q {- 3tt + * + e (n)}] | = 0 {exp (- Z"11 co (1).

Again,

Q(27r + ^>)-Q(</)) = Q(27r + ^0 + ^a) + ^)-Q(^0 + /3a>+^)

= {Q (2tt + 0o + £«) - <3(0o + /3*>)} + {Q (2tt + 0O + /3o> + *) - Q (2tt + 0o + /3*>)}

- {Q (0o + /3*> + - Q (0O + (2).

The first term in this last expression is seen to be of the form €(n) by the proof used

to establish (S)2. Since Q(0) = — \ co~~1<j>2 + &)~V-1P(0)3 the second term is of the form

-£ co-1. 2 (2tt + 0O + fia) - £ ft)"1^2 + & 0 (co-1 v~l\

and the third term is of the form

- {- J a)"1. 2 (0o + #») * - \ a,-1*2 + ^ 0 (co-1 v-%

From these results and from (2),

Q (2tt + 0) - Q (0) = - 2™-1 ^ + ^ 0 (co-1 v-1)

= -27Tft>-1*[l+e(rc)] (3).

By means of (1) and (3) we obtain

h O) = 1 + e (») + [1 + e (n)] exp {- Sirco'1 ^ [1 + e (n)]} (4).

It is evident that when S- = 0, h(^) = 2 + e(n), and when ^ = S, A(^) = l + e(»). When

increases from 0 to 8, the point h (^) describes a continuous curve in the Argand

diagram from 2 + e (n) to 1 + e (w). We have to show that this curve cannot cut the

negative real axis.

Suppose that it does. Then there is a value of such that

[1 + e (n)] exp {- 2ir^r1 * [1 + e (n)]} = - 1 + e (n) - a, (a > 0).

We therefore have j exp {- 2-rrco-1 ^ [1 + e (n)]\ | > 1 - | e (n) | (5),

and | arg exp {- 27n*)-1^ [1 + e (n)]} | > tt - | e (n) j (6).

From (5) we have U {Stto)-1^ [1 + 6 (n)]} < j € (n) |,

and from (6), | / {2™-^ [1 + e (n)]} | > tt - | e (n) |,

so that when n is large

3£ {2770)-^ [1 + e (n)]} =€(»)| ^tto)-1^ [1 + e (»)]

This inequality is incompatible with 1&co> K'1 \co\.
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The curve described by h(^r) therefore does not cut the negative real axis. Since h(^)

respectively begins and ends at the points 2 + e (n), 1 + e (n), it follows that as ^ increases

from 0 to 8, the argument of h(^) increases by a number of the form e(n) (S)3.

When 8 ^ & ^ 2tt — 8, it is easily seen that

exp[Q(27r + <£)-Q (</>)] and exp [Q (- 2tt + <£) - Q (</>)]

are of the form e (n), so that h (&) = l+e (n). As ^ increases from 8 to 2ir — 8, arg (A (^)}

therefore increases by e(w) (S)4.

Finally, the case 27r— S^S-^27r is similar to the case O^S^S, the parts played by

Q(27T + (f>) and Q(— 2tt + <j>) in the latter case becoming interchanged in the former, and

arg{A(S-)} increases by €(n) as increases from 2ir— 8 to 2tt (S)5.

From (S)2, (S)3, (S)4, (S)5 it follows that the argument of F(z)/(cnzn) increases by

e(n) as z describes the circle Gn. Since F{z)j{cnzn) is a uniform function, its argument

can increase only by some multiple of 2-7T, and therefore, when n is large, its argument

must return to its original value, when z describes Cn. Then the argument of F(z)

increases by 2mrc, and it follows that F(z) has exactly n zeros within Cn.

§ 55. Since F(z) has exactly (n—l) zeros within Gn_1} it has exactly one zero, the nth

in order of increasing moduli, in the annulus An bounded by (7n_! and Cn. We proceed

to find an asymptotic formula for the value of this zero.

Let the value in question be exp [12 + i (<£0 + S-)] (where, of course, is not now restricted

to be real), where we may suppose that

— 8 ^ 3ft^ 2ir — 8 (8 a small positive constant) (1).

It follows from the two forms of the equation of the circle Cn given at the beginning

of §54, that *&=0 + ific0, where 6 and /3 are real, | /31 ^ | + e(n), and hence, from (1),

6 < 2tt — 8 -f- e (n). From the last inequality it is easily shown that

#(-2tt + <£) and exp (- lco~l<j>2 - K~l \ co I"1)

are of the form 0 {exp (— K \ co |-1)} g (<£), [<j> = <£0 +

and therefore from (L)

° - - 1 + 0 {exp(- JT-1 . I-)} + ^±^>

cnzng(<f>) rv 1 1 /J #(0)

= 1 + 0 {exp (- Z"1!» |->)} + [1 + 0 (v-1)] exp [Q (2tt + 0O + *) - Q (0„ + ft)].

We must therefore have

Q (2tt + 0o + *) - Q (0o + ^) = - Tri + 2r7rt + 0 O"1) + 0 {exp (- Z"11 <o j"1)} (T),

where r is an integer. Since

Q (2ir + cf>0)-Q (0O) = - m + 0 (p-1),

we have from (T),

{Q (2tt + 0o + *) - Q (2tt + 0O)} - {Q(0O + &) - Q (0O)}

= 2r-m + 0 (i/-1) + 0 {exp (- j w |-»)}.... (2).
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358 Mr LITTLEWOOD, ON A CLASS OF INTEGRAL FUNCTIONS.

The first term on the left-hand side is of the form

la)-1 [(2tt + cf>0 + a)2 - (2tt + <f>0)2] + v-1**-1 [P (2tt + <£o + *) - P (2tt + <£0)]

= o)-1(2tt + </>0) + + & 0 (z,-1*)"1),

and the second term is equal to

- [«-100^- + £ ©-1 ^2 + & 0 (v-1 cd-1)].

We therefore obtain

a- [27TG)-1 + 0 (or1*"1)] = 2r7ri + 0 O"1) 4- 0 {exp (- R-11 a> I"1)},

or a- = rcoi [1 + 0 (v-1)] + 0 (cop-1) + 0 {exp (- K~l \ co

Since a-=0 + ^8a>, where 6 and /? are real, we have

^^[l + O^'-1)]+ €<>),

and therefore, since j ft | ^ \ + e (n\ we must have r = 0, and

^ = 0 (©ir1) 4- 0 {exp (- jST"1 | co j"1)} = 0 (n""1) + 0 {exp (- if"11 a> I"1)}-

Then exp [O (n) + t (0O + a)] = [1 + O (n~l) + 0 {exp (- Z"11 co j"1)}] exp (ft + ^0).

§ 56. Summing up, we have the following theorem:

Let F(z) be an integral function whose coefficients satisfy the conditions of § 38. Then

we have for the nth zero bn the formula

&n = [HO (ft"1) + 0 {exp (- K-11 co I"1)}] exp [fi (n) + *</>„],

wAere </>0 is determined by successive substitution so that

Q (2tt + cj>0) - Q (0O) = - ire + O (r1),

where Q (cj>) is y0 ^n the formula (Q) o/ § 50.

If we describe about the point exp [12 (5) + *><\>Q ($)], a circle Ts of radius

Ks-1 + K exp (- K-11 a) (s) I"1), 1

it is easily seen, and, indeed, has been proved implicitly in § 55, that after a certain

value of s the circles T8 are all external to each other. It follows from the theorem that,

provided K is sufficiently large, every zero lies within some circle Ts, and that after

a certain value of s every circle Fs contains exactly one zero.

§ 57. The general formula for bn becomes

[l + O^-1)] exp [a (*0 + «£o],

in all cases for which a> (n) = t(n) log n.

As an example let us consider the function

F{z)= s s£rexp(-p51 + fc)^,

5=1

where &/>>0, \>k^\.

We may take § (<£)= — i^2©-1*^3*©!©"3^^4,

where 0,= 0(n~2co~3). We then obtain

$0 = ~" t + "IiG) + 7T2 cd ~ 2.

We have Q = (l <m~\ <o = (l + k) kptf-i + an-2, a)i = i + *£W2-\<m'^

and hence <£0= - ir+i(l + lr)*. ^"^^tt^(/^-1)^"1 (H-^)-1p"1^~A;4-O^"1).
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The general formula then gives

bn=-[l + 0(n-1)] exp[(l+^)p#-K1+^)^fc~1-i^2(^-l)^~1(l+^)~V"1^*"fc].

It is worth noticing that this formula is independent of <r, from which fact it follows that the nth zero

of zF' (z\ and therefore the (n— l)th zero of F' (z), is given by the same formula as bn. It is easily shown

that the distance between bn and bn_x (or bn+1) is equal to |6W|^&_1, multiplied by a factor finite both ways,

while the distance between bn and b'n_i is equal to | bn\ n~\ multiplied by a similar factor. It thus appears that

the large zeros of F' (z) lie relatively near to those of F(z), and do not, for example, lie approximately half-way

between consecutive zeros of F (z),

§ 58. It was seen in § 55 that the annuli An} which together cover the £-plane com-

pletely, each contain exactly one zero of F(z) when n is large. This result has an immediate

consequence of some interest. If all the coefficients cn are real, the imaginary zeros of

F(z) occur in conjugate pairs. But if An contains one imaginary point it evidently

contains its conjugate. Consequently, after a certain value of n, the zero contained in An

must be real. If, therefore, the coefficients of a function F(z), satisfying the conditions of

§ 38, are real, F{z) can have only a finite number of imaginary zeros
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XIII. On the Change of Order of Integration in an Improper

Repeated Integral. By W. H. Young, Sc.D., F.RS.

[Received Dec. 1, 1909. Read 21 Feb. 1910.]

§ 1. The object of the present paper is to give a set of rules for determining when the

process of reversing the order of integration in a repeated integral, which for simplicity will be

supposed to be in two variables, is allowable. It will be found that the account differs both in

form and substance from others which have been hitherto presented. As regards form, no use

is made, either in the enunciations of theorems or in the applications to examples, of

e-macbinery. In this subject, even more than in others, the use of it appears to obscure

the issue. As regards substance, certain new rules are given, which, though obtained without

difficulty, and applied with considerable ease, have apparently not been stated.

De la Vallee Poussin was one of the first to occupy himself with this subject. His

conditions—exception being made of one far-reaching theorem due to him, which is capable

of remarkable generalisation—involve considerations of uniform and non-uniform convergence.

The recent trend of research, especially where integration is involved, has been materially to

reduce the importance of these concepts as compared with that of being bounded. In the

present paper the concepts of uniform and non-uniform convergence are not employed, but the

rules given include none the less those of de la Vallee Poussin as a particular case.

I have attempted to make the exposition as systematic as possible, and have accordingly

begun by stating the known result for bounded integrands, and then have proceeded

successively to unbounded integrands and infinite domains.

§ 2. We begin then by considering the integral / dy \ f(x, y) doc, where p and q are finite

Jo Jo

and positive and where f(oc, y) is a bounded function of y\ and not merely of x and y

separately. Exception being made of what we may call at most philosophically possible but

mathematically non-existent functions, f(oc, y) has then necessarily a Lebesgue double integral,

and therefore its repeated Lebesgue integrals necessarily exist and are equal. Thus the change

of order of Lebesgue integration is always allowable. It will however usually happen that

f{oc,y) possesses an ordinary Eiemann integral with respect to each of the variables separately.
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362 Dr YOUNG, ON THE CHANGE OF ORDER OF INTEGRATION

In this case, by a known theorem*, these integrals are functions of the remaining variable in

each case, which possess a Riemann integral with respect to that variable.

In other words we have the following theorem:—

Theorem. If f(x, y) is a bounded function of {x, y), which is integrable with respect to x,

in the ordinary Riemann sense, and integrable with respect to y, in the same sense, then both its

repeated integrals exist and are equal.

In fact a Riemann integral, when it exists, coincides in value with the Lebesgue integral.

Note. It is perhaps worth remarking that the truth of the above theorem depends

implicitly on the obvious fact that the integral between finite limits of a bounded function

is necessarily bounded, so that the second integrations in the repeated integrals are proper

integrations.

If the function f(x, y) is merely bounded with respect to each variable separately, the

argument would no longer hold. It is easy to give examples which are bounded with respect

to each variable separately, and not bounded with respect to the ensemble, e.g.

f(x, y) = 0, on the axes of x and of y, and elsewhere

f(x,y) = x/(x* + f).

This is a bounded function of x for each fixed value of y, and a bounded function of y for

each fixed value of x, but is unbounded on every straight line through the origin other than

the axes.

§ 3. We next consider the case where, p and q being still finite, f(x, y) is no longer

bounded with respect to (x, y). We shall require the following well-known Lemma, which will

also be of use subsequently.

Lemma. If fx (x) (x) ^

is a monotone increasing sequence of functions having f(x) as limit, where each fn (x) is positive

but not necessarily bounded, then

rb rb

Lt fn{x)dx=\ f(x)dx,

n=oo J a J a

whether this latter integral is finite or infinite.

Choose M so that ( f{x,M)dx>K,

J a

where f(x, M) denotes the function got from f(x) by changing the value of f(x) to M wherever

it was greater, and at the other points leaving it unaltered, and K denotes any quantity less than

f f(x)dx.

Let fn (x, M) be formed from fn (x) in the same manner as f(x, M) from f(x); then evidently

f(x,M)<f2(x,M)<

* W. H. Young, "On Parametric Integration," Monatshefte fur Mathetnatik und Physik, Jan. 1910, xxi. pp. 125—149.
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IN AN IMPROPER REPEATED INTEGRAL. 363

is also a monotone increasing sequence, and has f{x,M) as limit. Moreover these functions are

in their ensemble bounded, each lying between 0 and M, therefore

Lt P/n 0«, M)dx= \b f(x, M) dx > K.

n=oo J a J a

Hence, remembering that fn (x) is nowhere less than fn (x, M), we have

Lt f fn (x) dx > K.

n=oo J a

But K is any quantity less than f f(x) dx, therefore

J a

Lt ( fn (x) dx > ( f(x) dx.

n = cc J a J a

But fn (x) is nowhere greater than /(#), therefore its integral cannot be the greater, and we

must take the sign of equality, that is

Lt I fn(x)dx=j f(x)dx. Q.E.D.

n — cc J a J a

By means of the above Lemma, we can at once prove the following important theorem and

Corollary.

Theorem. If f(x, y) is a positive unbounded function of (x, y), change of order of inte-

gration between finite limits is always allowable.

We have, with our usual notation,

[q fp (a fp

dy f(x>y)dx=\ dy Lt f{x,y,M)dx,

J0 J 0 Jo J/=oo J 0

where, the integrand with respect to y being obviously a monotone function of M, we may, by

the Lemma, write the right-hand side

fa (p

= Lt dy \ f(x, y, M) dx.

j/= 00 J 0 Jo

But since f(x,y,M) is bounded, this may be written

fp f<i

= Lt dx f(x, y9 M) dy,

M= jo J 0 Jo

and therefore, by the Lemma,

= jPdx Lt \qf{x>y}M)dy

J 0 M-»o J 0

fp fq

= I dx f(x,y)dy. Q.E.D.

Jo Jo

Cor. If f(x} y) is not everywhere positive, but continues to have one of its repeated integrals

finite when its sign is made everywhere positive, the integration being over a finite rectangle, as

before, then the second repeated integral of f is finite and equal to the first.

In fact, let /2 be the value of /, wherever positive, and be elsewhere zero, and f2 the value

with the sign changed of f wherever negative, and elsewhere zero. Thus

48—2
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Dr young, on the change of order of integration

Then the repeated integral in question of both f1 and f2 must be finite, and equal therefore

to the other repeated integral in each case, by the theorem. Hence, subtracting the two

equalities so obtained, we get the required result, provided the subtraction is legitimate, that

is, provided the repeated integral of the difference of two functions is equal to the difference of

their repeated integrals. To ascertain whether this is allowable, write

0

with a similar equation for f2.

The difference of the repeated integrals, taken first with respect to y and then with respect

to x, then takes the form

fp fp

I Sfi (#) dx — I g2 (x) dx.

Jo Jo

Now gl(x) and g2{%) will in general have infinite values for certain, the same, values of x,

unless we expressly assume, which is unnecessar}^, that these integrals converge for every value

of x. But even so, if we agree to make the convention that where gx(x) and g2{x) are both

infinite, and therefore their difference is undefined, the integral of their difference be still

regarded as existing, provided, whatever value we give to this difference at the doubtful

points we get the same result on integrating, we can still assert the truth of the theorem.

For, by hypothesis, the repeated integral of (fi+fo) exists and is finite, and (f^ + f2) has at

these points the value infinity, so that the values at these points cannot effect the integration.

Note. It will be noticed that we cannot any longer assert that if a function possesses an

ordinary improper integral with respect to x and also one with respect to y, that it possesses its

repeated integrals in the ordinary sense, whether as Riemann proper or improper integrals, even

when the function is positive. For the integral with respect to x of a function which is even

continuous in the extended sense with respect to (x, y) may be a bounded non-integrable upper

semi-continuous function of y*. There is thus no longer in the case of unbounded functions a

theorem exactly corresponding to that given in §2 for bounded functions.

§ 4. From the result of § 3 we obtain at once the following test which is often convenient.

Theorem. // v (x, y) is a positive unbounded function of (x, y), possessing finite repeated

integrals of equal value, and u y) be any bounded function, then the repeated integrals of uv

are finite and equal to one another.

It is evident that as it suffices to prove the existence of either repeated integral when the

integrand is made positive, it will suffice if we prove the above theorem for the case when u is

positive. But when u is positive the repeated integral necessarily exists at least in the

extended sense, that is, having a finite or infinite value. But the value cannot be infinite,

for its value could not be decreased by substituting for the positive function u its upper bound,

in which case, however, the repeated integral becomes the product of this upper bound by the

repeated integral of v.

* W. H. Young, "On the Inequalities Connecting the Function of Two Variables," Proc. L.M.S. Ser. 2, Vol. vi.

Double and Repeated Upper and Lower Iutegials of a pp. 247—249 (1908).
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§ 5. The importance of the theorem and corollary given in § 3, though considerable,

might easily be overrated. They do not dispose even of all those cases where the integrand

possesses what is known as an absolutely convergent double integral in the ordinary extended

Riemann sense, in other words the cases where the integrand, rendered positive by suitably

changing its sign, possesses an improper Riemann double integral. As shown in the paper cited

in the preceding section, the existence of this double integral does not even carry with it the

existence of the corresponding repeated integrals; nor is the converse the case. Indeed the

improper double integral even in the Riemann sense of the absolute value of the integrand may

exist and yet one or both of the repeated integrals, even in the Lebesgue sense, may be infinite.

We have, however, the following important theorem, which constitutes a material addition

to the information contained in the theorem and corollary of § 3.

Theorem. If an unbounded function possesses finite absolutely convergent improper

Lebesgue double and finite improper Lebesgue repeated integrals, the limits of integration being

finite, and the plane area being the corresponding rectangle, then all three integrals are equal

in value*.

§ 6. There exists, moreover, a class of theorems, other than those so far given, in which

there is no reference to the existence of an absolutely convergent double integral. Thus we

have the following theorem :—

Theorem. If the single integrals with respect to x and y are, for varying upper limits x

and y respectively, each of them bounded functions of (x, y), and if the infinite discontinuities of

f (x, y) lie on a finite number of monotone curves, then the repeated integrals are equal.

This latter theorem may be compared with § 408 of Hobson s bookf. We may remark that

Hobsons condition (3) necessarily carries with it the first condition of the above theorem, so

that our condition is much less stringent than that given by him, which he has quoted from

Jordan. Moreover we do not require to pre-assume his condition (1) at all. On the other

hand it seems that his condition (2), which he has also taken from Jordan, cannot easily be

rendered less stringent.

To prove the theorem in question, we may describe round every point of these curves,

whether the point be a discontinuity or not, a rectangle whose sides are e and e parallel

respectively to the axes of x and y. The portion of the fundamental rectangle then left

over will certainly be such that f possesses a double Lebesgue integral over it. Moreover we

can make e and e' approach zero in such a manner that this double Lebesgue integral has an

unique limit, say /.

Let fn (x, y) be zero at every point of these small rectangles when e and e have the values

en and e'n of the chosen sequence of values of (e, e'\ and be equal to f(x, y) elsewhere. Then it

is plain that on any definite ordinate,/n will differ from / only at points of a finite number of

intervals, ranged round the sections of the curves by the ordinate. Hence by the Harnack-

Lebesgue definition of an improper integral, it follows that

f dx I f(x} y)dy = \ dx Lt f fn (x, y) dy.

J JO J n = ac J o

* H. Lebesgue, "Integral, Longueur, Aire," 1902, Univ, Press, p. 582 (1907).

Annuli di Matematica, Ser. 3, vn. § 40, p. 280. E. W. f See also E. W. Hobson, "On Repeated Integrals,"

Hobson, Theory of Functions of a Real Variable, Camb. (1907), Proc. J.M.S. Ser. 2, Vol. v. p. 330.
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366 Dr YOUNG, ON THE CHANGE OF ORDER OF INTEGRATION

Now if r be the number of curves j fn (x, y) dy differs from j f(x, y) dy by at most 2rA,

where A is the upper bound of the absolute value of I f(x, y) dy\ for the value of the integral

0

over any interval is certainly not in absolute value greater than 2 A, and there are at most r

such intervals on the particular ordinate.

rb

Hence I fn (x, y) dy is a bounded function of x).

Jo

Hence we obtain, by the Lebesgue Theory,

(dx j f(x,y)dy = Lt \ dx \ fn{x,y)dy.

J J-Q • n=oo J JO

But the right-hand side is the unique limit I of the double integral of fn or f for the mode

of approach of e and e! to zero adopted.

Since the same argument applies to the other repeated integral we have thus proved that

the repeated integrals are equal.

Cor. Under the same circumstances, what Hobson calls the restricted Jordan double

integral is bound to exist.

For we have virtually proved that the repeated integrals are each equal to any one of the

limits of the double integral obtained by making (e} e') approach (0, 0). Thus all these latter

limits must be the same and finite in value.

Note. Thus the existence of the restricted Jordan integral, though redundant as an

assumption, is none the less necessarily involved. If therefore we find in a particular example

that it does not exist, we know at once that it is useless to apply this test. On the other hand

if it does not exist, one or other of our conditions (1) and (2) must be violated. In the example

given by Hobson on p. 584, it is of course the first of these conditions that is violated.

It should be noticed that it is owing to the violation of the same condition (1), and therefore of

Hobson's condition (3), that the theorem fails to apply in Hobson's second example, pp. 584, 585;

in fact - sin - is not a bounded function of (x, y). In this case the integrand -sin - is an

x x a/ ° x x

integrable function of a single variable, so that the existence and equality of the repeated

integrals is, of course, obvious a priori.

That Hobson's condition (3) involves the fulfilment of our condition (1) as an inevitable

consequence may be shown as follows :—

[v

Theorem. If f(x, y) dy be such that, given anij positive e, we can find klf independent of

Jo

< e, for all values of k such that k ^k1} the range of variation of

fy+fc

(x, y), so that f(x, y) dy

J y

x and y being, say, a definite rectangle (0 ^ x ^ a; 0 ^ y ^b), then I f (x, y) dy is a bounded

Jo

function of (x, y) throughout the rectangle.

Proof. When y = 0 the integral has the value zero.

Let N be the first integer such that Nkx ^ 6. Then, whatever y be chosen, there is a

determinate integer n ^ N, which is the smallest integer such that nkx ^ y.
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ry rkv rUx r(n-l)kx+k

We shall then have = + +... + /

JO * 0 J kx Jin-Dk,

where k ^ k\.

Each of the integrals on the right is numerically less than e, by the hypothesis, hence,

since the modulus of a sum is not greater than the sum of the moduli,

rv

f(x, y) dy

Jo

<ne < Ne.

This shows that the integral in question is a bounded function of (x, y), since iV and e are

both fixed quantities.

It is hardly necessary to add that the converse of the above theorem is not true. To assert

it would correspond in the theory of series to the fallacious assertion that if there were no points

of non-uniform convergence with infinite measure the convergence would be uniform.

§ 7. We now consider integrals over what is called an infinite domain, or more strictly

repeated integrals in which the limits of integration are no longer necessarily finite.

Even if the integrand is bounded, such repeated integrals are not in general expressible as

repeated limits of proper repeated integrals. All known tests turn however on the possibility

in certain cases of so expressing them. They consist in short and in general of two distinct

sets of conditions, viz.

(1) Conditions that they can be so expressed;

(2) Conditions that these repeated limits are equal to one another.

This latter set of conditions breaks up into two parts:—

(2 a) Conditions under which these two repeated limits are repeated limits of the same

function of two variables, and accordingly

(2 h) Conditions that the two repeated limits of this function are equal.

I propose therefore in the next section to state briefly a fact or two with regard to the

circumstances under which the repeated limits of a function of two variables are equal to one

another. Before doing so, it may be well to emphasize once more that the conditions with

which we are now concerned, however general the form we may give to them, are sufficient,

but not necessary, conditions; they fail, for example, as will be seen, to prove the equality

of the repeated integrals

Too foe /*oc r oo

dy \ f(x,y)dx, / dx \ f(x,y)dy,

Jo Jo Jo Jo

when fix, y) = Xy,^ .

In this case both the repeated integrals have the value zero, but they cannot be expressed

as repeated limits of proper repeated integrals.
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Dr young, on the change of order of integration

§ 8. Under luhat circumstances can we assert the equality of the repeated limits

Lt Lt F{x, y) = Lt Lt F(x, y) (1)?

x = 0 # = 0 y=0 x = 0

We can assert the equality if we can prove that there is an unique double limit

This condition is sufficient, but not necessary. Unfortunately, however, there is no

other case in which we can assert it. Any other set of conditions we can give are exactly

equivalent except in form to the statement of the equality. If F be a monotone function

of each variable separately, the sense of the monotony being the same for each variable

separately, an unique double limit exists and we can accordingly assert the equality.

This is of great importance, the fact being the basis of de la Vallee Poussin's Theorem>

alluded to in the preface, and to be given in an extended form shortly. Here, moreover,

from the very idea of monotony, we are sure a priori that the single limits and repeated

limits all exist, if we include infinity as one of the values a function or limit can have.

The repeated limits are in this case equal without exception.

This particular case suggests one possible direction in which we may seek to modify the

form of the equality whose conditions of existence are in question. By an obvious artifice

we can so modify the equality (1) that its truth carries with it, not only implicitly, but as

a demonstrable proposition, the existence of the two repeated limits, as well as their

equality.

For simplicity we suppose the single limits to exist. Write

Lt F(x,y) = G(x).

?/=o

Then (1) may be written

Lt Lt [F(x, y)-G (x)] = 0 (2),

provided the repeated limits are finite, in which case only does what follows apply.

It is evident that if (1) holds, so does (2) provided the repeated limits are finite. But

conversely if (2) holds, always provided fche single limits both exist, we can assert, not only

that (1) holds if the repeated limits exist, but that the repeated limits must exist*.

In fact take such a sequence of values of x that G (x) has an unique limit, say L. Then

for this sequence of values of x

Lt Lt F(x,y) = L (3).

But F(x, y) has an unique limit with respect to x independent of the particular sequence

chosen, therefore the equation (3) is true absolutely. In other words the repeated limit in

question exists and is equal to L. But L is any one of the possible limits of G(x), there-

fore all the limits of G (x) coincide, which proves both the existence and the equality of

the two repeated limits. Q.E.D.

So far we have interpreted equation (2) in the obvious manner. If we choose to require

its validity only when the set of values to be ascribed to y as it approaches zero is a dis-

* It is the merit of Bromwich to have called attention

to the importance of this equation (2) in the theory of

repeated integrals. As however the equation is not given

explicitly but expressed in e-language in his paper on the

subject many readers will probably have missed the in-

tuitiveness of the matter. Cp. T. J. I'A. Bromwich, "The

Inversion of a Repeated Infinite Integral," Proc. L. M. S.

Ser. 2, Vol. i. pp. 176—201 (1903).
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continuous one, or even discrete, it is clear that we can still draw the same conclusion from

the equation, provided we are sure that Lt Lt F(x, y) is known to exist.

§ 9. > Though the case in which only one of the integrations has an infinite limit can

be implicitly inferred from the more general one, there is perhaps a gain of clearness in

discussing it separately.

Consider then under what circumstances we can assert

I dy(Pf(x,y)dx=(Pda)[ f(x,y)dy.

Jo Jo Jo Jo

Here again it is a particular set of conditions that it is proposed to give. No really

general test is known, and in this respect the conditions which follow are no exception.

rq rp

The first integral is simply Lt I dy I f(x, y) dx,

q = co Jo Jo

which, if the change of order of integration when the limits are both finite is allowable,

may be written

Lt dx f(x, y) dy.

q = oc Jo JO

We can then assert the equality if

rp rq rq rp

(a) dx f(x, y)dy= dy f(x, y) dx,

Jo Jo J o J 0

the possibility of which we have now fully discussed, both when / is bounded and when it

is unbounded and

(£) Lt j dxl f(oc,y)dy=\ dx\ f(x,y)dy;

q-ooJ 0 J 0 J 0 J 0

or, which is the same thing,

cp f°°

Lt I dx j f(x, y) dy = 0.

q=<x>J 0 J q

We may, if we please, write in e-language, but we shall in this way gain no further

information.

We shall often be able, in particular cases, to prove the truth of (/3) directly, but, just

as in the Theory of Convergence, it is a great help to have rules which, though they do not

apply in all cases, do apply in many, and so enable us almost by inspection to determine the

question at issue. We proceed therefore to give a few such rules, whose application is immediate.

These rules are as follows:—

Rule I. Equation (/3) is certainly true if f(x, y) is a positive function.

Rule II. Equation (/3) certainly holds if we know that either

Lt [ dx j \f(x, y)\dy or I dx I \f(x, y)\dy is finite.

q=oo J 0 J 0 J 0 J 0

Rule III. Equation (/3) certainly holds if we know that g {x} q)} where

ff(®> 9)= I ffa V) dV

Jo

exists and is a bounded function of q) in the infinite rectangle (0 ^x^p; O^q^oo).

Vol. XXI. No. XIII. 49
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370 Dr YOUNG, ON THE CHANGE OF ORDER OF INTEGRATION

Rule IV. Equation (&) certainly holds if we know that g (x} q) exists and is a monotone

function of q. (This includes Rule I.)

Rules I, II and IV are self-evident in the light of the Lemma stated and proved in § 3.

As regards Rule III, its truth is at once apparent to anyone acquainted with the

elements of the Lebesgue Theory.

De la Vallee Poussin has given a condition, included in Rule III, as a particular ^ case.

It states, namely, that the equation in question holds if the convergence of g (oc, q) to

g(xyoo) is uniform, whereas, as is obvious, our rule only excludes the possibility of the

existence of points of infinite non-uniform convergence.

It should also be remarked that certain obvious extensions of the rule may be given.

Thus we do not require the existence of g q) for the value q= oo except at a set of

values of x of content p. More conveniently we may say that we do not exclude the

possibility of the integral f f(x,y)dy oscillating finitely at 5 = 00 for a set of values of x

Jo

of content zero*.

§ 10. We come now to the general case, where both integrals have infinite limits of

integration. Under what circumstances can we assert that

dy fix> V) dx = / dx\ f{x, y)dy (4)?

Jo io Jo Jo

Here f(x, y) may of course be unbounded, this will, however, thanks to the order in

which we have treated the subject, present no additional difficulty.

We have \ dy \ f(x, y) dx=~Lt \ dy Lt I f{x, y) dx,

J0 Jo q = ccJo p = oo J 0

with a similar statement for the repeated integral on the right-hand side of (4). It is plain,

therefore, that, if we can assert that

rq r00 rq rp

dV f(x>y)dx= Lt dy f(x}y)dx,

Jo Jo p=»Jo Jo

and ( dx I f(x, y) dy = Lt J dx I f(x3 y)dy,

Jo Jo q = ooJ 0 J(l

or, in other words, that

I dy \ f(x> y) dx has the unique limit zero as p approaches infinity

Jo J p

and J dx \ f{x} y) dy has the unique limit zero as q approaches infinity

Jo J q

for which conditions have been given in the last section, then the equality (4) takes the

form

rq rp rp rq

Lt Lt I dy I f(x, y) dx = Lt Lt I dx I f(x, y) dy.

q = cc p = oo J 0 JO p = <x> q = ao J 0 J 0

rq rp rp rq

Hence, if dy f(x, y)dx= dx f(x, y)dy , (B),

Jo Jo Jo Jo

* The reader who desires further information on this "Term-by-Term Integration of Oscillating Series," Proc.

point can obtain it by referring to a paper by the author on L. 31. S. Ser. 2, Vol. vm. pp. 99—116 (1909).

•(A),
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IN AN IMPROPER REPEATED INTEGRAL. 37,1

for which conditions have been given in §§ 2—6, and we denote their common value by F (py q),

(4) takes the form

Lt Lt F(p,q) = Lt Lt F(p} q) (5),

q — x> p = oo p = cc q = cc

and it remains to express this equation in the alternative form of a condition involving the

integrals.

As explained in §8, we can, if we concern ourselves only with finite possible values of

the repeated integrals, write the equation (5) in either of the two forms

Lt Lt {F(p,q)-G(p)} = 0,

q=ao p = oo

and Lt Lt {F(p, q) - H(q)} = 0.

p=cc q = co

Taking the former form, we have

G (p) = ( dy (Pf(x, y)dx=j * dx f / (x, y) dy,

Jo Jo '.'o' 1 io

where we have tacitly assumed that the second of the" conditions (A) holds.

Hence, G{p)-F (p, q) = \V dx ( f(x, y) dy.

JO J q

i

Thus, making first p proceed to the limit^ and then q, our condition takes the form

Lt f"^ y)^y = o (C)-

q=<x> JO J q

Similarly we get the other form of condition,

Lt rdyrf{x,y)dx=a (co.

■p=cc JO J p

Either of these conditions (C) or (C7) is then, on the assumption of the truth of (A) and

(B), necessary and sufficient to insure the possibility of reversing the order of partial integration

in the repeated improper integrals of fix, y) between infinite limits.

Instead of (C) and (C;) we might have attempted to express directly that F(p} q) has

an unique double limit. This would be a sufficient, but not necessary, condition. Thus

the condition

rp rq

Lt / dx\ f(x} y) dy is unique (C")'

Jo Jo

q=oo

is sufficient with (A) and (B) to secure our purpose. This may, in particular examples, be

easier to show than (C) or (C), or to show directly that

Lt lA>l:Pdx\qf(x)y)dy=1Lt Lt P°dx f /(#, y)dy (C").

p=cc q = ccj 0 Jo q—oo p = ao J 0 J 0

Apart from the fact, however, that (C") might not be true, and yet change of order of

integration be allowable, the conditions (C) and (C') will be often easier to apply, for frequently

in practice definite integrals become more and not less difficult to evaluate in whole or in

part when the limits of integration are infinite. Ia one case (C") is immediately applicable^

namely if /(#, y) be a bounded mixed differential coefficient.

49—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



372

Dr young, on the change of order of integration

§ 11. De la Vallee Poussin gives a different condition, namely that

should converge uniformly in an unlimited interval q0 < q ^ oo.

It will be found, however, on examination that this condition is quite unnecessarily

stringent and therefore very limited in its application. It is even more stringent than

(C"), for it requires F(p, q) to be continuous with respect to (p, q), not only at the point

(oo , oo ), but at each point (oo, q\ for all values of q, q0 < q ^ oo. Moreover if we proceed

in any given particular example to attempt to apply this condition, we shall have to go

through work similar to that required for the test (C), or (C), with the serious disadvantage

that we shall have to prove much more than these tests require.

We may, if we please, express the test (C") slightly differently in a manner analogous

to that by means of which we obtained the tests (C) and (C). If we do this, it states that

f(x, y)dx

must have an unique double limit as {p, q) approaches (oo, oo), in any manner, with a

corresponding alternative condition that comes by interchanging p and q, and x and y as

variables of integration. De la Vallee Poussin's condition would require these repeated

integrals to possess an unique double limit, not only at (oo, oo), but also at (p, oo) and

(oo, q) respectively.

§ 12. That uniform convergence, even in the case of a series of discontinuous functions,

involves the boundedness of the whole set of functions in their entirety is well known. As,

however, I do not know of any formal proof of this statement, I here append it.

Theorem. If a series of bounded functions f{x), f2(x),... converges uniformly to the

function f(x\ then

(1) f(x) is bounded;

(2) fn(®)> regarded as a function of (x, n), is bounded.

Proof. Since the convergence is uniform, we can find an m, such that for n^m

~fn{x)\<e,

for all values of x, e being any chosen positive quantity.

Let the upper bound of the absolute value of fm(x) be B. Then this shows that

the upper bound of f(x) is not greater than B + e, which proves (1).

Further, for every value of x and every n > m,

\fn(x)\<B+2e,

which proves (2).

This theorem shows that, even when all the functions concerned are discontinuous,

series of functions which are in their ensemble bounded include uniformly convergent series

as particular cases, so that any theorem true of the former is true of the latter.

Thus de la Vallee Poussin's conditions are, as has already been asserted, special cases

of those given above.
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IN AN IMPROPER REPEATED INTEGRAL.

373

§ 13. Before proceeding to illustrative examples we now state the remarkable theorem,

already alluded to, which may with propriety be called de la Vallee Poussin's Theorem.

In the general form we have now given to it, this theorem is as follows:—

Theorem. (De la Valine Poussin's*.) If the integrand is always positive, whether it

be bounded or unbounded, and whether the limits of integration are finite or infinite, then

change in the order of generalised Lebesgue integration is always allowable. Moreover this

theorem is still true, when the integrand is not everywhere positive, provided one of the

repeated integrals continues to be finite when the integrand is everywhere made positive, by

changing its sign wherever it is negative.

It is unnecessary to prove this theorem now, its truth will be self-evident to anyone

who has followed the preceding sections.

In practice it is convenient to ascertain first if this theorem applies, and, if not, to

consider the conditions (A), (B) and (C) in detail.

We now give illustrative examples. We have purposely chosen some of those discussed

already either by Bromwich or by Hobson, so that the advantages of the rules expounded

above may be properly tested.

Ex. If. Let f{x, y) = sin ye~y*\

This is an essentially bounded function of (x, y), and is integrable with respect to x

and is integrable with respect to y. Hence its repeated integrals over a finite rectangle

exist and are equal, so that condition (B) is fulfilled.

fq 1

Again, j^f(x, y) dy = {1 - (T#* (cos q + x> sin q )},

I dx I f(x, y)dy= I r—— e~^ (cos q + x2 sin q) dx.

JO J q JO J- + ^

Now the integrand on the right-hand side is a bounded function of q for all values

of x from 0 to p, and all values of q up to and including infinity, and it has the unique

limit zero as q approaches infinity. Hence the integral itself has the unique limit zero.

Thus one of the conditions (A) is satisfied.

Again, if g(t)=j e~t2dt, so that g(t) is a bounded monotone decreasing function of t,

we have

[p i . , sin v _

Jo sin ydx=1JM{g{o)-g (p*Jy)},

* A special case of this theorem of great use in practice

is given in Bromwich's Infinite Series. The proof there

given, which is essentially de la Valine Poussin's, would be

shortened if in the small print on pp. 457, 458 the method

of monotone sequences were adopted.

f This example is discussed in Hobson, p. 593. It

should be noticed that there is a slight oversight in the

statement of conditions (2) on p. 589, they add nothing

to his conditions (1), as we see by changing the order of

integration. Cp. Bromwich, Proc. L. M. S. Ser. 2, Vol. i.

p. 188, or Hobson, p. 588, line 16 for the correct state-

ment. As Hobson uses, however, his conditions (2), his

discussion of the example is not quite satisfactory. It

should also be noticed that there is an apparent oversight

on pp. 590, 591 of his account of de la Valine Poussin's

conditions. The modification he introduces in condition (2)

would seem to admit of j f (x, y) dy not converging at

certain points, or even if converging, of assuming values

which are not bounded. The reasoning on p. 591, line 7

would not then apply.
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374' Dk young, on the change of order of integration

and is plainly therefore a bounded function of (_p, y) for all values of (p, y) such that

(O^p^oo; O^y^q). Hence the second condition (A) holds.

Finally we have

"Jo ^ Jq^X> *^ ^ J 0 iT^4 ^C°S q + ^ Sil1 ^ ^

Breaking the integral on the right-hand side up into two parts, viz. from 0 to 1 and

from 1 to infinity, we see that, as the integrand has zero as unique limit when q ap-

proaches infinity, the first partial integral will have the unique limit zero. The second

partial integral is plainly numerically less than I erq%dx} that is, numerically less than

e~Q/q, and therefore has the unique limit zero. Hence condition (C) holds, and therefore,

^ince (A) and (B) hpld, we are sure that the, repeated integrals over the infinite , quadrant

exist and are equal. , t i( , M ,

Ex.2. Let H*>y) = mj,'

where V = xy/(l + x2 + y2).

It is here evident, by inspection, that both repeated integrals between the limits 0

and oo exist and are equal, both being zero, since their first integrals with respect to x

and with respect to y are both zero.

Following Hobson, however, who quotes it from, Bromwich, we take it as an example

of the use of our conditions. Here condition (B) is, of course, satisfied*of itself.

Here the integrand is a bounded function of (x, q), and has the unique limit zero

as q increases. Hence the integral has the unique limit zero, so that the first condition

(A) is satisfied, and, by symmetry, so is the other.

Finally F{p>q) is in our case pqfcl + p2 + q2) and we notice that, though it has no

unique double limit as p and q approach infinity, its repeated limits are both zero. Here,

as will be seen, we have used condition (C").

Ex. 3. Let f(x, y) = (x2 — y2)/(x2 + y2)2, and let both the lower limits of integration be

unity, the upper limits being jnfinite.

Here, if we integrate twice up to the limits p and q for x and y respectively, we

get by inspection

F(p, q) = (tan-i J- tan- 1) - (taa-'j» - f) .

If now we first of all make q infinite and then p, we get — ;but if we first make

p infinite and then q, we get + ^. Hence (C") is violated. Accordingly the repeated

integrals under discussion cannot be (equal, unless it should appear that conditions (A) do

not hold.
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IN AN IMPROPER REPEATED INTEGRAL.
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Now > .. \ dx \ f(%, y)dy = — \ qdx/(x2 + q2).

Jl Jq Ji

Here the integrand is bounded and has the limit zero when q becomes infinite.

Hence the limit of the integral is zero. Thus the first condition (A) is satisfied, and,

by symmetry, so is the second.

77* 7T

Thus — ^ and + j are the actual values of the repeated integrals.

This example has also been taken from Hobson to illustrate the use of our conditions.

Ex. 4. Let f(x, y) = [e~ay sin (xy) cos x}fx, where a > 0.

Here / is evidently a bounded function of (x, y) for all values of (x, y) in the finite

rectangle, and change of order of integration when the limits of integration are finite is

allowable. Further

f7<* y) ^ Ae-™ (fsin(y+1)a; dx + f * sin(y-1)a; d*).

Jo \J o x Jo x J

If in the first of the integrals inside the bracket we take x(y + l) and in the second

x (y — 1) for new variable, we see, what is otherwise well known, that the quantity inside

the bracket is bounded, being in fact certainly numerically less than 2tt. Hence for all

values of p from 0 to infinity, and all values of y from 0 to q} the integral on the left-

hand side is certainly a bounded function of (p, y). Thus, by Rule III, one of the con-

ditions i(A) is certainly satisfied.

Again, j*dx f(x, y) dy = j* ~' {«< sin (esq) + x cos (xq)\ dx.

Now e~aq may be brought outside the integral, and the integrand will then be such that

p

whether p be finite or infinite is clearly a bounded function of (p, q). Hence the limit

o"

of the left-hand side, whether p be finite or not, q being indefinitely increased, is certainly

zero. Thus condition (C) and the remaining condition (A) are both fulfilled.

Ex. 5. Let f(x, y) = x71'1 e~x {e~y - e~xy)/y.

Here the limits of integration are once more to be 0 to infinity for both variables.

If we take the limits of integration for x to be 1 to infinity, instead of 0 to infinity. /

is essentially positive, and if we take the limits of integration for x to be 0 to 1, / is

essentially negative. Thus it is convenient to break up the repeated integral into the two

corresponding parts.

By de la Vallee Poussin's Theorem, therefore, change of order of integration is cer-

tainly allowable, provided only we show that one of the repeated integrals has a finite

value, both when the limits of x are 0 and 1 and when they are 1 to oo. Now if we

first integrate with respect to x between the limits 0 and oo, we get a multiple of

/

Jo

where the integrand, being bounded, we need only consider the portion of the integra

involving large values of y. Hence we easily see that this has a finite value.
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376 Dr YOUNG, ON THE CHANGE OF ORDER OF INTEGRATION, ETC.

Also j dx xn~J e~x (e~y - <r*v) y = j* dm j x*-1 <r*v (x -1) dy,

where & is a function of y) whose magnitude lies between 1 and x and is therefore

greater than unity.

Hence this repeated integral is numerically less than

J xn~xe~x (x -l)dxj e~ydy,

and therefore less than j xne~xdx.

It is accordingly numerically less than Y(n + Y)} and is therefore finite.

/• 00 /• CO

Hence also j dy J f(x,y)dx has a finite value.

/• 00 r oo

But we have shown that I dy I f(x, y) dx has a finite value. Hence also

jo Jo

( dy ( /(#, y) dx has a finite value.

Jo Jo

Thus change of the order of integration was certainly allowable in the original integral

between the limits 0 to 1 for x and 0 to oo for y, and the limits 1 to oo for x and 0 to

oo for yy and therefore, by addition, also for 0 to oo for x and 0 to oo for y.

It will also be noticed that we have nowhere assumed more than that n is positive.

It need not be restricted to be greate than unity.
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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XIV. The Stresses in a Thick Holloiv Cylinder subjected to

Internal Pressure.

By L. B. Turner, B.A., Kings College.

(Communicated by Professor Hopkinson.)

[Received November 1, 1909. Received in revised form April 26, 1910. Read November 8, 1909.]
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In the course of an experimental research on the nature of the stress-distribution

determining the limit of elasticity in steel, the author has had occasion to use large hydro-

static pressures. It was desired at one time to measure these pressures with gauges formed

of twisted, flattened, steel tube*, and in experimenting with such it was found that with

thick tubes the pressure needed to induce permanent set could be much raised by a

preliminary operation of overstraining, followed by boiling in water to hasten the recovery

of elasticity*)-. These observations suggested the present analysis, in the attempt to see in

what manner, and to what extent, there may be automatically produced the condition of

initial stress sought in a wire-wound gun.

* After J. J. Guest, Phil, Mag. n. 1900.

Vol. XXI. No. XIV.

t See Muir, Phil. Trans. 193 A.
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Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

The analysis presupposes (1) that the material is initially in the isotropic condition,

elastic effects of overstraining during manufacture having been removed by annealing or

otherwise; (2) that the elastic limit* at any point in the material is reached when the

maximum shear at the point exceeds a certain definite value, which is independent of the

actual distribution of the stress—i.e. that the shear theory of breakdown is accurate;

and (3) that the yield point coincides with the elastic limit, and the yield is completely

plastic—i.e. the stress-strain graph is a straight line right up to the yield point, where

it becomes parallel to the axis of strain. It is not asserted that these suppositions, necessary

for the mathematical treatment which follows, are accurately true for every or any steel. Let

it suffice that they form a close approximation to what may be observed; so that with these

hypotheses quantitative results may be obtained which, though not accurate, yet indicate

the kind of effects to be anticipated in actual experimental tests.

With such qualifications, the third of these assumptions needs little justification. A

stress-strain relation of this description is the property of most, if not all, samples of

annealed mild steel and ironf; and the writer has found it eminently so for annealed samples

also of a 3°/0 nickel steel, and a tool steel containing as much as 1*2°/0 of carbon. The

common belief that an intermediate stage of considerable range intervenes between states

of perfect elasticity and perfect plasticity is probably due to two causes. Firstly, the usual

test is one in simple tension in the Testing Machine, the specimen being an un-annealed

rolled bar; and secondly, insufficient precautions are taken to ensure centrality of pull.

Probably the rolling during manufacture, and certainly the inequality of distribution of stress,

will produce or increase the phenomenon of apparent gradual yield.

With regard to the second assumption, there is no published evidence for the case of

three-dimensional stress with which we are dealing. A large amount of experimental work

has been undertaken to demonstrate—as it turns out—the approximate truth of the shear

theory for mild steel and iron in various cases of Two-dimensional stress J, but only some

rather inconclusive experiments by the author have, as far as he is aware, extended the

investigation to THREE-dimensional stress. So far as these go, however, they show that the

shear theory is at least not far from accurate for the only material examined, mild steel.

It is likely that almost any theory of the elastic limit'would suggest a strengthening

of the cylinder by overstrain, and each theory would lead to appropriate numerical results.

In this paper the implications of the most probable of such theories are developed.

Let:

S = the elastic limit shear for the material;

Ey o- = Youngs Modulus and Poissons Ratio, respectively;

a, 6 = internal and external radii of cylinder, respectively;

r = distance of any point from axis of cylinder;

Rlf i?2, jR3 = radial, hoop, and longitudinal tensions at any point, respectively [fig. 1];

P = internal hydrostatic pressure; (P = — i?x at inner layer).

* Throughout the paper, it is the Limit of Linear former work, see "The elastic breakdown of materials

Elasticity which is referred to. submitted to compound stress," Engineering, Feb. 5 and

f As an example, see fig. 4, p. 387. 12, 1909.

X For some recent experiments, and a short account of
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SUBJECTED TO INTERNAL PRESSURE.
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Assume the cylinder is initially unstressed; and .that the portion under consideration

is far from the ends, so that from symmetry plane sections remain plane.

Fig. 1.

1. When the material is elastic throughout.

Let u = radial shift of element.

Fig. 2.

For radial equilibrium of element [fig. 2], we have

R,rd6 - (R, + dRJ (r + dr) d6 + R2drd0 = 0,

Ridr + r dR1 — R2dr,

R'-R^r^ <*>

Radial stretch = ^ = ^ [i^ — a (R2 + Rs)] (ii).

u 1

Hoop stretch = - = [R.> — a (R3 + R^] (iii).

Longitudinal stretch = const. = ~ [Rs - a (Rx + jR.2)] (iv).

50—2
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Me TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

Eliminating u from (ii) and (iii),

1_

E

1[B1-<r {Rt + R3)] = d£ = \ [R, -a(Rs + i?,)] +'

E

dR,

R1(l + <T)-R,a + e)-r~? +

dR,

dR, dR,

— a

dR.

dR;

dr a dr a dr

But from (iv)

dR3 dR,

dRo

dr a dr a dr'

„W1 v dR* dRi , dRx „ dR2

(E1-i?2)(H-<r) + ^^(l + T)-r^(l-a=) = 0)

dr

Whence from (i)

jRi_iJ9 + (7r^ + ((7_l)r^ = 0.

dr dr

dRi , - , dR*, -. ^ ^

'V(<r-1)+r^-1)=0'

Whence from (iv)

RY + R2 = const. = 2 A (say) (v).

i?s = const.*

If the cylinder has open ends, and there is no external pull,

_R3 = 0.

If the cylinder has closed ends, and there is an additional axial pull L,

1

R-> =

ir{b2-a2)

(Z + 7m2P). (vi).

From (i) and (iv)

2A - 2R, = r

dR,

dr'

dR,

dr

2 (A- RJ r'

— J log (A — R,) = log r + const.,

log (r V A - R,) = const.,

r2(A — R,) = const. = — B (say),

R1 = A + -f>

r2

.(vii),

R* = A

B

from (v) (viii).

* It is usual to take #3 = 0; or, if the cylinder is sup- proof that R1 + R% is constant, whence it follows that R3

posed to have closed ends, to assume R3 is uniform over constant, over a section, is due to Mr C. E. Inglis

a section. This assumption is unwarranted. The above King's College.
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SUBJECTED TO INTERNAL PRESSURE. 381

To find A and B:

when r=b, Px = 0, when r=a, Px = - P,

and A = P -

62-a2

a2

i>2 - a2 *

Putting these values of A and 5 in (vii) and (viii),

a-Pt^(i-S (-).

62-a5

jB»-jPP^r.(1 + ^) w-

These are the ordinary formulae of the text-books.

Assuming that L is not so large as to make P3 > P2, the greatest value of P con-

sistent with elasticity of the inner layer is given by

2S = R,~ R1 at r = a

a2 262

= P

b2-a2' a2

62-a2

i.e. P = (xi).

2. When part of the cylinder is plastic, part elastic.

When P exceeds the above value (xi), the inner part of the cylinder becomes plastic;

and as P increases, the radius of the plastic region increases from a to b. Now it is

assumed that the material becomes plastic when the maximum shear at any point becomes

equal to S. Hence throughout the plastic region there is a uniform maximum shear 8 at

each point*, and we have

R2 — Pi ~ 2$,

or Rs - R, = 28,

according as P3 ^ P2, respectively.

Let us assume here that P3 < R2, so that we have

R2-R1 = 2S (xii).

We shall find how far this is true in the next section, (3).

To find R1 and R2 for the plastic portion, we have in addition to (xii) the former

equation (i) for the equilibrium of an element; viz.

* This has been demonstrated for any material in the thesis that maximum shear determines the elastic limit,

plastic state by Tresca (see Todhunter and Pearson, History and that the elastic limit coincides with the plastic yield

of Elasticity, vol. n. art. 247). It is implied in our hypo- point.
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382 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

From these, R1 = 2S\ogr + const.,

.-. R1 = -P + 2Slog^ (xiii),

and R2 = - P 4- 2S (l + log ^ (xiv).

3. Longitudinal tension as component of plastic shear.

Having found J?2 for the plastic region, we will now investigate the limitations of the

assumption (xii) that

i?o — jRj = 2S.

To evaluate Rs, some datum of plastic yield is necessary. Hence the present inves-

tigation is not rigorous, but must itself rest on some more acceptable or more elementary

assumption. [See footnote, p. 383.]

We shall see that if at any point in a section RB is a component of the plastic

shear, then Rz is a component at every point in the section; i.e.

Rz — R1 = 2S throughout.

For suppose at some point A, R3 is a component of the plastic shear. Of the cor-

responding plastic slide the component principal strains at A are plastic radial and

longitudinal stretches. But since plane sections remain plane, the latter must be accom-

panied by equal longitudinal stretch throughout; i.e. plastic longitudinal stretch at A must

be accompanied by equal longitudinal stretch at points, such as B, where the material is

still elastic. Now the stretch of a fibre at B is

^ [R3 - a (Rj -f jB2)];

and here we may apply the results (ix) and (x), if we take the symbols a, b, P therein

to refer to the cylindrical elastic portion of the material. Thus

Fig. 3.
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SUBJECTED TO INTERNAL PRESSURE.

383

where Pp is the pressure of the plastic on the elastic region, and p is the radius of the

common surface. Plastic yield at A is accompanied by increase of the hoop tension R2

at 2?*; and hence our supposed plastic longitudinal stretch at A, while requiring at B

an (equal) increase of

is also accompanied by increase of (R± + R2). Therefore R3 must increase.

But the total longitudinal force across a section is fixed (being L + 7ra2P); hence the

longitudinal tension at our point A must be relieved. Hence if the longitudinal tension

is a component of the plastic shear anywhere, it is so everywhere; and conversely, if at any

place it is not a component of the plastic shear, then nowhere is it a component.

At any point, the condition that the longitudinal tension is not a component of the

plastic shear is

R$ < 2S -r Ri,

i.e. Ps < - P + 2S (1 + log -) [from (xiii)].

^ ct/

With this condition, we have

Total pull across section = I Rs. Iirrdr

J a

< 2tt j" (- P + 28) rdr + 2tt J* 2S (log rdr

<tt(-P+2S) {b°- - a2) + 47nSa2 £-t (2 log - - l)

<Tr(-P+2S)(b*-a*) + 7rS

b

¥ (2 log ^ - 1) + a2

< ttS

b'-[2

-7rP(62-a2).

Thus for any longitudinal force less than

ttS

b2 (2 log^+l)-a>

-7rP(62-a2),

whether due to internal pressure alone or with additional axial pull, the longitudinal

tension Rz does not enter into the plastic shear at any point; and for the plastic portion

we may write

Rt-R^ 2S.

The condition that such axial force is not produced by the internal pressure on the

closed ends alone is

b

7rPa2<irS

b2 (2 log - + - a2

■ ttP (62 - a2),

i.e.

S b2 (2 log h- + 1 ) - a2 - Pb2 is positive.

* This is an assumption, but one that is likely to be may be made,regarding plastic behaviour, see section 15 at

readily accepted. For a note on the assumptions which the end of this paper.
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384 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

The greatest value of P occurs when the cylinder is all plastic, and is found from (xiii)

by putting r=6, JSj = 0. This gives

P=2Slog^ (xv).

So the above condition becomes that the coefficient of 8 in

(62-a2)>S

is positive; and this is obviously always the case.

Hence whatever the dimensions of the cylinder, the internal pressure never produces

a longitudinal tension large enough to be a component of the plastic shear. We shall

continue to stipulate that any additional axial pull applied to our cylinder is insufficient

to make R3 > R2.

4. Cylinder plastic throughout

When the cylinder is plastic throughout, we have seen

(xv) P=2S\ogb-.

Substituting for P in equations (xiii) and (xiv), we have

jR^Slogg (xvi),

Rv=2S (l + log 0 (xvii).

5. Internal pressure removed and reapplied. Ideal case of unimpaired elasticity.

The overstrain which the material has suffered will, actually, impair its elasticity. But

let us approach the actual conditions by first considering the imaginary case in which,

when the internal pressure is removed, the material returns to its old elastic state between

limits of shear + 8 and — 8.

Assuming then that the material remains elastic, to find the stresses when the internal

pressure is removed, we must subtract from the values for Rj and R2 in (xvi) and (xvii)

the values for R^ and R2 in (ix) and (x) respectively, putting P in the last equal to

2Slogb/a [see (xv)]. Thus we get

R,= 2S

R2=2S

, r az

ry 6 a

1+^5-^.(1+?)l0Ka

.(xviii);

.(xix).

The maximum shear at each point is

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



SUBJECTED TO INTERNAL PRESSURE.
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This is greatest where r = 6, but can oever exceed + S. It is least where r = a, and

is there

^'(l-^log|) (xx).

Here the coefficient of S is negative for all values of bja; it is zero when 6 = a.

If the expression (xx) for the reversed shear at the inner layer is not less (alge-

braically) than the elastic limit value — S, the stress-strain change during removal of the

internal pressure is perfectly elastic; so that reapplication of the pressure merely restores

the state of stress existing before the removal, without involving any further overstrain.

Subsequent repetition of the process entails repetition of a perfectly elastic stress-strain cycle.

But if expression (xx). is less than — S, removal of the pressure involves a reversed

overstrain at the inner layer; and on every subsequent application and removal, overstrain

will occur.

6. Influence of dimensions of cylinder.

The condition that no overstrain shall occur on removal of the pressure is

. ^l-^^^-S [-(xx)].

The limiting ratio bja is given by

¥ , b .

©2

= 5'005 approx.,

^ = 2-24.

a

Hence in a cylinder subjected to repeated applications and removals of that internal

pressure which at first just renders it all plastic, overstrain will not continue to occur if

bja < 2*2; whereas if bja > 2*2, overstrain will occur on each application and removal of the

pressure, and must ultimately lead to rupture. Such a cylinder may be safely subjected

to a fraction of that pressure needed to overstress the whole material. In the next section

we proceed to determine the greatest safe pressure for any cylinder whose b/a > 2*2.

7. Cylinders for which ^ > 2*2.

In section 2 we found expressions for the stresses in the plastic portion due to internal

pressure P; viz.

(xiii) R1 = -P + 2SlogT

a

a)

Vol. XXI. No. XIV. 51

(xiv) B2 = - P + 28 (1 + log -
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386 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

When the pressure is removed, the material is again elastic, and to find the stresses

we must subtract from the above the values of i?2 and i?2 given in section 1; viz.

62

(x) R2 = P*(l + l

o2 — a- \ r

Assuming the material remains elastic, we thus get, as the stresses in the erstwhile

plastic region, the expressions

A=2Slogr-P^2(l-£) (xxi),

28 (l +logg_P^_(1 + £) (xxii).

The greatest shear due to these stresses is

R2-Rx_ p a*b* 1^

As before (section 5), the pressure P may be applied, and removed repeatedly with

impunity only on the condition that this shear does not (arithmetically) exceed 8; i.e.

S — P - . \ <(: — 8,

b2 — a2 r2

o* — a' r2

The L.H.S. is greatest where r = a, so the condition becomes

Thus the greatest permissible pressure is

b2 — a2

P = 2S--^- (xxiii).

This is just twice the pressure producing limit of elasticity of the inner layer of the fresh

cylinder.

8. Actual case: elasticity impaired by overstrain.

In the last three sections we have supposed that the overstrain produced by the first

application of the internal pressure did not impair the elasticity of the material for stresses

of reduced value. Such is not actually the case,

A ductile material, after being overstressed, is approximately elastic for stress between

zero and the old yield point; -but it is not elastic for stress in the reverse direction.

But although not elastic for the reversed stress, the material is not plastic. It will support

any stress numerically less than the old yield stress, but with greater accompanying strain
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than that given by the straight line law. This is illustrated in figure 4, which is the

stress-strain graph for a torsion test of an annealed thin tube of mild steel (1" diam.,

Fig. 4.

and *022" thick). Consequently equations (xviii) and (xix) represent a state of stress which

does not actually obtain, but to which the actual state more or less closely approximates

according as the stress-strain graph is more or less perfectly rectilinear.

Now elasticity impaired by overstrain is a condition from which recovery takes place.

It is well known that prolonged rest at atmospheric temperature induces such recovery, and

it has been shown by Prof. Muir* that a few minutes' immersion in boiling water hastens

the recovery immensely. Muir s experiments included tests under reversed stress—overstrain

in tension, followed by subjection to a temperature of 100° C, and then a test in com-

pression—and here also recovery occurred. In a highly interesting paper published recently f;

it is shown that the partial-plasticity introduced by overstrain gradually disappears as the

material is subjected to cyclically varying stress, if the range of the stress is not greater

than the "safe range" for resistance to fatigue. "In all cases cyclical permanent set"

(i.e. the maximum width of the hysteresis loop) "was produced by the initial permanent

extension" (i.e. non-cyclic change of length of specimen), "the amount of which decreased

as the test proceeded and in some cases disappeared."

The kind of stress-strain cycle which is to be expected in our thick cylinder is

indicated in figures 5 and 6. These refer to a cylinder of the critical thickness, b/a = 2*2;

they show the stress at the inside and outside layers during the first two cycles of internal

* loc. cit. p. 377. under cyclical variations of stress," Phil. Trans. 210 A.

t L. Bairstow, "The elastic limits of iron and steel

51—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



388 Mr TURNER, THE STRESSES IK A THICK HOLLOW CYLINDER

pressure; figure 5 refers to the ideal case of unimpaired elasticity, and figure 6 to the actual

case of impaired but recovering elasticity.

Fig. 5. Fig. 6.

Explanation of figure 6.

At X.

AB, BC. Pressure first applied, till all plastic.

CD, DE. Pressure removed. CD straight; DE curving over to greater slide and smaller shear than in

figure 5.

EF, FG, GH. Pressure reapplied. EF straight; FG curving over owing to impaired elasticity; GH, yield

due to insufficient stress at E.

HK, KL. Pressure removed. HK straight; KL curving over, but less so than DE, so that L is nearer

-S than is E.

At Y.

G'E'. Comes below S/2 owing to curvature of DE.

G'R'. Yield due to bending of FGH.

H'L'. Comes below S/2, owing to curvature of KL, but less than does E'.

The overstrain produced by the repeated application and removal of the pressure is

greatest at the inner layer, and figure 6 illustrates the kind of recovery which may be

expected to occur there. The rapidity with which the cylinder regains its elasticity will

be greatly enhanced by a brief subjection to 100° C. after each of the first few removals

of pressure.

The gradual closing in of the hysteresis loop indicated in figure 6 can only be com-

pleted if the range of stress which would thereby be produced does not exceed the elastic

range for repetition of stress. According to Bauschingers hypothesis of the "natural elastic

limits," this range would be the primitive elastic range 2S of our annealed material; and

this is implied in the case of figure 6. Bairstow's experiments* show, so far as they go,

that the limiting range for no hysteresis loop is approximately equal to the limiting range

for resistance to fatigue. And experiments by the author (as yet unpublished) are cor-

roborative in showing that the limiting range for resistance to fatigue, both in simple

tension and in simple shear, of annealed mild steel rods, is approximately equal to the

range between the primitive elastic limits.

* loc. cit. p. 387.
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If, however, the safe range is less than 2$, the recovery indicated in figure 6 can

never be completed. In such a case the applied pressure must be reduced during appli-

cations subsequent to the first, from the all-plastic value to a value which shall not produce

a range of stress at the inner layer exceeding the safe range for the material. Equations

(xxi) and (xxii) enable the necessary calculations to be made. Bairstow's experiments

render it probable that if only this reduced pressure were applied in the first instance, and

the material were never made plastic throughout, adjustment would take place, and the

same all-elastic distribution of stress would ultimately be established. It should be noted

that, in the ideal case of figure 5, if b/a had been less than 2'2, the lower limits E, L

of the stress at the inner layer would be above — $, so that the range from this lower

limit to the upper limit +$ would itself be less than 28, even with the full all-plastic

pressure.

In consequence of the discrepancy between the actual conditions and the ideal con-

ditions of figure 5, we can with certainty only regard the critical thickness b/a = 2*2 as

referring to an upper limit to the possible strengthening effect of the overstrain. How

closely that limit can be approached is a question which calls for experimental investigation.

9. Collected Results.

At elastic limit of inner layer of fresh cylinder:

(xi) P = Sh^ (a).

When cylinder is all plastic:

(xv) P = S . 2 log ~ (£).

Greatest safe repeated pressure:

(xv) if - < 2-2, P = S.21og-,

(xxiii) if - > 2*2, P = S.2b-^ (7).

These results are shown graphically in figure 7.

Fig. 7.
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390 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

The curves show how much the strength of any cylinder may be increased above the

primitive-elastic-limit strength. Thus the ratio

safe repeated pressure

primitive-elastic-limit pressure

increases from unity for thin cylinders, to 2 for - = 2*2; after which it is constant at 2

for any greater thickness. Since the primitive-elastic-limit pressure increases only very

b P

slowly for thicknesses greater than - = 3, reaching the asymptotic value -g = 1 when the

cylinder is infinitely thick, very little can be gained by increasing the thickness above

- = 3. The highest value of the greatest safe pressure for repeated applications that can

• . p

be obtained, however thick the cylinder, is given by = 2, thus making this pressure equal

to the elastic limit tension of the material as found in the Testing Machine. If we take

50 tons/sq. in. as the highest elastic limit tension practicably obtainable in any steel that

could be used for the purpose, then no hollow cylinder can be made to withstand the

repeated application of an internal pressure greater than 50 tons/sq. in.

It should be noted that the ratio 2:1, as the limit of increase of strength of a

cylinder by the treatment examined in this paper, applies to every method of increasing the

strength by producing an initial stress; e.g. by the wire-winding of a gun. If this is

not obvious it may be seen thus.

Suppose + K are the elastic limit stresses for the material (whether maximum shear,

tension, stretch, or any other function of the state of stress); and let P denote the greatest

safe internal pressure. The application of P produces stress

P.f{r) (say),

greatest at (say) r — rlt Then if the cylinder is initially unstressed, P is determined by

i.e. P = Klf(ri).

Now we must not produce in the cylinder an initial stress-distribution in which the stress

at any point is (algebraically) less than —K. If the initial [stress at r = r2 is made equal

to — K, the resultant stress there is

P./W-JST;

and this reaches its maximum permissible value K when

i.e. P=2.K//(n).

Hence the strength can not be more than doubled.
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10. An experimental test.

As illustration, in some degree, of the strengthening effect we have been considering,

the following experiment may be cited.

The specimen was a freshly annealed, weldless, mild steel tube, of §" bore. It was

turned down outside for a length of about 15" to diameter §", and strains were measured

over the middle of this portion.

Earlier tests under axial pull in the Testing Machine showed an elastic limit in simple

tension of 30,300 lbs./sq. in. (136 tons/sq. in.), and this was closely followed by complete

(plastic) yield.

The tube was subjected to internal oil-pressure, and readings of the accompanying

diametral stretch across the middle section were taken with the "latometer," an instrument

devised for the purpose. Longitudinal stretch, as measured by an Ewing s Extensometer, was

much too small to be used for indication of yield under the internal pressure.

As previously found (sections 1 and 4), the inner layer of the tube begins to yield

with an internal pressure

(xi) P

and when all is plastic

(xv) P

where S is the yield point shear, which in this case, as given by the simple tension test,

is -^— = 6*8 tons/sq. in. These expressions give:

primitive elastic limit when P = 4*35 tons/sq. in.;

all plastic when P = 7 0 tons/sq. in.

The first test showed departure from elasticity at a pressure of 4*5 tons/sq. in. The

pressure was increased up to 6*6 tons/sq. in., and was then reduced to zero. The cycle of

pressure was then repeated a number of times, between the same limits, 0 and 6*6 tons/sq. in.

The curves plotted between internal pressure (ordinates) and latometer reading (abscissae)

are shown in figure 8. They satisfactorily exhibit the great increase of strength after the

first application, and the gradual establishment of a perfectly elastic condition.

11. Suggested application.

In the foregoing pages we have examined a process whereby a thick tube may be

strengthened to resist internal pressure. The added strength is due to the formation, in

the material of the tube, of an initial stress-distribution, such that the resultant stress when

the pressure is applied is more uniform throughout the material than if the initial stress

did not exist. Since about 1850 cannon have been strengthened by the formation of a

similar initial distribution of stress: but methods of producing the stress have been to

chill the core, in the old cast cannon; and to shrink on tube over tube, or to wind on

b2 - a2

= 2S log^;
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392 Mr TURNER, THE STRESSES IK A THICK HOLLOW CYLINDER

layers of wire, in the modern construction. It is suggested that the method treated in this

paper might be employed in place of, or in combination with, the existing methods. At

least as much strengthening effect could be obtained, with the obvious advantage of greatly

decreased complexity of construction.

Fig. 8.

In modern large cannon, the greatest ratio b/a along the barrel is some 3 or 4; and

the tubes are commonly of steel with an elastic limit of some 30 tons/sq. in. Hence the

internal pressure, P = 2S —^— [(xxiii)], required to prepare the gun by the proposed

method, would be not more than some 27 tons/sq. in. Fluid pressures of such magnitude

are not too great to be manipulated with tolerable ease*.

* Messrs Schaffer and Budenberg catalogue hydraulic gauges reading up to 34 tons/sq. in.
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SUBJECTED TO INTERNAL PRESSURE. 393

It may be desirable to make the rifled inside surface of the gun of a harder steel

than the main body; so that it might be necessary to use a liner incapable of taking the

overstrain involved in the process contemplated. It would seem that this need be no obstacle,

for modern wire guns are fitted with a renewable liner. If in the case of the wire gun

a liner can be removed and another substituted, a liner could be fitted to a thick tube

separately prepared by the overstraining process.

Since this process of producing the desired initial stress in a thick cylinder consists

merely of applying and reapplying the appropriate internal pressure, it may be asked: Why

go to any trouble at all? Will not the normal explosion of the charge in the gun do all

that is required? Presumably experience has shown that it will not; and probably the

reason lies in the different effects of a gradual and a sudden application of the pressure

producing the overstrain.

That a gun-barrel is not of uniform thickness need cause no great difficulty. The

pressure could be applied between a pair of pistons, movable along the length of the gun.

Thus the tube could be treated piece by piece along the length, each piece receiving a

pressure appropriate to the thickness there.

It may be that these remarks relating to the manufacture of cannon have little

practical value, for the author is unacquainted with the technical processes involved. But

the analysis should, at any rate, be of use in the design of hydraulic cylinders for high

pressures.

APPENDIX.

We have already carried the investigation of the stresses as far as is necessary for the

purpose of examining the strengthening effect, according to the shear theory of elastic

breakdown, of overstraining the cylinder. It may be of interest, however, to pursue the

problem further. We have seen, subject to a certain assumption, under what circumstances

the longitudinal tension is or is not a component of the shear producing yield, but we have

not, in general, found expressions for this tension. Nor have we found the radial and hoop

tensions in the elastic part of the cylinder after some portion has become plastic. And

further, we have not found any relation subsisting between the internal pressure and the

depth of the plastic region. These points shall now receive attention.

12. Stresses in the elastic region.

Let p = radius of plastic region.

For the elastic portion, r = p to r = b, we have the former equations:

(vii) R, = A+~ (xxiv),

(viii) B2 = A — - (xxv),

(iv) Longitudinal stretch = constant,

C = ~\R3-2*A] (xxvi).

Vol. XXL No. XIY. 52
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394 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER

A an B are constants across a section. They have not the values they had when the

whole cylinder was elastic, for the boundary conditions have changed. To find A and B:

when r = p, R2 - A = 2S, when r = b, ii, = 0,

22? . « , .B

,.2S = -^, .-.0 = ^,

B = -SP*. A=^p*.

Substituting these values of A and B in equations (xxiv), (xxv), and (xxvi), we have

£i = <V(p~) • • -.(xxvii),

*.=^(J+^) (xxviii).

R3 = EC+~p* (xxix).

Thus R1} R2 are known as functions of P when the relation between p and P is

known. This is found in the next section.

For Rz we require also to know C in terms of p or P. An equation between p and

C is given in section 14.

13. Depth of plastic region.

At the plastic-elastic surface, the values of R1 on each side must be equal. Thus,

equating the expressions for R1 as given in the last section and in section 2 [(xiii)], and

putting r = p, we have

P = s(l+21og?-g) (xxx).

To obtain p in terms of P, this equation must be solved empirically for any particular

numerical values of a and b. Equations (xxvii) and (xxviii) then express Ri and R^ in terms

of the internal pressure.

14. Plastic region; longitudinal tension.

We have already found for the plastic region

(xiii) R, = - P + 2S log - ,

° a

(xiv) 22a=--P + 2S(l + log£).

To find the longitudinal tension R3, we have further:
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(a) and (6), the two plastic conditions of constant volume, and zero slide-velocity

where shear is zero*; and

(c), the surface integral of longitudinal tension across a section equals the total

axial pull.

These three principles may be shown to lead to the following expression for the longi-

tudinal tension in the plastic region:

i?3=-p+#(i + 2iog?:)

2r

4- -

P'

f"(p2 _ 6.) {eg+2-°^) _ _ 0.) p + s + 2s log e) 4-

.(xxxi).

Thus for the plastic, as for the elastic [(xxix)], region, the longitudinal tension is known

when we know C, the uniform longitudinal stretch across a section. A differential equation

between G and p may be found, and is given below. Since no solution is offered, the

steps are omitted by which it, and the above equation (xxxi), are obtained.

(p2 - ¥) (EG + —(~p2) - (/>2 - a2) (- P + S + 2>S log ^ + Pa*

dG

.(xxxii).

15. Note on the assumptions regarding plastic behaviour.

In section 3, to show that internal pressure alone could never render the cylinder

plastic in the longitudinal direction, we made the assumption that an increment of plastic

yield at the inner region increases the hoop tensions in the still-elastic part. In section 14,

following Saint-Venant, we assumed that plastic yield of an element makes no change in

the volume of the element, and thus found an expression (xxxi) for the longitudinal tension

in the plastic region. The result obtained in section 3 for the general case when the

cylinder is plastic in part,, may be derived independently for the particular case when it is

plastic throughout, from the (subsequent) equations (xvi) and those of section 14. The argument

is on these lines: Assuming there is no plastic longitudinal stretch—for we know this is so for

some range of b/a, since in an indefinitely thin cylinder R3 = \R2—find Rs in terms of P

and b/a. Examine this expression [(xxxi)] to find for what values of b/a R3 is every-

where less than P2- We can do this because the term in the expression involving the

undetermined constant G vanishes when the cylinder is plastic throughout. We thus find,

as the condition that

R3'-R1<2S

* In Comptes Rendus, 1872, by the use of these prin- and 2nd, that on each elementary area in the material the

ciples, Saint-Venant found the stresses in a thick cylinder direction for which the shear is zero must be that for

subjected to internal and external hydrostatic pressures which the slide-velocity is zero. The latter principle in-

sufficient to render it plastic throughout, the ends of the volves the ratios of the half-differences of the tractions to

cylinder being between rigid fixed planes perpendicular to the corresponding stretch-velocities being equal two and

the axis. "This problem can be solved by introducing the two." Todhunter and Pearson, History of Elasticity,

velocities...of the points of the material. The principles vol. n. art. 261. See the next section for some remarks

which determine these velocities for a plastic material are: on the constant-volume assumption.

1st, that there is no change in the volume of the element;
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396 Mr TURNER, THE STRESSES IN A THICK HOLLOW CYLINDER.

throughout the material, that

2b2

a? ( 1 + 2 1 b

<1

which relation always obtains, since bja > 1.

So far, then, our assumption of section 3, and Saint-Venant's constant-volume assump-

tion, yield concordant results. But on a more searching comparison, it is seen that the two

results are not the same. Having found in each case that with no added axial pull, there is

never plastic longitudinal stretch, let us see how much added axial pull may be applied

according to the respective assumptions. This pull, as found from section 3, is

•mS(&2-a2);

while from section 14 it is

wS|>_a.) + (^_2a»log£)

The two expressions obviously do not agree.

Saint-Venant's assumption of constant volume during plastic strain seems to. be applied

without any sense of danger. As far as I have been able to see, it is recorded without

comment in the History of Elasticity* in the plain remark: "The material in the plastic state

is treated as incompressible." The assumption is quite a common one, but the most specific

reference to any experimental or other substantiation which I have noticed refers to the

case of a specimen in the Testing Machine, and no figures are given f. If we imagine a

material, otherwise maintained in the plastic condition, subjected also to a fluid pressure,

we cannot but suppose that this pressure will produce a shrinkage of volume. So that

although it may be established that in the case of simple tension, plastic deformation is

accompanied by no change of volume, yet it would seem that further justification is wanted

before we may confidently apply the principle to the present, or to Saint-Venant's, com-

plicated problem.

A third assumption has been put forward]:, enabling us to find i?3 in the all-plastic

condition. It is that the longitudinal stretch C is the same function of the tensions

jR], R2, R3 when the material is plastic under the shear (R2 — i2j)/2, as when it is elastic;

i.e. always

C = i[i?3-<7(A + i22)].

This hypothesis yields the condition for no plastic longitudinal stretch

b* b l-o-

i.e. b/a< 41 if a = 1/4,

or < 7-1 if <r = l/3.

Thus these three hypotheses all give different results. Fortunately for our investiga-

tion, they agree that in a cylinder, whose bja does not exceed something between 4 and 7,

and which is rendered plastic throughout by an internal pressure alone, the longitudinal

tension is nowhere a component of the maximum shear.

* Todhunter and Pearson, History of Elasticity, vol. n.

art. 246.

t "During the ductile elongation, the area of cross-

section decreases in practically the same proportion that

the length increases, or in other words, the volume of the

material remains practically unchanged." A. Morley,

Strength of Materials.

X By Prof. B. Hopkinson, to whom I am much indebted

for valuable criticism and advice.
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XV. On the Differentiation of Functions Defined by Integrals.

By W. H. Young, Sc.D., F.R.S.

[deceived October 14, 1910. Mead October 31, 1910.]

§ 1. In a paper presented to the Society last year, and published recently in its

Transactions*, I discussed the problem of determining when the process of reversing the

order of integration in a repeated integral is allowable, in other words the problem of

integration under the sign of integration. In the present paper I propose to give a set

of rules for determining when differentiation under the sign of integration is allowable,

or more generally when it is allowable to make vise of the usual formulae for the

differential coefficient of a function defined by an integral, when the limits, as well as

the integrand, involve a parameter. This matter has been treated, it is hardly necessary

to say, with considerable care in the more recent English text-books; it is hoped, however,

that the account here given will be found more complete, and more up to date, than any at

present in existence. Several of the theorems to be found below are, it is believed, new

in substance or in form, or are the extensions of known results. I have once more

avoided the use of the e-machinery and I have always stated my conditions without

reference to the uniformity, or non-uniformity, of the convergence of the integrals, when

these are improper, and accordingly defined as the limits of proper integrals. In this

way greater generality has been secured, and in certain cases increased facility of appli-

cation. For the sake of clearness I have, here and there, given not only the enunciations

but also the proofs of certain results recently obtained by myself and published elsewhere.

I have, of course, wherever desirable, made use of the results of the companion paper,

above referred to, on "Change of Order of Integration." Our present problem cannot

indeed, with our present methods of research, be successfully attacked, when the integrals

are improper, without in certain cases making use of the theory of change of order of

integration. This is due to the circumstance that, in applying the Theorem of the Mean

to a function of two variables, which is being differentiated with respect to one of them,

the 6 which occurs is a function of the remaining variable; this limits to some extent

the use we are able to make of this theorem. The present account will be found, however, to

* W. H. Young, "On Change of Order of Integration in an Improper Repeated Integral," Camb. Phil. Trans. 1909,

vol. xxi. pp. 361—376.

Yol. XXI. No. XV. 53
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Dr young, on the differentiation of

make very much less use of the method of repeated integration than previous accounts.

The number of results which we are able to get by the method of sequences alone is

large and increasing, thanks to the facility with which we are now becoming able to

treat the integration of such sequences. By employing this method, we are able to

obtain results beyond the reach of the method of repeated integration, and to obtain

other results somewhat more simply.

Our problem in its most general form is, as already remarked, that of finding the

differential coefficient of an integral with respect to a parameter when the limits of

integration, as well as the integrand, are functions of that parameter. We begin accordingly

by shewing how to reduce this problem to that of differentiation under the sign of

integration, properly so called. The theorems given in this connection shew that all turns

on the existence, and in certain cases on the continuity, of the function constituted by

the partial differential coefficient of the integral with respect to the parameter in the

integrand. After these preliminaries our main problem then becomes that of determining

when

f fy(®,y)doc (I),

supposed to exist either over the whole interval (<z, i>), or when taken over all but a set

of points of content zero, and supposing the limits of integration to be fixed, is the

differential coefficient with respect to y of f /(#, y) dx.

J a

The nature of the integral (I) depends on the boundedness or unboundedness of the

integrand fy (x, y\ and on the finitude or non-finitude of the limits of integration. Evidently

it is sufficient to assume that the inferior limit of integration is always finite, for if not, the

integral can always be expressed as the sum of two others in each of which the inferior limit is

finite. The method of sequences enables us, however, (i) to obtain a large number of general

results applicable in all cases, (ii) to reduce the case in which the superior limit is infinite to

that in which it is finite. I am therefore naturally led, in discussing this main problem, to give,

in the first instance, an account of the two distinct methods of sequences and repeated

integration, and then to develope the general results in question. When this has been done,

the discussion of the separate cases necessarily loses a certain amount of its interest, owing to

the comparative paucity in some of the cases of the results which are left. The case of finite

limits of integration and unbounded integrand requires, on the other hand, a number of

investigations not included in the general theorems. For the convenience of the reader, I have

accordingly grouped all such remaining theorems under the respective headings, Bounded

Integrand and Finite Limits, Bounded Integrand and Infinite Limits, Unbounded Integrand

and Infinite Limits.

It may perhaps not be amiss to remark that the integrals considered are almost always

Lebesgue integrals, so that all the theorems obtained hold for absolutely convergent improper

integrals, properly so-called, as particular cases; they do not, however, hold for Harnack

integrals, at least in the cases in which the integrand is unbounded. I have, however, given

one or two theorems for Harnack integrals.
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FUNCTIONS DEFINED BY INTEGRALS.
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I have not thought it necessary on this occasion to give illustrative examples. On the

other hand, besides treating the general theory rather fully, I have considered various special

cases which may present themselves. I have, moreover, shewn how the theory may be employed

d2u d2u

to obtain sufficient conditions for the equality of r=—— and ^—7-. As examples of sets of

dxdy dydoc 1

conditions obtained in this way which do not involve in their statement the concept of inte-

gration, we have the following:

If throughout a fundamental rectangle ^ and ^ (^^j an<^ are bounded, and if

i^^j has the property of being a differential coefficient with respect to x (e.g. if it is continuous

with respect to x), then ~ ex^s^s an(^ *s eoiual t° ^ (^^) evei7where.

If ^ and ^ exist, while the former is a continuous function of y and the latter a continuous

dx dy

function of x, and if ~ ex^s and is, except in the neighbourhood of a countable set of

points, a bounded function of the ensemble (x, y), then the necessary and sufficient condition

that SD0U^ exist> and be equal to it, is that (j^j should have the property of being

a differential coefficient with respect to x.

Theorems including these as special cases, and others involving in their statement the

concept of integration, are given.

§§ 2, 3. Preliminary; on the Continuity of a Function defined by an Integral.

§ 2. It will- be convenient in this and the following article to make some remarks with regard

to the nature of the function of the variables (yy a, 6) defined by an expression of the form

b

f(x,y)dx. Such a function is, by the ordinary theory of Harnack, Lebesgue and Harnack-

*

Lebesgue integrals, wherever it exists, a continuous function of a, a continuous function of 6,

and, since it is the sum of two functions each containing a and b separately, a continuous

function of the ensemble (a, b). That it is a continuous function of y in the case when the

integrand f(%,y) is a continuous function of the ensemble (x, y) has been long known;

comparatively recently it has been recognised, thanks to the work of Lebesgue, that this is also

the case if the integrand is only a bounded function of the ensemble (x, y), provided that it is

a continuous function of y alone; or more generally, it is continuous with respect to y at y = y0,

if the integrand is bounded and is continuous with respect to y at y = y0, except at most for

a set of values of x of zero content. If the integrand is unbounded, we can no longer assert the

continuity of the integral with respect to y, it may, however, happen that, either for all values of

the limits of integration a and 6, or for particular values, the integral is a continuous function of

y, when the integrand is unbounded, but has a suitable special form. Various rules have been

given enabling us to recognise, under certain circumstances, such continuity. Thus the integral is

continuous if the integrand is a monotone continuous function of y} whether, or no, it is

continuous with respect to (x, y), and whether, or no, the limits of integration are finite. Again,

53—2
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Dr young, on the differentiation of

if we know that the integral of the positive unbounded function v (x, y), taken between finite

limits, is a continuous function of y, we can assert that the same is true when the integrand is

replaced by the product of this function and any other function u (x, y) which is bounded and has

its discontinuities with respect to (x, y) forming for each fixed value of y a set of zero content*.

Again, if the integrals of g (x. y) and of h (x, y) are continuous functions of y, the same is true of

the integral of a function f(x, y), which lies everywhere between g(x, y) and h (x, y), provided

all three functions are continuous with respect to y, except for a set of values of x of zero

content f.

§ 3. We have next to consider the continuity of the integral regarded as a function of the

ensemble (y, a, 6). In the theorem about to be given we suppose that the continuity with

respect to y is known beforehand, at the point y = y0 considered, whatever be the values of the

limits of integration, but we do not assume in cases (i) and (ii) the continuity for other values of

y. In case (iii), we assume that this continuity still continues to hold in a suitable neighbour-

hood of y = y0.

Theorem. If I fix, y) dx is continuous with respect to y, it is continuous with respect to the

J a

ensemble (y, a, b) at the point considered, provided a certain rectangle (a, y; b, y + c) can be

assigned, or provided two-dimensional neighbourhoods of the points (a, y) and (b, y) can be

assigned, in which one of the following conditions holds:

(i) / (x, y) is a bounded function of (x, y);

(ii) f (x, y) is a monotone function of (x, y);

(iii) / (x, y) does not change sign, and is continuous with respect to y, not only at the point

y considered, but also in the neighbourhood.

For

rb+H fb rb+H ra+h

f(x,y + k)dx=\ f(x,y + k)dx+\ f(x)y + k)dx—\ f(x,y + Ic)dx.

J a+h J <*> J b J a

Since f f(x, y) dx is continuous with respect to y, the first integral on the right has the unique

J a

limit j. f(x,y) dx, when the ensemble (fc, h, H) approaches (0, 0, 0) in any manner whatever.

J a

It will be seen that in each of the cases (i), (ii) and (iii), the two remaining integrals on the

right have each the unique limit zero.

For in case (i), H and k being suitably restricted, so that the point (x,y + k) lies in the

rectangle (a, y\ b, y + c), or in the two-dimensional neighbourhood of (b, y) which can be assigned,

the second integral on the right is less than HU, where U is any quantity greater than the

upper bound of the numerical values of f(x, y) in that rectangle, or neighbourhood. Since U is

fixed, this shews that the integral in question has zero as unique limit, when H decreases down

to zero as limit, whatever k may be, less than c, or than a certain value determined by the

* For these theorems see W. H. Young, "On Para- 1' On Semi-integrals and Oscillating Successions of Func-

metric Integration," Monatshefte fiir Mathematik und tions," 1910, presented by the author to the London

Physik, 1910. Mathematical Society.

t This follows from results given in a paper entitled
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FUNCTIONS DEFINED BY INTEGRALS. 401

neighbourhood. Thus however the ensemble (k, h, H) approaches (0, 0, 0), the second integral

has, in case (i), the unique limit zero.

[b+H

In case (ii) J f(xy y -\-k) dx is a monotone function of since the integrand is a monotone

function of k, if k and H are sufficiently small. This integral is also by hypothesis continuous

with respect to h at h — 0, and it is a continuous function of H, therefore by a known theorem,

easily proved*, it is continuous wTith respect to the ensemble (H, k), and has therefore the unique

limit zero, since when k is fixed and H approaches zero, this is the case.

rb+E

In case (iii) I f(x,y-\-k)dx is a monotone function of H, and, since it is also continuous

J b

with respect to H, and, by hypothesis, with respect to k, it is, as before, continuous with respect

to the ensemble (H, k), and has, therefore, the unique limit zero.

rb+H

Thus, in each of the three cases, I /(#, y + k) dx has the unique limit zero, and, similarly,

J b

ra+h

I f(x> y + k)dx has the unique limit zero. Hence the left-hand side of the identity at the

J a

beginning of the present proof has I f(x,y)dx as unique limit, when the ensemble (ky h, H)

J a

approaches (0, 0, 0) in any manner, that is to say / f(x, y) dx is a continuous function of the

J a

ensemble (y, a, b), which proves the theorem.

§§4, 5. On the Differentiability of the Integral J f (x, y) dx with respect to each of its Limits

of Integration, and on its Possession of a Differential, when regarded as a Function of (yy a, b).

§ 4. As already remarked, it follows from the very definition of an integral, that it is a

continuous function of the ensemble of its limits of integration; it by no means necessarily,

however, possesses a differential coefficientf with respect to either of them; still less does it

necessarily possess a differential with respect to the ensemble (y} ay 6). In this and the next

article I propose to give theorems shewing us under what circumstances the differential

coefficients with respect to the limits of integration a and b exist, and under what circumstances

the integral has a differential with respect to the ensemble (y, a, b), when it is known to possess

a differential coefficient with respect to y. It should be remarked that, when we are considering

properties relative to one limit, there is nothing to prevent the other limit being infinite.

There are two main circumstances under which we can assert the differentiability of

I f(x> y)dx WIt}h regard to its upper limit of integration b.

J a

Theorem, (i) If f(x, y) is for the value of y considered continuous with respect to x at

x = &, then, F (y, a, b) denoting the integral J f(x, y) dx, we can assert that exists and is equal

to f(b, y);

* W. H. Young, "A Note on Monotone Functions," one, or a left-handed one, or the differential coefficient par

Quart. Journ. 1909, p. 84, § 7; "On Uniform Oscillation," excellence. It will always be obvious from the context

Camb. Phil. Trans. 1909, vol. xxi. p. 255, § 13. which of these is intended, whenever anything is to be

f For brevity we shall not usually specify whether the gained by their separate consideration,

differential coefficient we are considering is a right-handed
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402 Dr YOUNG, ON THE DIFFERENTIATION OF

(ii) if a neighbourhood of the point x=b can be assigned, such that, for the value of

y considered, f (x, y) is throughout that neighbourhood a finite and summable differential coefficient

with respect to x, then the same is true.

If neither of these conditions holds, then we can only assert that the derivates of F with

respect to b lie between the upper and lower limits <j> (b, y) and (b, y) of / (xf y) at the

point (b, y).

To prove (i) let U denote the upper bound of f(x, y) in the interval

b ^ x ^ b + H,

y being fixed. Then

rb+H rb+R

{F(y, a,b + H)-F(y, a, b)}/H = J & f(x,y) dxjH^ J ^ Udx/H^ U.

Letting H decrease indefinitely, U has f(b, y) as unique limit, if f(x, y) is continuous with

respect to x at (b, y), and otherwise has </> (&, y) as unique limit. Hence, in the former case all

the derivates of F ^f(b, y), and, in the latter case, ^ </> (b, y).

Similarly, taking the lower instead of the upper bound, all the derivates of F^ fib, y) in

the former case, and, in the latter case, > (b, y).

Combining these results the first and last statements of the theorem follow.

To prove the theorem in case (ii) we remark that if

since/(x, y) is finite and summable, we have, by Lebesgues Theorem,

F(y, a, b) = ["f(x, y) dx =U(b,y)-U (a, y),

J a

dF

whence differentiating ^ =/(^ y)-

§ 5. We have now to examine the existence of a differential. We use the following set of

sufficient conditions*:

If F (x, y, z) has partial differential coefficients Fx, Fy and Fz, then it also possesses a

differential with respect to the ensemble (x, y. z) provided Fx is continuous with respect to (x, y, z)

and Fy is continuous with respect to (y, z) at the point considered respectively.

According to the rdles which we ascribe to the variables y, a, by we deduce from these

conditions the following alternative theorems.

Theorem. If f (x, y) is continuous with respect to (x, y) at the points {a, y), (b, y), and if

F (y, a, b), that is f f{x, y) dx, possesses a differential coefficient Fy with respect to y at the point

J a

y considered, then F has a differential with respect to the ensemble (y, a, b).

* W. H. Young, "The Fundamental Theorems of the Differential Calculus," Cambridge Tracts in Mathematics

and Mathematical Physics, 1910, No. 11, p. 31.
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FUNCTIONS DEFINED BY INTEGRALS.
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For Fy then exists, and, by the Theorem of §4, Fb exists, and, being equal to f{b, y), is by

hypothesis continuous with respect to (6, y). Similarly Fa exists, and is continuous with respect

to (a, y), and independent of b, so that Fa is continuous with respect to (y} a, b). Hence, by the

conditions above stated, F has a differential with respect to (y, a, b).

Theorem. // / (x, y) is, in neighbourhoods of the points x = a, x = b, for the value of y

considered, a finite and summable differential coefficient with respect to x, and is continuous with

respect to x at the point (b, y); and if F (y, a, b) has a differential coefficient Fy with respect to y

which is continuous with respect to (y, a, b) at the point (y, a, b), then F possesses a differential

with respect to the ensemble (y, a, b).

For Fa exists, and Fb exists and is continuous with respect to (a, b), by § 4, while by

hypothesis Fy exists and is continuous with respect to (y, a, b). Hence, by the conditions stated

above, F has a differential with respect to (y, <z, b).

Cor. Under the circumstances mentioned in this or the preceding theorem, if y, a and b are

all differentiable functions of a single variable t,

BF

jj- = yFy- df(a, y) + 6/(6, y\

the dots denoting differentiation with respect to t.

§§ 6, 7. Explanatory Remarks.

§ 6. It will be noticed that in § 4 we have adopted as one of our assumptions the

condition that the integrand should be a differential coefficient with respect to one of the

variables. It will be found that in the sequel similar conditions are a common occurrence.

In the present state of our knowledge we cannot give any but very special sets* of suffi-

cient conditions that a function should have the property of being a differential coefficient,

so that the introduction of a condition of this form is not often of direct use in practice.

Its importance in theory is, however, not affected by these considerations, and it has on

other grounds seemed to me desirable, that, when we are concerned with a neighbourhood,

it is the fact of a function being a differential coefficient, and not its continuity, that we

usually require to assume. Evidently a continuous function is a differential coefficient, so

that the usual statement of the corresponding portion of a set of conditions follows as

a corollary.

We shall in what follows also occasionally assume as one of our conditions that a

function with which we are concerned is an indefinite integral (Lebesgue integral). In

this way once more our statements will gain in generality. Necessary and sufficient con-

ditions have been obtained by Lebesgue and Vitali that a given function should be an

integral, though these conditions are not always easily applied. Moreover a very useful

sufficient condition is known, namely that one of the derivates of the function should be

summable, and finite except at most at a reduciblef set of points. One important property

* For theorems giving cases in which the product of a t [Note added May loth, 1911. Countable may here,

differential coefficient by a continuous function is a differ- and throughout the present paper, be substituted for

ential coefficient, see a forthcoming paper by the author reducible: see my "Note on the Fundamental Theorem of

entitled "Note on the Property of Being a Differential Integration," Nov. 4, 1910, Proc. Gamb. Phil. Soc. xvi.

Coefficient," Proc. L. M. S. pp. 35—38.]
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Dr young, on the differentiation of

of a function which is an integral we shall employ, namely that which asserts that it is the

integral of its derivate. It is perhaps well to add that it may sometimes be convenient to

employ the fact that if g(y) is a finite and summable differential coefficient, it is neces-

sarily the differential coefficient of its integral, as a means of determining whether g(y)

is, or is not, a differential coefficient. In particular this method is applicable when g(y)

is a bounded function*.

In certain cases, moreover, it may be sufficient to take as our condition that the

function in question should be a finite derivate, which at the point considered is a dif-

ferential coefficient. The reader acquainted with the theory of derivates will have no difficulty

in generalising in a suitable manner the conditions given below, in which, for the sake of

brevity, the case of a differential coefficient is alone usually contemplated.

§ 7. The reader should also note that a greater generality . will be secured for our

results if we do not always require from the expressions defining functions which occur in

our equations, that these functions should be one-valued. Thus we may regard the repeated

integrals of a function of two variables as existing when they have unique values, while

the simple integrals have not; and, by the term derivate we may understand, where it is

advantageous to do so, the many-valued function which becomes one-valued only where a

differential coefficient exists. More generally, we may regard it as denoting any of the

various one-valued, or many-valued functions obtainable by selecting at each point certain

of the values between the upper and lower derivates at that point. This will be specially

advantageous when the function in question is one-valued, except for a set of values of the

variable of zero content. There is sometimes an advantage in specially calling attention to

this possibility in the enunciation of theorems, as it removes any doubt from the mind of

the reader as to requirements at certain exceptional points of the interval considered, e.g.

at the proper infinite end-point, if it is an infinite interval.

rb

It may perhaps be well to add that we shall always use the notation / u(x)dx in

J a

the case in which u(x) has no meaning at certain points of the interval (a, b), forming

at most a set of content zero, as denoting the integral of u (x) taken over those points

at which it does exist, or, which is the same thing, as the integral over the whole interval

of the function which agrees with u(x) where the latter exists and is elsewhere zero.

§§ 8—18. On the Methods employed in the Sequel, and certain Rules of a general Nature.

§ 8. Two quite distinct methods may be employed with advantage, the method of

sequences and that of repeated integration. Considering first the former method, which

though it suggests itself at once has not been sufficiently employed in existing accounts

of the subject, it is evident we have to investigate the conditions under which we are at

liberty to integrate term-by-term the succession, or sequence,

/O, y+*)-/(s, y) m

k ••••••

over the finite, or infinite, closed interval (a, b) of values of x.

* "Function " is throughout used for measurable function; a bounded measurable function is always summable.
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Whenever

(i) term-by-term integration of this succession is possible,

(ii) the upper and lower functions of the succession differ only at a set of content

zero of values of x,

we can evidently assert that, at the point y considered, I f(x, y)dx has a differential

b

coefficient with respect to y, and that this differential coefficient is / fydx} where the

J a

latter integral is to be understood to have the usual meaning in the case when fy does

not exist, that is (1) has not an unique limit, at a set of exceptional values of x of

content zero.

Thus we might at once dismiss the subject from this point of view as included in

the general theory. It is desirable, however, to select those rules for term-by-term inte-

gration of a succession, or sequence, which are here most easily applied; and apart from

this the facts that (a) the upper and lower bounds of the succession, or sequence, are the

same as those of the limiting functions, or function, and (b) in the case of a sequence,

each of the functions of the sequence can be expressed, by the Theorem of the Mean, in

the form of the limiting function for a different value of y, enable us in certain cases to

give a particularly simple form to the rules selected.

It will be noted that in the theorems obtained by this method we are able to prove

both that I fydx is a differential coefficient and that it is the differential coefficient of

J a

\ fix> y)dx. In the second method it will be found that we have to include the fact

J a

that I fydx is a differential coefficient among our assumptions before we can prove it is

J a

the differential coefficient in question.

§ 9. It has been usual until recently to lay great stress in the integration of sequences

on uniform convergence. We may however entirely avoid all reference to this theory, and it

is, on the whole, most convenient to do so, as our results gain in this way more generality

and greater flexibility. The main theorem in the theory of integration of sequences, which

enables us to dispense with such considerations, is the following:

Theorem. A sequence f(x), /2(#),... is certainly integrable term-by-term if two other

sequences can be found which are integrable term-by-term, say

#2(», ... and thix), h2(x),...

such that, for all values of n,

9n 0) ^ fn <» < K (x).

Cor. If a summable function of (x) can be found, such that for all values of n and x

l/»(*)k

then the sequence of which the general term is fn (x) is integrable term-by-term.

Yol. XXI. No. XV. 54
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Dr young on the differentiation of

For a proof of the theorem the reader is referred to a paper on "Semi-integrals and

Oscillating Successions of Functions," by the author.

It is particularly to be noticed that the range of integration is not necessarily finite;

the theorem still holds when it is infinite.

The special case of the corollary when V (x) is a constant, the functions of the sequence

are continuous, and the range of integration is finite, was first proved by Osgood, while

Lebesgue's celebrated extension consisted in dropping the condition of continuity.

§ 10. It follows at once from the preceding article that, if fy(x, y) is a bounded

function of the ensemble (x, y) in the rectangle determined by the range of integration

with respect to x and a suitable neighbourhood with respect to y, our integral ( fy dx

J a

is a differential coefficient, namely that of f f(x, y)dx, in the case in which the limits of

J a

integration are finite. We have however the following striking theorem, applying to all the

four cases mentioned in the introduction.

Theorem. If a function U(x) can be found, such that the modulus of the bounded, or

unbounded, function fy (x, y) is ^ U (x), where U (x) is itself summable in the finite or in-

finite interval {a, b), and the inequality holds in the whole finite or infinite rectangle

a^x^b, y0^y^y0 + k,

then

In the sequence {f(%, y + k)—f(x, y)}/k every term for every value of x, y and k

considered, is numerically ^ U (x), by the Theorem of the Mean, or the well-known theorem

of the bounds of the derivates. Hence term-by-term integration with respect to x is

allowable, by a known theorem*, which proves the theorem.

§11. A theorem of a general character which follows at once by the method of

sequences, equally whether the limits of integration are finite, or infinite, and the integrand

is bounded or not, is the following:

Theorem f. If f(x, y) is less than h (x, y), and is greater than g (x, y), for all values

of x and y concerned, and in each case the difference is a monotone increasing function of y,

then, provided differentiation under the sign of integration is allowable when the integrand is

either g or h, it is allowable when the integrand is f.

We have, since

f(p> y)-g 0*> y) and h 0»> y) -f(x> y)

are monotone increasing functions of y,

g(oc,y + k)-g(x,y) f(x,y + k) -f(x, y) h(x, y + k) - h(x, y)

k ^ k ^ k

* "Semi-integrals and Oscillating Successions of Functions," § 32. t Ibid, § 36.
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Now

£=o to 2/ + "# (^ y^ dxlh ~Iy\9 y}dx = \Ctydx= J {g (x, y + k)-g (x, y)} dx/ky

with a similar set of equalities involving h in place of g. Hence, by the theorem

of § 9,

Lt f{f(x, y+k) -/(x, y)} dx/k = f Lt {/(*, y + i) -/(*, y)} <fc/&,

that is ^|/(a?, y)dx=Jj£ dx}

which proves the theorem.

§ 12. Theorem. A special case of the theorem of § 10 is the following: if fy(x,y)

is a bounded function of (x, y), and h(x) is a summable function of x in the finite or

infinite interval (a, 6),

rb $ rb

\Jy0> y)h^da}z=dy]a /to y)h 0*0dx.

In fact the sequence obtained by multiplying {/(x, y -f- k) — f{x, y)}/k by h (x) has the

property that every one of its terms is numerically less than A\h(x)\, where A is any

quantity greater than the upper bound of the modulus of fy; the sequence is accordingly

integrable term-by-term.

§ 13. The result jnst obtained is, as we have seen, an immediate consequence of a

theorem giving a sufficient condition for the integrability of a sequence. From another

special case in which the sequence is integrable* we have the following theorem, which holds

equally, like the one just mentioned, whether the integrand fy(xy y) is bounded or unbounded,

and whether the limits of integration are finite or infinite.

Theorem. If fy (x, y) is a monotone function of y, then

rb d rb

]Jy («. y)dx = fy Ja /to y) doc.

For, by the Theorem of the Mean,

f {/0> 2/o + k) -fix, y0)} dx/k = \ fy (x, y0 + 6k) dx,

J a J a

where 6 denotes a function of x9 whose value lies between 0 and 1.

But, by hypothesis, fy is a monotone function of y, therefore for each value of x,

fy(x, y0 + 6k) lies between fy(x, y0) and fy(x, y0 + k), so that the integral of the former

function between fixed limits lies between the integrals of the two latter functions between

the same limits. Hence, by the preceding equality,

f {/(^ 2/o + k) -f(x, y0)} dx/k (A)

lies between f fy (x, y0) dx and f fy {x, y0 -f k) dx.

J a J a

* W. H. Young, 44 On Parametric Integration," Monalshefte f. Math. u. Physik, 1910, p. 136, § 13.

54—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



408 Dr YOUNG, ON THE DIFFERENTIATION OF

Now fy, being a right-hand differential coefficient, is one of the limits of its values on

the right, and is therefore the unique limit, since, by hypothesis, fy is monotone. Thus fy

is continuous with respect to y, and therefore the same is true of its parametric integral*.

In other words, letting k diminish towards zero in any manner, / fy (x, y0 + k) dx has the

J a

unique limit I fy (x, y0) dx. The same must therefore be true of the integral (A), which

J a

lies between I fy(x, yQ + k)dx and its limit. Thus 1 f(x,y)dx has a differential coefficient

J a ^ J a

at y=y0i and this differential coefficient is I fy(x, y0)dx, which proves the theorem.

J a

§ 14. In the application of the method of sequences the following theorem will be found

to be of importance:

Theorem. If fn (x) be the general term of a sequence of functions whose differential

coefficients are finite except at a reducible set of points and form an integrable succession which

converges, except at a set of content zero, to an unique limiting function, which is itself a

summable differential coefficient, and finite except at a reducible set of points, then

U/U/ 7i= oo 11= oo Was

For, denoting the limiting function of the sequence of functions fn(x) by fix), and

by gn (x) the differential coefficient of fn (x), and by g (x) the unique limiting function

referred to in the statement of the theorem, we have,

Lt t {fn (x + h) - fn (x)} = Lt j- / gn(x)dx = T Lt gn (x) dx,

7i=oo n n=<*> J x J x n=ao

these two steps being allowable, since the ^-succession is integrable.

rx+h

Hence {/(# + h) — f(x)}/h =1 g (x) dx/h.

J X

But since g (x) is a summable and finite differential coefficient except at a reducible

set of points, it is the differential coefficient of its integral. Hence, proceeding to the limit

zero with h, we have

f{w) = g{x),

which proves the theorem.

§ 15. We are now able to prove the following general theorem, which enables us to pass

from the case in which the limits of integration are finite, to that in which one of them is

infinite.

Theorem. // the equation

j^fydx = ^j f{x,y)dx

holds for all finite values of b, however great, or for a suitable sequence of values of b, having

infinity as limit, then it holds also when we put b = <x>, provided only that

* Loc. cit. § 3.
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FUNCTIONS DEFINED BY INTEGRALS. 409

(i) the functions of y obtained by giving to b in the expression I fy dx ike suitable set of

a

values in question, form an integrable sequence;

(ii) j fydx exists*, and is a summable differential coefficient throughout a neighbourhood

J a

of the point y considered.

roo rb rb

We have, in fact, I fy dx = Lt I fy dx = Lt -=- I f(x, y) dx,

J a b = 00 J a 6 = 00 a y J a

by the hypothesis. Therefore, by the theorem of the preceding article, in virtue of the provisos

(i) and (ii),

//»dx=I ii l/(x' y)dx=iy y) dx-

We may replace the proviso (i) by any of the special provisos which secure the integrability

of the sequence in question. E.g.

Cor. 1. We may replace (i) by the proviso that I fydx is a bounded function of the ensemble

J a

(xy y) in the infinite rectangle a^x^oo , yo^y ^y0 + k.

Cor. 2. We may replace (i) by the proviso that

f fydx\<g(y))

J a \

for all values of x in the infinite interval a^x^oo, where g (y) is summable.

Note. No assumption is made in the above as to the nature of the integrals with respect

to xy they may be equally well Harnack, Lebesgue, or Harnack-Lebesgue integrals.

§ 16. Passing to the second method, that of repeated integration, we have the following

theorem, on which the method depends.

Theorem. If

(i) f(Xy y) is a y-integral, except for a set of values of x of zero content,

(ii) I fy dx exists, a>nd is a summable differential coefficient, when regarded as a function of

J a

y, then the necessary and sufficient condition that throughout a certain range of values of y,

rb d rb

we may have J fy^x = ^j f(x> V) d®>

is that fy should have its repeated integrals taken over the whole finite or infinite rectangle

a^x^b, y0^y^y0 + k

equal in value.

For, except at the exceptional set of values of x, we have, by a theorem of Lebesgue's,

2/) = ffv(®> y)dv>

the integral being taken over the set of points at which fy exists.

* And is therefore finite, this being understood to be involved in the existence of an integral.
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410 Dr YOUNG, ON THE DIFFERENTIATION OF

Hence, denoting I f(x, y) dx by F(y), we have

J a

rb ry+k

{F(y + k)-F(y)}lk=\ da, fydyjk.

J a J y

Now if g (y) is the function of which f fy(xyy) dx is, by hypothesis, the finite and summable

J a

differential coefficient, we may write

ry+k rb fy+k

dy fy dx/k = g' (y) dy/k = {g(y + k)-g (y)}/k,

J y j a J y

since, by Lebesgue's Theorem, g(y) is the integral of its differential coefficient. Hence the

theorem follows.

Hence, if fy has its repeated integrals equal,

{F (y + k) - F (y)}/k = {g(y + k)-g (y)}jk,

whence, letting k diminish indefinitely,

F'(y)=g'(y),

which proves the sufficiency of the condition.

fb d f

If, on the other hand, J fydx = -^Jf(x, y) dx,

that is 9(y) = F'{y) (1),

ry+k ry+k

we have g'(y)dy= F (y)dy (2).

J y J y

Moreover F' (y), being equal to g' (y)} i.e. to [ fy dx, is a finite and summable differential

J a

coefficient, hence (2) gives us

ry+k ry+k rb

F(y + k)-F(y)= g' (y) dy =/ dy\fydx,

J y J y J a

fb ry+k rb

that is {/O, y + k) -fix, y)} dx= dy fy dx,

J a J y J a

fb ry+k ry+k rb

or dx fydy= dy fy dx,

J a J y J y J a

which proves the necessity of the condition.

§ 17. From the preceding article we may deduce at once the following general theorem:

Theorem. If in the finite or infinite rectangle

a^x^b, y0^y^yo + k

f(x, y) is a monotone function of y, and is, except for a set of values of x of zero content, a

y-integral, then the necessary and sufficient condition that, for the range of values of y given,

is that the integral on the left should be, for this range of values of y, a differential coefficient with

respect to y.
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FUNCTIONS DEFINED BY INTEGRALS. 411

f

J a

In fact, since fy has the same sign throughout the whole finite or infinite rectangle and one

rb ryQ+k

at least of its repeated integrals, viz. I doc J fy dy, is finite, it follows by de la Vallee Poussin's

Theorem in its generalised form* that the repeated integrals offy over the rectangle in question

both exist and are equal. Hence the result follows.

Note. In the above theorem we do not assume that/(#, y) is a bounded function of the

ensemble (x, y).

§ 18. In the two preceding articles we have considered differentiation throughout an

interval; it is evident that similar theorems may be stated when we are considering differen-

tiation at a point only. It is obvious, however, that the necessary conditions must have

reference none the less in part at least to a finite range of values of y, as we integrate over

a rectangle. In § 16 we may plainly replace condition (ii) in this case by the following:

fydx is a finite and summdble derivate, which, at the point y = yo, at which differentiation

i

is required, is a differential coefficient.

Still more generally we may replace it by the condition that ( fy doc should at the point

J a

y = y0 be the differential coefficient of its y-integral, of which a particular condition is that it should

be a function of y} which at the point y = y0 is continuous.

Corresponding modifications hold of course with respect to the theorem of the last article.

§§ 19, 20. On Differentiability under the Sign of Integration when the Limits of Integration

are finite, and the Integrand has bounded Derivates.

§ 19. In this case the theory is of the simplest possible character; not only do we not

need to have recourse to the theory of repeated integration, but the method of sequences itself

takes its easiest form. The most important rule is the following:

If fy (x,y) is for a closed neighbourhood of the value of y considered, and for all values of x

in the finite interval under consideration (a, b), a bounded function of (oc, y), then

(i) f fy dx is a differential coefficient at the point and in its neighbourhood, and

J a

(ii) it is the differential coefficient of I f(x,y) dx.

J a

This result is, of course, well-known. It follows at once from the following theorem and

corollary, which are given here for completeness in a somewhat more general form than is usual.

Theorem. If for the value of y considered fy exists for all values of x in the interval {a, b),

except at most for a set of values of x of content zero, and if for that value of y the incrementary

ratio [f(x, y + k) —f(x, y)}/k is bounded as x varies in {a, b) and h approaches zero continuously,

then

rb

(i) I f(x, y) dx has at the point y considered a differential coefficient, and

J a

(ii) this differential coefficient is fy dx, the integration being over the set of paints at

J a

which fy exists.

* "On change of Order of Integration in a Repeated Improper Integral," p. 373, § 13.
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412 Dr YOUNG, ON THE DIFFERENTIATION OF

For the incrementary ratio in question is the general term of an oscillating succession of

functions of x, bounded both above and below, and therefore semi-integrable both above and

below, so that the limits of the integrals of the succession lie between those of the upper and

lower functions. But the upper and lower functions are the upper and lower derivates with

respect to y of / (x, y), and have therefore, as they agree except at a set of values of x of content

zero, the same integral, viz. ( fydx.

J a

Also f {f(x, y + k)-f(x, y)} dx/k ={F(y+ k, a,b)-F (y, a, b)}/k,

J a

so that the limits of the integrals are the derivates of F with respect to y. Hence these

derivates all coincide and their common value is f fydx, which proves the theorem.

J a

Cor. If we can determine a neighbourhood (y, y + c) of the point y considered, such that one,

and therefore any, of the derivates off with respect to y is a bounded function of (x, y) throughout

the rectangle (a, y; b, y + c), then the incrementary ratio involved in the enunciation of the theorem

is bounded, and therefore, the remaining conditions being fulfilled, the result still holds.

§ 20. The preceding theorem, which tells us that differentiation is always allowable when

the integrand f(x, y) has bounded derivates with respect to y, and the limits of integration are

d2u d2u

finite, leads at once to a sufficient condition for the equality of and ^ ^x • We have, in

fact, the following theorem.

Theorem. If throughout a certain area ^ exists and is a bounded function of x {or, more

generally, is summable with respect to x, and finite, except at most at a reducible set of points for

each fixed value of y), and if it has a differential coefficient ^ (^^) aspect to y which is a

bounded function of (x, y) and is, for each fixed value of y, a differential coefficient, then provided

u (x, y) has for some fixed value of x a differential coefficient with respect to y, ^ exists, and has

ay

throughout the area a differential coefficient with respect to x, viz. ^- > which is everywhere

, ± d (du\

equal to ^ j .

Put

so that fy exists, and is a bounded function of (x, y).

Then f fydx = f Lt {f(x,y + k) -f(x, y)} dx/k (1).

Now the succession .of functions of x

{f(x,y + k)-f(x,y)}/k (2)

got by keeping y fixed and letting k diminish down to zero, is a sequence, since fy exists, and is
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FUNCTIONS DEFINED BY INTEGRALS. 413

a bounded sequence, since the constituent function may, by the Theorem of the Mean, be

expressed in the form

where 0 is an unknown function of (x, y) which lies between zero and unity, so that the point

(x, y + 6k) lies within the area in which fy is a bounded function of (x, y\

Hence the sequence (2) may be integrated term-by-term, so that, by (1),

P fydcc = Lt T {f(x} y + k) -/(*, y)}/k = ~ \ f(x, y) dx

J a k=0 J a ayJ a

= -^{u(v>y)--u(a>y)} (3),

since f(xy y) = ux satisfies sufficient conditions for its integral to be the primitive function u (x, y).

Thus, if a is the value of x hypothecated, for which u (x, y) has a differential coefficient with

du

respect to y, (3) shews that -=- exists for all values of the ensemble {x, y) in the area considered,

ay

and, to a function of y pres, is equal to I fydx.

J a

That is ^ H-a function ofy=J dx (4).

Now, by hypothesis, the integrand on the right is bounded, and a differential coefficient,

when regarded as a function of x, consequently it is the differential coefficient with respect to x

of the right-hand side of (4), and therefore of the left-hand side. Hence ~ (^^j exists, and

we have

d /du\ d /du\

dx \dy) ~~ dy \dx)'

which completes the proof of the theorem.

Cor. 1. If ^, —, and ^ i^^j eco^ and are bounded functions of(xy y), then the necessary

and sufficient condition that i^^j should exist and be equal to ^ i^^j ^s ^hat ~

should be a differential coefficient with respect to x.

Cor. 2. Under the same circumstances a sufficient condition is that ~ (^^j should be a

continuous function of x.

§§ 21, 22. On Differentiability under the sign of Integration when the Integrand has

bounded derivates and one of the Limits of Integration is infinite.

§ 21. As we have just seen, the differentiation is always allowable when the limits of

integration are finite; the further conditions of § 15 become therefore sufficient in our present case.

If we employ the method of sequences, therefore, we have merely to repeat the contents of that

article verbatim. Thus we have the theorem:

Vol. XXI. No. XV. 55
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414 Dr YOUNG, ON THE DIFFERENTIATION OF

Theokem. If

(i) in every finite portion of the rectangle a ^x ^ oo , y0 ^y0 +k, a derivate fy of

f(x,y) with respect to y is bounded*,

(ii) [ fydx gives as b varies a set of functions of y forming an integrable sequence,

J a

(iii) I fydx exists and is a summable differential coefficient for the range of values of

J a

y,y*^y^yo + h then

\y»dx=iy\y{x>y)dx-

It is unnecessary to repeat the corollaries of § 15.

§ 22. It is now natural to examine whether additional information can be obtained by

means of the second method. Returning to § 16, we remark at once that, as the derivates

of f(x, y) with respect to y are bounded, f(x, y) is necessarily a y-integral for every value

of x, except the value x = oo. Thus the first condition of § 16 fulfils itself. That article

gives us at once therefore the following theorem:

Theorem. If

(i) in every finite portion of the rectangle a^x ^ oo , yQ^y ^y0 + k, a derivate fy of

f(x, y) with respect to y is bounded,

(ii) \ fy dx exists {and is finite) and is a summable differential coefficient with respect

J a

to y, then the necessary and sufficient condition that

is that the repeated integrals of fy should be equal, viz.

f00 fy+k ry+k r°°

dx fydy=\ dy fydx.

J a J y J y J a

Cor. 1. It is a necessary and sufficient condition that

ry+k rb ry+k r°°

Lt dy fydx = dy fydx.

b = cc J y J a J y J a

For, since fy is bounded, change of order of integration between finite limits is allowable;

hence the result follows.

But the equation of corollary 1 is nothing more nor less than an assertion that

the functions f fydx, as b increases indefinitely, form when regarded as functions of y an

J a

integrable sequence, or, more accurately, a succession of functions which is semi-integrable

both above and below and, except at a set of points of content zero, converges to an unique

limiting function.

We are thus led to see that condition (ii) of the preceding article constitutes when

slightly modified, not only a sufficient, but a necessary condition, if the conditions (i) and

(iii) are supposed satisfied.

* Thus/y is the differential coefficient oif(x, y), except every ordinate is of linear content zero. Moreover, one of

at a set of points of plane content zero, whose section on the derivates of /(#, y) being bounded, so are the others.
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§§ 23—33. On Differentiability under the sign of Integration when both the Limits of Inte-

gration are finite, and the derivates of the Integrand are unbounded.

§ 23. We shall assume that fy exists for the value, or values, of y considered, except

for a set of values of x of content zero, whenever such an assumption is not included or

virtually included in those explicitly given. *

It may happen in a special case that fy is bounded except at, say, the superior limit

of integration. We then have, by definition,

rb Cb-e

fydx= Lt fy dx,

J a e=0 J a

where the integral on the right is, in the most general case, an ordinary Lebesgue integral.

This equation is equally true whether the integration on the left-hand side is Harnack

integration, or Lebesgue integration, or Harnack-Lebesgue integration. It is evident that

the discussion of the circumstances under which the above integral on the left is the

differential coefficient of f f(x, y) dx is then virtually identical with that required in § 15.

J a

This case requires, therefore, no further consideration, always provided, be it remarked, that

b is independent of y, so that the integrand fy becomes infinite for the sole value b of x.

§ 24. We have still to consider the case where b is a function of y, say b(y), so that

all the infinities of fy lie on the curve x = b (y). Then it may, and usually will happen

that b(y) is a monotone function of y. In this case we shall be able to prove the following

theorem.

Theorem. If throughout the area a^x^b(y), yo^y^y0 + k,

(i) f(%>y) is a bounded fmiction of (x, y), which vanishes when x = b(y),

(ii) b (y) is a monotone function of y,

(iii) f(xf y) has everywhere a differential coefficient fy with respect to y,

(iv) fy is a bounded function of (x, y) except in the neighbourhood of x = b (y), along

which curve f(x, y) is still continuous with respect to y,

(v) [ fy dx is a bounded function of (x, y),

J a

then the necessary and sufficient condition that

rb $ fb(y)

)Jydx = ~dy]a f(x>y">dx

is that the first member of this equation should be a differential coefficient

Write g (x, y)=f(%,y) when x^b(y), and g(x,y) = 0 when b(y)^x^B, where J? is a

constant greater than the upper bound of b(y).

Then g (x} y) is a continuous function of xy and the infinite discontinuities of gy lie

on the single monotone curve x = b(y).

Further I gydx= I fy dxy and is therefore a bounded function of the ensemble (x, y)

J a J a

for all values of (x, y) in the rectangle a^x^B, y0^y^y0 + k.

55—2
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416 Dr YOUNG, ON THE DIFFERENTIATION OF

Also, fixing x, and remembering that, since b (y) is a monotone function of y, the equation

x = b(y)

has only one solution, say yx, we have

y) -/(«, yo) = r/y («, y) dy

for all values of the superior limit y less than yX) and therefore, since f(x, y) is continuous

with respect to y up to and including y—yXj this equation still holds when y = yx. Hence

fy

also, for all values of (x, y) in the rectangle considered, / gydy, since it is equal to the

same integral when the integrand is changed from g to /, is a bounded function of (x, y).

By § 6 of the paper on "Change of Order of Integration," we have therefore

ryo+k rB rB ry0+k

dy 9y(x> y)dx=\ dx\ gy(x, y)dy.

J y0 J a J a J y0

Now evidently g (x} y) is the integral of its differential coefficient gy (x, y).

Hence, after a few obvious reductions the above equation becomes

ry0+k rB rbiy)

dy gydx = {g(x>yo + k)-g(a;,y0)}dx

J y0 J a J a

f&(2/of&) rb(y0)

= y<> + k) dx -\ f(x, y0)dx.

J a J a

Now, by hypothesis (vi), / fydx is a differential coefficient, say Uf(y)\ and it is, by

J a

hypothesis (v), bounded. Hence its integral is U (y), to a constant pres.

fb(y)

Thus, writing F(y)= f(x, y) dx,

J a

we haye U(y0+k)-U(y0) = F(y0 + k)-F(y0)

k k

Letting k approach zero, we see from this equation that F(y) has a differential co-

efficient, and that it is the same as that of U, namely I fy dx, which proves the theorem.

J a

Cor. If f(x, y) does not vanish when x = b (y), then fix, y)—f{b (y), y] does, and applying

the above theorem to this function of (x, y), which we can do if f{b(y), y} has a differential

coefficient, or if f(%,y)—f{b(y), y] has a differential coefficient which is bounded except in

the neighbourhood of x=b (y), we get

Ty Ja f{x, y)dx = Ja fydx + V (y)f {b (y), y).

§ 25. In the preceding article we employed the method of repeated integration, partly

with the object of illustrating the use of the theorem in § 6 of the paper on "Change of

Order of Integration." In the present article we propose to use the method of sequences

to obtain a different, and in some respects more general form, of the conditions for the

applicability of the usual rule. We first prove the following general theorem:
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fb(y)

Theorem. If F(y) = 1 f{x, y)dx, then, assuming V (y) to exist,

J a

F' (y) = V (y)f {b (y), y\ + f ^fy dx (1),

provided

(i) f(x, y) is a continuous function of the ensemble (x, y),

(ii) the right-hand side of (1) is a summable differential coefficient with respect to y,

and is infinite at most at a reducible set of points,

(iii) the functions obtained by diminishing e indefinitely in the expression *

fb(y)-e

V(y)f{b{y)-e,y}+ fydx

J a

form an integrable sequence.

fb(y)-e

For, denoting f(x, y) dx by Fe (y),

J a

rb(y+k)-e fb(y)-e

\Fe (y + k)- Fe (y)}/k = f(x, y + k) dx/k - f(x, y) dxjk

J a J a

rb(y+k)-e fb(y)-e *

f(x,y + k) dx/k + {f(x,y + k) -fix, y)) dx/k (2).

J b(y)—e J a

Here the first of the two integrals on the right may be written

'{b (y+k)-b(y)Vk

s:

f{b(y) + Jct-e, y + k] dt,

i o

which has, as k approaches zero, the unique limit V (y)f \b (y) — e, y], since f(x,y) is, by

hypothesis, continuous with respect to the ensemble (x, y), and therefore

Jo

/{& ti/)-e,y + k] dt

is continuous with respect to the ensemble (k, z), by case (i) of the theorem of § 3 of the

present paper.

We next proceed to consider the second of the two integrals on the right of (2), and

to find its limit as k diminishes. We first remark that we can suppose k during its progress

to zero to be so small that the integrand is a bounded function of (x, k) for the whole

rectangle of points (x, k) determined by this range of values of k, and the range of values

of x between the superior and inferior limits of integration, y, as it should be remarked,

having the particular value we are considering. In fact, either by the Theorem of the

Mean, or the Theorem of the Bounds of Derivates, the integrand {f(%,y + k)—f(x,y)}/k

lies between the upper and lower bounds of fy (x, y + k) for the same rectangle of points.

But fy (x, y + k) is a bounded function of (x, k) for every rectangle which does not include

inside it or on its boundary any point of the curve

x = b(Y).

But since b(y) is continuous, we can evidently choose the range of values of k to be so

small that

\b(y + k)\

is greater than | b (y) \ — e
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418 Dr YOUNG, ON THE DIFFERENTIATION OF

by at least a sufficiently small fixed quantity, the same for all such values of k. This

secures that the point [b (y + k), y + k) lies for all values of k outside the rectangle in

question, which proves the statement made above, since fy(%,y + k) is only unbounded in

the neighbourhood of x — b (y).

Hence, by Lebesgue's theorem, referred to repeatedly, we may obtain the limit of the

integral under consideration as k diminishes, by performing the limiting operation inside the

integral, and so obtain finally, instead of (2), the equation

FJ (y) = V (y)f{b (y) -e,y} + f^fy dx (3).

It should be particularly noticed that the equation (3) just obtained holds for all values

of e and all values of y, although the range of k's used in proving it depended, of course,

on the particular values of y and e chosen.

The theorem as enunciated now follows immediately, by hypotheses (ii) and (iii), applying

§ 14, and bearing in mind that since f{x, y) is a continuous function of x the limit of

f{b(y)~e,y} is f{b(y),y}.

§ 26. It is clear that, by giving to condition (iii) various special forms, with which

in the earlier part of the paper we became acquainted, we can obtain from the preceding

general theorem a number of convenient special theorems. The most important of these is

perhaps the following:

ft>(y)

Theokem. If F(y) = f(x, y) dx, then

J a

F' (y) = V (y)f {b (y), y} + \HV) fydx (1),

J a

provided

(i) f{x, y) is a continuous function of the ensemble (x, y) for the whole range of

integration, and a closed neighbourhood of y;

(ii) I fydx is a bounded function of the ensemble (x} y) for the whole range of

J a

integration, and a closed neighbourhood of y;

(iii) I fydx is a differential coefficient with respect to y;

J a

(iv) b' (y) is a bounded function of y, or is finite, and bounded either above or below,

in some closed neighbourhood of the point y considered;

or,

(iv') f\b(y),y] possesses a bounded differential coefficient;

or, more generally,

(iv") f{b(y),y} is an integral, and possesses a finite differential coefficient, which is

bounded either above or below;

or,

(iv"') V(y) is finite and summable and f{b(y),y] has bounded variation;

or,

(iv"") b(y) is a function of bounded variation, and f{b(y),y] possesses a finite and

summable differential coefficient

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



FUNCTIONS DEFINED BY INTEGRALS.

419

For in each of the cases (iv)...(iv"") the first term of the right-hand side of (1) is

a differential coefficient*, and the functions V (y)f'{b (y) — e, y] form an integrable sequence,

since they are numerically less than the summable function obtained by multiplying the

modulus of b' (y) by the upper bound of the modulus of f(x, y).

Cor. The equation (1) holds if we replace the conditions (ii) and (iii) by the single

condition that I fydx is a continuous function of the ensemble (x, y)f.

J a

§ 27. By slightly modifying the mode in which we have applied the method of sequences,

we may obtain the following additional theorem on the differentiation of the integral

f f(xy y)dx, in a case which presents itself frequently in practice.

J a

Theorem. If F(y)= I f(x, y)dx, then

J a

F'(y) = V(y)f[b{y)> y} + f("fydx,

J a

provided

(i) f(%, y) is a continuous function of the ensemble (x, y) for the whole range of

integration, and a closed neighbourhood of the point y considered;

(ii) fy is a bounded function of the ensemble (x, y) except in the neighbourhood of

the curve x = b (y);

(iii) fy (x} y+k) is a monotone function of k in a certain neighbourhood of the point

x = b(y), k = 0;

(iv) V (y) exists at the point y considered, and is finite.

We obtain as before

fb(y+k) rb(y)

[F (y + k) -F(y)}/k = f{x, y + k) dx/k + {/(*, y + k) -f(x, y)} dxjk,

J b(y) J a

where the first integral on the right is seen, as before, to have, as k approaches zero, the

unique limit V (y) f' {b (y), y}.

Considering then the second integral on the right we remark that the integrand is a

monotone function of k} by a lemma proved in my paper on "Parametric Integration/' § 11,

so that, by the theorem used more than once in the present paper, we may introduce the

limit under the sign of integration, as k approaches zero. This gives the required result.

§ 28. So far we have confined our attention to the case when the unboundedness of

the integrand fy is due to infinite discontinuities at one of the limits of integration. We

now pass to the more general case, when these discontinuities may be situated anywhere.

The method of sequences furnishes at once two results of considerable theoretical interest.

* W. H. Young, " On the Property of being a Differen- , _ . . A A1 . [bW ^ J , , _ .

tial Coefficient," 1910, Proc. L. M. S. pret hlS re1™eraeilt that J. fvd* should be "mifannly

t This corollary will be seen to bear a close resem- convergent," it will be seen that his statement becomes a

blance to a theorem on p. 439 of Bromwich's Theory of special case of our result. The proof given by Bromwich,

Infinite Series. If in the statement of that theorem we being couched in e-language and somewhat condensed, is

insert Bromwich's tacit assumptions, and suitably inter- a little difficult to follow.
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Theorem. If

(i) the points of the line y = yo in the neighbourhood of which fy is an unbounded

function of (x} y) be only countable in number;

(ii) the differential coefficient with respect to y of ( f(x, y)dx be a continuous

J a

function of x on the line y — yo, then

provided the former integral exists.

Consider in fact the sequence of functions of x}

\f(x>yo + k)-f(x,y0)}/k,

whose limiting function is fy (x} y0).

A point at which the peak-function of this sequence is infinite, say x = c, y = y0> must

be a limiting point of a set of points (xny y0 + kn) such that the limit

n=<*>

that is, the limit Lt fy [xn, yQ + 61cn)y

n— 00

has an infinite value. Thus the point x=c,y=y0 would be a point in the neighbourhood

of which fy is unbounded. Hence there is only a countable number of points at which

the peak-function is infinite.

d [x

Again, -7- J f (x, y) dx is the limit

Lt {f(x>y + k)-f(x,y)}dx!Jc,

k=Q J a

that is, it is the limit of the integrals of our sequence. Hence by a theorem in the

integration of sequences, term-by-term integration is here allowable. Thus the required

result at once follows.

Note 1. The theorem quoted in the integration of sequences holds equally for succes-

sions which converge except at a set of content zero. Thus we can avoid assuming

that fy exists for every value of x, provided the exceptional values of x form a set of

content zero.

Note 2. We do not require to assume that [ /(#, y) dx has a differential coefficient,

for, in place of (ii) we can substitute the condition that the upper and lower derivates of

f(x, y)dx with respect to y} must be both continuous functions of x along the line y = y0.

This follows from a theorem in Oscillating Successions, it is, however, then a result of the

theorem that these upper and lower derivates coincide.

§ 29. In precisely the same way, except that we make appeal to another theorem* in

the theory of the integration of sequences or successions, we prove the following theorem:

* The theorem here used will be found stated and cited. For the special theorem see Vitali, 41 SulT Integra-

proved in its most general form in the paper "On Semi- zione per Serie," 1907, Rend, di Palermo, Tomo xxm.

integrals and Oscillating Successions of Functions" already pp. 137—155.
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FUNCTIONS DEFINED BY INTEGRALS. 421

Theorem. If

(i) the points on the line y = y0 in the neighbourhood of which fy is an unbounded

function of the ensemble (x, y) be of content zero;

(ii) the differential coefficient of \ f (x, y) dx with respect to y be, for the value y0

J a

of y, an x-integral, then I fy dx exists and we have

J a

fb $ rb

)afydx = dy)af(*> y)dx-

The notes made at the end of the preceding article apply equally here.

§ 30. Each of the theorems in §§ 28 and 29 may be employed to obtain conditions

d^u d^u

for the equality of an<3 ^y^x > *n a manner analogous to that used in § 19. We first

prove the theorem which results in this way from § 28.

Theorem. If (j^J e^ts, and is, except in the neighbourhood of a countable set of

points, a bounded function of the ensemble (x, y), then the necessary and sufficient conditions

(i) ^ is a summable function of x,

(ii) ^ exists and is a continuous function of x,

(iii) ^ (^) w^ien regarded as a function of x, a differential coefficient.

These conditions are evidently necessary. It remains to prove that they are sufficient.

Since (^r) exists, ^ is a continuous function of y.

dy \dxJ dx J

Put ^ = f(x, y). Then the succession of functions {/(#, y + k)—f(x, y)}/k is a sequence,

since its limiting function is fy (x} y), and, since the generating function may, by the Theorem

of the Mean, be expressed in the form fy (x. y 4- die), is a bounded sequence, except in the

neighbourhood of a countable set of points. Also

since, by hypothesis, f(x,y) = ux satisfies conditions which make its integral the primitive

function u(x, y). Thus the limit of the integrals of the sequence is, by hypothesis (ii),

continuous with respect to x.

Moreover the sequence is, as k diminishes to zero, always finite, and is, if we give h

any discrete set of values, unbounded only in the neighbourhood of a countable number of

points (x, y) on the line h = 0, forming necessarily a closed set of points. Hence, by the

Yol. XXI. No. XV. 56
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422 Dr YOUNG, ON THE DIFFERENTIATION OF

theory of term-by-term integration of series, the integral of the limit exists, at least as a

Harnack-Lebesgue integral*, and is equal to the limit of the integrals. Thus, we may write

| [u y) - «(a, y)) = jjy d* =/* dm (1),

where the integral on the extreme right may be a Harnaek, or Harnack-Lebesgue integral.

If we take the points x and x -f h in a black interval of the closed countable set on

fx+h

y = const., I fy dx is a Lebesgue integral, and, consequently, as fy is by hypothesis a

J X

differential coefficient with respect to x, and is bounded between x and x 4- h, it follows

that, at a point x in such a black interval,

fydX

"a

J a

has fy as differential coefficient with respect to x. Hence, except at the countable closed

set of points in question, the differential coefficient of this integral exists and is equal to

a function which is known to be a differential coefficient everywhere. Call the primitive

function of which fy is the differential coefficient g(x). Then

•(<*)-I'fv

J a

dx

has, except at the countable closed set in question, a differential coefficient which is zero.

Hence, since the upper and lower bounds of a derivate are unaltered by the omission of

any countable set of points f, the differential coefficient at the remaining points exists, and

is zero. This proves that f fydx has everywhere a differential coefficient, and that this

J a

differential coefficient is fy\ that is, the right-hand side, and therefore also the left-hand

side, of equation (1) has fy for differential coefficient with respect to x.

Hence, we may differentiate the equation (1), and we get

d /du\ d fdu\

dx \dy) dy \dx) 9

which proves the theorem.

§ 31. We next apply the theorem of § 29.

Theorem. If

(i) ^ is a summable function of x,

(ii) ^ eoc^s (and is finite) throughout a certain rectangle, and the points on

the line y = yo in the neighbourhood of which it is an unbounded function of (x} y) be of

content zero,

du

(iii) ^- exists, and is a Lebesgue integral, when regarded as a function of x, then the

* The proof of this by Cantor induction is straight- Calculus," by W. H. Young, Cambridge Tracts in Mathe-

forward. matics and Mathematical Physics, No. 11, p. 65, note 17.

f See " The Fundamental Theorems of the Differential
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necessary and sufficient condition that ^ (|^) s^ou^ ex^> and oe equal to a^ everV

point of the line y — y^, is that

oJy (S) w^en re9arded as a function of x, a differential coefficient.

Clearly we need only prove the sufficiency of the condition. To do this we remark

that the argument already used in § 30 again applies, except that we are now sure, by

Vitali's Theorem*, that J ^ \dx) ^X ex*sts as a Lebesgue integral, and consequently has

d /cfaA differential coefficient since 4~ (~r-) is a finite differential coefficient.

dy \dx) dy \dx)

Now the equation (1) of § 30 holds for the value y=y0, and, as we have just seen, the

right-hand side can be differentiated with respect to x. Hence the differential coefficient

of the left-hand side exists and is equal to that of the right-hand side. Thus

d fdu\ d fdu\

dx \dyj dy \dx)'

§ 32. The Method of Sequences will give us one more theorem of a rather special

nature, concerning the differentiation of a Harnack integral; it has some resemblance to

a theorem already proved in § 12 on the differentiation of a Lebesgue integral; there dif-

ferentiation under the sign of integration was possible, whether the limits of integration

were finite or infinite; here they have to be finite. In that theorem, moreover, fy was any

bounded function, whereas here it must also be monotone with respect to x. These differences

illustrate the loss of simplicity when we have to pass from the theory of Lebesgue integrals

to that of Harnack integrals.

Theorem. If fy is a bounded function of the ensemble (x, y\ and h (x) possesses in the

finite interval (a, b) a Harnack integral, then provided only that fy(x, y) is a monotone

function of x, we have

rb $ rb

Ja h(x)fydx=-^J^ h(x)f{xy y)dx.

Since fy is, say, a monotone increasing function of x, it follows that

fy{x + h, y) >fy(x, y),

for ail values of x and y. Therefore

^ {/(« + h, </)-/(*, </)} >0.

Therefore {f(% + h,y)—f(x,y)} is a monotone increasing function of y. Hence

f(x + h,y + k)-f(x, y + k)>f(x + h, y)-f(x} y\

whence f(x + A, y + k) -f(x + h, y) >f(x, y+k) -f(x, y).

* loc. ext.

56—2

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



424 Dr YOUNG, ON THE DIFFERENTIATION OF

Hence the sequence of which the general term is

{f(*,y + k)-f(x,y)}/k

is a bounded sequence of monotone functions of x. By a theorem in the Harnack inte-

gration of series* it follows that the sequence whose general term is

W {/toy+ *)-/(*, y)}/*

is integrable term-by-term, which proves the theorem.

Cor. Under the same circumstances, if as b increases without limit, \ h (x) dx is a bounded

• a

function of by we have

J h(x)fydx=-(fyj h(x)f(x,y)dx,

provided further that the left-hand side not only exists, but is a differential coefficient with

respect to y.

In fact, it follows from the Second Theorem of the Mean for Harnack integrals, that,

under the circumstances stated in the theorem, f h (x) fy dx traces out, as b increases, a

J a

bounded succession, and therefore in our case a bounded sequence, whose limiting function

is a differential coefficient with respect to y. The corollary then follows by § 15, Cor. 1.

Note. If fy is a continuous function of y, then, by the theorem in the Harnack In-

tegration of Series already quoted, f h{x)fydx is a continuous function of y, since

J a

h {(c) fy (x, y + k)

traces out, as k approaches zero, a sequence, which, in accordance with the theorem in

question, is integrable. In this case it is evident that I h(x)fydx is, if I h(x)dx exists,

a continuous function of y, and therefore a differential coefficient.

§ 33. We conclude this section by calling attention to one or two results which follow

immediately by the method of Repeated Integration, using the general theorem of § 16.

We have to specify special sets of conditions which will secure the equality of the repeated

integrals of fy, when the limits of integration are all finite, but fy is unbounded. We have

then the following theorem:

Theorem. If

(I) fy possesses a Lebesgue double integral over the finite rectangle

a^x^b, y0 ^ y ^ y0 + k;

or,

(II) if f(x, y) and I fydx are each bounded functions of (x, y), and if the infinite

J a

discontinuities of fy lie on a finite number of monotone curves;

* See a forthcoming paper on this subject by the author in the November number of the Messenger of Mathematics.
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or,

(III) if fy is finite, except at most at a reducible set of points, and if the total

variation in the interval y0 ^y ^yo + k of f(x, y), regarded as a function of y, has a Lebesgue

integral with respect to x in the interval (a, b); then provided the conditions (i) and (ii) of

§ 16 hold, we have

That (I) and (II) are sufficient is an immediate consequence of theorems given in the

paper on "Change of Order of Integration/' To prove that (III) also suffices, note that the

total variation of f(x,y) is, by a theorem of Lebesgue's, j\fy\dy, and therefore this latter

integral has a Lebesgue integral with respect to x in the interval (a, b). Thus one of the

repeated integrals of \fy \ exists and is finite. Hence, applying de la Vallee Poussin's theorem

in its extended form, given in the paper just referred to, both the repeated integrals of fy

exist, and are finite, and equal.

§ 34. On Differentiability under the sign of Integration when one of the Limits of

Integration is infinite, and fy is unbounded.

§ 34. We have only a few remarks to add on the final case, when fy is unbounded,

and one of the limits of integration is infinite. We have already in our general theorems,

and in § 15, exploited to the full the use that we are able to make of the method of

sequences. It remains only, as in the preceding article, except that in the present case one

of the limits of integration is infinite, to give one or two special sets of conditions which

may with convenience replace the general one given in § 16, that the repeated integrals

of fy should be equal. We have then the following theorem:

Theorem. //

(i) I dy I \fy\dx is finite;

J y0 J a

(ii) dx I \fy\dy is finite;

provided also that change of order of integration between finite limits is known to be allowable,

and the conditions (i) and (ii) of § 16 also hold, then

For other sets of special conditions, applicable either in this article or in the preceding,

reference may be made to the paper so often already quoted.
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XVI. Fourier s Double Integral and the Theory of Divergent Integrals.

By G. H. Hardy, M.A., F.R.S.

[Received Sept. 1, 1910. Read Oct. 31, 1910.]

I. Introduction.

1. Fourier's "double-integral theorem" is expressed by the equation

\X dx r /(X) cos »(*-?)<**• = **{/(£+<>)+/<?"<>)} (1).

J 0 J -QO

Here £ is a constant which may, without loss of generality, be taken to be zero, as appears at

once if we make the substitution A — £ = //,, and then write A for fi and /(A) for f(/ju + £).

It has long been known that the following conditions (which I shall call the "classical"

conditions) are sufficient for the validity of the equation (1):

(i) f(X) is integrable and absolutely integrable* in any finite interval;

(") AS + 0),/(£-0) exist;

(iii) f(X) is monotonic on each side of A = £ {more generally, of limited total fluctuation

in some interval including X — %);

(iv) the integral J \f(X)\dX

J — CO

is convergent.

For condition (iii) we may substitute

(iii a) the integrals

'*+4 i/fo)-/(g+Q)

dx> f* /(g-Q)-/(x) ,x

J|_6 f-A

are convergent^.

2. These results are deduced from a consideration of Dirichlet's integral

J —QO

sin wA.

dA

•(2),

* If a function is limited in an interval, its integrability

throughout that interval involves its absolute integrability,

whereas the converse is not true. Thus the function / (\)

which is equal to 1 or -1, according as X is rational or

irrational, is absolutely integrable but not integrable in

any finite interval. On the other hand many functions

are integrable, in intervals in which they are unlimited^

Vol. XXL No. XVI.

without being absolutely integrable.

+ See Hobson, Theory of functions of a real variable,

pp. 758 et seq. Prof. Hobson states all these results for the

more general case in which the integrals concerned exist

only as Lebesgue integrals. In this paper I do not con-

sider this generalisation, which has no particular relevance

to the theorems that I have in view.
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428 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

which is known to have the limit

M/(+o)+/(-o)},

as w—»oo, if f(X) is subject to conditions similar to those laid down in § 1. In a paper

published in 1908* Prof. Hobson has shown that this last result is still correct if the condition

(iv) is replaced by the less stringent condition that

dX

are convergent.

It is, however, not permissible to replace condition (iv) by this condition, in enunciating

conditions sufficient for the validity of Fourier's result. Fourier's theorem is in fact deduced

from Dirichlet's by the transformation

I dx I f(X)cosXxdX = lim I dx I f(X)cosXxdX

J 0 J — oo w 00 J 0 J —CO

= lim I f(X)dX\ cosTwtdx

w-^oo J —00 J 0

W ->• 2C J — 00 A/

and Prof. Hobson's condition is not sufficient to justify the inversion of the order of integration,

or even to ensure the convergence of

I f(X)cosXxdX.

J -oo

This is easily shown by an example.

Let al<b1< a2<b2< az<

be a sequence of numbers increasing above all limit, and let

f(X) =l(an<X< bn\ f(X) = 0(bn<X< an+1).

Then r/O^dX

J X

00 fb \

is convergent if 2 log ( — J

is convergent; and j f(X) cos xXdX

is certainly not convergent unless

00

2 {sin (bnx) — sin (anx)}

is so; and it is easy to choose an and bn so that the first of these series is convergent but not

the second. Thus if

an = n2, bn = n2 + 1

the series are 2 log (1 -f —J, 2 sin £a? 2 cos (n2 +

and the latter series is in general oscillatory.

* Proc. Lond. Math. Soc. vol. vi. p. 372.
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THE THEORY OF DIVERGENT INTEGRALS.

429

3. Quite recently there has appeared a paper by Pringsheim* in which he generalises the

conditions to be imposed upon f(X), in so far as they relate to the behaviour of f(X) for large

values of X, considerably further than had been effected by any previous writer. In the first

place he shows that condition (iv) may be replaced by

(iv a) f(X) is monotonic for X > A or X < - A, and tends to zero as X -> oo or X -» — oo;

or, more generally,/(X) is of limited total fluctuation in the infinite intervals (A, oo ), (— oo , — A).

In the second place he introduces a function F(X) defined by

00

F (X) = 2 cv cos {qvX + rv),

o

where either cv = 0 for v > n (so that the series is finite), or 21 cv \ is convergent, qv —> go , and

F(X) possesses a derivative integrable and absolutely integrable in any finite interval. Writing

/(X) F (X) in the place of /(X) he shows that

jX dx r f(\)F(X) cos (\- f) xdX = £tt {/(£ + 0) - 0)} (3)

JO J -oo

if /(X) is still subject to the conditions (i), (ii), (iii) or (iiia), and (iv) or (iva), provided that

when we chose the condition (iv a), and F'(X) is not a mere constant, we impose the additional

condition

(v) the integrals [ d\, \

J X J -oo A,

d\

are convergent^.

Further, he shows that the formula (3) remains valid if we replace its right-hand side by

^ lim {/(£ +e)+/(£_,,)} J(f+e)

and suppose only that this limit exists and that f(X)F(\)J and not necessarily /(X) itself,

is subject to the conditions (i) and (iii).

Finally he shows that, when F(X) reduces to a finite sum, we can dispense with condition

(v), provided we regard Fourier's integral as a principal value (in respect to the integration

with regard to x).

It should be observed that these conditions of Pringsheim's are not valuable merely on

account of their greater theoretical generality. There are perfectly simple and obvious forms

of /(X), such as

/(X) = ^,

with which no theorems previously established were sufficient to deal.

4. Generalisations of the ordinary form of Fourier's integral theorem, of a different type,

have been considered by Sommerfeld | and by the present writer.

The essence of these generalisations is that they show that, if we agree to regard Fourier's

integral as summable only (by one method or another) and not necessarily convergent, we can

* Math. Annalen, Bd. 68, S. 367. J Sommerfeld, "Die willkiirlichen Funktionen in der

t If/(X) is ultimately monotonic, the signs of the Math. Physik," Inaugural-Dissertation, Konigsberg, 1901;

absolute value may be omitted; but-they must be retained Hardy, "Further researches in the theory of divergent

if all that we know is that /(X) is of limited total fluctua- series and integrals," Gamb. Phil. Trans, vol. xxi. p. 39.

tion.
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Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

dispense entirely with all conditions which have regard to the behaviour of /(A,) near X = £,

except the conditions (i) and (ii). That is to say we can omit the conditions (iii) or (iii a),

or the conditions relating to the function f(\)F(X) substituted for them by Pringsheim.

Similarly, we shall find, we can omit the condition, used by Pringsheim, that F (X) possesses

an integrable and absolutely integrable derivative.

In the paper in the Cambridge Philosophical Transactions referred to above I considered

three definitions of the generalised or summable integral, viz. those expressed by the equations

0 f(x)dx =lim e~8xf(x)dx (4),

Jo 5-^0 J 0

G f(x)dx=\im e-<***f(x)dx (5),

JO S-a-0 Jo

G ff(x)dx = lim - jX dt f f(u)du (6).

Jo x-^cc-VJo Jo

But I considered (as Sommerfeld had done) only the case in which the interval of integration

with respect to X is finite. The result was to establish the formula

G f dx (y f(X) cos (X - f) xdX = £tt {/(£ + 0) +/(? - 0)}

Jo J p

(where /3 < £ < 7) under the conditions that

(i) f(X) is integrable and absolutely integrable in (/3, 7),

(ii) /(? + 0) and f{% - 0) exist

In the present paper I propose to complete and generalise these results by

(a) adopting a more general form of the definition of the summable integral,

(b) supposing the interval of integration with respect to X infinite,

(c) supposing f(X) to have one of the more general forms considered by Pringsheim.

II. Some Properties of the Summable Integral.

5. The integral f f(x)dx (1)

J a

will be said to be summable (01) to sum s if

- P dtf f(u)du->s (2)

X J a J a

as x 00. We may suppose a > 0. An alternative and equivalent definition is given by

the formula

(3).

Similarly the integral is said to be summable (Cr) if

/e(i-i)A«*-»

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



THE THEOKY OF DIVERGENT INTEGRALS. 431

More general types of definition, modelled on the above, and analogous to those given

by Riesz * for summable series, are easily framed; and r need not necessarily be integral.

But in what follows we shall only have occasion to use the simplest form—viz. that expressed

by (2) or (3).

We shall in the main be concerned with a different type of definition, a generalisation

of that expressed by (4) and (5) of § 4.

Let (x) be a function of x subject to the following conditions:

(i) <j>(os) has at most a finite number of maxima and minimaf;

(ii) (x) is continuous and ultimately positive;

(iii) the integral j <f>(x)dx is convergent;

(iv) <mo) + o.

We note in passing that these properties imply a number of others. Thus <£'(#) is

ultimately negative and increases steadily to zero as x -» oo, and </> {x) is ultimately positive

and decreases steadily to zero. Also

<£' (x) dx

/

is convergent, and so, as is ultimately monotonic, we must have

x$ (x) -> 0.

Finally T t$" it) dt = x$ (x) - a# (a) - 0 (x) + <f> (a) -> <f> (a) - aft (a),

J a

(•00

so that I sc<f>" (x) dx

is convergent.

Then we shall say that (1) is summable (<£), to sum s, if

i r

as 8—>0 by positive values: this condition implies the convergence of the integral on the

left-hand side for all positive values of S.

6. The following properties of summable integrals will be used in the sequel.

(i) If the integral (1) is convergent and equal to s, it is summable (01) to sum sj.

This result is very easily extended to the more general definitions: but it is not necessary

for our present purpose to enter into this.

(ii) If the integral (1) is convergent, and has the value s, it is summable (<j>), and has

the sum s.

For the integral I (Bx) f(x) dx

J a

is uniformly convergent for 0 £8 £ S0§.

* Gomptes Rendus, 5 July, 1909. % Hardy, Quarterly Journal, vol. xxxv. p. 54; C. N.

f This is not a consequence of condition (ii). Consider, Moore, Trans. Amer. Math. Soc. vol. viii. p. 312.

for example, the function <p (x)=x5 sm(llx). § Bromwich, Infinite Series, pp. 434-5.
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432 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

(iii) If {a) the integral (1) is summable (Cl),

(b) <j>(8x) j f(i)dt—>0 for all positive values of 8,

then the integral (1) is summable ($) to sum s*.

Let /x 0) = P f{t) dt, f (x) = f* f (t) dt}

J a J a

so that ~-f{°°)—*s-

X

Then \X cj> (Bx)f(w) dx = <f> (BX)/, (X) - B<j>' (BX) /, (X) + o2 \* <f>" (Bx)/, (a) da.

Now I (8x)f(x)dx is convergent (absolutely), by comparison with / xfy" (8x)dx) and

80' (8Z)/2 (X) = {^/2 (Z)J {SX<£' (8X)} 0.

Using condition (6) we see that

pco poo

<f>(Sx)f(x)dx = B* (j>"(Bx)f2(x)dx;

J a J a

the convergence of each integral having been established incidentally. The integral on the

right-hand side is equal to

S2 I (s + €x) (8x) dx = s {(j> (8a) — 8a<j>' (8a)} + 821 x§" (8x) exdxy

J a J a

where ex —> 0 as x —> oo: and it is easily shown (by a type of proof so familiar that it is hardly

worth repeating) that the limit of the right-hand side, when 8 —> 0, is scf> (0).

(iv) If (a) the integral (1) is summable (<fr) to sum s,

(b) xf(x) —» 0 as x —> go ,

then (1) is convergent, and has the value sf.

In the first place (0) — (8x) = — 8x<fi (£),

where 0 < | < 8x; and so | </> (0) — cj> (8x) \ < K8x.

rx

Hence

<K8j x\f(x)\dx.

J a

{<t>(0)-$(8x)}f(x)dx\

Again, if F(X) denotes the upper limit of x\f(x)\ for x ^ X, we have

r <f> (8x)f(x) dx ^ r (8x) dx = F(X) <$> (8X)/8X,

J x A J X

where <j>(t)dt.

J X

* Cf. Moore, loc. cit.; Bromwich, Math. Annalen, be replaced by the less stringent condition that | xf (x) \<K,

Bd. 65, S. 367. as in theorem (vi) below. See Proc. Lond. Math. Soc.

+ Cf. Tauber, Monatshefte fur Math. Bd. 8, S. 273; vol. ix. p. 434: the theorem there proved is the analogous

Landau, ibid. Bd. 18, S. 8; Bromwich, Infinite Series, theorem for series, but the same method is applicable to-

p. 251. It has been shown by Mr Littlewood, with the integrals,

aid of more elaborate analysis, that the condition (b) may
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THE THEORY OF DIVERGENT INTEGRALS. 433

Suppose that X = 1/3. Then

I (0) f Xf(x) dx-( <f> (Sat) f(x) dx

I J a J a

<§jy I + F W * (1) -> 0;

ex

and so f(x)dx—>s

J a

as X -» oo; which proves the theorem.

(v) The necessary and sufficient condition that the integral (1), when summable (Cl), should

also be convergent, is that

l(Xtf(t)dt^O

as x —> oo .

This follows at once from the equations

(vi) If (i) the integral (1) is summable (01) £o s^m s,

(ii) |

. ^em the integral (1) is convergent, and has the value s.

Let g(x)=xf(x), G(x)=j g(t)dt.

J a

Then fx (x) = P /(«) eft = f ) G' (t) dt.

J a Jab

oo a J a t2'

and so * [* /, (t) dt = /, (x) - ^?

-!?<-

G(a) +

J a

a

Hence, as the left-hand side tends to a limit as x —> oo, the integral

dt

t2

is convergent. I shall now prove that this cannot be the case unless

-G(x)->0:

from which it will follow, by (v), that the integral (1) is convergent.

If this last relation does not hold, it must be possible to find a positive number X

such that

G(x) > Kxx,
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434 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

or 0{x)< — Klx, for values of x surpassing all limit. Let us adopt the first hypothesis:

we may clearly suppose iT2 < K. And let X be a value of x for which the inequality above

written is satisfied. Let

Then, for X^x&X, we have

\G(x)-G(X)\ = \f'\j(t)dt

| J X

<K(X-x)

^K(X-XX):

andso G(x)^G(X)-\G(x)-G(X)\

>\K,X.

Thus f^(0|>^z/^|

X

= \IQI{2K-Ki)

say. And this inequality is plainly inconsistent with the convergence of the integral

G(t)—2. Thus the theorem follows*.

III. Theorems relating to the inversion of the order of integration

in a repeated infinite integral.

7. This section will be devoted to the formulation of a variety of sets of sufficient

conditions for the truth of the equations

<f)(x)dxl f(X) . \xd\=j f(\)dXj (f>(x) . Xxda (1;.

Jo Jo sm Jo Jo sm

We shall suppose throughout that and f(\) arc subject to the following condition:

Condition of integrability. Each of the functions <£, f is integrable and absolutely

integrable throughout any finite integral—or, as we shall say, regularly integrable throughout

any finite interval.

8. It will be convenient to begin by stating certain lemmas. These lemmas are proved

by Pringsheimf, but, as the proofs are very short, it seems worth while to repeat them here.

Lemma A. The integrals

fm^dx f'm^dx (a>o)

* For similar theorems relating to series, see Proc. L. M. S. vol. vm. pp. 301 et seq.

t Math. Annalen, loc. cit.
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THE THEORY OF DIVERGENT INTEGRALS. 435

will tend to zero, as % —> oo , if yfr (X)=f (X)/X satisfies any one of the following conditions—

(a) if (X) | dX is convergent;

J A

(b) i/r (A,) tends steadily to zero as X —> oo;

(c) ty(X) is of limited total fluctuation in the interval (A, oo);

—and, in the case of conditions (b) and (c)} it is sufficient to suppose them satisfied for values

of X greater than some definite value A'.

In the first place, it is well known * that

f (X) Sm \fd\-»0

A T COS b

as £—> oo , for any finite value of A7; and all that we have to do is to consider whether we may

replace A' by oo .

Now f yft (X) Sm X%dX = fA + f" ,

JA r cos JA }K,

if only the last integral is convergent. And it is sufficient to show that this is so and that

we can make

/•OO

J A'

< 6

by choice of A', independently of f. For then, A' being fixed, we can choose £0 so that

f

J A

< e

for £ ^ £0; and the truth of the lemma will follow,

(a) If this condition is satisfied,

and the result follows at once.

(b) We have (A' being large enough)

&\ \y}r(X)\dXi

J A'

P= lira I* =limA|r(A/) T Sm XfrfX,

J A' A"—»oo J A' J A' C0S

where A'<A'"<A": that the limit exists and the integral is convergent follows at once

from Dirichlet's testf.

Also

r00 9

Ja; s||t(A')|,

'am V

and the result of the lemma follows immediately,

(c) In this case we may write

^(X) = fa{X)-fa(X\

where fa and fa are subject to (b).

* See, e.g., Hobson, Theory of functions of a real variable, pp. 672

t Bromwich, Infinite Series, p. 430.

Vol. XXI. No. XYI.
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436 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

Lemma B. If f (X) satisfies any one of the conditions imposed upon f(X)/X in

Lemma A, then

jj(X)^dX->0

as £-»0.

This will certainly be the case if the integral is uniformly convergent in an interval

including £ = 0. If condition (a) is satisfied this is obviously the case. If condition (b) is

satisfied we have

r , sin X% sin \f ,

which is numerically less than ir j / (A') |

for all values of £; and the result follows.

Lemma C. If

dX

J A,

is convergent, then

as £—>0.

For each integral is plainly uniformly convergent in an interval including £ = 0.

In so far as the sine-integral is concerned, this lemma includes case (a) of Lemma B.

9. Theorem I. If the integrals

fee /»c©

I | (/> (x) I dx, I \f(X) i dX

.are convergent, then

/»oo /«co cos r°° Z*00 COS

I §(x)dx\ f(X) . XxdX = I f(X)dXj <j>(x) . Xxdx.

Jo Jo sm Jo Jo sm

This may be deduced at once from the existence of the double integral

/•GO /.CO

Jo Jo

cos -

. Xx

sm

dxdX.

In view of our subsequent results, however, it is more convenient to proceed as follows.

(a) In virtue of the "condition of integrability," we have

f? = /T

for any finite values of the limits, zero included.

r°° cos

(b) The integral Xxdx

J o sm

is uniformly convergent for all values of X. Hence

"f-JT-

o Jo Jo Jo
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THE THEORY OF DIVERGENT INTEGRALS. 437

however great be A; and it only remains to show that

JO J A

is convergent, and tends to zero as A —> go: for then

r00 r00 cos . fA cA r00

I <$>(x)dx\ f (X) . XwdX = lim = lim

JO JO S1D A^coJO JO A^-ooJo JO

f°° f°° cos

= f(X)dX I 6(x) . Xxdx.

Jo Jo r sm

by the definition of the latter repeated integral.

Now / /(X)C0SX^cZ\

is uniformly convergent, and so continuous, throughout any finite interval of values of x \ and so

/•CO

</>(0 f(X)C0SXxdX

J a sin

is regularly integrable throughout any such interval. Also

4>{x)\ <\4>ix)\f\f{\)\d\;

J A J 0

and so I ${x)dx \ f (X) . XxdX

Jo J a sin

is convergent. It is moreover plainly less in absolute value than

/.CO /.CO

|</>(#)|cfo |/(\)|<Z\

JO J A

and so tends to zero as A —> go . Thus the theorem is established.

10. Theorem II. The inversion of the order of integration, in the case of the cosine

integral, is also legitimate under the following conditions:

(i) f\<\>(x)\dx

Jo

is convergent;

(ii) <f> (x) tends steadily to a limit <f>( + 0) as x —» 0;

(iii) f(X) tends steadily to zero as X —» oo , or, more generally, is of limited total fluctuation

in an interval (A, go ).

(a) Precisely as in the proof of Theorem I, we show that

/T-/T-

J o J 0 J 0 J 0

All that remains, therefore, is to shew that

f r

J 0 J A

is convergent, and tends to zero as A —> oo.

58—2
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488 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

(6) The problem of establishing the truth of the last statement may be divided

into three, viz. that of establishing the same property in the cases of the integrals

f f

(1)

Jd J A

ff

(2)

r r

(3)

JXJa

And, in the first place, it is obviously possessed by the integral (2), inasmuch as

I f(X) cos XxdX

J A

is uniformly convergent throughout any interval of the type 0 < x0 ^ x ^ X.

Again, it follows at once from the second theorem of the mean that

A

/ (X) cos XxdX

<2i/(A)i/X («SZ)|

and from this, and condition (i), it follows that the property in question is possessed by

the integral (3). There remains (1), the treatment of which is slightly more difficult.

We observe first that if x > 0 then

IT iT f (x) cos Xxdx = H/(x) ~ Xx°~shl~ ax.

Making x —> 0, and using Lemma B, we see that

\ dx f (X) cos XxdX

JO J A

is convergent and may be calculated by inverting the order of integration.

Now </>(#) is monotonic near # = 0, and we may suppose x0 so small that it is monotonic

throughout (0, x0). It then follows from the second theorem of the mean that

6 (x) dx I / (X) cos XxdX

.'o ''

is convergent and equal to

0 (+ 0) dx f(X) cos Xx d\+6 (x0) dx \ f(X) cos XxdX

J 0 J A J Xl J A *

= </, (+ o)£ f(x)s^ dx + 4, (Xo) J" f(x) «£^!Z^ dx,

where 0<x1<x0. And as (Lemma B) the integral
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THE THEORY OF DIVERGENT INTEGRALS. 439

is uniformly convergent in an interval of values of f including | = 0, it follows that

J cj>(x)dxj /(X) cosXxdX —>0

as A —> oo . Thus the proof of Theorem II is completed *

11. Theorem III. The same result holds of the sine integral if the additional condition

is satisfied that

is convergent.

The proof is the same as that of Theorem II except that at the end we are left

with an expression of the type

</> (+ °) J v /(X) - ^ l- d\ + c/> (a?0) J ^ /(X) 2-_ 0 d\

and that we use Lemma C in the place of Lemma B.

12. We have now to consider the question of the inversion of the order of integration

in the more genera] integral

/*°° f00 cos

I (p(x)dxj /(X) . aXcos(X— %)xd\ (a ^ 0). .

Jo J -oo sin

Putting X— £ = and writing F(fi) for f(/j, + £), we obtain

f00 f°° cos _ . f00 T00 sin

cos a£ I </> (a?) cZ# / F (fi) . ayu cos c?/>6 + sin a£ I (/> (a?) & I F (//,) a/-t cos fix dp,

JO J —oo sin Jo J -co COS

so that the question is reduced to the same question for the original integral, with £ = 0.

It may then be expressed in the form

r00 f00 cos r°° r00 cos

£1 <£(#)d# /(X) . (a? + a) XdX + ^ I ${x)dx\ /(X) . (a? — a)\d\.

Jo J-co sin Jo J-co sm

We now put # + a = y or x— a=y, and, using our previous results, we obtain the theorem

which follows.

Theorem IV. The equation

r00 r°° cos r*5 cos r00

<\>(x)dac\ /(X) . aXcos(X — f;)a;d\= / /"(X) . a\d\ (f)(x) cos(k — %)xdx

Jo J -co sm J-co" sm Jo

(i) / and cf> satisfy the condition of integr ability,

r»00

(ii) | cf> (x) | dx

Jo

is convergent, and (iii) either

* I have established a more general theorem dealing with the case in which neither of the integrals

j". <p (•<•); dx, j™ /(\) j\

is convergent. The theorem here proved is sufficiently general for the purposes of this paper.
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dX

(in a) j_Jf(V\d\

is convergent, or

(iii b) the following three conditions are satisfied—

(iii 6a) </>(#) tends steadily to a limit <f>(a) as x-+a,

(iii 6/3) f(X) tends steadily to zero as \-»ao or — oo,

(iii by) the integrals j | dX, j

are convergent—where however it is to be observed that (iii 6/3) may be replaced by the more

general condition that f(X) is of limited total fluctuation in the intervals (— x, — A), (A, x ),

and that (iii by) may be dispensed ivith when a = 0.

r r00 cos

IV. The limit of the integral \ (f>(8x)dx \f(X) . aX cos (X — £) x dX.

Jo J - oo sin

13. If </>(#) satisfies the first three conditions of § 5, viz. that

(i) cf> (x) has at most a finite number of maxima and minima,

(ii) </>" (x) exists, and is ultimately positive,

/♦ CO

(iii) the integral J <p (x) dx

Jo

is convergent, it is clear that </> (8x), where 8 is any positive number, satisfies the conditions-

of the preceding theorems.

Hence, if /(X) satisfies one or other of the sets of conditions stated in Theorem IV,

we have the right to invert the order of integration in the integral written at the head of

this paragraph.

Put X= /O*+0^ a = * 04

sm

Then the integral reduces to

pCC r><X> pOO /.CO

(f) (8x) dx j yjr (fi) cos fixdfi = I yfr (/x) dp I (/> (8x) cos fix dx.

JO J -co J —co J 0

We may write this in the form

where A (fx) = \ <f>(x) cos fxxdx.

Jo

We shall have occasion to use the following lemma.

Lemma. The integral I j A (fi) \ dfx

J - CO

is convergent

In fact, integrating twice by parts, we obtain

if00 . i r°°

A (fi) = I <j)' (x) sin /xx dx = — §" (x) (1 - cos fix) da

fxJo h^Jo
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THE THEORY OF DIVERGENT INTEGRALS. 441

From this equation, and the fact that A (//,) is plainly a continuous function of //,, the

truth of the lemma follows at once.

It should be observed that the convergence of the integral

/.CO /• CO «GO

I A (jjl) dfju= I dfji I (f) (x) cos /&ec?#

J -co V 7-co Jo

is an immediate consequence of the ordinary forms of Fourier's integral-theorem: the value

of the integral is in fact 7r</>(0). In the particular case (which in point of fact includes all

the most interesting cases) in which is monotonic not merely ultimately but for all

positive values of x, it is clear that

i r

A (//,) = I </>' (x) sin /jbxdx > 0;

o

and then the convergence of I A(/z)dyi& of course implies its absolute convergence.

J — CO

We observe also that j A (p) \ < K//J?.

14. Theorem V. If

(i) (f> (x) is subject to the first three conditions of § 5,

(ii) f(X) satisfies the condition of integrabilityy

Ciii) /(£+()) and /(£-0) exist,

then will I cf) (Sx) dx I /(X) . aX cos X (x — £) d\,

Jo J a, sin

where a^O, Ax < £< A2, ^o7, as S—> 0, to the limit

^</,(0)Cs^a^{/(| + 0)+/(|-0)}.

Further, if condition (iii) is replaced by the condition, sometimes more general, that ^(£ + 0)

and (f — 0) e#is£, where

£Ae Zimi^ sfoYi /wwe value

1tt</>(0) ty(f+0) + f (f-0)}.

Finally, if the inequalities A1 < £ < A2 are ?io£ satisfied, the result remains true if the

final formula is modified in the manner usual in the theory of Fourier s series*.

Putting X= f<J>+&^*<J* + S) = 1r<J>),

A,-^^, A2-| = ilf2,

we reduce the integral to the form

I <f> (Bx) dx I yjr (fx) cos jjuxd/jL,

J 0 J M,

which may be transformed into

* The result is zero if £ falls outside (Ai, A2), etc.
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The problem therefore reduces itself to proving that

1 fA

8

A (|) d\-^^(0)f (+0)

as S —» 0. Since

i rA /x\ rA/fi

it is sufficient to prove that

!/**<»■

A@),fc-,0,

where % (X) = ^ (X) — ^ (+ 0). I shall prove first that the integral tends to zero when the

lower limit 0 is replaced by any positive number Xn. That this is so follows in fact at

once from the inequality

1

8

/>>a(jH<«/;*£>j*

which is itself an immediate consequence of the remark at the end of the last paragraph.

We can suppose X0 so chosen that | % (X) | < K for 0 < X ^ X0. Then

l fA<> /x\ fx«/s f rM rvs\

gJo x (X) A (£J dX = jo X(8/,) A 0*) ^ = (Jo + J^J % («A*) A (M) <*/*•

The second integral is less than

J M

which may be made less than e by choice of if, independently of 8. And when M is fixed

we can choose 8Q so that | % (Sfi) | < e for 0 < 8 ^ 80> 0< /jl^ M. Then

/•If rJIZ

tf(8/*)A(/*)d/* <e | A 0*) | d/*,

Jo Jo

and the proof of the theorem is completed.

It is interesting to consider an example in which the result is not true. Let

</>(#) = 1 (0 £ x ^ X), = 0 (x> X).

rx rA rX/S rA

Then I </> (Bos) dx I /(X) cos Xxdk — \ & /(^) cos XxdX

Jo Jo Jo J 0

-/>> ,

sin (XZ/S)

and it is known that the continuity of /(X) is not a sufficient condition to ensure that this

integral shall tend to a limit as 8 —>0.

15. Theorem VI. The result of Theorem V remains true for A1 = — oo, A2 = oo-

provided either

(a) I I/(X) j dX is convergent,

J -co

or (ft) the following conditions are satisfied,

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s
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(/3 1) /(X) tends steadily to zero as X—» —oo or oc (or, more generally, is of limited

total fluctuation in the intervals (— oo, A^, (A2, — oo )),

/OO

dX

(/3 2) the integrals j

are convergent

If a = 0 the condition (/3 2) may be dispensed with.

We have only to show that Aj and A2 may be chosen so that

Z*00 /'A» cos

<f>{hx)dx\ f(X) . aX cos (X — £) xdX —> 0,

Jo J -oo Sln

r00 r00 cos

I (j> (Sx) dx f (X) . aX cos (X — £) #c?X —> 0,

Jo J a2 sin

as 8—>0. Take the second relation, for example. Putting X— £ =we reduce it to

0 cfo I yjr (fl) COS —> 0,

0 J 3f2

or, as the conditions of Theorem IV are satisfied, to

We can suppose M2 chosen so that

|f (m)\<K (fi^M2).

Then U ,fr(p)& (£)dfi=[ ir (BX) A (X) d\,

°JM2 \0J J M2/8

which is in absolute value less than

k\ I A (X) | d\

and so tends to zero with S.

16. We can now state

Theorem VII. If

(i) (j> (x) is subject to the conditions of § 5,

(ii) /(X) is subject to the conditions (a) or (/3),

(iii) /(£ + 0), /(£ — 0) or more generally, y\r (£ -f 0), f — 0) ivhere

r°° r°° > cos

w7/ tf/^e integral I dx I /(X) . aX cos (X — ^) xdX

Jo J - oo sin

be summable ((/>), a?id i£s sum will be

iT^of{/(f + 0)+/(f-0)},

or 4ir{^(f + 0) + ^(f-0)}.
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Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

V. Summability by Gesaros method.

17. It will be convenient at this stage to prove

Theorem VIII. If the conditions of Theorem VII are satisfied {except (i)) then the

same result holds in respect of summability (0 1).

We have to prove that

I \Xd* (* dt f f(X) °?S a\ cos (X - f) tdX -> Itt °?S {/(f + 0) - 0)}

A Jo Jo J -oo sin sin

as X —> oo. It is clear that the generality of the investigation is in no way affected by

supposing £ = 0.

The triple repeated integral is then the same as

1 fx f°° cos f00 cos 1 [x

^ I (X — x)dx\ f(X) . aX cos Xx dX = I / (X) . aXdX ^ \ (X — x) cos Xxdx

XJq J -oo sin J-oo sin A Jo

cos

where ^ (X) = /(X) g.^ <xX and w = ^X. We have therefore to determine the limit of this

integral as w —> oo . I shall prove first that, as w —> oo ,

Let t(\) = t(+0) + %(X);

then »0 as X—> 0. And it is clear that what we have to prove is that

Choose X0 so that | % (X) | < e (0 < X ^ X0);

/sin wX\2 . f00 /sin wX\2

.^hsr) <eJo h

then

Also

wX

U)dX— J-7T€.

* ^./sinwXy , 1 fA, ^v,,^

and from these two inequalities our conclusion follows at once.

In order to complete the proof of the theorem we have only to prove that

J ^ 00 ( — I wdX —> 0.

wX

We can suppose A so chosen that

\y\r(X)\<K (X£A),
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THE THEORY OF DIVERGENT INTEGRALS.

445

i.i r , x /sin wXV ^ T^r/smwXY _ TX r /siniA2 .

and then ^ * (X) (_) wdX <K^ (_) W£*X = * ( —) *»,

which plainly tends to zero as w —> go . Thus

and the truth of the theorem follows immediately*.

VI. 27*e introduction of Cauchy's Principal Value.

18. The condition relating to the convergence of the integrals

j -

/(M

was introduced in Theorem III. In fact, if the condition is not satisfied, it is not generally

true that

I cj) (x) dx j f(X) sin Xx dX

JO J A

is convergent: although this is true of the corresponding integral involving cos Xx.

Suppose, for example, that

so that the condition is not satisfied. Then it is not hard to show that, as x —>0,

00 cos \x

A l0gX

° sin \x

A

/

dX ~

x{\og(l/x)}*>

1

logX x{\og(l/x)\'

the first, but not the second, function, being integrable down to x = 0.

If the condition is not satisfied, however, we can impose an additional condition on

in the neighbourhood of #=0, so thatf

P cf) (x) dx I f(X) sin Xx dX

J -xo J A

(xQ > 0) shall still be convergent and equal to

fee Too

I f(X) dXl cf)(x) sin Xx dx,

J A J -X0

as I shall now proceed to prove.

* It is not difficult to prove that, if / (\) is of limited

total fluctuation in an interval including X = £, then

i/:

\f/ (X) cos (X - £) x d\ < Kjx

for large values of x. It then follows from Theorem (v)

of § 6 that Fourier's double-integral is convergent in the

ordinary sense, so that his integral-theorem becomes

a corollary of Theorem VIII. Similarly we can use

Mr Littlewood's extension of Theorem (iv) of § 6 to exhibit

Fourier's integral-theorem as a corollary of Theorem VII.

Analogous remarks apply to Dirichlet's form of Fourier's

series theorem: cf. Littlewood, loc. cit., and Hardy, Proc.

Lond. Math. Soc. vol. vm. p. 308.

t For a detailed exposition of the theory of Cauchy's

"Principal Values" I may refer to four papers in the Proc.

Lond. Math. Soc. (Old Series, vol. xxxiv. p. 16 and p. 55

and vol. xxxv. p. 81, and New Series, vol. vn. p. 181).
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446 Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

Coo r oc fee Tec

19. Since / = | ,

it is clear that what we have to prove is that

The principal value will be convergent, and it will be legitimate to calculate its value by

a change in the order of integration, if and only if the same is true of the ordinary

integral

po Too

I xx(%)dx f(X) sin Xx dX

•; 0 .'a

where xx (x) = cf> (x) — (/>(— x).

We suppose %(#) continuous and monotonic near x = 0.

r%0 rh!

Now

io Ja

is convergent, and may be calculated by inversion, for any finite value of A'. Hence what

we have to prove is that

rxQ fee

•'o J A'

is convergent and tends to zero as A' —» oo.

Too ^ 2

Now, if f(X) is monotonic, I /(A,) sin Xx dX <-|/(A')|

J A' X

and so xdx I f(X)sinXxdX

JO J A'

is convergent. Hence, by the second mean-value theorem,

po fee

xx(x)dxl f(X)$mXxdX

Jo J A'

is convergent and equal to

Cxx Too p0 Tco

X (0) a? ci# /(X) sin \# cZX, -f ^ (#0) xdx j f(X) sin \a? e2\,

J 0 J A' J xx J M

where 0 <#!<#<). These repeated integrals are convergent, and may be calculated by in-

version. The only point in this statement that requires proof is that the first of them may

be calculated by inversion. We have, however small x,

\x\dx r f(x)Bmxxdx= r r= r -^-{o^-eix^dx,

J x J A' J A' J x J A' X"

where 6 (x) = sin Xx — Xx cos Xx.

We have therefore to show that
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THE THEORY OF DIVERGENT INTEGRALS. 447

tends to zero as x—» 0. This is obvious in the ease of the second integral. In the case

of the first we have

foo fA" _ Too

x\ = x +x I

J A' J A' J A"

The second integral is numerically less than

1/(A")[

A"

9

which may be made less than e by choice of A", independently of x; and the first term

may then be made less than e by choice of x.

Hence f *\ x 0) doc (°° f(X) sin Xx dX = % (0) f °° 0 (^) d A.

JO J A' 1 J A' X-

+ X (**) fl ^ \d (*«) - * 0*0} dX,

and, by what is practically a repetition of the argument which immediately precedes, we

can prove that this tends to zero as A' —» oo .

20. Theorem IX. // the condition that the integrals

r

J -

/(*)

dX,

fW

X

dX

X

be dropped, in Theorem III, the result of that theorem will in general not be correct; but if

we impose upon cj> (x) the additional condition that

x(x) = \{<t>(x) -<M- x)\

is continuous and monotonic near x = 0, it luill still be true that

Too rco Too /*oo

PI (/> (x) dx \ f(X) sin XxdX = f(X) dX (f> (x) sin Xx dx,

J —Xq J - CO -GO J —%Q

where x0 > 0, and P is the sign of Cauchy's Principal Value.

Theorem X. In Theorem IV we may drop condition (iii by), if we introduce the

additional condition that

. x 6 (a + x) — 6 (a — x)

x (x) = ^ 7^rV

is continuous and monotonic near x = 0, and insert the sign of the principal value before the

outer integration with regard to x.

21. We have now to consider how far these modifications affect the work of § IV.

In the first place, the effect on the proof of Theorem V is obviously nil. Secondly, the

missing condition affects the proof of Theorem VI only in so far as it is required to justify

a certain inversion of integrations—its effect on which we have already discussed. Hence

Theorem XI. Theorem VI remains valid if modified as Theorem IV was modified

above.
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Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

VII. The introduction of a function defined by an infinite series.

CO

22. Let F(X) = Xcl,cos(ql>X + rv),

o

where (qv) is an ascending sequence of positive numbers, tending to go with v, and

2 \cu

is convergent. I shall now prove that if we assume that cf>(x) and f(X) satisfy the

conditions of Theorem IV, and in addition that <f>(%) is monotonic, or has at most a finite

number of maxima and minima, then we may invert the order of integration in the

integral

4> (x) dec f(X) F(\ + y) cos Xx dX

I 0 J - 00'

(for any value of y).

This will be proved if we can justify the following series of inversions:

Too Too co

<fi (x) dx f(X) cos Xx dX 2 cv cos [qv (X + y) + rv)

. '0 J - co 0

CO CO /'CO

2 (A)

0 0 -co

CO f CO Tco

= S (B)

0 J 0 •' -co

co fco Tco

= 2 (C)

0 J -co J 0

CO CO r CO

2 (D)

- 'X) 0 Jo

f co f CO CO

1 2 (E)

.' 0 0

(A) The equation

/*CO CO co

I /(^) cos \# dX S c„ cos {gv (X + + ?%} = S

J -CO 0 0 -20

will be true if

(i) the series is uniformly convergent throughout any finite interval of values of X (as

is certainly the case),

co fx

(ii)

is convergent and tends to zero as A—■» cc ,

(iii) 2

co r-a

0 J - co

is convergent and tends to zero as A —> oo . It is clearly enough to justify the assertion

(ii). Its truth is practically obvious if f(X) satisfies condition (iii a) of Theorem IV: we

shall therefore suppose that f(X) is subject to the set of conditions (iii b).
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449

We can choose v0 so that qv > os, and it is enough to consider the series

CO f CO

v0 J A

But I is numerically less than the product of \cv\ and

J A

fee

f(\) cos {{qv + cc)\+ qvy + rv) dX

J A

1

+ 2

/(X) cos {(g„ — x)X + qvy + ru] dX

and so less than

/ 1 1

+

It follows that our series is convergent and numerically less than

00

!/(A)|2|c,

and so tends to zero as A —> go .

I 1

qv + x qv — x

(B) The equation

will certainly be true if

(i)

for any finite X, and

CO f cc /*

=? „ f

. 0 0 -a> 0 J 0 .'-co

'•A" x /*co oo f A"

= V

/•A x

J 0 0

-co 0 • 0 J -co

/* CO C CO

0 7 A' J -x

is convergent and tends to zero as X —> co. As above I confine myself to the case in

which f(X) satisfies the conditions (iii b), leaving the easier case in which it satisfies (iii a)

to the reader.

It is easily proved, by a slight modification of the argument used under (A) above, that

co r-jj

0 J -co

is uniformly convergent for 0 ^ x ^ X. In the first place, this is obviously true of

co fA,

1

0 J A,

for any finite values of A1 and A2; for the series may be compared with

0 J A,

We have therefore only to justify the assertion for

2

0 A

Choose v0 so that qV0>X. Then we need only consider
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Mr HARDY, FOURIER'S DOUBLE INTEGRAL AND

and the result follows at once from the analysis given under (A). It should be observed

that each term of the series may become infinite for one special value of viz. x = qu. But

as this only happens, in the interval (0, X), to a finite number of terms, no difficulty is

caused thereby.

Next, as regards (ii), we observe first that

oo /-co fA2

0 J X J A,

is convergent and tends to zero as X —> oo, for any finite values of A1 and A2. For the

series may be compared with

2|c„j r\(f>(%)\dxjA2\f(\)\d\,

0 J X J Ax

which has certainly this property. We need therefore only establish the property for a

series of the type

CO /'oo /'GC

2 / •

0 J X J A

Now

and

and so

Hence

fco Too fco ,"co

J XJ A J A J X

2\cj>(X)\

cj) (x) cos Xx dx

f co /* cc

A J X

r> pec fco

2f f

0 J X J A

<2 \4>(X)\

dX.

<2|0(Z)j2|c,i

dX

and the truth of (ii) is established.

(C) The legitimacy of this inversion of the order of integration has already been

established.

(D) In order to prove that

o J ■

CO CO C CO

y

go ta2 rco rA2 co rco

we must prove that (i) 2=2

0 J A, J 0 i A, 0 i 0

for any finite values of A1 and A2, and

CO f CO Too

(ii) *

0 J A JO

is convergent and tends to zero as A —> oo.

The truth of (i) follows at once from the fact that the general term of the series

CO f CO

o Jo

is numerically less than

\ cf) (x) \ do:.

Provided 0 (x) is monotonia for x > X, a condition certainly satisfied if X is large enough.
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THE THEORY OF DIVERGENT INTEGRALS. 451

K

<x>

The truth of (ii) follows at once from the inequalities

I (/> (x) cos Xx dx I

J o I

[ f(X) cos [qv (X+y) + rv) dX [ <f) (x) cos Xx dx < K f L£^2J dX.

J A JO J A X

(E) Finally, in this inversion there is nothing to justify, the two limit operations

applying to entirely distinct factors of the subject of integration and summation.

Hence we deduce

CO

Theorem XII. // F (X) = 2 cv cos (qv X + rv),

0

where (qv) is an ascending sequence of positive numbers whose limit is infinity, and % cv is

an absolutely convergent series: if further cf> (x), besides satisfying the conditions of Theorem IV,

has at most a finite number of maxima and minima; and f(X) is subject to the conditions of

Theorem IV (including (iiiby)); then ivill

rcc fee rco rco

I (f)(x)dx\ f(X)F(X + y)cosXxdX=\ f(X)F(XJ\-y)dy\ </> (x) cos Xx dx.

J0 J -00 1 J -CO' J 0

Theorem XIII. We have, under similar conditions,

( cf) (x) dx r f(X) F(X) cos (X - £) x dX = \°° f(X)F(X) dX f°° c/> (x) cos (X - f) x dx.

Jo J -co J — go J 0

23. Theorem XIV. Let F(X) be defined as in Theorem XII. Let (j>(x) and f(X)

be subject to the conditions of Theorem VII. Then will the integral

dx f(X) F (X) cos (X - f) x dX

Jo J -go

be summable ((f)), and its sum will be

iT^(f){/(f+0)+/(?-0)},

or, more generally, 27r{'vM? + 0) + '^(f~~0)}>

where ^ (X) = f(X) F (X).

In fact no substantial modification is required in the argument of Section IV in con-

sequence of this more general hypothesis as to the structure of the function i/r (X).
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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XVII. Cyclic Paths for Rays reflected at an Elliptical Boundary.

By R Hargreaves.

[Received April 26, 1912. Read May 26, 1912.]

In an enclosure, of which the boundary is not circular or spherical, the shape of the

boundary and the geometrical law of reflexion together determine any paths which may

be complete circuits of finite length. Such paths it is proposed to consider for a plane

space bounded by an ellipse.

The problem was suggested by recent Thermodynamical methods of dealing with the

radiation in a closed space; the particular point with respect to which it may have signifi-

cance is the resonance of the space. This aspect of the question is not considered here;

we are concerned exclusively with the geometry, which presents two features of interest.

The first is the existence of a group of cycles specially characteristic of the ellipse, as

distinct from the more obvious group obtained by deformation of regular polygons in a

circle. The second is the treatment of construction by means of a theorem of corre-

spondence which may be applied to either group. This method of construction requires

only the use of a parallel ruler, and in actual drawing is at once easier and susceptible

of greater accuracy than the direct application of the law of reflexion. The theorem also

makes it possible to present the analytical conditions in a symmetrical way, and gives

an important property of two corresponding paths, viz. that if one is a circuit the other

has the same property, aud the two circuits have an equal length of path.

§ 1. Circuits may be divided into two groups according as they are intra-focal or

extra-focal. In the former each section of path from boundary to boundary crosses the

major axis between the foci, in the latter each section crosses (or would if continued cross)

the major axis outside the foci. A ray traversing the major axis has a cyclic path, but

no other ray through a focus is part of a cycle: it will be found either by drawing or

calculation that any such ray pursued in either sense ultimately approaches the line of the

major axis.

In the search for cycles it is important to attend to conditions. of symmetry. If

when a certain point or line is reached a symmetrical continuation of the path is assured,

then for the purpose of determining a cycle such point or line may be regarded as

terminal. For extra-focal circuits (a) the ends of either axis, and (b) lines parallel to

either axis, have this character. When (a) or when (6) is used for each terminal the
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figure has 4?i sides, in the former case n — 1 points in the quadrant need determination,

in the latter n points. When (a) is used for one terminal and (£>) for the other, different

cases arise according as we use the same axis for each, or one axis in (a) the other in (b).

When the same axis is used we have figures of 4?2 + 2 sides, in which n points in the

quadrant need determination, these points being differently placed according as the major

or minor axis is used. If the point terminal is an end of the major axis, the line terminal

a parallel to the minor axis or vice-versa, we have figures of 2n +1 sides, n points of the

quadrant being differently placed in the two cases.

All these figures may be regarded as deformations of regular polygons in a circle, if

we include amongst the polygons such variants as tbe pentagon whose sides subtend angles

of 144° at the centre or the octagon with 135°. Each type in the circle has two repre-

sentatives in the ellipse.

For intra-focal cycles it is evident that two of the above terminals, an end of the

major axis and a parallel to the same, are inadmissible. They are replaced by a point at

which a ray is normal, and a central chord; the different types are then furnished by

combinations of the four terminals

(a) a point at which a ray is normal,

(b) an end of the minor axis,

(c) a central chord,

(d) a chord parallel to the minor axis.

The three types into which a normal chord enters are open paths, the whole circuit

comprising a journey from end to end and back. With n for the number of points needing

determination,

an open path (ab) has 2n lines, circuit 4n lines, V or W pattern,

„ „ „ (etc) „ 2n -1 „ 4?2 — 2 JSf pattern,

„ „ „ (ad) „ 2n — 1 „ „ 4?i — 2 „ open lattice pattern;

a closed path (cd) has 4/? sides, closed lattice pattern,

„ (bd) „ 4ft+ 2 „ „ „ pattern,

„ „ „ (be) „ 4?i + 2 „ star pattern.

A distinguishing feature of intra-focal cycles is that they originate at some definite

lower limit of eccentricity as configurations of lines indefinitely close to the minor axis,

and continue to exist for all higher values of eccentricity. With increase of eccentricity

points move away from the ends of the minor axis, but remain in their respective quadrants

with an unchanged order of succession in a quadrant. The initial stage, in virtue of the

smallness of all angles concerned, admits of a general treatment for any number of variables,

by which the limit of eccentricity and the character of the configuration are determined.

| 2. For the purpose of this treatment the use of eccentric angle as commonly defined

is not convenient; it distinguishes four quadrants while we need only a distinction between

two, as every ray crosses the major axis. On the auxiliary circle we use a deviation 6
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from the minor axis which for points above the major axis is positive in the first and

negative in the second quadrant, and for points below the major axis is positive in the

third and negative in the fourth quadrant. With 01 always in the first quadrant, it is known

whether the point to which any subsequent 0 refers is above or below the major axis. For

the small angles belonging to the initial stage the x coordinates of 01 and 02 are a81 and

— a02> the y coordinates + b and — b. The inclination to the minor axis of the chord joining

0,6, is a(01 + 02)/2b or (0J + 02)/2 Vl that of the normal at 02 is 02 Vl - e2, and the

angle of incidence is (0! + 62)/2 \/l — e2 — 02*Jl — e2. The angle of reflexion is

02 Vl^2 - (02 + 03)/2 VlT^,

and the law of reflexion makes <9a + <93 + 202 = 4 (1 - e2) 02 or 0, + 03 = 2 (1 - 2e2) 02. We

may therefore write the typical sequence-equation in the form

0m+1 + 0m_l = 2(l-2e?)0m (1).

This is to be supplemented by relations connecting two angles only at each terminal.

(a) For a normal at 01 as terminal, the angle of incidence being zero,

((?!+ <92)/2 Vl^^VI^e2 or 02 = (l-2e2)0l (2a).

(b) For a chord joining 8n to an end of the minor axis as terminal, by writing

0n+i = O in (1)

0n_1 = 2(l-2e2)0n (26).

(c) For a central chord through 0n as terminal, by writing 0n+1 = 0n in (1)

0n_1 = (l-4<e2)0n; with 02 = (1 - 4e2) 0, (2c)

as alternative form if the central chord passes through 0lt

(d) For a line through 6n parallel to the minor axis as terminal, by writing 0n+1 = — 0n

in (1)

0n_l = (S-4>e2)0n; with 02 = (3- 4e2) 01 (2d)

as alternative form if the parallel passes through 0lm

§ 3. Open Paths. If we use (a) as starting point for all open paths, the ratios of 0's

are given by quantities um = 0m : 01 having the properties

«i = 1. u2 = l- 2e2, um+1 + Vi = 2(1- 2e2) um (3),

so that um+i is a polynomial of degree m in e2.

For the type (ab) the condition at the other terminal is

w„+1 = 0 (4).

This condition gives n values of e2, the substitution of which in um yields n groups

of values for the initial ratios of angles defining the configurations introduced at the

several limiting values of eccentricity. If we write e = sine or 6 = acos£, um is defined by

Ul = 1, u2 = cos 2e, um+1 + um-i = 2um cos 2ej

.(5).

of which the solution is um+1 = cos 2me.

The condition for circuit (ab) is

cos 2ne = 0, or € = J {1, 3, 5, ... (2n - 1)} (6).

60—2
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For the least root -wm+i = cos, for the greatest um+l = (— l)m cos , and in both

All Jd)\

cases the last chord of the quarter-cycle proceeds to an end of the minor axis; in the con-

figuration introduced at the least root every previous chord, in that introduced at the greatest

root no previous chord, crosses the minor axis; for the first the figure passes from 1st and

3rd to 2nd and 4th quadrants in the next quarter-cycle, while in the second it passes from

1st and 4th to 2nd and 3rd.

The position is less simple for intermediate roots. With n = l, e = ^ or 2e2=l is the

7T 3vi

limit of entry for configuration V (fig. 1); with n = 2, e=g or —, i.e. 4e2 = 2 + \/2, there

are two forms, that admitted at the higher root is a direct W (fig. 9), that at the lower

root a form with crossed legs (fig. 4).

For the type (ac) the condition un+1 — un = 0 or — (1 — 4c2) un is in trigonometrical

form sin e sin (2n — 1) e = 0. The root e = 0 corresponds to the minor axis itself, and is not

the condition of entry of a form which afterwards deviates from the minor axis. Other

roots are

««a£lt1'2'---<B-1>»(7)'

Fig. 1.

Fig. 2.

and the general description resembles that for (ab). The N form (fig. 2) has n = 2, and

condition 4c2 > 3.

For the type (ad) the condition

un+i + un = 0 or un_x = (3 — 4c2) un is cos e cos (2n — 1) e = 0.

7T ...

The root e = ^ > meaning an eccentricity = 1, is not a condition of entry for the ellipse problem,

and other roots are

For the simplest case n = 2. the condition of entry is e = \ (fig. 3). This pattern, the

open lattice, has symmetry with respect to the major axis, the case (ab) symmetry with

respect to the minor axis, and (ac) has skew symmetry.

§ 4. Closed Paths. For (dc) and (db) we can use a parallel to the minor axis as

starting position, and the ratios of 0's to 6l are then given by functions v having the

properties

vx = 1, ^2 = 3- 4e2, vm+l + vm-i = 2(1 - 2e2) vm = 2vm cos 2e)

V (Q\

of which vm+l = sin (2m + 1) e/sin e is the solution. J
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REFLECTED AT AN ELLIPTICAL BOUNDARY. 457

For the type (dc) the condition at the other terminal is vn+1 — vn = 0 or cos 2ne = 0, and

e = J{l,3,5,...(2n-1)} (10)

as in (6) for (ab); but here the ratios of angles are different. See figs. 1, 4, 9.

Fig. 3. Fig. 4.

For the type (db) the condition at the other terminal is vn+i = 0, and

2w + l

{1, 2,...n}

.(11),

which is similar to (7). The closed lattice patterns for the form admitted at the greatest

root have the parallels to the minor axis at the wings, for that admitted at the least root

the parallels lie nearest the minor axis. See figs. 5 and 6.

For the type (cb) if we take 6X to refer to one end of a central chord, the ratios of

0's to 0X are given by functions w with the properties

wx = 1, w2=l — 4e2, wm+l -f wm_Y = 2(1- 2e2) wm, making wm+1 = cos (2m-I-1) e/cos e ....(12).

Fig. 5.

Fig. 6.

The condition at the other terminal is wm+1 = 0, and

{1,3,... (2^-1)}

.(13)

'2 (2m + 1)

similar to (8). The simplest case n = l (fig. 3) gives a star-shaped figure for which the

lower limit of eccentricity is
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It will be noted that the same limits of eccentricity apply to (aft) and (cd), to (ac) and

(bd), and to (ad) and (be).

If for polygons in a circle we seek new forms by taking a multiple of the angle at

the centre, some cases are resolved into figures of an earlier type, e.g. for twelve sides only

the multiple 5 gives an independent figure, others give two hexagons, — The same kind

of short-circuiting occurs in intra-focal types, e.g. for n = S in (ab), where e has the values

sin 15°, sin 45°, sin 75°. The value e = sin 45° makes u2 = 0, w3 = —1, u4 = 0, and the initial

configuration is resolved into three Vs. The open circuit of 6 lines has two forms

admitted at e = sin 15° and e = sin75°; the value e = sin 45° which has already occurred for

the type V leads to no new form.

§ 5. We proceed to state and prove the theorem of correspondence which will be used

in the actual drawing of figures, and in the statement of analytical conditions.

Mark the points of a configuration 1, 2, 3, ... and from the centre draw lines parallel

to the chords joining 1 to 2, 2 to 3, ... in order, to meet the auxiliary circle. The projections

of these points of the circle on the ellipse, say (12), (23), ...,form a second configuration derived

•without ambiguity from the first. Apply this operation to the second configuration with one

element of difference, viz. that the cycle is traversed in the reverse direction. If now the first

configuration is reproduced, the point 2 in the first corresponding to the chord from (23) to

(12) in the second, and so on, there is a reciprocal correspondence. Each configuration will

then represent the course of a ray; if one is cyclic so is the other, and the lengths of the

two circuits are equal*.

To see the way in which the law of reflexion is involved in the reciprocal corre-

spondence, let fa correspond to the chord joining fa to fa, fa' to the chord from fa to fa,

and reciprocally the point fa to the chord joining fa' to fa, each variable being an eccentric

angle. The condition that the radius to fa on the circle may be parallel to the chord fa fa

of the ellipse is tan \(fa 4- fa) tan fa = — Vl — e2, a condition which also makes the tangent

at fa on the ellipse parallel to the radius to h (fa + fa) on the circle. The reciprocal

correspondence therefore makes the chords fa fa, fa fa, and the tangent at fa, all on the

ellipse, parallel respectively to radii to the points fa, fa' and ^ (fa + <j>") on the circle; the

chords are therefore equally inclined to the tangent, and the law of reflexion is implied

by the mutual correspondence.

Or again if the first configuration is a path for reflected rays, and fa, fa' are drawn as

above, it follows that fa corresponds to the chord fa'fa, i.e. the correspondence is reciprocal

and the second configuration also a path for reflected rays.

Further the theorem may be used as a method of drawing the course of a ray with

parallel ruler, and then we develope the two figures pari passu. Let the chord from fa

to fa, given coordinates, be a line of the ray whose further course we wish to follow. Find

fa as before, and from fa on the ellipse draw chord fa fa' parallel to the line from fa2 on

the circle to its centre, which gives point fa'. Then draw fa fa parallel to the line from

centre to fa' on the circle; the new chord is the path after reflexion at fa. The angle

* All the diagrams are examples of this theorem. In fig. 7 the auxiliary circle is drawn, and also the radii

necessary to show the parallelisms occurring in one quarter-cycle. The positions of foci are marked by small crosses.
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</>3 in turn determines the direction of chord <j>"<f>'", and so on; the construction giving the

path required, and a companion path.

In these statements the completion of a cycle is immaterial.

The total length of a cyclic path* admits of a different partition in the form

2? = 22p cos i,

where I is a chord, p a perpendicular from the centre on a tangent at which reflexion takes

place, and i an angle of incidence. We shall show that a chord l12 of one configuration

is equal to an element 2p cos i' of the alternative formula for length of the reciprocal

configuration. If pf is the perpendicular on the tangent at then p' — fc/Vl — e2 cos2

Also by the parallelism tan 6' = ———, or cos2 6' = , ^— ;therefore

1 - e2 cos2 </>' = {(1 - e2) (x2 - xxf + (y2 - 2/x)2}/^2 = 62 {(cos </>2 - cos <£02 + (sin 02 - sin

= 262{l-cos (ft - cj>2)}/l12\

and 2^ Vsin2^-(</>! —02) = Z12, the length of the chord joining (j>1} <f>2 on the ellipse.

But if % is the angle of incidence at <f>', it — 2i' is the angle between the two chords

meeting at </>', which if the correspondence is reciprocal is the difference of ^ and cf>2]

and consequently l12 = 2p' cos i' as stated above.

The sum X2p cos i always represents a length traversed by the ray, but that length

is measured from the foot of perpendicular from centre on one ray-line to another such

point. For a cyclic path it is the equivalent of and it is only in connexion with this

point that the question of cycle enters into the argument.

§ 6. To find in what way tfye types of cycle analysed above enter into the scheme

of correspondence,- we must attend to the correspondence of terminal positions, which is of

two kinds:

(a) a parallel to either axis, and an end of the same axis,

(/3) a central chord, and a point at which the ellipse is met normally.

The first is evident, and with respect to the second we observe that a normal chord

is traversed in opposite directions, and the points corresponding to these directions have

eccentric angles differing by two right angles, or the chord joining them passes through

the centre. For intra-focal cycles then we have the following cases of correspondence.

(i) (ab) and (cd). To obtain the closed figure the open figure must be followed from

end to end and back. If the closed figure (cd) is traversed in a reverse direction the

open figure must be turned upside down. This applies to Figs. 1, 4, 9.

(ii) (ad) and (be). If the closed figure (be) is traversed in a reverse direction, the

open figure must be reversed from left to right. This applies to Figs. 3, 10.

For the cases (ac) and (bd) a reference to their meaning and to (a), shews that

the terminals admit of self-correspondence in each, not of mutual correspondence; and in

fact (iii) (ac) has correspondence with its own image in the major axis regarded as a

* Cf. A Kinematical theorem in Kadiation, Proc. Camb. Phil. Soc. Vol. xvi. part 4, p. 333.
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mirror (Figs. 2, 8), while (iv) (bd) (Fig. 6) has complete self-correspondence. In each case

the correspondence theorem is valid as a method of construction, and the terms of 21

correspond to those of 22pcosi in its own configuration but taken from opposite ends of

the quarter-cycle. No correspondence is established between (ac) and (bd) either as regards

construction or cyclic length.

Extra-focal cycles have correspondence as follows.

(v) For an odd number of sides there is correspondence between a case which has

an end of the major axis and a parallel to the minor, and the case in which major and

minor are interchanged. For pentagon and other figures presenting two or more species?

those correspond which give like figures in the circle. The correspondence holds for the

circle, but the two figures then differ only by rotation through a right angle.

(vi) For figures of 4n sides there is correspondence between those which have four

points at the ends of the axes, and those which have four lines parallel to the axes, like

species being implied as in (v).

(vii) Of the remaining extra-focal cases, those with 4w-f2 sides, one type has points

at the ends of the major axis and parallels to the same; in the other minor takes the

place of major. Each type has self-correspondence, but no correspondence between them is

established.

| 7. It is an appreciable advantage of the method of correspondence and use of the

parallel ruler that no subsidiary lines need be drawn in the figure; subsidiary points on

the auxiliary circle must of course be marked.- If we invoke the aid of analysis to form

an eliminant and obtain a numerical value of one terminal variable, a correct drawing

may be secured at the first attempt. Either the terminal found or that of the reciprocal

figure presents a chord given in position, so that we have a basis for the construction

of figures pari passu as on p. 458. Also in one or the other figure the last line drawn

in the quarter-cycle will be a chord which should pass through an end of an axis or

through the centre. If we rely entirely on graphical work we may expect a deviation from

the true position of this last line, and then aim at securing a deviation in the contrary

sense in a second attempt, when if the figure is possible an adjustment of starting point

between the positions used should furnish a good approximation. If self-correspondence

takes the place of correspondence of two figures, the construction proceeds from the two

terminals and when the figure is completed one parallelism remains to be used as a

verification of accuracy, or criterion of success or failure in the choice of initial position.

The analysis consists in writing the tangent of each eccentric angle (or its comple-

ment) equal to the tangent of an angle of inclination of a chord to one or the other axis.

I have taken inclination to the minor axis, and written the formulae with such signs as

to make all angles 8 positive angles less than a right angle. The points to which the

angles refer will be clear from formulae and figure taken together. The eliminant is often

applicable to other cases than that for which it is originally obtained. The examples include

cases up to cycles of 10 lines, intra-focal and extra-focal.
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Intra-focal cycles. Ex. (1). (ab) and (cd) with n = l, V and lattice of 4 sides (fig. 1).

The correspondence is given by

~ sin 0 A „ tan 0'

tan 0 = . , tan 8 = . ;whence 1 - e2 = e2 cos 0 = e2 cos2 0'.

Vl - e2 (1 + cos 0) Vl - e2

The condition is 2e2>l, and an easy construction is to make the central chord equal to the

distance between the foci.

Ex. (2). (ab) and (cd) with n=2, W and lattice of 8 sides. The formulae with signs

suited to the type admitted at the greater limit e = sin67|° are

. tan0/ ± n sin 02' — sin 0/

tan 0! = u , tan 02 =

Vl -e2' Vl - e2 (cos 0/ + cos 02')'

tan0/ = _gmgi"Binga ^ _ sin 02

Vl- e2 (cos 01 + cos02)' ^"V2 Vl -e2(l + cos02)'

leading to (1 - e2)4 - 4e2 (1 - e2)2 cos 02 - 2e4 (1 - e2)2 cos2 01 - 4e4 (1 - e2) cos3 0X + e8 cos4 0X = 0, or to

(1 - e2)4 - 4e2 (1 - e2) (1 + e2)2 cos2 0/ + 2e4 (1 - e2) (3 4- be2) cos4 0/ - 4e6 (1 - e2) cos6 0/ + e8 cos8 0/ = 0,

either eliminant valid also for the type admitted at the lower limit e = sin 22|°. For

b/a = 7/8 the solution is cos 02 = "542407, which applies to the type admitted at e = sin22^°,

%. 4. The other type is shown in fig. 9 for which 6/<x=l/3 and cos 0X = *73468.

Ex. (3). (ac) with n = 2, JST form (fig. 2). The self-correspondence is expressed by

n tan 02 j n sin 0X — sin 02

tan 01 = ^ „ , tan 02 = •

Vl-e2' Vl - ea(cos01 + cos 02)'

leading to e2 sin2 02 = 1 - 2 Vl - e2} e% sin2 0X = 3e2 - 2 - 2 (1 - e2)i.

The condition of existence is 4e2 > 3, and a construction is got by making the central

chord = 2 (a - b).

Ex. (4). (ac) with w = 3, open figure of 5 lines. The self-correspondence with signs

for the form admitted at 6 = sin 36° is

n tan 03 A ^ sin 03 — sin 02 A sin 0X + sin 02

tan 6l = , tan 02 = , , tan 03 = - . ,

Vl - e2 N\-e2(cos 03 + cos 02) Vl - e2(cos 0X + cos 02)

leading to

(1 + Vl - e2) (1 - e4 sin2 02) (2e2 -1 - e4 sin2 0^ + 2e2 Vl-e2 {1 - e2 (2 - e2) sin2 02} Vl-e2sin2 01 = 0.

With z = Vl-e2sin201, if 6/a = 4/5 the equation is 256 +128^ - 328s3 - 81^4 = 0, and

# =-97823, sin 01 = '34603, the value used in fig. 8. The eliminant for the form admitted at

e = sin 72° is

(1 - Vl^e2) (1 - <?4 sin2 02) (2e2 - 1 - e4 sin2 0,) - 2^ Vl-e2 {1 - e2 (2 - e2) sin2 02} Vl-e2sin201 = 0.

For 6/a = l/4, 1 - 10^ +170^3- 225^4= 0, '671717, sin 02 = -765103.

Ex. (5). (fecZ) with w=l, lattice with 6 sides (fig. 6). Self-correspondence gives

. sin0, .

tan0=-==— or e2cos0 = Vl-e2 + l-e2.

vl — e2(l +cos 0)

Yol. XXL No. XVII. 61
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The condition of existence is 4c2 > 3, and a simple construction is got by making a chord

through an end of the minor axis = a.

Ex. (6). (bd) with n = 2, lattice with 10 sides (fig. 5). The self-correspondence with

signs as for the form admitted at e = sin 36° is

sin 01 4- sin 02 _ n sin 0l

tan #!:

Vl - e2 (cos 0! + cos 02)'

tan 02

Vl-e2(l +COS0!)'

leading to

(1 - c2) Vl-e2+{l - e2 - (1 + e2) VI^ C21 COS 0i

+ {2(1- e2) - (2 - e2) VI~^72} cos2 0X - e2(1 - Vl^e2) cos3 0X = 0.

Fig. 5 has b/a = 4/5 which makes cos 0X = *944. The eliminant for the form admitted

at e = sin 72° is

(1 - e2) Vl-e2 - {1 - e2 + (1 + e2) Vl^72} cos 0, - {2 (1 - e2) + (2 - c2) Vl^72} cos2 0,

+ e2(l + Vl^c2) cos3 02 = 0.

Fig. 7.

Fig. 8.

Ex. (7). {ad) and (6c), open lattice of 3 lines and star with 6 sides (fig. 3). The

correspondence is

tan 0

tan 0i = . , tan 02 =

vl -e2

sin# sin^ + sintfo

, , tan 0 = . —;

VI - e2 (1 + cos 0) Vl - e2 (cos (9X + cos 02)

whence sin2 0 + 2 sin 0 = (1 — c2)/c2 or sin 0 = 1, requiring of.

For w = 3 in (ad) and (6c) the solution in fig. 10 for b/a =1/2 was obtained by graphical

work only.

Extra-focal cycles. Ex. (8). Triangle (fig. 11). The correspondence is

, n, l-fsintf a sin0'

tan 0 = , tan 0 =

Vl-e2cos0' Vl - c2(l + cos<9')'

whence e2sin20 + 2 (1 - c2) sin 0 -1 = 0, and e2sin 0 = Vl-^+e4-1 + e2. Note result

cos 0 sin 0'
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Ex. (9). Pentagon. The correspondence with signs as for uncrossed pentagon is

, n, 1 — sin 01 , A, sin 02 + sin 01

tan#2' = / —, tan 01 = , =—= ,

Vl - e2 cos 02 V1 - e2 (cos 0X - cos 02)

tan 0X =

sin 0/ — sin 02

, tan #2 = -

sin 0/

Vl-e2(cos (9/+cos 0/)'" ~* Vl -^(l-costf/)'

leading to

1 - 2 (1 + e2) sin 0X - (4 - 9e2) sin2 0X + 8e2 (1 - e2) sin3 0X - e4 (9 - 4e2) sin4 0X

+ 2e4 (1 + e2) sin5 ^ - e6 sin6 ^ = 0,

which for e = 0 is satisfied by sin 0j = sin 18° or — sin 54°, the latter root referring to the

pentagon with 144° at the centre. The value sin 01=-3578 for 6/a=4/5 is used in fig. 12.

Fig. 9.

Fig. 10.

Ex. (10). Hexagon. The self-correspondence for the form with parallels to the minor

, or (1 + Vl - e2) cos 0 = Vl - e2; that for the form with

axis is tan 0 =

sin 0

Vl-e2(l-cos 0)

parallels to the major axis is tan & = s^n_^— or q + Vl — e2) sin 0' = 1, with

Vl — e2 cos 0

cos 0 sin &

as in Ex. (8).

Simple constructions are got by making the chords not parallel to an axis equal to

a or b in the respective forms.

Ex. (11). Octagon. The correspondences are

n sin 0, — sin 02 A „ sin 0 n 1 — sin 0

tan 6 = . , tan u1 = , , tan t?2 = .:

Vl - e2 (cos 02 - cos 0J Vl - e2 (1 - cos 0) Vl - e2 cos (9

from which (1 — e2) sin 0 = cos 0 (1 — e2 sin 0), leading to

1 - 2e2sin 0 - 2 (1 - &) sin2 0 + 2e2sin3 0 - e4sin4 0 = 0.

The value sin 0 = *80344 for b/a = 3/5 is used in fig. 7. The crossed form of octagon

has (1 — e2) sin 0 = cos 0 (1 + e2 sin 0), giving the previous eliminant with — sin 0 for sin 0.

In this form we pass from A to a point in the 2nd quadrant, and thence to the lower

end of the minor axis. The value sin 0 = — '90038 for b/a = 4/5 is used in fig. 13.

61—2
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Ex. (12) Decagon. The self-correspondence for the case with parallels to the minor

axis is

sin 01 sin 02 — sin 61

tan &>

Vl-^CL-cosflO

, tan 0l =

Vl — e2 (cos 01 — cos 02)'

leading to

(1 - e2) Vl -e2 + (1 - e2 + (1 + e2) Vl - e2} cos 0X - (2 (1 - e2) + (2 - e2) Vl - e2} cos2 ^

- e2 (1 + Vl ^e2) cos3 0! = 0,

which for e = 0 has roots cos 0X = cos 86° or cos 108°. If for the case with parallels to the

major axis we use eccentric angles,

Vl — e2 sin fa

tan fa =

1 — cos fa

-, tan fa =

Vl — e2 (sin fa — sin fa)

cos fa — COS fa'

with eliminant

1 + {l-2e2 + Vl-e2} cos fa - {2 - e2+ 2 Vl - e2} cos2 & + e2(l + Vl^e2) cos3 fa=0,

derivable from the previous by using cp for 0 and a/b for 6/a. The value used in fig. 14,

a deformation of the decagon with angle 108° at the centre, is cos fa = — *40204 for 6/a = 4/5.

Fig. 11. Fig. 12.

§ 8. The conditions of existence for intra-focal types formed a part of the treatment

of the initial stage; it may be useful in connexion with two or three examples to point

out how these conditions enter into and affect the eliminant in its general form. In

Ex. (2) cos 0l is given by

(1 - e2Y - 4s2 (1 - e2)2 cos 01 - 2e4 (1 - e2)2 cos2 0X - 4e4 (1 - e2) cos3 01 + e8 cos4 61 = 0.

We are concerned only with values of cos^ between 0 and +1, at which limits the

left-hand member has the values (1 — g2)4 and 1 — 8e24-8e4 respectively. The equation of

condition for the type is u3 = 0, and uz = 1 — 8e2 + 8e4, so that a connexion is at once

apparent. It is hardly necessary to give a detailed argument, but the position is that for

e < sin 22|° (the roots of the equation in e are sin 22^° and sin 67£°) there is no suitable

value of cos 0lf for sin67^° >e>sin 22|° there is one value, and for e > sin 67^° there are

two values. Each form persists for values of e greater than that at which it is admitted.

With this may be contrasted the extra-focal case of Ex. (11), where the left-hand member

of the equation in sin 6 has for sin 0 = -1, 0, +1 the values — (1 - e2)2, 1, - (1 - &f in

which the# signs are not dependent on the numerical value of e.
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There is one case in which extra-focal and intra-focal cycles are or may be given by

a single equation of condition, viz. (bd) and the extra-focal of 4^ + 2 sides with two lines

parallel to the minor axis. The first eliminant in Ex. (12) is

(1 _ e2) VI^72 + {1 - e2 + (1 + e2) \Tl-e2} cos 61

- {2 (1 - e2) + (2 - e2) Vl-62} cos2 61 - e2 (1 + Vl - e2) cos3 0X = 0,

which differs only in the sign of cos61 from the second eliminant in Ex. (6) corresponding

to the root admitted at e = sin 72°. For cos 0X = 1, 0, — 1, — oo the left-hand member has

the values — 1, + (1 — e2) Vl — e2, 4e2 — 3 - 2 Vl - e2, + oo ; the third of these values is negative

for values of e < sin 72° (the higher root of 16e4 — 20e2 + 5 =0), but is positive for e>sin72°.

There is always one root between 0 and +1, and another root between 0 and — 1, these

roots corresponding to the extra-focal cycles. If e < sin 72° the third root falls between

— 1 and — oo, but if e > sin 72° it falls between 0 and — 1 and is then applicable to the

intra-focal case. The two negative roots are clearly separated, for a chord from B to a

point 6 passes through a focus if 1 — e2 + (1 + e2) cos 6 = 0, which real value makes the

left-hand member of the equation negative. The first eliminant in Ex. (6) corresponding

to the form admitted at e = sin 36° is quite different in character, it has no roots for less

values of e and has no connexion with extra-focal forms.

Fig. 13. Eig. 14.

§ 9. The lengths of the cycles may be stated explicitly when the equation of condition

is not of degree higher than the second. The axes themselves are cycles of lengths 4a

and 46; with L for length of cycle other cases are as follows.

Intra-focal (ab) and (cd), V and lattice of 4 sides, L = 4ta/e, condition 2^2>1.

e>\.

(ad) and (6c), open lattice and star pattern of 6 sides, L — 4a V2 — e [Ve + —), condition

(ac) and (6c?), N and lattice of 6 sides, L = 4 (a2 - ab + b2)/(a - 6), condition 4e2 > 3.

Eoctra-focal. Rhombus and rectangle, L = 4 Va2 -f 62.

Triangles with sides parallel to respective axes have

L = 6a Jl -h e2+ 2 Vl - e2 + e4/(l + e2 + Vl - e2+ e*)

= 6a2 J%a2-b2+'£ <s/a4-a*& + ¥/(2a* - 62 + Va4 - a262 + 64)

= 2 V3 (a2 + 62 + Va4-a262+ 64)/7a2 + 62 + 2 Va4 - a262 + 64;
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in reality symmetrical with regard to a and 6, though in the earlier form it appears un-

symmetncal.

Hexagons whether they have sides parallel to the major or to the minor axis have

L = 4(a? + ab + b2)/(a + b).

The reader will recall that in two out of the three intra-focal pairs, and in two out

of the three extra-focal pairs, equality in the length of circuit for the members of a pair

was established as part of the correspondence theorem. In the third pair of each kind

there is self-correspondence for each member of the pair, but no connexion was established

between them. Though not proved, it seems probable that the equality which we find to

exist in the simplest cases of these types is a general property. In the extra-focal case

of 4w + 2 sides it depends on the cyclic path being a symmetrical function of a and 6,

which is probably the case for all extra-focal cycles. For the intra-focal types (ac) and (bd)

I have some evidence in graphical work that the equality exists for cases of higher order.

With respect to each intra-focal type it will be observed that with increase of the

number of variables the limiting values of eccentricity are extended in both directions,

towards 0 and towards 1. For an ellipse of small eccentricity, apart from the minor axis

itself, only intra-focal circuits for which n is great are possible. Thus in a process of

gradual deformation of a circle to an ellipse the intra-focal circuits first admissible have

a great length of path, while extra-focal circuits are slightly altered from the shapes and

lengths of polygons in a circle.

§ 10. In conclusion it may be shown that the theorem of correspondence applies also

to the ellipsoid. If (Imri) is a point on a unit sphere, (al, bm, cn) may be taken for co-

ordinates of a point on an ellipsoid. The correspondence of the point {x'y'z) with the chord

joining (x^z^ to (x2y'2z2) is then expressed by

?*12 7*12 rJ2

p'2"^"^4 c4 ~a2_i~ 62 c2~r122| a2 + ¥ ^ & J>

i.e. r122 = 2p2(l — IjL — m^m^ — n^), or with a reciprocal correspondence r12=2p'cosi' as for

the ellipse.

The original relation then gives 2pT cos %' = a (l2 — h), and two others. But if (X'fiv)

are direction-cosines of the normal at {x'yV),

a2\' = pV or ak' = pT, b^ — f'm, cv=pn\

and so 2V cos i' = l2 — lly 2//cos %' — m2 — m1} 2z/cos %'= n2 —

i.e. the normal in question is parallel to the chord from (lira1vn) to (Z2m2^) on the sphere.

Thus with a reciprocal correspondence the chords from (Xiy^) to {x2y2z2) and from

(x2y2z2) to (x3y3z3) and the normal at (x2y2z2) are parallel respectively to radii to (Vm'n')

and (!W) on the sphere and the chord joining them. This involves the law of reflexion.

No attempt has been made to deal with the problem of cyclic paths in an ellipsoid.
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.
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XVIII. The Problem of 'Derangement' in the Theory of Permutations.

By Major P. A. MacMahon, R.A., Sc.D., LL.D., F.R.S.

Honorary Member Cambridge Philosophical Society.

[Received May 1, 1912. Read May 6, 1912.]

Section I.

1. In a paper entitled 'A Certain Class of Generating Functions in the Theory of

Numbers/ Phil. Trans. Roy. Soc, 1894, A. pp. Ill—160, I have given a solution of the

general problem of 'derangement' in the form of a symmetric function generating function.

It was therein established that the number of permutations of the assemblage of letters

X1^X2^...Xn^>

which are such that exactly m of the letters are in the places they originally occupied, is

equal to the coefficient of the term

amx1^x.^2 ... x^n,

in the development of the product

(aoc1 + oc2 + ... + xn)^ Oi + a#2 -f ... + xny* ... (x1 + x2-\-... + aa?n)*».

'This is the redundant generating function.

It was also shewn that the same number is the coefficient of the term amx^x2&... xj**

or of am(^2... %n), in the notation of symmetric functions, in the development of the

algebraic fraction

1

1 - a2#! + (a — 1) (a + 1) 2#i#2 -(a-l)2(a + 2) ^xxx2xz + ... + ~ ^-T'1 (a + ft — 1) ^1^2

This does not involve the numbers g2,... %n and is the condensed generating function.

If the number in question be denoted by

{^; ... fnl

the condensed generating function is clearly

2{m; f1&...fn}(fif....fn)a«.

I propose, in this short paper, to submit the generating function to examination so as

to determine the properties of the number

Yol. XXL No. XYIII. 62
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468 Major MACMAHON, THE PROBLEM OF «DERANGEMENT'

2. I write (x - #0 (x - x2) ... (x - xn) = xn — pxxn~^ + p2xn~2 - ...,

so that the generating function is

1

1 - op! + (a - 1) (a + l)p2 - (a - l)2 (a + 2)p3 + ••• + (-)n(a - O + n -^Pn'

When, in the generating functions, we put a = 0 the numbers generated are

{0; ftfc...?»};

and the functions become

(x2 + xs + ... + xny*(x1 + xs + ... +0n)f« ... + #2 + ... +^i)f»,

1 -p2-2p3- ... - (7l-l)^n*

If £x = £2 = ... = £w = 1 some properties of the numbers are obtained in a very simple

manner from the redundant function

(x2 + xz + ... + xn)(x1 + x3 + ... +xn) ... + #2 + ... +

for this may be written

(pi - #0 (2>i - O .. • Oi - «n),

or Pin~2P2-piQ1-sP3 + ... + (-)n2>»,

and observing that

when (l)n-*(ls) is multiplied out so as to be expressed as a linear function of monomial

symmetric functions, the coefficient of xxx2...xn or of pn is seen to be

2l—3l + +

which may be written

the well known value of the number

{0; 1»)

which is met with in the 'Probleme des Rencontres/

3. Similarly it is easy to find an expression for

{m; 1»};

for, retaining a in the redundant generating function and putting

1 — a = 6,

it becomes (p1 - bxx) (px - bx2) ... (px -;

or p2n - bp? + b2Pln~*p2 - ... + (-)nbnpn.

Developing this expression, so as to obtain the coefficient of pn, we find

( b2 • bn)
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IN THE THEORY OF PERMUTATIONS. 469

and expressing this in terms of a we readily find

{0; 1»} + Q a {0; 1—} + g) a? {0; 1—} + ... + (*)«";

and thence {m; lw}=(™) {Q;

It is readily seen a priori that this result is correct;' for we can select the m letters,

which are to remain undisplaced, in (U ) ways;, and, for, each of these selections, the

remainiDg letters can be permuted so as to be all displaced in {0; \n~™} ways.

The whole of the permutations can be found by summing {m; ln) from m = 0 to m = n.

Hence the well known formula

(0; l»} + (*){0; l^j + g)^ l»-} + ... + Q = W!

The reader is reminded that the early values of {0; ln] are

1, 0, 1, 2, 9, 44, 265, 1854, 14833, ....

From the above results it is easy to shew that

{0; l»} = (»ll)[{0; lM} + {0;

{0; l»} = w{0;

both of them well known relations.

4. We will now consider the condensed generating function

1

l~p2-2p3-3p±- ... -(n- l)pn9

wherein {0; fift...^} is the coefficient of the symmetric function (& f2 • • •

We may regard £l5 |2, ... %n as numbers in descending order of magnitude and n

as indefinitely great. The numbers £2> ... %n may be any integers, zero not excluded, but

there are certain symmetric functions that, from a priori considerations, must be absent.

For clearly

{0; ££...£4=0,

if £i>£2 + £s+ + fn. For example such functions as (21), (421), ... do not present them-

selves in the development.

In the first instance we will restrict ourselves to the numbers {0; Is} which we will

write Ps for convenience.

Write -z —^ = 1 + PiPi + P2p2 + ... + Pnpn + other terms;

1 — p2 — &pz opi ...

or 1 = (1 -p2 - 2^ - 3p4 - ...) (1 + PiPi + P2P2 + ... + Pnpn) + other terms.

On the right-hand side to find the coefficient of (ln) or pn the relevant terms are

PnPn - Pn-2P2Pn-2 ~ 2Pn-3p3pn-Z - ... - (ft - 3) P2pn-2p2 - (w - 2) Ptfn^p^ - (tt - 1) J0W,

62—2
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470 Major MACMAHON, THE PROBLEM OF 'DERANGEMEOT'

and since, if n > 0, the coefficient of pn must be zero we have

Pn = Q Pn_2 + 2 g) PB_3 + 3 (*) PM + ... + (n -1) ,

{0; 1"} = Q){0; l»-2} + 2g){0; + +

a new relation, and the verification for n = 6 is

265 = 1.15.9 +2.20.2 4-3.15.1 + 4.6.0 + 5.1.1.

The law that has been established can be exhibited by putting

(n-5-1) Ps = QSin',

so that Qn,n = — Pn and Q»-i,w = 0;

then 0 = Qni n + ^ Q»-if» + Q) Q**-*,n + ..• + (^j Qo,n,

and now writing symbolically Qs,n = Qio,n>

(Qo,n + lf=0.

5. Next consider the expansion of (1 — p2 — 2p3 — 3p4 — in ascending powers of

0p2 + 2ps + 3^4+...); we have

(Pi + 2p. + 3p4 + .. = 2 . I*2. 2s* • 3S3... pfp9«Pf*...,

where s2 + s3 + s4 + ... =5.

The coefficient herein of pn or (ln) is readily obtained because the coefficient of (ln)

in the development of the product

(1«)«.(1»)«8 (14)*<...

is, by a well known theorem of symmetry, equal to the coefficient of symmetric function

(2^3*84**...) in the expansion of (l71); this, by the multinomial theorem, is

nl_

(2!)** (3!)6'3(4!^77.'

Hence the portion of the right-hand side that we require is

S Slnl (ln)

s21 s3! s, I ... (2 . 0 ly* (3 .11)5* (4 . 2 !/« ... v h

the summation being in respect of all values of s2, s3) s4, ... such that

2s2 + 3s3 + 4s4+... = n,

s2 + s3 + s4 + ... = s.

Thence the coefficient of (lw) in the expansion of (1 -p2 — 2p3 — Sp4— is

1' 1 7 s2!53!54! ... (2.0!)** (3. 1!)»3(4,. 2!)**...'

where we have the additional summation in regard to all integer values of s.
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This solution depends upon the non-unitary partitions of n; for n = 8 the calculation is

Partition gives Number

24

2520

>>

322

6720

»

422

3780

))

42

630

)}

53

896

>J

62

280

8

7

53

Total 14833 the value of {0; l8}.

6. The above method is only appropriate for obtaining results over a limited range

of the expanded function. We require theorems of a more general character and the

symmetric function operators are competent to produce them. The operators available are

Writing p2 + 2p3+ 3p4+ ... = B it will be found that for the particular operand (1— B)~l

these operators are connected by special relations and that every such relation is of

significance in the theory of the generating function. A special object of the following

investigation is the discovery of operators which have the effect of leaving the special

operand unaltered.

Since dsB = (s — 1) +s {px +p2 + ps+ ...) -f-B, when s>0,

we find (ds-dt)B=(s — t)(l +pi+pz+pB + ...)> when £>0;

whence if u, v be integers also, greater than zero,

(u - v) (ds -dt)B=(s- t) (du -dv)B;

shewing that, for the particular operand B,

(u — v) (ds — dt) and (s — t) (du — dv)

are equivalent operators. Moreover since these operators are linear the equivalence obtains

for any power of B and for the operand (1 — B)~l, u, v, s, t being any positive integers,

zero excluded. This result has been reached by the elimination of p1-\-p2+p3+... and

B; if we only eliminate px + p2 -I- pz + ... we find

(td8-8dt)B=(8-t)(l-B);

leading to the important result

tds — sdtl 1

s-t 1-B l-£;

shewing that the operation

tds — sdt

or

s — t s — t

leaves the operand (1 — B)"1 unaltered.

ds dt

s t
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Major MACMAHON, THE. PEOBLEM OF < DERANGEMENT'

7. The two results that have now been established lead to a large number of

relations between the operators which may be applied forthwith to the study of the

properties of the coefficients which arise in the development of the generating function

(1 — B)~\ The difficulty lies in selecting the relations so as to best exhibit those pro-

perties. Generally, in applying the operator to the expanded form of the generating

function, we first express the operators ds in terms" of the operators A in order to take

advantage of the facility with which the latter operators are performed upon symmetric

functions which are denoted by partitions.

It was shewn by Hammond* that the linear operators ds have the expressions

the law being the same as that which expresses the sums of powers of quantities in

terms of their elementary symmetric functions. Moreover Hammond also shewed (loc. cit.)

that the operators A have the effect

A (Vz/...) = 0,

if s is not included among the integers \, v, ...

DKlD™>Dvn... (\lfimvn) = l. »' •

We* will in the first place consider the equivalence >

(u - v) (ds - dt) = (s -1) (du - dv),

in the simple particular case obtained by putting (uy v, s, £)=(3,_2, 2, 1), viz.

d3 = 2d2 — dx.

Transforming to the operators A> we see that the operation -

(A3 - »A A + 3 A) - 2 (A2 - 2 A) + A

reduces the function (1 — B)~x to zero; writing the function in the form

2{0; 1^2^3-3...}.2^3*8...),

and, after operating, equating the coefficient of (1*12*"*3**...) to zero, we find

{0; l7ri+32^37r3...}-3{0; 2fr«+13*3..."} +3 {0; l^2^S^+1...}

-2[{0; l7^2 2^3-3...} _ 2 {0; 1^2^+13*3...}] + {0; 1^+12^S^'...} = 0.

We thus obtain a linear relation between certain groups of numbers which are found

throughout the whole extent of the expanded generating function; for the numbers

77*!, 7r2, 7r3, ... are entirely at our disposal. The way in which the specification of the

numbers is connected with the formula which expresses sums of powers in terms of

elementary symmetric functions will be noted. In mathematical shorthand we may denote

the above relation by

<3){}-2(2)n + (l){} = 0.

* Proc. Lond. Math. Soc.
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r ]\~ - IF. THE THEORY OF PERMUTATIONS. 473

As a simple example put 7r2 = 1, 7r2 = 7r3= ... = 0; them -

{0; l4}-3{0; 212} + 3 {0; ,31} - 2 {0; I3} + 4^0; 21} 4- {0; l2} = 0,

and this relation-, since {0; 31 f = f0; 21} = 0, yields

3{0; 212} = {0; l4}-2{0; l3} + {0; l2} = 9 - 4 + 1 = 6 ;.

so tnat {0; 212) == 2; which is obviously'correct

8. In general from the relation

(u-v) (d8 - dt) = (s-t) (du - dv),

we proceed- to the relation

. fa - v) [(s){} - (f){1) [(*){} - (V){ }], .

a valuable property of the numbers under examination.

9. Next we see that the result

td8 — sdt 1 1

s-t l-B l-B

gives rise to the equivalence tds — sdt = s — t It will be found that there are several ways

of dealing with this.

We will first consider the particular case

^-^ = -(£-1);

putting t = 2, we deduce

2!A = A2-2A-i;

putting t = 3 and reducing by means of the relation just found there results

3 ! A = A3 - 6 A2 + 3 A + 4,

and, thence similarly

4! A = A4 -12A3 + 30A2 + 4A -15,

5 ! A = A5 - 20 A4 + HO A3 - 140 A2 - 95 A + 56,

&c.

and it is clear that we can express D8 in terms of A-

To calculate these relations we remark that the algebraic equivalent of the relation

td1- dt = -(t-l) is

-(*-*)>

and since ps corresponds to A we have to express ps in terms of px being given that

tlh -st = -(t- 1),

where (t) has been replaced by st; thus since

2 lp2 = Si2 — s2,

3 lps = 513- 3*2$! + 2*8,

4 !p4 = Si4 - 6s.A2 + 3s./ + 8s3S! - 6s4,

&c.
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474 Major MACMAHON, THE PROBLEM OF 'DERANGEMENT'

we find 2!#5=^a2-(2p1 + l),

3 ! p, = p* - 3 (2Pl + 1)^ + 2 (SPl + 2),

4 1^ = ^-6 (2Pl +l)^2 + 3 (2Pl + iy + 8 (Sip, + 2)Pl- 6 (4px +3),

&c.

and now we have merely to write D8 for p8 to arrive at the relations under consideration.

We can of course write down the general formula for D8 expressed as a function of the

elements

A, 2A + 1, 3A+2, 4A + 3, ....

10. Applying these relations to the expanded generating function we first obtain

2!{0; l7r»2^+13'r3...} = {0; 1^2^^ ...} - 2 {0; 1^2^ 3^ ...} - {0; l*i2**3**...}.

A particular case, putting {0; ls}—PSi is

2!{0; 21s}=PsH2-2Pm-Ps;

a convenient formula for {0; 21s} which may be given another form by utilizing known

properties of the numbers PSy viz.:—

2{0; 21s} = (s2 + s-l)Ps + (-)s-1(s-l).

Thence we obtain values of {0; 21s}

for s = 0, 1, 2, 3, 4, 5, 6, 7, 8, ...

{0; 21s} = 0, 0, 2, 12, 84, 640, 5430, 50988, 526568, ....

We next obtain

3!{0; 1^2^S^+1 ...} = {0; 1^+32^3^} - 6 {0; 1^2**3"* „.}

+ 3{0; l^+12'r237r3...} + 4{0; 1^2^3^...};

and thence 6 {0; 31s} = Ps+3 - 6Ps+2 + 3Pm + 4PS.

We derive values of {0; 31s}, viz.:—for

5 = 0, 1, 2, 3, 4, 5, ...

{0; 31s} =0, 0, 0, 6, 72, 780, ....

Similarly 24 {0; 41s} = Ps+4- 12Ps+3 + 30Ps+2 + 4PS+1 - 15PS,

120 {0; 51s} = Ps+5 - 20Ps+4 + 110Ps+3 - 140Ps+2 - 95Pm + 56PS;

and generally, in the relation which expresses Dt in terms of powers of Dly we are at

liberty to substitute

{0; tl*} for A and Ps+K for Df.

Also we may, more generally, substitute

{0; 1^2*2...^+!...} for Bt and {0; l*i+*2"*3v>...} for Df.

The reader may also proceed to the relation

24 {0; 41«} = j^^!-12^^! + 30(-^^

and will find no difficulty in reaching the general formula.
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IN THE THEORY OF PERMUTATIONS. 475

Again, from the relation

is derived tbe formula of reduction

{0; 2r l8} = i {0; 2>-1P+2} - {0; 2r~1l8+1] -1 {0; 2*-1 1*};

and a multitude of similar results are obtainable.

Section II.

11. The generating function

l-ap1 + (a-l)(a+ l)p2 - (a- l)2 (a+ 2)p3 + ...'

which when expanded is

2 {m; 1^2^3*3...} am (1^2^3*3...),

may be similarly dealt with. For write it (1 — (7)-1 where

C = opx - (a - 1) (a + 1)^2 + (a - l)2(a + 2)_ps - ...;

then dsC = (a - l)s (1 - 0) + 5 (a - l)*"1

where E = 1 — (a — 1) p1 + (a - l)2 p2 — ....

From this relation we obtain

{ds + (-)*"i+1 (a - l)r* dt} G = (a - l)*"1 (s-t)E;

and, herein putting 1 — a = b,

(b'-sds-b^tdt)C={s-t)E)

shewing that, for an operand O,

(u - v) (b'-'ds - b^dt) = (s-t) (fr~udu - lT*dv)

are equivalent operations. Since the operations are linear the equivalence persists when the

operand is (1 — G)~\

If, from the original expression of dsG, we eliminate E we find

{tb% - sbsdt) G = (s-t) bs+t (l-G);

tb-sds-sb-tdt 11.

Whence ■l.-G'-l-C

establishing that the operator

tb~sds- sb-Ht

leaves the generating function unchanged. In other words the operator

tb-'ds-sb-Ht-s + t

causes the function to vanish.

In regard to the two operators

(u _ V) (fr~sds - fr-hit) -(s-t) {fr-udu - b^dj,

tb-sds-sb-tdt-s + t,

which cause the generating function to vanish, it is to be remarked that, regarding b as

being of weight unity and ds as of weight s, the first operator is of weight unity and
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176 Major MACMAHON, THE PROBLEM OF ''DERANGEMENT'

the second of weight zero. We are thus able to proceed to these operators from those

obtained for the case b = 1, viz.:—

(u-v)(ds-dt)-(s-t)(du-dv),

tds — sdt — s + t,

by introducing, in each term, such a power of b as will make every term of the same

weight.

12. From the first operator taking the simple case

dz - 2bd2 + b% = 0,

we apply it to the expanded form

2 {m; 2*2 3*3...} am (1*' 2** 3*»...) -

of the generating function. We thus obtain

2 fra; 1^ 2*2 3*3} am {(l**-3 2"* 3*3...) - 3 (1*-12*2-13V,...) + 3 (1*12^ 3^-1...)}

m, it

-2S{m; l*i 2*2 3*3...) (am - am+1) {(1* ~2 2*2 3*3...) - 2 (1*> 2*2-* 3*3 ...)}

m, 7r

+ 2 {m; 1*' 2*2 3*3...} (am - 2am+1 + am+2) (1* "x 2*2 3*3...) = 0.

Herein selecting the coefficient of (1** 2**3ff»...) we have

2[{ra; 1^2*2 3*3...}-3 {m; l*i+12**+13**...} + 3 {m; 1** 2*2 3*3+1...}] am

m

- 2 2 [{m; 1^+2 2*2 3^ ...} - 2 {m; 1*> 2*2+* 3*3...}] (am -

m

+ 2 [m; 1^+12*2 3*3...} (am - 2am+1 + am+2) = 0,

and, herein selecting the coefficient of am, we find that

{m; l*i+32*23,r3...}-3{m; 1**+12**+13*3...} + 3 {m; 1*» 2**3*3+1...}

-2[{ra; l^2 2*2 3*3...}-2 {m; 1*> 2"*+1 3*3...}]

+ 2 [{m - 1; 1^+2 2*2 3**...} - 2 {ra - 1; 1*' 2^ 3*3 ...}]

+ {m; l*i+12*«3*3 ...}-2{m-l; l^+i2*23*3...} + {ra- 2; 1**+12*2 3*3...} = 0,

a relation connecting ten of the coefficients.

In applying this formula it must be noticed that

{m; 1*12*23*3...},

denoting as it does the number of permutations in which exactly m of the letters are

not displaced, must be zero,

(i) when m is negative,

(ii) when m>2s7rg, i.e. greater than the number of letters in the permutation.

Also it is manifest that

{2s<7rg; 1^2**3-3...} = {2*7r8-l; 1*2*23*3...},

since if all but one of the letters are undisplaced then all must be so.

Bearing these facts in mind there is no difficulty in verifying the formula in some

cases.
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13. Generally we may obtain the relation between the coefficients corresponding to the

relation

(u- v) (ftsds - fr-tdt) - (5 - t) {b^du - bl~vdv) = 0,

for writing this

(u - v) d8 -(u-v) bs~l dt-(s-1) b8~u du + (s-1) bs~vdv = 0, .

where s, t, u, v are in descending order of magnitude, and denoting the expressions

{m; 1«*+12'*&*....},

{m; 1**+*2"*&>...} -2 {m; 1^2^+1S^

{m; lff'+32^37r3...}-3{m; 27r*+13"*...} + 3 {m; I** 2^37r3+1...},

by (2){}m> (3){}«> — respectively, we find

— (u — v)

-(«-«)

+ («-<)

(0{ }«-(*! *) (0{ U-i + (* 2 ') <*)< U-2 - •••

(*){ }m - ^ ^ + C 2 0 (^{ U"2

= 0,

a relation which, if iVs denotes the number of partitions of s and s, £, u, v are all different,

involves

(s + 1) (iVs + Nt + iV„ + JVr„) - (siV, 4- £tft + wjSTu + coefficients.

14. Passing now to the relation

tb~sds - sb-Ht - s +1 = 0,

and putting 5 = 1, t = 2, we find

2! A= A2- 2&A-&2;

and without difficulty we reach the further results

3 ! A = A3 - 66A2 + 362A + 463,

4 ! A = A4 ~ 126A3 + 3062A2 + 463A - 1564,

5 !A = A5 - 20&A4 + H062 A3 -14063 A2 - 9564A +- 5665,

&c,

which can be written down, from those given by the case 6=1, by simply introducing

the proper power of b in each term.

Application of the first of these

2A= A2-2&A-&2,

yields the relation

2{m; 1^2^+1...} = {m; l*i+a 2^ ...} - 2 {m; 1^+12^ ...} - {m; 1^2^...}

+ 2{m-l; l*«+12w«...} + 2{m-l; 1^2^...}

- {m- 2; 1^2^ ...},

63-2
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of which a particular case is

2 [m; 21s} = [m; P+2} - 2 {m; 1*+1} - {m; Is}

+ 2 {w - 1; + 2 {m- 1; Is}

-{7/1-2; P};

and since {m; P} = Q^{0; 1*-™},

we find 2(.; 21-) . j(< + 2) + 2 - (J_ J} (0;

-2{(s:1)-(-s-i)}i°;i*-"+'i-Di°!i'""i'

The number {ra; 2*2 3^...} is ultimately expressible as a linear function of the

numbers {0; Is}.

15. It is worth while remarking that the numbers {0; Is} may be studied by means

of the elementary notions of the Theory of Substitutions.

Every substitution which displaces the whole of the letters may be represented by a

product of circular substitutions of order not less than 2. Such a substitution, displacing

the whole of the letters, may be termed a non-unitary substitution and there is a one-to-

one correspondence between the arrangement in which every letter is displaced and the

non-unitary substitutions. We have therefore merely to enumerate the non-unitary substi-

tutions. A certain number of such substitutions correspond to a particular non-unitary

partition

(27r23ff3...) of the number n.

If we distribute the n letters in any manner into tt2 + 7r3 4-... parcels so that" 7rs

parcels each contain s letters, where s has the values 2, 3, we obtain a definite

circular substitution corresponding to any assigned order of the letters in the parcels.

Now we observe that a parcel which contains s letters may have the letters permuted

in (5—1)! different ways so as to give (s —1)1 different circular substitutions because

(s — 1)! is the number of permutations of s different letters which are arranged in

circular order; so that if N be the number of ways of distributing n different letters

into 7r2 + 7r3+... parcels so that 7r2, 7t3, ... parcels contain 2,3,... letters respectively, the

number of substitutions thence derivable is

N(l !)"*(2 !)'3(3!)^ ....

We can find N because it is known to be the coefficient of (ln) in the development

which arises when the product

p^tpfspf*...

7T2! 7T3! 7T4! ...

is multiplied out. The coefficient is

n\

(2 !)*« (3!)»» (4 !)*«... tt2 ! tt3 f^fZ'
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Hence the total number of non-unitary substitutions or of permutations which displace

every letter is

(0- in] = S rll

1' ' t 2**.S**A*'...Tr%\ir9\irA\...'

the summation being for every non-unitary partition

(2**3**4**...),

of the number n.

16. The interest of the above solution lies in the comparison with the result previously

reached in Section I. Art. 5, viz. :—

1' ' t (2^.3-3.4»*....7r2!7r3!7r4!... * (2 !)*«(3!)" ... J"

This old expression gives for n = 6

120 . ~ + 90 . | + 40 j + 15 . 6 = 265.

The new expression gives

6 +2.4 + 0 + 8~U"265'

the four terms corresponding in each case to the partitions

(6), (42), (32), (23) respectively.

The identity which presents itself, of the form

S A — S A 7?

-"iTi, 7T2> 7T3, ... -^Trj.TTa, 7r3) ... -^TTu 7T2,7r3, ... >

is remarkable.

Section III.

Laplace s Problem.

17. In the Theorie des Probability Laplace discusses and solves a problem of a

somewhat similar kind. He supposes an urn to contain nr tickets which are in n sets

each set involving r tickets. The tickets in a first set are each numbered one, in a

second set two and so on till those in an .nth set are each numbered n. He supposes

the tickets to be well mixed and then n tickets to be drawn in succession. If the

mth ticket that is drawn happens to be numbered m he calls this a coincidence and

he inquires into the probability of there being at least s coincidences. Observing that

s cannot be superior to n the method of this paper leads quickly to the solution.

We have to determine the number of permutations of

rp T /yi T ft"

U/l U>2 • • • *A>n }

which are such that an xm occurs in the mth place from the left on at least s occasions.
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Consider a redundant generating function

(dX1 + X2 + ... +#n)(#i + a#2+ ... + Xn) ... (#! + #2+ + + #2 + ... + #7i)™~W;

it is clear that the coefficient Cs of

lAy^ tX/2 • • •

in this product denotes the number of permutations in which an xm occurs in the mth

place exactly s times.

Hence the number of permutations we seek is the sum of the coefficients of the terms

CL8Xj'*X2 ... Xfi 'j Ct^~^X^ X2 ... Xyi y ... CL X\ X2 . •» Xift')

in the product. Denoting the product by u we have to find the coefficient of as in

All 1 \

\ a a2 an V

that is in —or in ~—j > since a does not occur to a higher power than n.

^ a ,

Now, writing p2 = 2^, p2 = Sa^g,

n = {p1+(a-l) x,} {p, + (a -1) #2} ... {Pl + (a - 1) xn) p™-n,

= \pin + (a-l)p1n + (a-iy Pln~2p2 + ... + (a - l)n pn] pri~n,

= ap/n + (a - l)2 j?!™"2^ + (a - l)3^™"3^-!- ... + (a - If p™~n pn

(Ml CL2 'iJ rn

and —j = + a (a. -1)p/n~2p2 + a (a- l)2^V™"3^ + ... + a (a - l)"-^™-*p„.

Herein the coefficient of a8 is

Pirn-sps - Qpr-'-'Ps+i + g*) pr-s-2p*+2 -...+(-)n-s (*I J) pri-npn.

The coefficient herein of x1rx2r,..xnr is obtained as the result of operating upon it

with Drn.

The reader will have no difficulty in proving that

(nr — m)\

Dnpnr-mpm =

\mj (r!)n"m{(r- \)\\m'

Thence the number we require is

/n\ (nr-s)l /s\ / n \ (rcr-g-1)!

\S J (r l)n~8 {{V - 1) !}s \l) \S + 1J (r!)n-S-i {(r_1)j|a+i

/. + 1W n \ (nr-«-2)l _ ,n-l\/n\_0

2 A* + 2/(r!)'^{(r-l)!}** —+ ^; U-*/wlC

nr — n)!

(r- l)!}?i?

and dividing this by the whole number of permutations, viz.:—

(nr) I

we find a result which is readily identified with that of Laplace.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



IN THE THEORY OF PERMUTATIONS. 481

18. If we put 5=1 we obtain the whole number of permutations which exhibit

coincidences in the first n places; this number is therefore

(nr)\ _ /n\ (nr - 2) 1 /n\ (nr - 3)! (nr-n)\

{r\yl \2J (r!)n-2 {(r-l)!}2 V3/(r!f~3)(r-1)!}3 " K } {(r-l)!}tt"

If we now subtract this number from

(nr)!

we must obtain the whole number of permutations which do not exhibit coincidences in the

first n places. This number is

fn\ (wr-2)! _ fn\ (nr-S)l (nr-n)l

\2J (r!)"-2{(r-l);}2 \SJ (rlf-* {(r - 1) K } {(r-l)!}w*

If herein we put r = l, the first n places are in fact the whole of the places so

that the expression becomes the value of the number we have denoted by {0; ln}.

We thus find again

{0;i1=n!{i-3V- + (-)^,;>

a verification.
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ADVERTISEMENT

The Society as a body is not to be considered responsible for any

facts and opinions advanced in the several Papers, which must rest

entirely on the credit of their respective Authors.

The Society takes this opportunity of expressing its grateful

acknowledgments to the Syndics of the University Press for their

liberality in taking upon themselves the expense of printing this

Volume of the Transactions.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



CONTENTS OF VOLUME XXI.

PAGE

General Index v

I. Further Researches in the Theory of Divergent Series and Integrals. By G. H. Hardy,

M.A., Fellow of Trinity College, Cambridge 1

II. On the Longitudinal Impact of Metal Rods with Rounded Ends. By J. E. Sears,

B.A., St John's College, Cambridge 49

III. Integral Forms and their connexion with Physical Equations. By R. Hargreaves, M.A. 107

IV. On the Application of Integral Equations to the Determination of Upper and Lower

Limits to the value of a Double Integral. By H. Bateman, M.A., Fellow of Trinity

College, Cambridge 123

V. Plemelfs Canonical Form. By J. C. Mercer, B.A., Trinity College, Cambridge 129

VI. The Operator Reciprocants of Sylvester's Theory of Reciprocants. By Major P. A.

MacMahon, R.A., Sc.D., LL.D., F.RS, Hon. Mem. Camb. Phil. Soc 143

VII. The Solution of Linear Differential Equations by means of Definite Integrals. By H.

Bateman, M.A 171

VIII. The Irreducible Concomitants of two Quadratics in n Variables. By H. W. Turnbull,

B.A., Trinity College, Cambridge 197

IX. On Uniform Oscillation. By W. H. Young, Sc.D., F.R.S., Peterhouse, Cambridge... 241

X. The Determination of Solutions of the Equation of Wave Motion involving an arbitrary

Function of three Variables which satisfies a Partial Differential Equation. By H.

Bateman, M.A 257

XI. The Continuations of Functions defined by Generalised Hypergeometric Series. By G.

Watson, B.A., Trinity College, Cambridge 281

XII. On a Glass of Integral Functions. By J. E. Littlewood, M.A., Fellow of Trinity

College, Cambridge 301

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



iv CONTENTS

PAGE

XIII. On a Change of Order of Integration in an Improper Repeated Integral, By W. H.

Young, Sc.D., F.RS 361

XIV. The Stresses in a Thick Hollow Cylinder subjected to Internal Pressure. By L. B.

Turner, B.A., King's College, Cambridge 377

XV. On the Differentiation of Functions defined by Integrals. By W. H. Young, Sc.D.,

F.R.S 397

XVI. Fourier's Double Integral and the Theory of Divergent Integrals. By G-. H. Hardy,

M.A., F.R.S 427

XVII. Cyclic Paths for Rays reflected at an Elliptical Boundary. By R. Hargreaves, M.A. 453

XVIII. The Problem of 1 Derangement' in the Theory of Permutations. By Major P. A.

MacMahon, R.A., Sc.D., F.R.S., Hon. Memb. Camb. Phil. Soc 467

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



GENEBAL INDEX

Asymptotic expansions 309

Bairstow 387

Barnes 172, 281, 289

Bateman, H., On the application of

integral equations to the determina-

tion of upper and lower limits to

the value of a double integral 123

Bateman, H., The solution of linear

differential equations by means of

definite integrals 171

Bateman, H., The determination of

solutions of the equation of wave

motion involving an arbitrary func-

tion of three variables which satisfies

a partial differential equation 257

Bernoulli's numbers 325

Boggio 124

Borel 17, 19, 183

Bromwich 3, 9, 18, 21, 34, 37, 368,

373, 432

Brusotti 240

Cailler 181

Canonical form (Mercer) 129

Carslaw 39

Cauchy 18, 39, 175

Complete systems of concomitants for

two quadratics 212

Concomitants, irreducible (Turnbull)

197

Crelle 55, 177

Cunningham 183

Cyclic paths for rays reflected at an

elliptical boundary (Hargreaves)

453

De la Vallee Poussin's theorem 373

Divergent integrals (Hardy) 427

Divergent series and integrals

(Hardy) 1

Double integral and the theory of

divergent integrals (Hardy) 427

Elliott 145

Elliptic functions 305

Elliptical boundary, cyclic paths for

rays reflected at an (Hargreaves)

453

Forsyth 260

Fourier's double integral and the

theory of divergent integrals

(Hardy) 427

Fredholm 124, 129

Functions defined by generalised

hypergeometric series (Watson)

281

Functions defined by integrals (Young)

397

Gordan 200, 212

Gray 11

Guest 377

Hadamard 283

Hamburger 50, 70

Hammond 162, 472

Hankel 13, 43

Hardy, G. H., Further researches in

the theory of divergent series and

integrals 1

Hardy, G. H., Fourier's double in-

tegral and the theory of divergent

integrals 427

Hardy 429, 431, 445

Hargreaves, B., Integral forms and

their connexion with physical

equations 107

Hargreaves, B., Cyclic paths for rays

reflected at an elliptical boundary

453

Hausmaninger 50

Heine 177, 282

Hertz 55, 78

Heywood 135, 136

Hilbert 123

Hobson 21, 42, 45, 46, 172, 365,

373, 428

Holmgren 123

Hopkinson 49, 52, 54

Hypergeometric series (Watson) 281

Inglis 380

Integral equations (Bateman) 123

Integral forms and their connexion

with physical equations (Har-

greaves) 107

Integral functions (Littlewood) 301

Integrals and divergent series (Hardy) 1

Integrals, functions defined by (Young)

397

Integration in an improper repeated

integral (Young) 361

Irreducible concomitants (Turnbull)

197

Jackson 281, 285

Jordan 23, 172

Klein 172

Laplace's transformation 176

Laplace 479

Lebesgue 365

Lerch 185

Leudesdorf 159

Levi-Civita 173, 187

Linear differential equations and

definite integrals (Bateman) 171

Littlewood, J. E., On a class of

integral functions 301

Littlewood 282, 294, 432

Longitudinal impact of metal rods

with rounded ends (Sears) 49

Love 66

MacMahon, P. A., The operator re-

ciprocals of Sylvester's theory of

Beciprocants 143

MacMahon, P. A., The problem of

derangement in the theory of per-

mutations 467

Mathews 11

Mellin 181

Mercer, J. C, Plemelj's canonical

form 129

Metal rods, longitudinal impact of

(Sears) 49

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



vi

GENERAL INDEX

Moore 41, 431

Muir 377

Nielsen 12, 13, 14, 15, 44, 48,

185

Permutations, derangement in the

theory of (MacMahon) 467

Physical equations (Hargreaves) 107

Pincherle 173, 180

Plemelj's canonical form (Mercer)

129

Pochhammer 172, 181

Poincare" 122

PouUlet 50

Pringsheim 429

Product-forms of integral functions

309

Kayleigh 78

Beciprocants, theory of (MacMahon)

143

Kepeated infinite integrals 434

Eepeated integrals 361

Riemann 180

Riesz 431

Rogers 54, 161

St Venant 49, 55, 57, 395

Schlesinger 172, 177, 178

Schneebeli 50

Schwarz 128

Sears, J. E., On the longitudinal im-

pact of metal rods with rounded

ends 49

Segre 240

Sommerfeld 39, 40, 41, 48, 429

Sonine 12, 177

Stokes 37

Stolz 37

Stresses in a thick hollow cylinder

(Turner) 377

Summable integrals 430

Sylvester's theory of Reciprocants

(MacMahon) 143

Tauber 432

Taylor-coefficients of integral func-

tions 330

Taylor series, asymptotic expansions

for 343

Turnbull, H. W., The irreducible

concomitants of two quadratics in

n variables 197

Turner, L. B., The stresses in a thick

hollow cylinder subjected to in-

ternal pressure 377

Uniform oscillation (Young) 241

Vitali 420

Voigt 49, 55, 56, 63, 79

Watson, G. N., The continuations of

functions defined by generalised

hypergeometric series 281

Wave motion involving an arbitrary

function of three variables (Bate-

man) 257

Webb 179

Weber 11

Wertheim 49

Whittaker 193

Young, W. H., On uniform oscilla-

tion 241

Young, W. H., On a change of order

of integration in an improper re-

peated integral 361

Young, W. H., On the differentiation

of functions defined by integrals

397

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



TRANSACTIONS

S'oG. 2-

OF THE

CAMBRIDGE

PHILOSOPHICAL SOCIETY

VOLUME XXI. No. XVIII. pp. 467—481.

THE PROBLEM OF 'DERANGEMENT' IN THE THEORY

OF PERMUTATIONS

BY

MAJOR P. A. MACMAHON, R.A., Sc.D., LL.D., F.R.S.

HONORARY MEMBER CAMBRIDGE PHILOSOPHICAL SOCIETY

[WITH TITLE-PAGE, CONTENTS AND GENERAL INDEX TO VOL. XXL]

CAMBRIDGE:

AT THE UNIVERSITY PRESS

AND SOLD BY

DEIGHTON, BELL AND CO. AND BOWES AND BOWES, CAMBRIDGE.

CAMBRIDGE UNIVERSITY PRESS, LONDON.

M.DCCCC.XII.

27 August, 1912.

Price Two Shillings.

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



Replaced with Cnm^^ Mfcrofcrtn

1993

G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s



G
e
n
e
ra

te
d
 o

n
 2

0
1

3
-0

6
-1

9
 1

4
:2

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d

l.
h
a
n
d

le
.n

e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
2

7
0

5
9

7
2

7
P
u
b
lic

 D
o
m

a
in

 i
n
 t

h
e
 U

n
it

e
d

 S
ta

te
s 

 /
  
h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-u

s


