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Modular curves and modular forms

Let N = a positive integer (the level).

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) : N | c

}
.

e.g., Γ0(1) = SL2(Z)
H = complex upper half plane

Γ0(N) acts on H∪P1(Q) as

(
a b

c d

)
z = az+b

cz+d

X0(N) = Γ0(N)\(H∪P1(Q))

A modular form of weight 2 on Γ0(N) is a
holomorphic function f : H→C such that

∀γ =

(
a b

c d

)
∈ Γ0(N), f(γz) = (cz + d)2f(z)

and f is holomorphic at the cusps.

In particular, f(z + 1) = f(z), so
f(z) =

∑
n>0 an(f)qn, where q = e2πiz.

f is said to be a cuspform if a0(f) = 0, i.e.,
f vanishes at the cusps. The space of cusp-
forms with coefficients in a ring R will be de-
noted S2(R).
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Modular/congruence degree/number

J = J0(N) = Jacobian of X0(N),
T = Hecke algebra,
f = a newform of weight 2 on Γ0(N),
If = AnnTf , an ideal of T,
Af = J0(N)/IfJ0(N); it is an elliptic curve

if all an(f) are integers.
A = A∨f = the dual of Af .

B = IfJ ; so A+B = J and A ∩B is finite.

The modular exponent/number
= the exponent/order of A ∩B.
If A is an elliptic curve, then
the modular exponent is the modular degree,
and the modular number is its square.

The congruence exponent/number = the ex-
ponent/order of

S2(Z)

S2(Z)[If ] + S2(Z)[If ]⊥
.

If A is an elliptic curve, then the congruence
number is the largest integer r such that there
exists a cuspform g ∈ S2(Z) orthogonal to f
and congruent to f modulo r.
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Multiplicity one

We say that a maximal ideal m of T satisifies

multiplicity one if dimT/m J0(N)[m] = 2.

Notion initiated by Mazur; played an impor-

tant role in Wiles’s proof of Fermat’s last the-

orem (among other places).

Fact: Let p be an odd prime and m be a

maximal ideal of T with residue characteris-

tic p such that ρm is irreducible. Assume that

either p 6 |N or p||N and If ⊆ m for some new-

form f . Then m satisfies multiplicity one.

Mazur-Ribet: Examples of failure of multiplic-

ity one if p3 divides the level.

Kilford: Multiplicity one fails for a maximal

ideal over 2 at levels 431, 503, and 2089.
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Modular exponent, congruence ex-
ponent, and multiplicity one

Theorem 1 (A, Ribet, Stein): The modu-

lar exponent divides the congruence exponent

and the ratio is only divisible by primes whose

squares divide N .

Theorem 2 (A, Ribet, Stein): Let p be a prime

such that every maximal ideal of residue char-

acteristic p satisfies multiplicity one. Then

the modular exponent equals the congruence

exponent locally at p.

Example 1 (Stein): There is an elliptic curve E

of conductor 54 with modular degree = 2 and

congruence number = 6; hence multiplicity

one fails for some maximal ideal at level 54.
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Modular number, congruence num-
ber, and multiplicity one

By Theorem 1, if Af is an elliptic curve, then
the modular number divides the square of the
congruence number. Is it true for all Af?
Example 2 (Stein): There is a newform on
Γ0(431) for which the answer is no (fails at 2).

Theorem 3: Let p be a prime such that ev-
ery maximal ideal of residue characteristic p
satisfies multiplicity one. Then the modular
number is the square of the congruence num-
ber locally at p.

In Example 2 above, Theorem 3 shows that
multiplicity one fails for some maximal ideal at
level 431 – this could not be detected by The-
orem 2 (in view of Theorem 1: 431 is prime);
but was known by work of Kilford (different
method).

If an elliptic curve has congruence number
bigger than its modular degree, then multi-
plicity one fails (e.g., earlier Example 1).
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Proof 1 of Theorem 3

Lemma 1 (Emerton): Let I be a saturated
ideal of T and let J[I]0 denote the abelian
subvariety of J that is the connected compo-
nent of J[I]. Then the quotient J[I]/J[I]0 is
supported at maximal ideals of T that do not
satisfy multiplicity one.

Let IA = AnnA and IB = AnnB. Then A ⊆
J[IA] and B ⊆ J[IB] are equalities locally at
maximal ideals that satisfy multliplicity one.

Prop 1: The cokernel of the injection A ∩
B→J[IA + IB] is supported at maximal ideals
of T that contain IA + IB and do not satisfy
multiplicity one.

Fact: | T
IA+IB

| = the congruence number.

Lemma 2 (Ribet): Let I be an ideal of T
of finite index. Suppose that every maximal
ideal m of T that contains I satisfies multi-
plicity one. Then J[I] has order |T/I|2.

Que: Is J[I] free of rank two over T/I?
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Proof 2 of Theorem 3
(due to M. Dimitrov and anonymous referee)

A ∩B ∼=
H1(J,Z)

H1(A,Z) +H1(B,Z)

=
H1(J,Z)

H1(J,Z)[IA] +H1(J,Z)[IB]
.

Suppose m satisfies multiplicity one.

Then by Mazur,
H1(J,Z)⊗T Tm is free of rank two over Tm.
So “locally at m”,
A ∩B ∼= two copies of T

T[IA]+T[IB] = T
IB+IA

.

Prop 2: “Locally at m”, A∩B is free of rank
two over T

IA+IB
.

Taking orders, Theorem 3 follows.

Moreover, combining with Prop 1, we get
Prop 4: “Locally at m”, J[IA + IB] is free of
rank two over T

IA+IB
.
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