The modular number, the congruence number, and multiplicity one *

Amod Agashe Florida State University

January 11, 2010

*Slides and paper available at: http://www.math.fsu.edu/~agashe/math.html

Modular curves and modular forms

Let
$$N = a$$
 positive integer (the level).
 $\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : N \mid c \right\}.$
e.g., $\Gamma_0(1) = SL_2(\mathbb{Z})$
 $\mathcal{H} = \text{complex upper half plane}$
 $\Gamma_0(N) \text{ acts on } \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}) \text{ as } \begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
 $X_0(N) = \Gamma_0(N) \setminus (\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}))$

A modular form of weight 2 on $\Gamma_0(N)$ is a holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}$ such that $\forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N), f(\gamma z) = (cz + d)^2 f(z)$ and f is holomorphic at the cusps.

In particular,
$$f(z + 1) = f(z)$$
, so $f(z) = \sum_{n>0} a_n(f)q^n$, where $q = e^{2\pi i z}$.

f is said to be a cuspform if $a_0(f) = 0$, i.e., f vanishes at the cusps. The space of cuspforms with coefficients in a ring R will be denoted $S_2(R)$.

Modular/congruence degree/number

 $J = J_0(N) =$ Jacobian of $X_0(N)$,

$$\mathrm{T}$$
 = Hecke algebra,

- f = a newform of weight 2 on $\Gamma_0(N)$,
- $I_f = Ann_T f$, an ideal of T, $A_f = J_0(N)/I_f J_0(N)$; it is an elliptic curve if all $a_n(f)$ are integers.

$$A = A_f^{\vee} =$$
 the dual of A_f .

$$B = I_f J$$
; so $A + B = J$ and $A \cap B$ is finite.

The modular exponent/number = the exponent/order of $A \cap B$. If A is an elliptic curve, then the modular exponent is the modular degree, and the modular number is its square.

The congruence exponent/number = the exponent/order of

$$\frac{S_2(\mathbf{Z})}{S_2(\mathbf{Z})[I_f] + S_2(\mathbf{Z})[I_f]^{\perp}}.$$

If A is an elliptic curve, then the congruence number is the largest integer r such that there exists a cuspform $g \in S_2(\mathbf{Z})$ orthogonal to fand congruent to f modulo r.

Multiplicity one

We say that a maximal ideal \mathbf{m} of \mathbf{T} satisifies *multiplicity one* if $\dim_{\mathbf{T/m}} J_0(N)[\mathbf{m}] = 2$.

Notion initiated by Mazur; played an important role in Wiles's proof of Fermat's last theorem (among other places).

Fact: Let p be an odd prime and \mathbf{m} be a maximal ideal of \mathbf{T} with residue characteristic p such that $\rho_{\mathbf{m}}$ is irreducible. Assume that either $p \not| N$ or $p \mid \mid N$ and $I_f \subseteq \mathbf{m}$ for some newform f. Then \mathbf{m} satisfies multiplicity one.

Mazur-Ribet: Examples of failure of multiplicity one if p^3 divides the level.

Kilford: Multiplicity one fails for a maximal ideal over 2 at levels 431, 503, and 2089.

Modular exponent, congruence exponent, and multiplicity one

Theorem 1 (A, Ribet, Stein): The modular exponent divides the congruence exponent and the ratio is only divisible by primes whose squares divide N.

Theorem 2 (A, Ribet, Stein): Let p be a prime such that every maximal ideal of residue characteristic p satisfies multiplicity one. Then the modular exponent equals the congruence exponent locally at p.

Example 1 (Stein): There is an elliptic curve E of conductor 54 with modular degree = 2 and congruence number = 6; hence multiplicity one fails for some maximal ideal at level 54.

Modular number, congruence number, and multiplicity one

By Theorem 1, if A_f is an elliptic curve, then the modular number divides the square of the congruence number. Is it true for all A_f ? Example 2 (Stein): There is a newform on $\Gamma_0(431)$ for which the answer is no (fails at 2).

Theorem 3: Let p be a prime such that every maximal ideal of residue characteristic p satisfies multiplicity one. Then the modular number is the square of the congruence number locally at p.

In Example 2 above, Theorem 3 shows that multiplicity one fails for some maximal ideal at level 431 – this could not be detected by Theorem 2 (in view of Theorem 1: 431 is prime); but was known by work of Kilford (different method).

If an elliptic curve has congruence number bigger than its modular degree, then multiplicity one fails (e.g., earlier Example 1). Lemma 1 (Emerton): Let I be a saturated ideal of \mathbf{T} and let $J[I]^0$ denote the abelian subvariety of J that is the connected component of J[I]. Then the quotient $J[I]/J[I]^0$ is supported at maximal ideals of \mathbf{T} that do not satisfy multiplicity one.

Let $I_A = AnnA$ and $I_B = AnnB$. Then $A \subseteq J[I_A]$ and $B \subseteq J[I_B]$ are equalities locally at maximal ideals that satisfy multiplicity one.

Prop 1: The cokernel of the injection $A \cap B \rightarrow J[I_A + I_B]$ is supported at maximal ideals of T that contain $I_A + I_B$ and do not satisfy multiplicity one.

Fact: $\left|\frac{\mathbf{T}}{I_A + I_B}\right|$ = the congruence number.

Lemma 2 (Ribet): Let I be an ideal of T of finite index. Suppose that every maximal ideal m of T that contains I satisfies multiplicity one. Then J[I] has order $|T/I|^2$.

Que: Is J[I] free of rank two over T/I?

Proof 2 of Theorem 3 (due to M. Dimitrov and anonymous referee)

$$A \cap B \cong \frac{H_1(J, \mathbf{Z})}{H_1(A, \mathbf{Z}) + H_1(B, \mathbf{Z})}$$
$$= \frac{H_1(J, \mathbf{Z})}{H_1(J, \mathbf{Z})[I_A] + H_1(J, \mathbf{Z})[I_B]}.$$

Suppose \mathbf{m} satisfies multiplicity one.

Then by Mazur, $H_1(J, \mathbf{Z}) \otimes_{\mathbf{T}} \mathbf{T}_{\mathbf{m}}$ is free of rank two over $\mathbf{T}_{\mathbf{m}}$. So "locally at m", $A \cap B \cong$ two copies of $\frac{\mathbf{T}}{\mathbf{T}[I_A] + \mathbf{T}[I_B]} = \frac{\mathbf{T}}{I_B + I_A}$. Prop 2: "Locally at m", $A \cap B$ is free of rank two over $\frac{\mathbf{T}}{I_A + I_B}$.

Taking orders, Theorem 3 follows.

Moreover, combining with Prop 1, we get Prop 4: "Locally at m", $J[I_A + I_B]$ is free of rank two over $\frac{T}{I_A + I_B}$.