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Abstract

Let N be a positive integer and let f be a newform of weight 2 on Γ0(N). In a joint paper
with W. Stein, the authors introduced the notions of the modular number and the congruence
number of the quotient abelian variety Af of J0(N) associated to the newform f . These
invariants are analogs of the notions of the modular degree and congruence primes respectively
associated to optimal elliptic curves. In this article, we show that if p is a prime number such
that every maximal ideal of the Hecke algebra of characteristic p that contains the annihilator
ideal of f satisfies multiplicity one, then the modular number of Af and the congruence number
of Af have the same p-adic valuation. We also discuss a more general setting that involves
certain abelian subvarieties of J0(N) or J1(N) and state a result about the structure of the
intersection of such abelian varieties as a module over the Hecke algebra, from which the
statement in the previous sentence follows. We also give a numerical example where our result
implies the failure of multiplicity one.

1 Introduction and some of the results

Let N be a positive integer and let X0(N) denote the modular curve over Q associated to the
classification of isomorphism classes of elliptic curves with a cyclic subgroup of order N . The
Hecke algebra T of level N is the subring of the ring of endomorphisms of J0(N) = Jac(X0(N))
generated by the Hecke operators Tn for all n ≥ 1. Let f be a newform of weight 2 for Γ0(N)
and let If denote AnnT(f). Then the quotient abelian variety Af = J0(N)/IfJ0(N) is called the
newform quotient associated to f . If f has integer Fourier coefficients, then Af is an elliptic curve
and in fact by [BCDT01] any elliptic curve over Q is isogenous to such an elliptic curve for some f .
The dual abelian variety A∨f of Af may be viewed as an abelian subvariety of J0(N). Recall that
the exponent of a finite group G is the smallest positive integer n such that multiplication by n
annihilates every element of G.

The exponent of the group A∨f ∩ IfJ is called the modular exponent of Af , denoted ñAf
, and

its order is called the modular number, denoted nAf
(see [ARS12, §3]). Suppose for the moment

that f has integer Fourier coefficients, so that Af is an elliptic curve, which we denote by E for
emphasis. Composing the embedding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map
J0(N) → E, we obtain a surjective morphism of curves φE : X0(N) → E, whose degree is called
the modular degree of E. The modular exponent ñE of E is equal to the modular degree, and the
modular number nE is the square of the modular degree (see [ARS12, §3]). In general, for any
newform f , the modular number nAf

is a perfect square (e.g., see [AS05, Lemma 3.14]).
Let S2(Z) denote the group of cuspforms of weight 2 on Γ0(N) with integral Fourier co-

efficients, and if G is a subgroup of S2(Z), let G⊥ denote the subgroup of S2(Z) consisting of

∗The first author was partially supported by National Science Foundation Grant No. 0603668. Mathematics
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cuspforms that are orthogonal to every g in G with respect to the Petersson inner product. The
exponent of the quotient group

S2(Z)

S2(Z)[If ] + S2(Z)[If ]⊥

is called the congruence exponent of Af (really, that of f), denoted r̃Af
and its order is called

the congruence number, denoted rAf
(see [ARS12, §3]). If f has integer Fourier coefficients,

so that Af is an elliptic curve, then the quotient group above is a quotient of Z (e.g., by (2)
and (3) in Section 2), so that rAf

= r̃Af
, and either of them is the largest integer r such that

there exists a cuspform g ∈ S2(Z) that is orthogonal to f under the Petersson inner product and
whose n-th Fourier coefficient is congruent modulo r to the n-th Fourier coefficient of f for all
positive integers n. We say that a prime is a congruence prime for Af if it divides the congruence
number rAf

.
Congruence primes have been studied by Doi, Hida, Ribet, Mazur and others (see, e.g., [Rib83,

§1]), and played an important role in Wiles’s work [Wil95] on Fermat’s last theorem. Frey and Mai-
Murty have observed that an appropriate asymptotic bound on the modular degree is equivalent
to the abc-conjecture (see [Fre97, p.544] and [Mur99, p.180]). Thus congruence primes and the
modular degree are quantities of significant interest. Theorem 3.6 of [ARS12] says that the modular
exonent ñAf

divides the congruence exponent r̃Af
and if p is a prime such that p2 6 | N , then

ordp(ñAf
) = ordp(r̃Af

).
One might wonder if similar relations hold between the modular number rAf

and congruence
number nAf

(as opposed to modular/congruence exponents). As mentioned earlier, if Af is an

elliptic curve, then nAf
= ñ2Af

and rAf
= r̃Af

, and so one sees that nAf
| r2Af

. So to start with,

one might wonder whether nAf
divides r2Af

even if Af is not an elliptic curve (i.e., has dimension

more than one); this question makes sense also because nAf
is a perfect square, while rAf

need not
be a perfect square. It turns out that the answer to the question is no: as mentioned in [ARS12,
Remark 3.7] we have

Example 1.1. There is a newform of degree 24 in S2(Γ0(431)) such that

nAf
= (211 · 6947)2 6 | r2Af

= (210 · 6947)2.

We say that a maximal ideal m of T satisfies multiplicity one if J0(N)[m] is of dimension
two over T/m. The reason one calls this “multiplicitly one” is that if the canonical two dimen-
sional representation ρm over T/m attached to m (e.g., see [Rib90, Prop. 5.1]) is irreducible, then
J0(N)[m] is a direct sum of copies of ρm (e.g., see [Rib90, Thm. 5.2]), and a maximal ideal m of T
satisfies multiplicity one precisely if the multiplicity of ρm in this decomposition is one. Even if ρm
is reducible, the definition of multiplicity one given above is relevant (e.g., see [Maz77, Cor. 16.3]).
It was remarked in [ARS12] that concerning Example 1.1 above where nAf

6 | r2Af
, the level 431

is prime and by [Kil02], mod 2 multiplicity one fails for J0(431). In this article, we show that
multiplicity one is the only obstruction for the divisibility nAf

| r2Af
to fail. In fact, we show

something stronger:

Theorem 1.2. Let p be a prime such that every maximal ideal m with residue characteristic p
that contains If satisfies multiplicity one. Then ordp(nAf

) = ordp(r
2
Af

).

The theorem above follows from the more general Theorem 2.1 below. Example 1.1 above
shows that the multiplicity one hypothesis cannot be completely removed from the theorem.

The theorem above is the analog of Proposition 5.9 of [ARS12], which says that under the
hypotheses of the theorem above, we have ordp(ñAf

) = ordp(r̃Af
). If Af is an elliptic curve, then

as remarked earlier, nAf
= ñ2Af

and rAf
= r̃Af

, so our theorem adds nothing new.
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In the context of Example 1.1, our theorem gives a new proof that mod 2 multiplicity fails
for J0(431) (the original proof being the one in [Kil02]). Note that in [ARS12], the authors found
examples of failure of multiplicity one using Propostion 5.9 of loc. cit., which implies that if
the modular exponent does not equal the congruence exponent for some newform f , then there
is a maximal ideal of T that not satisfy multiplicity one. However, we could not have detected
the failure of multiplicity one in Example 1.1 by checking if the modular exponent equals the
congruence exponent, since the equality holds in the example for any newform f by [ARS12,
Thm. 3.6(b)], considering that the level is prime in the example. At the same time, consideration
of the modular number and the congruence number did dectect the failure of multiplicity one. It
would be interesting to do more calculations to see when nAf

6 | r2Af
, as this may give new instances

of failure of multiplicity one.
We remark that our theorem gives information about the order of a certain intersection of

abelian subvarieties of J0(N) in terms of congruences between modular forms (in fact, we give
information in a more general setting in Section 2). We expect that the relation between a
particular such intersection and certain congruences will be useful in understanding the “visible
factor” in [Aga10], and hope that such relations will be useful in other contexts as well.

It is known that multiplicity one holds in several situations. We content ourselves by pointing
out that by the main theorem in Section 1.2 of [MR91], a maximal ideal m with residue charac-
teristic p satisfies multiplicity one if either p 6 | N or p||N and ρm is not modular of level N/p. We
also have:

Proposition 1.3. Let p be an odd prime and m be a maximal ideal of T with residue character-
istic p such that ρm is irreducible. Assume that either
(i) p6 | N or
(ii) p||N and If ⊆ m for some newform f .
Then m satisfies multiplicity one.

Proof. If p - N , then the claim follows from Theorem 5.2(b) of [Rib90], so let us assume that p||N .
Let X0(N)Zp denote the minimal regular resolution of the compactified coarse moduli scheme
over Zp associated to Γ0(N) as in [DR73, § IV.3] and let ΩX0(N)Zp/Zp

denote the relative dualizing

sheaf of X0(N)Zp over Zp (it is the sheaf of regular differentials as in [MR91, §7]). We denote
by X0(N)Fp the special fiber of X0(N)Zp at the prime p and by ΩX0(N)/Fp

the relative dualiz-
ing sheaf of X0(N)Fp over Fp. It is shown in [ARS12, §5.2.2] that under the hypotheses above,
dimT/mH

0(X0(N)Fp ,ΩX0(N)Fp/Fp
)[m] ≤ 1. Let JZp denote the Néron model of J0(N) over Zp and

let J0
Zp

denote its identity component. Then the natural morphism Pic0X0(N)/Zp
→ JZp identifies

Pic0X0(N)/Zp
with J0

Zp
(see, e.g., [BLR90, §9.4–9.5]). Passing to tangent spaces along the identity

section over Zp, we obtain an isomorphism H1(X0(N)Zp ,OX0(N)Zp
) ∼= Tan(JZp). Reducing both

sides modulo p and applying Grothendieck duality, we get Tan(JFp) ∼= Hom(H0(X0(N)Fp ,ΩX0(N)/Fp
),Fp).

Thus from the above discussion, we see that Tan(JFp)/mTan(JFp) has dimension at most one
over T/m. Since Tan(JZp) is a faithful T⊗ Zp-module, we see that Tan(JFp)/mTan(JFp) is non-
trivial, hence it is one dimensional over T/m. With this input, the proof of multiplicity one in
Theorem 2.1 of [Wil95], which is in the Γ1(N) context, but is a formal argument involving abelian
varieties (apart from the input above), carries over in the Γ0(N) context with the obvious modi-
fications (in particular, replacing X1(N/p, p)Zp in loc. cit. by X0(N)Zp) to prove our claim (see
p. 487-488 of loc. cit., as well as [Til97], where the input above is the equation (**) on p. 339).

We remark that the condition that p2 6 | N in condition (ii) of the proposition above can-
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not be removed, as follows from the counterexamples in [ARS12, §2.2]. From Theorem 1.2 and
Proposition 1.3, we obtain:

Corollary 1.4. Let p be an odd prime. Suppose that either
(i) p6 | N or
(ii) p||N and A∨f [m] is irrreducible for every maximal ideal m of T with residue characteristic p.

Then ordp(nAf
) = ordp(r

2
Af

).

Proof. The corollary is clear from Theorem 1.2 and Proposition 1.3 in the case where p 6 | N , so let
us assume that p||N . By Theorem 1.2 and Proposition 1.3, it suffices to show that ρm is irreducible
for every maximal ideal m of T with residue characteristic p such that If ⊆ m.

Let m be such a maximal ideal. Then note that A∨f [m] is non-trivial since T/If acts faithfully
on A∨f . Let D denote the direct sum of A∨f [m] and its Cartier dual. Let ` be a prime that

does not divide Np and let Frob` denote the Frobenius element of Gal(Q/Q) at `. As discussed
in [Maz77, p. 115], by the Eichler-Shimura relation, the characteristic polynomial of Frob` acting
on D is (X2 − a`X + `)d = 0, where a` is the image of T` in T/m and d is the T/m-dimension
of A∨f [m]. But this is also the characteristic polynomial of Frob` acting on the direct sum of d copies
of ρm. By the Chebotarev density theorem and the Brauer-Nesbitt theorem, the semisimplification
of D is ρdm. Thus the semisimplification of A∨f [m] is a direct sum of certain number of copies of ρm.
But A∨f [m] is irreducible by hypothesis, so ρm = A∨f [m]. Thus ρm is also irreducible, as was to be
shown.

The corollary above is the analog of Theorem 3.6(b) of [ARS12], which says that ordp(ñAf
) =

ordp(r̃Af
) provided p2 6 | N , in the setting of modular/congruence numbers as opposed to modu-

lar/congruence exponents (although, note that we have an extra irreducibility hypothesis in our
corollary). We remark that the proofs of both results rely ultimately on “multiplicity one for
differentials” (as defined in [ARS12, §5.2]).

If the level N is prime, then more can be said. By Prop. II.14.2 and Corollary II.16.3
of [Maz77], every maximal ideal m such that ρm is reducible also satisfies multiplicity one. Thus
in view of Theorem 1.2 and Proposition 1.3, we obtain the following:

Corollary 1.5. Suppose the level N is prime and let p be an odd prime. Then ordp(nAf
) =

ordp(r
2
Af

).

Also, much is known in this situation if ρm is irreducible and m has residue characteristic is 2 –
we refer to [Kil02] and the references therein for details. But note that by the examples in [Kil02]
or by Example 1.1 and Theorem 1.2, multiplicity one need not hold for a maximal ideal m of
residue characteristic 2 with ρm irreducible even if the level N is prime.

The organization of the rest of this article is as follows. In Section 2, we describe a more
general setup, which includes abelian subvarieties of J1(N), and state a more general version of
Theorem 1.2 (Theorem 2.1 below). Section 3 is devoted to the proof of the main result in Section 2.

Acknowldegements: The first author would like to thank J. Tilouine for some discussion regarding
the proof of Proposition 1.3 above.

2 A more general setup and some more results

For the benefit of the reader, we repeat below some of the discussion in [ARS12, Section 3]. For
N ≥ 4, let Γ be either Γ0(N) or Γ1(N). Let X denote the modular curve over Q associated to Γ,
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and let J be the Jacobian of X. Let Jf denote the standard abelian subvariety of J attached

to f by Shimura [Shi94, Thm. 7.14]. Up to isogeny, J is the product of factors J
e(f)
f where f runs

over the set of newforms of level dividing N , taken up to Galois action, and e(f) is the number

of divisors of N/N(f), where N(f) is the level of f . Let A be the sum of J
e(f)
f for some set of f ’s

(taken up to Galois action), and let B be the sum of all the other J
e(f)
f ’s. Clearly A + B = J .

The Jf ’s are simple (over Q), hence A∩B is finite. By [ARS12, Lemma 3.1], End(J) preserves A
and B, where if C is an abelian variety over Q, by End(C) we mean the ring of endomorphisms
of C defined over Q. If f is a newform of weight 2 on Γ and Af is its associated newform quotient,
then A∨f and IfJ provide an example of A and B respectively as above, as shown in the discussion
following Lemma 3.1 in [ARS12].

There is an alternate way to describe the A and B in the previous paragraph. Since T ⊗Q
breaks up as a direct sum of algebras corresponding to Galois orbits of newforms of level dividingN ,
the abelian subvariety A corresponds to an idempotent e ∈ T ⊗ Q, and conversely, given an
idempotent e ∈ T ⊗Q, the image of J under e (viewed as an element of End(J) ⊗Q, which is
to be multiplied by a large enough integer to make the product an element of End(J)), is the
corresponding A (and then B is the image of (1− e)).

The modular exponent ñA of A is defined as the exponent of A∩B and the modular number nA

of A is its order (see [ARS12, §3]). Note that the definition is symmetric with respect to A and B.
If f is a newform, then by the modular exponent/number of Af , we mean that of A = A∨f , with
B = IfJ , which agrees with our earlier definition.

If R is a subring of C, let S2(R) = S2(Γ;R) denote the subgroup of S2(Γ;C) consisting of
cups forms whose Fourier expansions at the cusp ∞ have coefficients in R. Let T denote the
Hecke algebra corresponding to the group Γ. There is a T-equivariant bilinear pairing

T× S2(Z)→ Z (1)

given by (t, g) 7→ a1(t(g)), which is perfect (e.g., see [AU96, Lemma 2.1] or [Rib83, Theorem 2.2]).
Let TA denote the image of T in End(A), and let TB be the image of T in End(B) (since
T ⊆ End(J), T preserves A and B). Since A+B = J , the natural map T→ TA⊕TB is injective,
and moreover, its cokernel is finite (since A ∩B is finite).

Let SA = Hom(TA,Z) and SB = Hom(TB,Z) be the subgroups of S2(Z) obtained via the
pairing in (1). By [ARS12, Lemma 3.3], we have an isomorphism

S2(Z)

SA + SB
∼=

TA ⊕TB

T
. (2)

Also, we have an isomorphism
T

IA + IB

'−→ TA ⊕TB

T
(3)

obtained by sending t ∈ T to (πA(t), 0) ∈ TA⊕TB, where πA is the projection map T→ TA. By
definition [ARS12], the exponent of either of the isomorphic groups in (2) or (3) is the congruence
exponent r̃A of A and the order of either group is the congruence number rA. Note that this
definition is also symmetric with respect to A and B, and again, the definition depends on both A
and B, unlike what the notation may suggest – we have suppressed the dependence on B with the
implicit understanding that B has been chosen (given A). If f is a newform, then by the congruence
exponent/number of Af , we mean that of A = A∨f , with B = IfJ . In this situation, TA = T/If
and SA = S2(Z)[If ]. Also, Hom(TB,Z) is the unique saturated Hecke-stable complement of
S2(Z)[If ] in S2(Z), hence must equal S2(Z)[If ]⊥. This shows that the new definition of the
congruence number/exponent generalizes our earlier definition for Af .
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Let IA = AnnT(A) and IB = AnnT(B). Theorem 3.6(a) of [ARS12] says that the modular
exponent ñA divides the congruence exponent r̃A, and Propostion 5.9 of loc. cit. says that if p
is a prime such that all maximal ideals m of T containing IA + IB satisfy multiplicity one, then
ordp(r̃A) = ordp(ñA). Our main theorem deals with the case of modular/congruence numbers as
opposed to modular/congruence exponents. In view of the case of newform quotients discussed
in Section 1, one would like to understand the relation between the modular number nA and the
square of the congruence number rA. As mentioned earlier, it is not true that nA divides r2A in
general. At the same time, we have:

Theorem 2.1. Let p be a prime such that every maximal ideal m with residue characteristic p
that contains IA + IB satisfies multiplicity one. Then ordp(nA) = ordp(r

2
A).

The theorem above follows immediately from:

Theorem 2.2. Let m be a maximal ideal of T that satisfies multiplicity one. Then on tensoring
with Tm, A ∩B is free of rank two over T

IA+IB
.

We will prove this theorem in Section 3. Note that Theorem 2.1 is an analog of Propostion 5.9
of [ARS12] in the context of modular/congruence numbers as opposed to modular/congruence
exponents. For results on multiplicity one in the Γ = Γ1(N) context, see, e.g., [Til97] and the
references therein.

Let πA : T → T/IA = TA and πB : T → T/IB = TB denote the natural projection maps.
In this setup, in[ARS12], we defined the congruence ideal as R = πA(ker(πB)) ⊂ TA, and the
intersection ideal as S = AnnTA

(A ∩ B). By [ARS12, Lem. 5.2], we have R ⊆ S. Moreover, πA
induces a natural isomorphism

T

IA + IB

'−→ TA

R
.

Thus from Thorem 2.2, we obtain

Proposition 2.3. Let m be a maximal ideal of T that contains IA and satisfies multiplicity one.
Then on tensoring with the completion of m/IA, R = S.

The proposition above is not new: it follows from Proposition 5.6 and Lemma 5.8 of [ARS12].
Our proof above is analogous to the arguments in [ARS12] (in this article, we use homology groups
in the proof of Thorem 2.2, while the proof of Lemma 5.8 of [ARS12] uses Tate modules).

3 Proof of Theorem 2.2

We have (e.g., by [AS05, Prop. 3.2]) the following natural isomorphism of T-modules:

A ∩B ∼=
H1(J,Z)

H1(A,Z) +H1(B,Z)

Also, by [Aga10, Lem 4.3], we have H1(A,Z) = H1(J,Z)[IA] and H1(B,Z) = H1(J,Z)[IB]. Thus

A ∩B ∼=
H1(J,Z)

H1(J,Z)[IA] +H1(J,Z)[IB]
. (4)

Recall that m is a maximal ideal of T that satisfies multiplicity one. Then H1(J,Z) ⊗T Tm

is free of rank two over Tm, by a standard argument due to Mazur (see [Maz77, Lem. II.15.1] or
Corollary (3) of Theorem 3.4 in [Til97]). Thus by (4), on tensoring with Tm, A∩B is free of rank
two over T

T[IA]+T[IB ] . The theorem now follows from the following lemma.
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Lemma 3.1. T[IA] = IB and T[IB] = IA.

Before giving the proof of this lemma, we need another lemma, which is in a slightly more
general setup. In this paragraph, the symbol g stands for a newform of some level Ng dividing N .
Let S′g denote the subspace of S2(Γ0(N),C) spanned by the forms g(dz) where d ranges over the
divisors of N/Ng. Let [g] denote the Galois orbit of g, and let S[g] denote the Q-subspace of forms
in ⊕h∈[g]S

′
h with rational Fourier coefficients. We have S2(Γ0(N),Q) = ⊕[g]S[g], where the sum is

over Galois conjugacy classes of newforms of some level dividing N . Let X be a subset of the set
of Galois conjugacy classes of newforms of some level dividing N , and let I = AnnT(⊕[g]∈XS[g]).
If g is a newform of some level dividing N , then S[g] is preserved by T; let T[g] denote the image
of T acting on S[g]. Then the natural map

φ : T⊗Q→ ⊕[g]T[g]

is an isomorphism of T⊗Q algebras, where [g] ranges over all Galois conjugacy classes of newforms
of level dividing N (see, e.g., [Par99, Thm. 3.5]). We have the decomposition

⊕[g]T[g] =
(
⊕[g]∈X T[g]

)
⊕
(
⊕[g]6∈X T[g]

)
. (5)

Let Î denote AnnT(I).

Lemma 3.2. The image of I ⊗Q under φ is ⊕[g] 6∈XT[g], and the image of Î ⊗Q is ⊕[g]∈XT[g].

Thus T⊗Q ∼= I ⊗Q⊕ Î ⊗Q as T⊗Q-modules.

Proof. It is clear that the image of I ⊗Q in (5) under φ is ⊕[g]6∈XT[g]. As for the image of Î ⊗Q,

it clearly contains ⊕[g]∈XT[g]. Conversely, if x ∈ Î ⊗Q, then it annihilates the element (0, 1) in
the decomposition of (5) (since (0, 1) is in the image of I ⊗Q under φ), so the image of x · (0, 1)
in ⊕[g]T[g] must be zero. Thus x ∈ ⊕[g]∈XT[g], which finishes the proof the lemma.

Proof of Lemma 3.1. First, note that T[IA] = ÎA. By Lemma 3.2, taking X to be the set of
newforms corresponding to A, we see that the image of IA ⊗Q under φ in the decomposition (5)

is ⊕[g] 6∈XT[g], and by a similar argument, the image of IB ⊗Q is ⊕[g]∈XT[g]. Thus IB ⊆ ÎA and

also, by Lemma 3.2, we see that IB ⊗Q = ÎA ⊗Q. But IB and ÎA are both saturated in T, and
so it follows that IB = ÎA. This shows that IB = T[IA]. Swapping the roles of A and B, we see
that IA = T[IB], which finishes the proof of the lemma.

References

[Aga10] A. Agashe, A visible factor of the special L-value, J. Reine Angew. Math. (Crelle’s
journal) 644 (2010), 159–187.

[ARS12] Amod Agashe, Kenneth A. Ribet, and William A. Stein, The modular degree, congru-
ence primes, and multiplicity one, Number theory, analysis and geometry, Springer,
New York, 2012, pp. 19–49. MR 2867910

[AS05] Amod Agashe and William Stein, Visible evidence for the Birch and Swinnerton-Dyer
conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005),
no. 249, 455–484 (electronic), With an appendix by J. Cremona and B. Mazur.

7
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