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Abstract. Mazur [8] has introduced the concept of visible elements in the Tate-Shafarevich group

of optimal modular elliptic curves. We generalized the notion to arbitrary abelian sub-

varieties of abelian varieties and found, based on calculations that assume the Birch-

Swinnerton-Dyer conjecture, that there are elements of the Tate-Shafarevich group of

certain sub-abelian varieties of J0(p) and J1(p) that are not visible.

1. Introduction and definitions

Let J be an abelian variety and A be any abelian subvariety of J , both defined over Q. The
group H1(Q, A) is isomorphic to the group of principal homogeneous spaces, or torsors, of A. An
A-torsor V is said to be visible in J if it is isomorphic over Q to a sub variety of J . An element of
the Tate-Shafarevich of A group is said to be visible (in J) if the corresponding torsor is visible.
We say that an element is invisible if it is not visible.

Mazur [8] introduced the concept of visible elements in the Tate-Shafarevich groups of optimal
modular elliptic curves. Adam Logan, based on Cremona’s tables, studied instances of non-trivial
Tate-Shafarevich groups for modular elliptic curves of square-free conductor < 3000. The order
of the visible elements of the Tate-Shafarevich group divides the modular degree and thus by
comparing the order of the Tate-Shafarevich group (as predicted by the Birch-Swinnerton-Dyer
conjecture) with the modular degrees, they tried to detect invisible elements. The only instance
of an invisible element they could convincingly detect was for the level N = 2849, which was not
visible in J0(N); but they could not test whether this element becomes visible in J1(N) or not.

Next we define the winding quotient. Let p be a prime and let X0(p) denote the usual modular
curve of level p. Let {0, i∞} denote the projection of the geodesic path from 0 to i∞ in H∪P1(Q) to

X0(p)(C) where H is the complex upper half plane. We have an isomorphismH1(X0(p),Z)⊗R
≃
−→

HomC(H0(X0(p),Ω
1),C). Let e ∈ H1(X0(p),Z)⊗R correspond to the map ω 7→ −

∫
{0,i∞} ω under

this isomorphism. It is called the winding element. Let T denote the sub-ring of endomorphisms
of J0(p) generated by the Hecke-operators and the Atkin-Lehner involution. It is called the Hecke
algebra. We have an action of T on H1(X0(p),Z) ⊗R. Let Ie be the annihilator of e with respect
to this action. It is an ideal of T. We consider the quotient abelian variety Je = J0(p)/IeJ0(p)
over Q. It is called the winding quotient of J0(p).

If B is an abelian variety, let B̂ denote the dual of B. Using the fact that the kernel of J0(p) → Je

is connected, one can show that the dual map Ĵe → ˆJ0(p) = J0(p) is an injection. Thus we can

view Ĵe as a subvariety of J0(p) and talk about the visibility of its torsors in J0(p). We have a

map J0(p)
π∗

→ J1(p) obtained via Picard functoriality from the map π : X1(p) → X0(p). It has a

finite kernel. Let Ĵe
′
denote the image of Ĵe in J1(p) under this map.

If B is an abelian variety defined over Q, let XB denote its Tate-Shafarevich group. Based on
calculations concerning the order of XJe

as predicted by the Birch-Swinnerton-Dyer conjecture,
we discovered (Thm. 1 in §3), for p = 1091, an element of XĴe

that is not visible in J0(p) and

whose image in XĴe

′ is not visible in J1(p). The existence of visible elements is closely related to
congruences between modular forms of analytic rank 0 and analytic rank greater than 0.
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2. A formula for |XJe
|

One can easily check that L(Je, 1) 6= 0 and hence by work of Kolyvagin and Logachev, Je(Q)
is finite; so the first part of the Birch-Swinnerton-Dyer conjecture is valid in this case. See [9, §1]
for details. Also, by [4], the order of the Tate-Shafarevich group, XJe

is finite.
The second part of the Birch-Swinnerton-Dyer conjecture (as generalized by Tate and Gross)

gives the formula (see [5, III, §5]):

L(Je, 1) =
|XJe

| cpcR

|Je(Q)tor||Ĵe(Q)tor|
(1)

where cp is the number of connected components of the special fibre of the Néron model of Je at p
and cR is related to the real period as follows: Let W be the Z-module of invariant differentials on
the Néron model of Je. Then rank(W ) = d where d = dim(Je) and ∧dW is a free Z-module of rank
1 contained in H0(Je,Ω

d
Je/Q). Let Ω be a generator of ∧dW . Let {ω1, ..., ωd} be any Q-basis of

H0(Je,ΩJe/Q). Then Ω = c ∧j ωj for some c ∈ Q. Let {γ1, ..., γd} be a basis of H1(Je,Z)+ where
+ denotes the group of elements invariant under the action of complex conjugation. Let c∞ be the
number of connected components of Je(R). Then define cR = c∞c det(

∫
γi

ωj). It is independent

of the choice of the basis {ωj}.
For any ring R, let S2(Γ0(p), R) denote the R-module of cusp forms over Γ0(p) with coefficients in

R. When R is flat over Z, pulling back differentials along X0(p) → J0(p), one gets an isomorphism
between the R-modules H0(J0(p),ΩJ0(p)/R) and S2(Γ0(p), R), where if f ∈ S2(Γ0(p), R), then the
corresponding differential on X0(p) is given by ωf = 2πif(z)dz. One can show that a Q-basis
for H0(Je,ΩJe/Q) is given by the differentials corresponding the set of generators of Se = {f ∈
S2(Γ0(p),Z) : Ief = 0}. If we use this for the basis {ωj} in the paragraph above, the constant c will
be denoted cM . It is a generalized Manin constant, in the sense that if we look at the analogous
definition for elliptic quotients of J0(p) and figure out c in a similar fashion, it turns out to be
precisely the Manin constant.

We next analyze the terms in formula (1) and, by cancelling the transcendental parts on each
side, put it in the form given in the following proposition:

Proposition 2.1. Assuming the Birch-Swinnerton-Dyer formula (1), we have

|XJe
| cpcMn =|Je(Q)tor||Ĵe(Q)tor||

H+

Ĥe
+

+H+
e

||
H+

e

ℑe
| (2)

where n = numr((p − 1)/12), H = H1(X0(p),Z),He = {x ∈ H : Iex = 0}, Ĥe is the smallest

subgroup of H containing Ĥe such that H/Ĥe is torsion-free, ℑ is the Eisenstein ideal of T (as in
[6]) and the rest of the terms are as described just above.

Proof. We have the pairing (H+ ⊗ C) × S2(Γ0(p);C) → C given by (γ, f) 7→< γ, f >=
∫

γ ωf . In

the following, at various points, we will be considering pairings between two Z-modules; each such
pairing is obtained in a natural way from this pairing.

Using the fact that Je = J0(p)/IeJ0(p), one can show that H1(Je,Z) ∼= H/Ĥe. Using this and
the remark about cM made just before the statement of the proposition, we get

cR = c∞cMdisc((H/Ĥe)
+ × Se → C)

where disc always denotes the discriminant of the pairing of Z-modules.
Next, L(Je, 1) =

∏
L(f, 1) =

∏
< e, f >, where the product (henceforth) is over all elements

f belonging to the normalized eigenform basis for {f ∈ S2(Γ0(p),C) : Ief = 0}. Recall that
< e, f >= −

∫
{0,i∞} ωf .
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Putting all this in (1), we get

|XJe
| cpcMc∞ =|Je(Q)tor||Ĵe(Q)tor|

∏
< e, f >

disc((H/Ĥe)+ × Se → C)
. (3)

Next we perform some change of lattices:
∏

<e,f>

disc((H/Ĥe)+×Se→C)
=

∏
<e,f>

disc(H+
e ×Se→C)

|(H/Ĥe)+

H+/Ĥe

+ ||
H+

Ĥe

+
+H+

e

|=

∏
<e,f>

disc(ℑe×Se→C)c∞ | H+

Ĥe

+
+H+

e

||
H+

e

ℑe |

=

∏
<e,f>

disc(Te×Se→C)c∞ | H+

Ĥe

+
+H+

e

||
H+

e

ℑe | / |
Te
ℑe |,

where we used the fact that | (H/Ĥe)+

H+/Ĥe

+ |= c∞. Note that |Te
ℑe |=|Tℑ |= n where the latter equality is

from [6, II 9.7]. Next we claim that

∏
<e,f>

disc(Te×Se→C) = 1.

Proof. There is a perfect pairing T/Ie×Se → Z which associates to (t, f) the first Fourier coefficient
a1(tf) of the modular form tf . This defines te ∈ T/Ie ⊗ C characterized by < e, f >= a1(tef)
(f ∈ Se). On the other hand our product taken over newforms f ∈ Se becomes

∏
< e, f >=

∏
a1(tef) = ( det

Se⊗C
te)

∏
a1(f) = det

T/Ie⊗C
te.

On the other hand, the discriminant of the pairing Te × Se → C which associates to (te, f) the
complex number < te, f > coincides, via the identification above and the canonical isomorphism
Te ∼= T/Ie, with the discriminant of the pairing T/Ie × Hom(T/Ie,Z) → C which associates to
(t, ψ) the complex number ψ(tet) (obtained by extending ψ by C-linearity). The latter discriminant
is equal to det

T/Ie⊗C
te.

Putting all these results in (3) finishes the proof of Proposition 2.1.

With the idea of studying the conjectured Birch-Swinnerton-Dyer formula, we did computations

(with the help of a computer) to calculate | H+

Ĥe

+
+H+

e

| and |
H+

e

ℑe | in formula (2) for various primes

p. For the first, calculations were done upto p = 397 and for the latter, upto p = 1447. The
computations were done using the theory of modular symbols.

3. Discovery of invisible elements

We shall use the following lemma, which is a generalization of the results that appear in [8]:

Lemma 3.1. Let A = Ĵe (or Ĵe
′
) and J = J0(p) (or J1(p) respectively). Let V be an A-torsor

visible in J , considered as an element of H1(Q, A). Consider the natural map ĩ : H1(Q, A) →
H1(Q, J) obtained via the embedding i of A in J . Then there exists an automorphism φ of A

(defined over Q) such that ĩ(φ̃(V )) is trivial, where φ̃ is the automorphism of H1(Q, A) induced
by φ.

Proof. We first prove that the pair A = Ĵe (or Ĵe
′
) and J = J0(p) (or J1(p) respectively) satisfy

(∗) if J ∼ A×B is any isogeny over Q, then no simple factor (over Q) of A is isogenous (over Q)
to a simple factor (over Q) of B.

First the case of J0(p): this follows because in a decomposition of J0(p) upto isogeny, no two simple
factors can be isogenous over Q by the multiplicity one theorem and not even over Q because p is
squarefree (using [10, Prop. 3.1]). Next the case of J1(p): let J0(p)

′ denote the image of J0(p) in

J1(p). Then no simple factor of Ĵe
′
can be isogenous to another simple factor of J0(p)

′ (by the same

argument above). Suppose A′ is a simple factor of Ĵe
′
isogenous to a simple factor of J1(p)/J0(p)

′.
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Now J1(p)/J0(p)
′ has everywhere good reduction over some extension of Q (this follows from [3,

§5, Ex 3.7(i)]), hence so does A′. But J0(p) has purely multiplicative reduction at p by [3, §5, Th.
6.9], so it can’t have a factor with good reduction even after a base extension. This proves (∗).

Suppose V is an A-torsor visible in J and let V ′ be the subvariety of J0(p) isomorphic to V
over Q (given by the definition of visibility). Since it is an A-torsor, we have A ∼= V ∼= V ′ (over

Q). Consider the map A
≃
→ V ′ → J/A defined over Q. Upto translation, it is a homomorphism

of abelian varieties. Its image has to be a point because otherwise it would violate (∗). Hence the
image of V ′ → J/A is also a point. Thus V ′ is a translate of A (over Q) and hence has an action of
A by translation. As a torsor in H1(Q, A) it is given by σ 7→ σ(Q) −Q for any Q ∈ V ′(Q), where

the subtraction is the usual subtraction in J . But this is the zero element in H1(Q, J) (under ĩ)
since Q ∈ V ′(Q) ⊆ J(Q). Next, let P ∈ V (Q). Then the element of H1(Q, A) corresponding
to V is σ 7→ σ(P ) −V P where we will be using subscripts to distinguish different actions of A.
Let ι : V → V ′ be the isomorphism between V and V ′ (over Q). Then the element of H1(Q, A)
corresponding to V ′ is given by σ 7→ σ(ι(P )) −V ′ ι(P ). Consider the map φ : A → A given by
a 7→ ι(P +V a)−V ′ ι(P ). It is defined over Q and it is a homomorphism of abelian varieties since it

takes the identity element of A to itself. It takes the torsor V to V ′ and thus ĩ(φ̃(V )) = ĩ(V ′) = 0.
It is an automorphism since it has an inverse given by a 7→ ι−1(ι(P ) +V ′ a) −V P .

Theorem 1. Assuming the Birch-Swinnerton-Dyer formula (1), for the prime p = 1091, XĴe
has

an element that is not visible in J0(p) and the image of this element in XĴe

′ is not visible in J1(p).

Proof. For ease of notation, let J0 denote J0(p). In what follows, p = 1091 unless mentioned
otherwise. In this case, what happens is that Je = J−

0 where J−
0 = J0/(1 +Wp)J0 and Wp is

the Atkin-Lehner involution (this was checked by a calculation and also follows from [2, §8]). By

combining the exact sequence defining Je and the dual exact sequence, we get the map Ĵe → Ĵ0
≃
→

J0 → Je . Call the composite f . It is an isogeny; let N denote its kernel. N is the intersection
of Ĵe and (1 +Wp)J0. On the former group, Wp acts as −1 and on the latter group as +1. We
conclude that N is killed by multiplication by 2, i.e. the order of N is a 2-power.

Now there is an isogeny g : Je → Ĵe such that g ◦ f = multiplication by |N |. So we have

Ĵe → J0 → Je
g
→ Ĵe which is multiplication by |N |. Suppose V is a visible element of XĴe

.

Apply Lemma 3.1 with A = Ĵe and let φ be the automorphism of Ĵe as given by the lemma.

Consider Ĵe
φ
→ Ĵe → J0 → Je → Ĵe

φ−1

→ Ĵe which is again multiplication by |N |. This gives

XĴe

φ̃
→ XĴe

→ XJ0
→ XJe

→ XĴe

˜φ−1

→ XĴe
, which is again multiplication by |N|. Consider V

as an element of the first XĴe
in this sequence. Then by Lemma 3.1, its image in XJ0

is trivial,

hence it is killed under the composite, i.e. it is killed by multiplication by |N | i.e. by a 2-power.
Thus the visible elements of XĴe

have 2-power order.

In the calculations, we found that (for p = 1091) 7 divides the factor |H+
e /ℑe| which appears

in the equation (2) given above. Thus 7 divides the right hand side of equation (2). We will check
that it does not divide any factor of the left hand side other than |XJe

|.
First cp: We apply [1, Prop. 7.5.3] to the exact sequence 0 → (1 + Wp)J0 → J0 → J0/(1 +

Wp)J0 → 0 to conclude that a power of 2 kills the cokernel of the map of Néron models J0 → Je.
Hence we have that away from 2, cp divides the number of connected components in the special
fiber at p of J0, which is n by [6, Thm A.1]. But in our case, n = numr ((1091 − 1)/12) = 545,
so 7 does not divide cp. Next, one can use [7, Prop. 3.1] to show that cM is a unit in Z[1/2], so 7
does not divide the numerator of cM (it should be possible to show that cM is in fact an integer).
Finally 7 does not divide n = 545.
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So looking at equation (2) (which follows from (1) by Prop. 2.1), one concludes that 7 divides
|XJe

|. Next, one can check using the Cassels-Tate pairing that |XĴe
|=|XJe

|. Hence 7 divides

|XĴe
|. Thus XĴe

has a non-trivial element of order 7. This cannot be visible because such
elements are killed by a 2-power as was shown before. Thus XĴe

has an element that is not visible

in J0(p).

Next we consider visibility in J1 = J1(p). Consider the series of maps J0
π∗

→ J1
≃
→ J1

π∗→ J0 where
the last map is obtained from π : X1(p) → X0(p) via the Albanese functoriality. The composite is

just multiplication by deg(π)= (p − 1)/2 = 545. So the map Ĵe → J0 → J1 → J1 → J0 → Je is
an isogeny of a degree such that the only primes dividing it are 2 and those diving 545 i.e. 5 and
109. Using this, one can show that the element of order 7 in XĴe

does not get killed in XJ1
and

hence that there is a nontrivial element of order 7 in XĴe

′ . Call it V and suppose it is visible in

J1. Then by Lemma 3.1 with A = Ĵe
′
, there is an automorphism φ of Ĵe

′
such that V is killed

under the composite XĴ′

e

φ̃
→ XĴe

′ → XJ1
. In the isogeny Ĵe → Ĵe

′
→ J1 → J0 → Je, the first

map Ĵe → Ĵe
′

is also an isogeny, and its degree divides the order of the kernel of π∗, which is

n = 545 by [6, II.11.6, II.11.7]. So the map Ĵe
′
→ J1 → J0 → Je is also an isogeny. Hence so is

the map Ĵe
′ φ
→ Ĵe

′
→ J1 → J0 → Je and the only primes dividing its degree are 2, 5 and 109. So

by the familiar argument, the element V of order 7 is not killed under XĴ′

e

φ̃
→ XĴe

′ → XJ1
, a

contradiction. Hence V is an element of XĴ′

e

not visible in J1.

A similar result of the existence of an invisible element was found for p = 1429 where 5 divides
|H+

e /ℑe|. Note that as a byproduct, we have that the Tate-Shafarevich groups of J0(1091) and
J1(1091) are non-trivial (assuming the Birch-Swinnerton-Dyer conjecture).
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the University of California, Berkeley, and I am very grateful to both institutions for their help.

References
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