The modular degree, congruence number, and multiplicity one

Amod Agashe
Florida State University

joint work with K. Ribet and W. Stein

October 4, 2007

*Slides and paper available at:
http://www.math.fsu.edu/~agashe/math.html
Elliptic curves

Let E be an elliptic curve over \mathbb{Q}, i.e., an equation of the form $y^2 = x^3 + ax + b$, where $a, b \in \mathbb{Q}$

Example: The graph of $y^2 = x^3 - x$ over \mathbb{R}:

If p is a prime, then we can “think of” the equation for E modulo p
Let $a_p(E) = 1 + p - \#\text{solutions to } E \mod p$.
Modular curves and modular forms

Let N be a positive integer.

$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : N \mid c \right\}$.

E.g., $\Gamma_0(1) = \text{SL}_2(\mathbb{Z})$

\mathcal{H} = complex upper half plane

$\Gamma_0(N)$ acts on $\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ as

$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) z = \frac{az+b}{cz+d}$

$X_0(N) = \Gamma_0(N) \backslash (\mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}))$

A modular form on $\Gamma_0(N)$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

$\forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N), f(\gamma z) = (cz + d)^2 f(z)$

and f is holomorphic at the cusps.

In particular, $f(z + 1) = f(z)$, so

$f(z) = \sum_{n>0} a_n(f)q^n$, where $q = e^{2\pi i z}$.

f is said to be a cuspform if $a_0(f) = 0$, i.e., f vanishes at the cusps.
Modular degree and congruence number

By work of Wiles and Breuil-Conrad-Diamond-Taylor, if E is an (optimal) elliptic curve, then there is an integer N (the conductor of E) such that
1) \exists a surjective morphism of curves $\phi_E : X_0(N) \to E$, and
2) \exists a cuspform f_E on $\Gamma_0(N)$ with integer Fourier coefficients such that $a_n(E) = a_n(f_E) \quad \forall n$.

The modular degree of $E = \deg(\phi_E)$. The congruence number of $E = \text{the largest integer } r \text{ such that }
\exists$ a cuspform g on $\Gamma_0(N)$ “orthogonal” to f_E with $a_n(f_E) \equiv a_n(g) \mod r \quad \forall n$.

Both are important invariants:
Bounds on modular degree related to abc conjecture (Frey, Mai-Murty)
Congruence primes (the primes that divide the congruence number) figured in work of Ribet and Wiles on Fermat’s last theorem.
Relations between modular degree and congruence number

Theorem (Ribet ~ 1985): The modular degree divides the congruence number. If N is prime, then the two are equal.

Frey and Müller asked: are they always equal?

Answer (Stein ~ 2000): NO. e.g., there is an elliptic curve E of conductor 54 with modular degree $= 2$ and congruence number $= 6$.

Theorem (A, Ribet, Stein): If a prime p divides the ratio of the congruence number to the modular degree, then $p^2 | N$.

In particular, if N is square-free, then the congruence primes divide the modular degree.

Note: In previous example, $3^2 | 54$.
Multiplicity one

\(J_0(N) = \) Jacobian of \(X_0(N) \); thus
\(J_0(N)(\mathbb{C}) = \) degree zero divisors on \(X_0(N)(\mathbb{C}) \)
modulo principal divisors
Hecke algebra \(T = \) subring of \(\text{End}(J_0(N)) \)
generated by the Hecke operators.

We say that a maximal ideal \(m \) of \(T \) satisfies
multiplicity one if \(\dim_{T/m} J_0(N)[m] = 2 \).

The notion of multiplicity one was initiated by Mazur and played an important role in Wiles’ proof of Fermat’s last theorem.

Proposition (A, Stein, Ribet): If \(E \) is an elliptic curve of conductor \(N \), and \(p \) is a prime such that \(p \) divides the congruence number of \(E \) but not the modular degree of \(E \), Then \(m = \text{Ann}_T E[p] \) does not satisfy multiplicity one.

So by the previous example, for \(N = 54 \), there is a maximal ideal of \(T \) with residue characteristic 3 which does not satisfy multiplicity one.