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Classical Kronecker’s first limit formula

For τ ∈ H, the upper half plane, let y = =(τ), and for s ∈ C,

define E ∗2 (τ, s) = π−sΓ(s)
∑

m1,m2

y s

|m1τ+m2|2s ;

it converges when Re(s) > 1 and is known to have a meromorphic
continuation to all s ∈ C, with only pole at s = 1.

The classical Kronecker’s first limit formula says

E ∗2 (τ, s) = 1
s−1 +

(
γ− log 4π− log y − 4 log |η(τ)|

)
+O(s − 1) , where

γ is the Euler-Mascheroni constant and
η(z) is the Dedekind eta-function.

Kronecker’s first limit formula has several applications; we mention
one such next.
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Dedekind zeta functions of imaginary quadratic fields

Let K be a number field.

If A is an ideal class of K , then

the partial zeta function associated to A is ζK (s,A) =
∑

a∈A
1

Nas ,

and the Dedekind zeta function is ζK (s) =
∑

a
1

Nas =
∑

A ζK (s,A);
these series converge when Re(s) > 1 and are known to have
meromorphic continuations to all s ∈ C, with only pole at s = 1.

Let wK denote he number of roots of unity in K and dK denote the
discriminant of K .

Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that

ζK (s,A) = 1
wK

2π√
dK

(
1

s−1 +2γ−log 2−log y−4 log(|η(τ)|)
)

+O(s−1) ,

where τ is an element of the upper half plane

such that {1, τ} is a basis for an ideal in the inverse class of A,

and y is the imaginary part of τ .
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Dedekind zeta functions of real quadratic fields

Now let K be a real quadratic field.

Using Kronecker’s first limit formula, Hecke showed that
1
2

(
π−1d

1/2
K

)s
Γ(s/2)2ζK (s,A) =

log ε
s−1 +(γ−log 4π) log ε−

∫ ε
1 log y(t)dtt −4

∫ ε
1 log |η(τ(t))|dtt +O(s−1) ,

where

ε is a fundament unit of K ,

τ(t) is a certain curve in the upper half plane (depends on A),

and y(t) denotes its y -coordinate.
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Dedekind zeta functions of other number fields

The limit formula and the preceding formula were generalized by

Bump-Goldfeld to real cubic fields,

Efrat to all cubic fields, and

Liu-Masri to all totally real fields.

We generalize it to all number fields.
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Generalization of Kronecker’s first limit formula

For n ≥ 2, the generalized upper half-plane Hn

= GLn(R)/On(R)R×;
consists of certain n × n matrices; note that H2 is the usual upper

half plane, and the point x + iy corresponds to the matrix

[
y x
0 1

]
Consider for τ ∈ Hn and s ∈ C with <(s) > 1,

E ∗n (τ, s) = π−ns/2Γ(ns/2)
∑

m1,...,mn

(det τ)s

‖(m1...mn)τ‖ns/2
.

Theorem (Liu-Masri, A)

E ∗n (τ, s) has meromorphic continuation to all s ∈ C with the only pole at
s = 1, and

E ∗n (τ, s) = 2/n
s−1 +

(
γ− log 4π− 2

n log

(∏n−1
i=1 y ii

)
−4 log g(τ)

)
+O(s−1) ,

where yi ’s are related to the diagonal entries mentioned above in τ ,
and g(τ) is an explicit function (it generalizes |η(τ)|).
Our proof is self contained; the proof of Liu-Masri relies on work of
Terras (all use the Poisson summation formula).
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Generalization of Dedekind eta function?

One can define

η(τ) = q1
∏

[(m2,...,mn)]
(1− q2)exp(2πiv),

where q1, q2, v are certain explicit functions of τ and (m2, . . . ,mn),

so that g(τ) = |η(τ)| and

η(τ) coincides with the usual Dedekind eta function when n = 2.

The classical Kronecker’s first limit formula can be used to show the
automorphy property of the usual Dedekind eta function,

and probably our generalization of Kronecker’s first limit formula can
be used to show the automorphy property of our generalization of the
Dedekind eta function;

however: are there any applications of the generalization of the
Dedekind eta function??
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Dedekind zeta functions of arbitrary number fields

Let K be a number field of degree n > 2.

Theorem

wK

(
2−cπ−n/2d

1/2
K

)s
d(s)Γ(ns/2)ζK (s,A) =

2V /n
s−1 + (γ − log 4π)V − 2

n

∫
D log

(∏n−1
i=1 yi (t1, . . . , tm)i

)
dt1
t1
· · · dtmtm −

4
∫
D log g(τ(t1, . . . , tm))dt1t1 · · ·

dtm
tm

+ O(s − 1), where

τ : Rm→Hn is an explicit function, r denotes the number of real
embeddings of K , c denotes the number of complex conjugate
embeddings, m = r + c − 1, ε1, . . . , εm denotes a fundamental set of
units of K , D is a fundamental domain under the action
of 〈ε1, . . . , εm〉 on (R>0)m, V =

∫
D

dt1
t1
· · · dtmtm , and d(s) is an explicit

function.

Was proved for totally real fields by Liu-Masri. Both proofs use
generalizations of a trick of Hecke (was done for cubic fields by Efrat).
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