A generalization of Kronecker's first limit formula with application to zeta functions of number fields

Amod Agashe

Florida State University Department of Mathematics

March 26, 2021

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m, n} \frac{\operatorname{Im}(\tau)^s}{|m\tau+n|^{2s}}$;

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$, define the Eisenstein series $E_2^*(\tau, s) = \pi^{-s} \Gamma(s) \sum_{m,n} \frac{\operatorname{Im}(\tau)^s}{|m\tau+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

define the Eisenstein series $E_2^*(\tau,s) = \pi^{-s}\Gamma(s)\sum_{m,n} rac{\mathrm{Im}(\tau)^s}{|m\tau+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

The classical Kronecker's first limit formula gives the Laurent series expansion near s = 1:

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

define the Eisenstein series $E_2^*(\tau,s) = \pi^{-s}\Gamma(s)\sum_{m,n} rac{\mathrm{Im}(\tau)^s}{|m\tau+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

The classical Kronecker's first limit formula gives the Laurent series expansion near s = 1:

$$E_2^*(au,s) = rac{1}{s-1} + \left(\gamma - \log 4\pi - \log \operatorname{Im}(au) - 4 \log |\eta(au)|
ight) + O(s-1) \; ,$$

Let
$$\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$$
. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

define the Eisenstein series $E_2^*(au,s) = \pi^{-s}\Gamma(s)\sum_{m,n}rac{\mathrm{Im}(au)^s}{|m au+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

The classical Kronecker's first limit formula gives the Laurent series expansion near s = 1:

$$\begin{split} E_2^*(\tau,s) &= \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \operatorname{Im}(\tau) - 4 \log |\eta(\tau)|\right) + O(s-1) \ , \\ \text{where } \gamma \text{ is the Euler-Mascheroni constant and} \\ \eta(z) \text{ is the Dedekind eta-function.} \end{split}$$

Let
$$\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$$
. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

define the Eisenstein series $E_2^*(au,s) = \pi^{-s}\Gamma(s)\sum_{m,n}rac{\mathrm{Im}(au)^s}{|m au+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

The classical Kronecker's first limit formula gives the Laurent series expansion near s = 1:

$$\begin{split} E_2^*(\tau,s) &= \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \operatorname{Im}(\tau) - 4 \log |\eta(\tau)|\right) + O(s-1) \ , \\ \text{where } \gamma \text{ is the Euler-Mascheroni constant and} \\ \eta(z) \text{ is the Dedekind eta-function.} \end{split}$$

One can deduce the modularity property of $\eta(z)$ using the formula above.

Let $\mathfrak{H} = \{ \tau \in \mathbf{C} : \operatorname{Im}(\tau) > 0 \}$. For $\tau \in \mathfrak{H}$ and $s \in \mathbf{C}$,

define the Eisenstein series $E_2^*(au,s) = \pi^{-s}\Gamma(s)\sum_{m,n}rac{\mathrm{Im}(au)^s}{|m au+n|^{2s}}$;

it converges when $\operatorname{Re}(s) > 1$ and is known to have a meromorphic continuation to all $s \in \mathbf{C}$, with only pole at s = 1.

The classical Kronecker's first limit formula gives the Laurent series expansion near s = 1:

$$E_2^*(\tau, s) = \frac{1}{s-1} + \left(\gamma - \log 4\pi - \log \operatorname{Im}(\tau) - 4\log |\eta(\tau)|\right) + O(s-1) ,$$

where γ is the Euler-Mascheroni constant and

 $\eta(z)$ is the Dedekind eta-function.

One can deduce the modularity property of $\eta(z)$ using the formula above.

Kronecker's first limit formula has many other applications; we mention one such next.

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K.

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{\mathfrak{a} \in A} \frac{1}{N\mathfrak{a}^s}$, so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$.

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{\mathfrak{a} \in A} \frac{1}{N\mathfrak{a}^s}$, so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$. These series converge when $\operatorname{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbf{C}$, with only pole at s = 1. What are the Laurent series expansions of these functions near s = 1?

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{\mathfrak{a} \in A} \frac{1}{N\mathfrak{a}^s}$, so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$. These series converge when $\operatorname{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbf{C}$, with only pole at s = 1. What are the Laurent series expansions of these functions near s = 1? Now let K be an imaginary quadratic field.

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{\mathfrak{a} \in A} \frac{1}{N\mathfrak{a}^s}$, so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$. These series converge when $\operatorname{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbf{C}$, with only pole at s = 1. What are the Laurent series expansions of these functions near s = 1? Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that

$$\frac{W_K \sqrt{d_K}}{2\pi} \zeta_K(s, A) = \frac{1}{s-1} + \left(2\gamma - \log 2 - \log \operatorname{Im}(\tau) - 4 \log |\eta(\tau)| \right) + O(s-1) ,$$

Let K be a number field. The Dedekind zeta function of K is $\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^s}$, where \mathfrak{a} runs over the ideals of K. If A is an ideal class of K, then the partial zeta function associated to A is $\zeta_K(s, A) = \sum_{\mathfrak{a} \in A} \frac{1}{N\mathfrak{a}^s}$, so that $\zeta_K(s) = \sum_A \zeta_K(s, A)$. These series converge when $\operatorname{Re}(s) > 1$ and are known to have meromorphic continuations to all $s \in \mathbf{C}$, with only pole at s = 1. What are the Laurent series expansions of these functions near s = 1? Now let K be an imaginary quadratic field.

Using the first limit formula, Kronecker showed that

$$\frac{\frac{W_{K}\sqrt{d_{K}}}{2\pi}}{\zeta_{K}}(s, A) = \frac{1}{s-1} + \left(2\gamma - \log 2 - \log \operatorname{Im}(\tau) - 4\log |\eta(\tau)|\right) + O(s-1),$$

where w_K denotes the number of roots of unity in K, d_K denotes the discriminant of K, τ is an element of the upper half plane such that $\{1, \tau\}$ is a basis for an ideal in the inverse class of A, and y is the imaginary part of τ .

Dedekind zeta functions of real quadratic fields

Now let K be a real quadratic field.

Using Kronecker's first limit formula, Hecke showed that $\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) = \frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s-1) ,$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅつ

Using Kronecker's first limit formula, Hecke showed that $\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) = \frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s-1) ,$

where ϵ is a fundament unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and y(t) denotes its y-coordinate.

Using Kronecker's first limit formula, Hecke showed that $\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) = \frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s-1) ,$

where ϵ is a fundament unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and y(t) denotes its y-coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields.

Using Kronecker's first limit formula, Hecke showed that $\frac{1}{2} (\pi^{-1} d_K^{1/2})^s \Gamma(s/2)^2 \zeta_K(s, A) = \frac{\log \epsilon}{s-1} + \left((\gamma - \log 4\pi) \log \epsilon - \int_1^\epsilon \log y(t) \frac{dt}{t} - 4 \int_1^\epsilon \log |\eta(\tau(t))| \frac{dt}{t} \right) + O(s-1) ,$

where ϵ is a fundament unit of K, $\tau(t)$ is a certain curve in the upper half plane (depends on A), and y(t) denotes its y-coordinate.

The preceding formula was generalized by Bump-Goldfeld to real cubic fields, Efrat to all cubic fields, and Liu-Masri to all totally real fields. We generalize it to all number fields.

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices;

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$ Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbf{C}$ with $\Re(s) > 1$, $E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1,...,m_n} \frac{(\det \tau)^s}{\|(m_1...m_n)\tau\|^{ns/2}}$.

イロト 不得 トイヨト イヨト ヨー ろくで

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$ Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbf{C}$ with $\Re(s) > 1$, $E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1,\dots,m_n} \frac{(\det \tau)^s}{\|(m_1 - m_2)\tau\|^{ns/2}}$.

Theorem (Liu-Masri, A)

 $E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbf{C}$ with the only pole at s = 1,

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$ Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbf{C}$ with $\Re(s) > 1$, $E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1,\dots,m_n} \frac{(\det \tau)^s}{\|(m_1 - m_2)\pi\|^{ns/2}}$.

Theorem (Liu-Masri, A)

 $E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbf{C}$ with the only pole at s = 1, and

$$E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i\right) - 4 \log g(\tau)\right) + O(s-1) ,$$

イロト 不得 トイヨト イヨト ヨー ろくで

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$ Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbf{C}$ with $\Re(s) > 1$, $E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1,\dots,m_n} \frac{(\det \tau)^s}{\|(m_1 - m_2)\pi\|^{ns/2}}$.

Theorem (Liu-Masri, A)

 $E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbf{C}$ with the only pole at s = 1, and

$$E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i\right) - 4 \log g(\tau)\right) + O(s-1) ,$$

where y_i 's are related to the diagonal entries in τ , and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$).

For $n \ge 2$, the generalized upper half-plane $\mathfrak{H}^n = GL_n(\mathbf{R})/O_n(\mathbf{R})\mathbf{R}^{\times}$; consists of certain $n \times n$ matrices; note that \mathfrak{H}^2 is the usual upper half plane, and the point x + iy corresponds to the matrix $\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$ Consider for $\tau \in \mathfrak{H}^n$ and $s \in \mathbf{C}$ with $\Re(s) > 1$, $E_n^*(\tau, s) = \pi^{-ns/2} \Gamma(ns/2) \sum_{m_1, \dots, m_n} \frac{(\det \tau)^s}{||(m_1 \dots m_n)\tau||^{ns/2}}$.

Theorem (Liu-Masri, A)

 $E_n^*(\tau, s)$ has meromorphic continuation to all $s \in \mathbf{C}$ with the only pole at s = 1, and

$$E_n^*(\tau, s) = \frac{2/n}{s-1} + \left(\gamma - \log 4\pi - \frac{2}{n} \log \left(\prod_{i=1}^{n-1} y_i^i\right) - 4 \log g(\tau)\right) + O(s-1) ,$$

where y_i 's are related to the diagonal entries in τ , and $g(\tau)$ is an explicit function (it generalizes $|\eta(\tau)|$). Our proof is self contained; the proof of Liu-Masri relies on work of Terras (all use the Poisson summation formula).

Let K be a number field of degree n > 2.

Let K be a number field of degree n > 2.

Theorem

$$w_{K} \left(2^{-c} \pi^{-n/2} d_{K}^{1/2}\right)^{s} d(s) \Gamma(ns/2) \zeta_{K}(s, A) = \frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_{D} \log \left(\prod_{i=1}^{n-1} y_{i}(t_{1}, \dots, t_{m})^{i}\right) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} - 4 \int_{D} \log g(\tau(t_{1}, \dots, t_{m})) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} + O(s-1),$$

イロン イロン イヨン イヨン 三日

Let K be a number field of degree n > 2.

Theorem

$$w_{K} \left(2^{-c} \pi^{-n/2} d_{K}^{1/2}\right)^{s} d(s) \Gamma(ns/2) \zeta_{K}(s, A) = \frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_{D} \log \left(\prod_{i=1}^{n-1} y_{i}(t_{1}, \dots, t_{m})^{i}\right) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} - 4 \int_{D} \log g(\tau(t_{1}, \dots, t_{m})) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} + O(s-1),$$

where $\tau : \mathbf{R}^m \to \mathfrak{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, m = r + c - 1, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbf{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and d(s) is an explicit function.

Let K be a number field of degree n > 2.

Theorem

$$w_{K} \left(2^{-c} \pi^{-n/2} d_{K}^{1/2}\right)^{s} d(s) \Gamma(ns/2) \zeta_{K}(s, A) = \frac{2V/n}{s-1} + (\gamma - \log 4\pi) V - \frac{2}{n} \int_{D} \log \left(\prod_{i=1}^{n-1} y_{i}(t_{1}, \dots, t_{m})^{i}\right) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} - 4 \int_{D} \log g(\tau(t_{1}, \dots, t_{m})) \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{m}}{t_{m}} + O(s-1),$$

where $\tau : \mathbf{R}^m \to \mathfrak{H}^n$ is an explicit function, r denotes the number of real embeddings of K, c denotes the number of complex conjugate embeddings, m = r + c - 1, $\epsilon_1, \ldots, \epsilon_m$ denotes a fundamental set of units of K, D is a fundamental domain under the action of $\langle \epsilon_1, \ldots, \epsilon_m \rangle$ on $(\mathbf{R}_{>0})^m$, $V = \int_D \frac{dt_1}{t_1} \cdots \frac{dt_m}{t_m}$, and d(s) is an explicit function.

Was proved for cubic fields by Efrat and for totally real fields by Liu-Masri. All proofs use generalizations of a trick of Hecke.

Thank you!

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで