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The Modular Degree, Congruence Primes, and Multiplicity One

Amod Agashe 1 Kenneth A. Ribet William A. Stein

Abstract.

The modular degree and congruence number are two fundamental in-
variants of an elliptic curve over the rational field. Frey and Müller
have asked whether these invariants coincide. We find that the ques-
tion has a negative answer, and show that in the counterexamples,
multiplicity one (defined below) does not hold. At the same time, we
prove a theorem about the relation between the two invariants: the
modular degree divides the congruence number, and the ratio is divis-
ible only by primes whose squares divide the conductor of the elliptic
curve. We discuss the ratio even in the case where the square of a
prime does divide the conductor, and we study analogues of the two
invariants for modular abelian varieties of arbitrary dimension.

1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an
abelian variety quotient over Q of the modular Jacobian J0(N), where N is
the conductor of E. We assume that the kernel of the map J0(N) → E is
connected, i.e., that E is an optimal quotient of J0(N) (this can always be
done by replacing E by an isogenous curve if needed). The modular degree mE

is the degree of the composite map X0(N) → J0(N) → E, where we map
X0(N) to J0(N) by sending P ∈ X0(N) to [P ]− [∞] ∈ J0(N).

Let fE =
∑
anq

n ∈ S2(Γ0(N),C) be the newform attached to E. The
congruence number rE of E is the largest integer such that there is an element
g =

∑
bnq

n ∈ S2(Γ0(N)) with integer Fourier coefficients bn that is orthog-
onal to fE with respect to the Petersson inner product, and congruent to fE
modulo rE (i.e., an ≡ bn (mod rE) for all n).

1Agashe was partially supported by National Science Foundation Grant No. 0603668.
Stein was partially supported by National Science Foundation Grant No. 0653968.
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Section 2 is about relations between rE and mE. For example, mE | rE. In
[FM99, Q. 4.4], Frey and Müller asked whether rE = mE. We give examples in
which rE 6= mE, and show that in these examples, there is a maximal ideal m
of the Hecke algebra T, such that J0(N)[m] has dimension more than two
over T/m (this is the failure of multiplicity one alluded to above). We then
conjecture that for any prime p, ordp(rE/mE) ≤ 1

2 ordp(N), and prove this
conjecture when ordp(N) ≤ 1.

In Section 3, we consider analogs of the modular degree and the congruence
number for certain modular abelian varieties that are not necessarily elliptic
curves; these include optimal quotients of J0(N) and J1(N) of any dimension
associated to newforms. Section 3 may be read independently of Section 2.
In Sections 4 and 5 we prove the main theorem of this paper (Theorem 3.6),
and also give some examples of failure of what we call multiplicity one for
differentials (see Definition 5.13).
Acknowledgment. The authors are grateful to M. Baker, F. Calegari,
B. Conrad, J. Cremona, G. Frey, H.W. Lenstra, and B. Noohi for discussions
and advice regarding this paper. We would especially like to thank B. Conrad
for the material in the appendix and for his suggestions concerning a number of
technical facts that are inputs to our arguments. The first author is also grate-
ful to the Max-Planck-Institut für Mathematik for their hospitality during a
visit when he partly worked on this paper.

2 Elliptic curves

In Section 2.1, we discuss relationships between the modular degree and the
congruence number of an elliptic curve. In Section 2.2 we recall the notion of
multiplicity one and give new examples in which it fails.

2.1 Modular degree and congruence number

Let N be a positive integer and let X0(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of or-
der N . The Hecke algebra T of level N is the subring of the ring of endo-
morphisms of J0(N) = Jac(X0(N)) generated by the Hecke operators Tn for
all n ≥ 1. Let f be a newform of weight 2 for Γ0(N) with integer Fourier
coefficients, and let If be kernel of the homomorphism T → Z[. . . , an(f), . . .]
that sends Tn to an. Then the quotient E = J0(N)/IfJ0(N) is an elliptic curve
over Q. We call E the optimal quotient associated to f . Composing the embed-
ding X0(N) ↪→ J0(N) that sends ∞ to 0 with the quotient map J0(N) → E,
we obtain a surjective morphism of curves φE : X0(N) → E. Recall that the
modular degree mE of E is the degree of φE.

Let S2(Z) denote the group of cuspforms of weight 2 on Γ0(N) with integral
Fourier coefficients, and if G is a subgroup of S2(Z), let G⊥ denote the subgroup
of S2(Z) consisting of cuspforms that are orthogonal to f with respect to the
Petersson inner product. The congruence number of E (really, that of f) is the
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positive integer rE defined by any of the following equivalent conditions:
(i) rE is the largest integer r such that there exists g ∈ (Zf)⊥ with f ≡ g mod r.
(ii) rE is the order of the quotient group S2(Z)

Zf+(Zf)⊥
.

We say that a prime is a congruence prime for E if it divides the congruence
number rE. Congruence primes have been studied by Doi, Hida, Ribet, Mazur
and others (see, e.g., [Rib83, §1]), and played an important role in Wiles’s
work [Wil95] on Fermat’s last theorem. Frey and Mai-Murty have observed
that an appropriate asymptotic bound on the modular degree is equivalent to
the abc-conjecture (see [Fre97, p.544] and [Mur99, p.180]). Thus, results that
relate congruence primes and the modular degree may be of great interest.

Theorem 2.1. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence number rE. Then mE | rE and if ordp(N) ≤ 1 then
ordp(rE) = ordp(mE).

Thus any prime that divides the modular degree of an elliptic curve E is a
congruence prime for E, and if p is a congruence prime for E such that p2 does
not divide the conductor of E, then p divides the modular degree of E. The
divisibility mE | rE was first discussed in [Zag85, Th. 3], where it is attributed
to the second author (Ribet); however in [Zag85] the divisibility was mistakenly
written in the opposite direction. For some other expositions of the proof that
mE | rE, see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility
and prove it in Theorem 3.6(a). The second part of Theorem 2.1, i.e., that
if ordp(N) ≤ 1 then ordp(rE) = ordp(mE), follows from the more general
Theorem 3.6(b) below. Note that [AU96, Prop. 3.3–3.4] implies the weaker
statement that if p - N , then ordp(rE) = ordp(mE), since [AU96, Prop. 3.3]
implies

ordp(rE)− ordp(mE) = ordp(#C)− ordp(cE)− ordp(#D),

and by [AU96, Prop. 3.4], ordp(#C) = 0. Here cE is the Manin constant of E,
which is an integer (e.g., see [ARS06]), and C and D are certain groups.

Frey and Müller [FM99, Ques. 4.4] asked whether rE = mE in general. After
implementing an algorithm to compute rE in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N ≤ 144 are given
in Table 1, where the curve is given using the notation of [Cre97].

For example, the elliptic curve 54B1, given by the equation y2 + xy + y =
x3 − x2 + x− 1, has rE = 6 and mE = 2. To see explicitly that 3 | rE, observe
that the newform corresponding to E is f = q + q2 + q4 − 3q5 − q7 + · · · and
the newform corresponding to X0(27) is g = q− 2q4 − q7 + · · · , so g(q) + g(q2)
appears to be congruent to f modulo 3. To prove this congruence, we checked
it for 18 Fourier coefficients, where the sufficiency of precision to degree 18 was
determined using [Stu87].

It is unclear whether there is a bound on the possible primes p that occur.
For example, for the curve 242B1 of conductor N = 2 · 112 we have

mE = 24 6= rE = 24 · 11.
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Table 1: Differing Modular Degree and Congruence Number

Curve mE rE

54B1 2 6
64A1 2 4
72A1 4 8
80A1 4 8
88A1 8 16
92B1 6 12
96A1 4 8
96B1 4 8

Curve mE rE

99A1 4 12
108A1 6 18
112A1 8 16
112B1 4 8
112C1 8 16
120A1 8 16
124A1 6 12
126A1 8 24

Curve mE rE

128A1 4 32
128B1 8 32
128C1 4 32
128D1 8 32
135A1 12 36
144A1 4 8
144B1 8 16

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.2. Let E be an optimal elliptic curve of conductor N and p be
any prime. Then

ordp

(
rE

mE

)
≤ 1

2
ordp(N).

We verified Conjecture 2.2 using Sage [S+09] for every optimal elliptic curve
quotient of J0(N), with N ≤ 557.

If p ≥ 5 then ordp(N) ≤ 2, so a special case of the conjecture is

ordp

(
rE

mE

)
≤ 1 for any p ≥ 5.

2.2 Multiplicity one and its failure

We say that a maximal ideal m of T satisfies multiplicity one if J0(N)[m] is of
dimension two over T/m. The reason one calls this “multiplicitly one” is that if
the canonical two dimensional representation ρm over T/m attached to m (e.g.,
see [Rib90, Prop. 5.1]) is irreducible, then J0(N)[m] is a direct sum of copies
of ρm [Rib90, Thm. 5.2], and a maximal ideal m of T satisfies multiplicity
one precisely if the multiplicity of ρm in this decomposition is one. Even if
ρm is reducible, the definition of multiplicity one given above is relevant (e.g.,
see [Maz77, Cor. 16.3]). The notion of multiplicity one, originally found in
Mazur [Maz77], has played an important role in several places (e.g., in Wiles’s
proof of Fermat’s last theorem: see Thm. 2.1 in [Wil95]).

In [MR91, §13], the authors find examples of failure of multiplicity one in
which if p is the residue characteristic of m, then p3 | N , and ρm is modular
of level N/p2. Kilford [Kil02] found examples of failure of multiplicity one
where N is prime and the residue characteristic of m is 2. See also [Wie07]
and [KW08] for examples of failure of multiplicity one in the Γ1(N) context.
We now give examples of failure of multiplicity one where the square of the
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residue characteristic of m divides the level (the residue characteristic is often
odd).

Proposition 2.3. Suppose E is an optimal elliptic curve over Q of conduc-
tor N and p is a prime such that p | rE but p - mE. Then there is a maximal
ideal m of T with residue characteristic p such that dimT/m J0(N)[m] > 2, i.e.,
multiplicity one fails for m.

The proposition follows from the more general Proposition 5.9 below. It fol-
lows from the proposition above that any example in Table 1 where simultane-
ously a prime divides rE but does not divide mE provides an example of failure
of multiplicity one. In such examples, the associated representation ρm may or
may not be irreducible. For example, for the elliptic curve 54B1 and p = 3,
we have ord3(rE) = 1 but ord3(mE) = 0, so there is a maximal ideal m with
residue characteristic 3 such that multiplicity one fails for m. The curve 54B1
has rational 3-torsion, so ρm is reducible. On the other hand, for the elliptic
curve 99A1, we have ord3(rE) = 1 but ord3(mE) = 0, so again there is a max-
imal ideal m with residue characteristic 3 such that multiplicity one fails for
m. Moreover, J0(99) is isogenous to a product of elliptic curves, none of which
admit a rational 3-isogeny. Hence ρm is irreducible.

The notion of multiplicity one at a maximal ideal m is closely related to
Gorensteinness of the completion of T at m (e.g., see [Til97]). Kilford [Kil02]
found examples of failure of Gorensteinness (and multiplicity one) at the
prime 2 for certain prime levels. In the examples as above where multiplicity
one fails for some maximal ideal, it would be interesting to do computations
(e.g., as in [Kil02]) to see if the completion of the Hecke algebra at the maximal
ideal is Gorenstein or not.

3 Modular abelian varieties of arbitrary dimension

For N ≥ 4, let Γ be either Γ0(N) or Γ1(N). Let X be the modular curve
over Q associated to Γ, and let J be the Jacobian of X. Let A and B be abelian
subvarieties of J such that A+B = J , A∩B is finite, and every endomorphism
of J over Q preserves A and B. In this section, we generalize the notions of the
congruence number and the modular degree to subvarieties A as above, and
state a theorem relating the two numbers, which we prove in Sections 4 and 5.

We first give a general example of A and B as above. Up to isogeny, J
is the product of factors Je(f)

f where f runs over the set of newforms of level
dividing N , taken up to Galois conjugation, and e(f) is the number of divisors
of N/N(f), where N(f) is the level of f . Here Jf is the standard abelian
subvariety of J attached to f by Shimura [Shi94, Thm. 7.14]. Let A′ be the
sum of Je(f)

f for some set of f ’s (taken up to Galois conjugation), and let B′

be the sum of all the other Je(f)
f ’s. Clearly A′ + B′ = J . The Jf ’s are simple

(over Q), hence A′ ∩ B′ is finite. In view of the following lemma, A′ and B′



6 Agashe, Ribet, Stein

provide an example of A and B respectively as above. Note that by End(J)
we mean the ring of endomorphisms of J defined over Q.

Lemma 3.1. End(J) preserves A′ and B′.

Proof. Suppose End(J) does not preserve A′ (the case of B′ is symmetric).
Then since the Jf ’s are simple, that means that some abelian subvariety Jg
of A′ is isogenous to some abelian subvariety Jh of B′, where g 6= h. Pick
a prime `. If f is a newform, then let ρf denote the canonical absolutely
irreducible `-adic representation attached to f . Now Q` ⊗ V`(Jf )ss is a direct
sum of copies of ρσ(f) as σ ranges over all embeddings into Q of the field
generated by the Fourier coefficients of f . Thus the above implies that there
are distinct newforms g′ and h′ (of some level dividing N) such that ρg′ ∼= ρh′ .
Now each ρf satisfies tr(ρf (Frobp)) = ap(f) for all p - N`. Thus for all p - N`,
we have ap(g′) = ap(h′). By the multiplicity one theory (e.g., see [Li75, Cor. 3,
pg. 300]), this means that g′ = h′, a contradiction.

We now give a more specific example, which will include the case of elliptic
curves. Recall that T denotes the Hecke algebra. If f =

∑
an(f)qn ∈ S2(Γ)

is a newform and If = ker(T → Z[. . . , an(f), . . .]), then Af = J/IfJ is the
newform quotient associated to f . It is an abelian variety over Q of dimension
equal to the degree of the field Q(. . . , an(f), . . .). Let φ2 denote the quotient
map J → A. If C is an abelian variety, then we denote its dual abelian variety
by C∨. There is a canonical principal polarization θ : J ∼= J∨. Dualizing φ2,
we obtain a closed immersion φ∨2 : A∨f → J∨, which when composed with θ−1 :
J∨ ∼= J gives us an injection φ1 : A∨f ↪→ J . One slight complication is that the
isomorphim θ does not respect the action of T, because if T is a Hecke operator
on J , then on J∨ it acts as WNTWN , where WN is the Atkin-Lehner involution
(see e.g., [DI95, Rem. 10.2.2]). However, on the new quotient Jnew, the action of
the Hecke operators commutes with that of WN , so since the quotient map J →
Af factors through Jnew, the Hecke action on A∨f induced by the embedding
A∨f → J∨ and the action on A∨f induced by the injection φ1 : A∨f → J are the
same. Hence A∨f is isomorphic to φ1(A∨f ) as a T-module, and φ1(A∨f ) = Jf (this
follows from the characterization of Jf in [Shi94, Thm. 7.14]). For simplicity,
we will often denote φ1(A∨f ) = Jf by just A∨f . Let φ be the composite map

A∨f
φ1−→ J

φ2−→ Af ; then φ is a polarization (induced by dual of the polarization
of J). Thus A∨f +IfJ = J and A∨f ∩IfJ is finite. Hence, in view of Lemma 3.1,
A∨f and IfJ provide an example of A and B as in the beginning of this section.

The exponent of a finite group G is the smallest positive integer n such that
every element of G has order dividing n (i.e., such that for all x ∈ G,nx = 0).

Definition 3.2. The modular exponent ñA of A is the exponent of A∩B and
the modular number nA of A is its order.

Note that the definition is symmetric with respect to A and B. In fact, the
definition depends on both A and B, unlike what the notation may suggest—we
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have suppressed the dependence on B for ease of notation, with the understand-
ing that there is a natural choice of B (e.g., this is the case in the examples
we gave above). If f is a newform, then by the modular exponent/number
of Af , we mean that of A = A∨f , with B = IfJ . In this situation, since φ is a
polarization, nAf

is a perfect square (e.g., see [AS05, Lemma 3.14]). When Af
is an elliptic curve, φ is multiplication by the modular degree mE. Hence
A ∩B = ker(φ) is (Z/mEZ)2, and so for elliptic curves, the modular exponent
is equal to the modular degree and the modular number is the square of the
modular degree.

If R is a subring of C, let S2(R) = S2(Γ;R) denote the subgroup of S2(Γ;C)
consisting of cups forms whose Fourier expansions at the cusp ∞ have coeffi-
cients in R. There is a T-equivariant bilinear pairing T × S2(Z) → Z given
by (t, g) 7→ a1(t(g)), which is perfect by [AU96, Lemma 2.1] (see also [Rib83,
Theorem 2.2]). The action of T on H1(J,Z) is a faithful representation that
embeds T into Mat2d(Z) ∼= Z(2d)2 . But Z is Noetherian, so T is finitely gen-
erated over Z, and hence so is S2(Z). Let TA be the image of T in End(A),
and let TB be the image of T in End(B) (since T ⊂ End(J), T preserves A
and B). Since A + B = J , the natural map T → TA ⊕ TB is injective, and
moreover, its cokernel is finite (since A ∩B is finite).

Let SA = Hom(TA,Z) and SB = Hom(TB ,Z) be subgroups of S2(Z)
obtained via the pairing above. Let Ext1 = Ext1Z denote the first Ext functor
in the category of Z-modules.

Lemma 3.3. There is a canonical isomorphism of T-modules

Ext1((TA ⊕TB)/T,Z) ∼= S2(Z)/(SA + SB).

The groups S2(Z)/(SA + SB) and (TA ⊕TB)/T are isomorphic.

Proof. Apply the Hom(−,Z) functor to the short exact sequence

0 → T → TA ⊕TB → (TA ⊕TB)/T → 0

to obtain a three-term exact sequence

0 → Hom(TA ⊕TB ,Z) → Hom(T,Z) → Ext1((TA ⊕TB)/T,Z) → 0. (1)

The perfect T-equivariant bilinear pairing T × S2(Z) → Z given by (t, g) 7→
a1(t(g)) transforms (1) into an exact sequence

0 → SA ⊕ SB → S2(Z) → Ext1((TA ⊕TB)/T,Z) → 0

of T-modules, which proves the first claim in the lemma. Finally note that
if G is any finite abelian group, then Ext1(G,Z) ≈ G as groups, which gives
the second result of the lemma.

Definition 3.4. The exponent of either of the isomorphic groups S2(Z)/(SA+
SB) and (TA ⊕ TB)/T is the congruence exponent r̃A of A and the order of
the groups is the congruence number rA.
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Note that this definition is also symmetric with respect to A and B, and
again, the definition depends on both A and B, unlike what the notation may
suggest – we have suppressed the dependence on B with the implicit under-
standing that B has been chosen (given A). If f is a newform, then by the
congruence exponent/number of Af , we mean that of A = A∨f , with B = IfJ .
In this situation, TA = T/If and SA = S2(Z)[If ]. Recall that a subgroup H
of an abelian group G is said to be saturated (in G) if G/H is torsion-free. Now
Hom(TB ,Z) is the unique saturated Hecke-stable complement of S2(Z)[If ] in
S2(Z), hence must equal S2(Z)[If ]⊥, where we recall that S2(Z)[If ]⊥ denotes
the orthogonal complement of S2(Z)[If ] in S2(Z) with respect to the Petersson
inner product. Thus the congruence exponent r̃Af

is the exponent of the group

S2(Z)
S2(Z)[If ] + S2(Z)[If ]⊥

, (2)

and the congruence number rAf
is its order. In particular, our definition of rAf

generalizes the definition in Section 2.1 when Af is an elliptic curve.

Remark 3.5. If R is a subring of C, then S2(Z)⊗Z R = S2(R) (see, e.g., the
discussion in [DI95, §12]). Thus the analog the group displayed in (2) with Z
replaced by an algebraic integer ring (or even Z) gives a torsion module whose
annihilator ideal meets Z in the ideal generated by the congruence exponent.

The following generalizes Theorem 2.1:

Theorem 3.6. Let A and B be as in the first paragraph of Section 3. Then:
(a) ñA | r̃A.
(b) Let Γ = Γ0(N). If p - N , then ordp(r̃A) = ordp(ñA). If f ∈ S2(Γ0(N),C)
is a newform, then ordp(r̃Af

) = ordp(ñAf
) whenever p2 - N .

We give the proof of part (a) of this theorem in Section 4 and of part (b)
in Section 5. The two sections may be read independently of each other.

Remark 3.7. Let f ∈ S2(Γ,C) be a newform. When Af is an elliptic curve,
Theorem 3.6 implies that the modular degree divides the congruence number
(since for an elliptic curve, the modular degree and modular exponent are the
same), and that nAf

| r2Af
(since for an elliptic curve, the modular number

is the square of the modular exponent). In general, for a higher dimensional
newform quotient, the divisibility nAf

| r2Af
need not hold. For example, there

is a newform of degree 24 in S2(Γ0(431)) such that

nAf
= (211 · 6947)2 - r2Af

= (210 · 6947)2.

Note that 431 is prime and mod 2 multiplicity one fails for J0(431) (see [Kil02]).

4 Proof of Theorem 3.6(a)

Since End(J) preserves A and B, we have a map End(J) → End(A)⊕End(B);
moreover, since A + B = J , this map is injective. We have the following
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commutative diagram with exact rows:

0 // T //

��

TA ⊕TB
//

��

TA ⊕TB

T

��

// 0

0 // End(J) // End(A)⊕ End(B) // End(A)⊕ End(B)
End(J)

// 0.

(3)

The first two vertical maps are clearly injections, and the rightmost vertical
map is defined naturally so that the diagram is commutative. Let

e = (1, 0) ∈ TA ⊕TB ,

and let e1 and e2 denote the images of e in the groups (TA ⊕ TB)/T and
(End(A)⊕End(B))/End(J), respectively. Since A∩B is finite (in addition to
the fact that A+B = J), the two quotient groups on the right side of (3) are
finite, so e1 and e2 have finite order.

Lemma 4.1. The element e2 ∈ (End(A)⊕ End(B))/End(J) defined above has
order ñA.

Proof. By the denominator of any ϕ ∈ End(J) ⊗ Q, we mean the smallest
positive integer n such that nϕ ∈ End(J). Let πA, πB ∈ End(J) ⊗ Q be
projection onto A and B, respectively. Let n be the order of e2, so n is the
denominator of πA, which equals the denominator of πB (since πA + πB = 1J ,
so that πB = 1J − πA). We want to show that n is equal to ñA, the exponent
of A ∩B.

Let iA and iB be the embeddings of A and B into J , respectively. We
view nπA and nπB as morphisms J → A and J → B, respectively. Let ϕ =
(nπA, nπB) ∈ Hom(J,A × B); then ϕ ◦ (iA + iB) = [n]A×B . We have an exact
sequence

0 → A ∩B x7→(x,−x)−−−−−−→ A×B
iA+iB−−−−→ J → 0.

Let ∆ be the image of A ∩B. Then by exactness,

[n]∆ = (ϕ ◦ (iA + iB))(∆) = ϕ ◦ ((iA + iB)(∆)) = ϕ({0}) = {0},

so n is a multiple of the exponent ñA of A ∩B.
To show the opposite divisibility, consider the commutative diagram

0 // A ∩B
x7→(x,−x) //

[ñA]

��

A×B

([ñA],0)

��

// J //

ψ

��

0

0 // A ∩B
x7→(x,−x) // A×B // J // 0,



10 Agashe, Ribet, Stein

where the middle vertical map is (a, b) 7→ (ñAa, 0) and the map ψ exists because
[ñA](A ∩ B) = 0. But ψ = ñAπA in End(J) ⊗ Q. This shows that ñAπA ∈
End(J), i.e., that ñA is a multiple of the denominator n of πA.

Lemma 4.2. The element e1 ∈ (TA ⊕TB)/T has order r̃A.

Proof. We want to show that the order r of e1 equals the exponent of M =
(TA ⊕ TB)/T. Since e1 is an element of M , the exponent of M is divisible
by r. To obtain the reverse divisibility, consider any element x of M . Let
(a, b) ∈ TA ⊕TB be such that its image in M is x. By definition of e1 and r,
we have (r, 0) ∈ T, and since 1 = (1, 1) ∈ T, we also have (0, r) ∈ T. Thus
(Tr, 0) and (0,Tr) are both subsets of T (i.e., in the image of T under the
map T → TA ⊕TB), so r(a, b) = (ra, rb) = (ra, 0) + (0, rb) ∈ T. This implies
that the order of x divides r. Since this is true for every x ∈ M , we conclude
that the exponent of M divides r.

Proof of Theorem 3.6(a). Since e2 is the image of e1 under the right-most ver-
tical homomorphism in (3), the order of e2 divides that of e1. Now apply
Lemmas 4.1 and 4.2.

5 Proof of Theorem 3.6(b)

Let T′ be the saturation of T = Z[. . . , Tn, . . .] in End(J), i.e.,

T′ = End(J) ∩ (T⊗Q).

The quotient T′/T is a finitely generated abelian group because both T and
End(J) are finitely generated over Z. Since T′/T is also a torsion group, it is
finite.

In Section 5.1, we introduce two ideals R and S of the Hecke algebra that
are generalizations of the notions of the congruence exponent and the modular
exponent respectively. We will see that R ⊂ S and show that there is a natural
injection S/R ↪→ T′/T. In Section 5.2, we will prove that T and T′ agree
locally at a maximal ideal of T under the condition of what we call “multiplicity
one for differentials”; we also give examples where this condition does not hold.
Theorem 3.6(b) itself is proved at the end of Section 5.1, by applying the results
of Section 5.1 and a proposition that is proved in Section 5.2 to show that R = S
locally at a prime p such that p - N , or such that p2 - N for duals of newform
quotients.

5.1 The congruence and intersection ideals

In this section, we work in slightly more generality, and take A and B to be
as in the first paragraph of Section 3 (so Γ can be Γ1(N), and A need not be
the dual of a newform quotient). Let πA : T → TA and πB : T → TB be the
natural projection maps.
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Definition 5.1. With the setup as above, we define the congruence ideal as
R = πA(ker(πB)) ⊂ TA, and the intersection ideal as S = AnnTA

(A ∩B).

Lemma 5.2. We have R ⊂ S.

Proof. By definition, R consists of restrictions to A of Hecke operators that
vanish on B, while S consists of restrictions to A of Hecke operators that
vanish on A∩B. The lemma follows since the image in TA of an operator that
vanishes on B also vanishes on A ∩B.

Remark 5.3. By Lemma 5.2, we have a surjection TA/R→ TA/S. Note that
πA induces an isomorphism

T
ker(πA) + ker(πB)

'−→ TA

R
,

and we have an isomorphism

T
ker(πA) + ker(πB)

'−→ TA ⊕TB

T

obtained by sending t ∈ T to (πA(t), 0) ∈ TA ⊕TB . Hence by Definition 3.4,
the exponent of TA/R is r̃A and its order is rA. Also, ñA is the exponent
of A ∩ B, and one expects that it is also the exponent of TA/S (certainly
multiplication by ñA annihilates TA/S), which would give another proof that
ñA | r̃A. Instead of pursuing this, we record the following result, which will be
needed later.

Proposition 5.4. If p is a prime such that the localizations of R and S at p
are the same, then ordp(r̃A) ≤ ordp(ñA).

Proof. Under the hypothesis, the surjection TA/R→ TA/S is an isomorphism
locally at p. The lemma follows from the observations above that r̃A is the
exponent of TA/R and that ñA annihilates TA/S.

Lemma 5.5. There is a natural inclusion S/R ↪→ T′/T of T-modules.

Proof. We have

T⊗Q ∼= (TA⊗Q)⊕(TB⊗Q) ⊂ (End(A)⊗Q)⊕(End(B)⊗Q) ∼= End(J)⊗Q,

which we use to view T and TA as sitting inside End(J)⊗Q. Also, the groups
End(J) and T′ sit naturally in End(J)⊗Q. By definition, R = TA ∩T. Since
an endomorphism of A × B factors through A × B → J if and only if it kills
A ∩ B embedded in A × B via x 7→ (x,−x), we have that S = TA ∩ End(J)
and this equals TA ∩T′ (since a suitable multiple of any element of TA lands
in T, when both are viewed as subgroups of T⊗Q ⊂ End(J)⊗Q). Hence we
have R = S ∩T with intersection taken inside T′ ⊂ End(J)⊗Q. Thus

S/R = S/(S ∩T) ∼= (S + T)/T ↪→ T′/T.
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If m is a maximal ideal of T, then we say that two Hecke modules, with
one contained in the other, agree locally at m if their localizations at m are
the same. Let IA denote the kernel of the map T → TA. As an immediate
consequence of Lemma 5.5, we have:

Proposition 5.6. If m is a maximal ideal of T containing IA that is not in
SuppT(T′/T), then the corresponding maximal ideal m/IA of TA is not in the
support of S/R, i.e., if T and T′ agree locally at m, then R and S also agree
locally at m/IA.

Remark 5.7. The ring

T′′ = End(J) ∩ (TA ×TB) = T′ ∩ (TA ×TB)

is often of interest, where the intersection is taken in End(J)⊗Q. We proved
above that there is a natural inclusion S/R ↪→ T′/T. This inclusion yields an
isomorphism S/R

∼−→ T′′/T, as is clear from the “if and only if” statement
in the proof of Lemma 5.5. The ideals R and S are equal if the rings T and
T′′ coincide. Even when T′ is bigger than T, its subring T′′ may be not far
from T.

The following lemma and proposition will not be used in the proof of The-
orem 3.6(b), but they are of interest from the point of view of multiplicity
one.

Lemma 5.8. Let p be a prime and let m be a maximal ideal of T with residue
characteristic p. Suppose m satisfies the multiplicity one condition (i.e., J [m]
is of dimension two over T/m). Then the completions of T and T′ at m are
isomorphic.

Proof. As in [Maz77, p.92], consider the Tate module Tam(J), which is the
Pontryagin dual of the m-divisible group associated to J(Q). Since J [m] is of
dimension two over T/m, it follows that Tam(J) is free of rank 2 over Tm,
where the subscript denotes completion (see, e.g., [Til97, p. 332-333]). If r is
an element of T′m, then r operates Tm-linearly on Tam(J), and thus may be
viewed as a 2 × 2 matrix with entries in Tm. Further, some non-zero integer
multiple of r operates on Tam(J) as an element of Tm, i.e., as a scalar. Thus
r must be a scalar to start with, i.e., actually lies in Tm. Hence T′m = Tm as
claimed.

Proposition 5.9. Let p be a prime such that all maximal ideals m of T
with residue characteristic p that contain IA satisfy multiplicity one. Then
ordp(r̃A) = ordp(ñA).

Proof. This follows from Lemma 5.8, Lemma 5.5, Proposition 5.4, and Theo-
rem 3.6(a).

Proposition 5.10. Let Γ = Γ0(N). Let p be a prime such that p2 - N , and let
m be a maximal ideal of T with residue characteristic p. If p|N , then assume
that If ⊆ m for some newform f . Then T and T′ agree locally at m.
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Since the proof of this proposition is rather technical, we have postponed
it to Section 5.2. Admitting this proposition, we may now finish the proof of
Theorem 3.6(b).

Proof of Theorem 3.6(b). Recall that A and B are abelian subvarieties of J =
J0(N) such that A + B = J , A ∩ B is finite, and every endomorphism of J
over Q preserves A and B.

We first want to show that if a prime p does not divide N , then ordp(r̃A) =
ordp(ñA). In view of Theorem 3.6(a) and Proposition 5.4, it suffices to check
that R and S coincide locally at p. By Proposition 5.6, it suffices to check that
T and T′ are locally equal at all maximal ideals that divide p. If p - N , then
this follows from Proposition 5.10, which proves part of Theorem 3.6(b).

It remains to show that if f ∈ S2(Γ0(N),C) is a newform and p ‖ N , then
ordp(r̃Af

) = ordp(ñAf
). Note that the Hecke algebra T acts on S/R through

its quotient TA∨f
= T/AnnTA

∨
f since the action of T on R and on S factors

through this quotient. Thus, in view of Theorem 3.6(a) and Proposition 5.4,
it suffices to check that R and S coincide locally at maximal ideals of T that
divide p and contain AnnTA

∨
f = If (the equality follows since If is saturated).

But this follows from Proposition 5.6 and Proposition 5.10.

5.2 Multiplicity One for differentials

This section is devoted to the proof of Proposition 5.10 as well as to discuss
the notion of multiplicity one for differentials (Definition 5.13). In this section,
we take Γ = Γ0(N).

Let p be a prime such that p2 - N . Let M0(N) denote the compactified
coarse moduli scheme associated to Γ0(N) (as in [DR73, § IV.3]) over Zp,
and let X0(N)Zp denote its minimal regular resolution obtained by suitable
blow-up of the points j = 0, 1728 in characteristic dividing N , when they are
supersingular (cf. [Maz77, p.63]). Let ΩX0(N)/Zp

denote the relative dualizing
sheaf of X0(N)Zp

over Zp (it is the sheaf of regular differentials as in [MR91,
§7]). We denote by X0(N)Fp

the special fiber of X0(N)Zp
at the prime p and

by ΩX0(N)/Fp
the relative dualizing sheaf of X0(N)Fp over Fp.

The usual Hecke operators and the Atkin-Lehner involutions (correspond-
ing to primes dividing N) of J0(N) over Q extend uniquely to act on the
base change to Zp of the Néron model of J0(N), which we denote JZp .
The natural morphism Pic0

X0(N)/Zp
→ JZp

identifies Pic0
X0(N)/Zp

with the
identity component of JZp

(see, e.g., [BLR90, §9.4–9.5]). Passing to tan-
gent spaces along the identity section over Zp, we obtain an isomorphism
H1(X0(N)Zp ,OX0(N)Zp

) ∼= Tan(JZp). Using Grothendieck duality, one gets
an isomorphism Cot(JZp

)∼=H0(X0(N)Zp
,ΩX0(N)/Zp

), where Cot(JZp
) is the

cotangent space at the identity section (cf. [Maz78, p. 140]). Now the Hecke
operators and the Atkin-Lehner involutions act on Cot(JZp

), and hence via
the last isomorphism above, we get an action of the Hecke operators and the
Atkin-Lehner involutions on H0(X0(N)Zp ,ΩX0(N)/Zp

). Following the proof of
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Prop. 3.3 on p. 68 of [Maz77], specialization induces an isomorphism

H0(X0(N)Fp
,ΩX0(N)/Fp

) ∼= H0(X0(N)Zp
,ΩX0(N)/Zp

)⊗Zp
Fp.

In this way, we get an action of the Hecke operators and the Atkin-Lehner
involutions on H0(X0(N)Fp

,ΩX0(N)/Fp
) as well.

The following lemma is implicit in [Maz77, p. 95].

Lemma 5.11 (Mazur). Let m be a maximal ideal of T of residue characteristic p
(recall that p2 - N). Suppose

dimT/m H0(X0(N)Fp
,ΩX0(N)/Fp

)[m] ≤ 1.

Then T and T′ agree locally at m.

Proof. Let M denote the group H1(X0(N)Zp
,OX0(N)), where OX0(N) is

the structure sheaf of X0(N). As explained in [Maz77, p. 95], we have an
action of EndQJ0(N) on M , and the action of T on M via the inclusion
T ⊂ EndQJ0(N) is faithful, so likewise for the action by T′. Hence we have an
injection φ : T′ ↪→ EndTM . Suppose m is a maximal ideal of T that satisfies
the hypotheses of the lemma. To prove that Tm = T′m it suffices to prove the
following claim:

Claim: The map φ|T is surjective locally at m.

Proof. It suffices to show that M is generated by a single element over T
locally at m, and in turn, by Nakayama’s lemma, it suffices to check that
the dimension of the T/m -vector space M/mM is at most one. Now
M/mM is dual to H0(X0(N)Fp ,ΩX0(N)/Fp

)[m]. Since we are assuming that
dimT/mH

0(X0(N)Fp ,ΩX0(N)/Fp
)[m] ≤ 1, we have dimT/m(M/mM) ≤ 1,

which proves the claim.

Remark 5.12. Note that Lemma 5.8 may provide an alternate route to
the conclusion of the previous lemma (sometimes one can prove multiplic-
ity one for a maximal ideal without relying on multiplicity one for differen-
tials, e.g., see [Dia97]). Observe that in the proofs of Lemmas 5.11 and 5.8,
all we needed was (locally) a non-zero free T-module (of finite rank, say)
that is attached functorially to J . In Lemma 5.11, the module we used was
H1(X0(N)Zp ,OX0(N)); locally, it is free because its reduction modulo m is of
the same dimension as its generic rank (namely 1). In Lemma 5.8, we used the
m-adic Tate module, whose reduction mod m is of the same dimension as its
generic rank (namely 2).

Definition 5.13. If m is a maximal ideal of the Hecke algebra T of residue
characteristic p, we say that m satisfies multiplicity one for differentials if

dimT/m(H0(X0(N)Fp
,ΩX0(N)/Fp

)[m]) = 1.
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The above condition, which first appeared in [Maz77], plays an impor-
tant role in several places, including Wiles’s proof of Fermat’s last theorem
(see [Wil95, Lemma 2.2]). It is has been used to prove multiplicity one for m
(as in Section 2.2) and Gorensteinness of the completion of T at m (under
certain hypotheses; see, e.g., [Til97]).

5.2.1 Failure of multiplicity one for differentials

In this section, we digress to discuss examples of failure of multiplicity one for
differentials. The reader interested in the proof of Proposition 5.10 may jump
to Section 5.2.2 below.

By Lemma 5.11, if p2 - N and if the multiplicity one condition for differ-
entials holds at m, then T and T′ agree locally at m. It is thus of interest
to compute the quotient group T′/T for various N . We compute this index
in Sage [S+09]. and obtain Table 2, where the first column contains N for
N ≤ 325 and the second column contains the quotient group T′/T, where Cn
denotes a cyclic group of order n.

In each case in which a prime p divides [T′ : T] but p2 - N , Lemma 5.11
implies that there is some maximal ideal m of T of residue characteristic p
for which multiplicity one for differentials does not hold. For example, when
N = 46, we find that [T′ : T] = 2, and 22 - N ; thus there is a maximal ideal m
of T of residue characteristic 2 for which multiplicity one for differentials does
not hold.

In Table 2, we observe that whenever p divides [T′ : T], then p = 2 or
p2 | N . This raises the question: is it true that if p is odd and p2 - N , then
multiplicity one for differentials holds for maximal ideals m of T of residue
characteristic p? Lemma 5.20 below gives an affirmative answer in one direction
(the other direction is usually easy), but under the hypothesis that if p | N
then Up acts as a non-zero scalar on H0(X0(N)Fp

,ΩX0(N)/Fp
)[m].

5.2.2 Proof of Proposition 5.10

The main point is to prove that the hypothesis

dimT/m H0(X0(N)Fp ,ΩX0(N)/Fp
)[m] ≤ 1

of Lemma 5.11 holds for suitable maximal ideals m. This is achieved in
Lemma 5.20 below, whose proof requires an Eichler-Shimura type relation
for Up (Lemma 5.15 below). We obtain this relation by modifying the ar-
gument in [Wil80, §5], which is in the Γ1(N) context, to the Γ0(N) situation.
Let L denote the maximal unramified extension of Qp and let OL denote the
ring of integers of L. For the sake of completeness, we state below a lemma
that is well known (e.g., it is used implicitly in [Wil80, p. 18]); the proof was
indicated to us by F. Calegari.
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Table 2: Nonzero Quotients T′/T for N ≤ 325

44 C2

46 C2

54 C3

56 C2

60 C2

62 C2

64 C2

68 C2

72 C2

76 C2

78 C2

80 C4

84 C2

88 C2 ⊕ C4

92 C2
2 ⊕ C4

94 C2
2

96 C3
2

99 C2
3

104 C2
2

108 C2
3 ⊕ C6

110 C2

112 C2 ⊕ C4

116 C2
2

118 C2

120 C3
2 ⊕ C4

124 C2
2 ⊕ C4

125 C2
5

126 C3 ⊕ C6

128 C2 ⊕ C4 ⊕ C8

132 C3
2

135 C3
3

136 C2
2 ⊕ C4

140 C3
2

142 C3
2

144 C3
2 ⊕ C4

147 C7

148 C2
2

150 C5

152 C3
2 ⊕ C4

153 C3

156 C3
2 ⊕ C4

158 C2
2

160 C3
2 ⊕ C4 ⊕ C8

162 C4
3

164 C3
2

166 C2

168 C5
2 ⊕ C4

169 C13

171 C2
3

172 C3
2

174 C2

175 C5

176 C2
2 ⊕ C2

4 ⊕ C8

180 C2 ⊕ C2
6

184 C5
2 ⊕ C4 ⊕ C8

186 C2
2

188 C4
2 ⊕ C2

4

189 C5
3

190 C3
2

192 C3
2 ⊕ C3

4 ⊕ C8

196 C14

198 C4
3

200 C3
2 ⊕ C10

204 C5
2

206 C2
2

207 C4
3

208 C2
2 ⊕ C3

4

210 C2

212 C4
2

214 C2

216 C3 ⊕ C5
6 ⊕ C12

220 C5
2 ⊕ C4

224 C5
2 ⊕ C2

4 ⊕ C8

225 C5

228 C5
2

230 C2
2

232 C4
2 ⊕ C2

4

234 C2
3 ⊕ C2

6

236 C5
2 ⊕ C4

238 C4
2

240 C7
2 ⊕ C3

4 ⊕ C8

242 C2
11

243 C4
3 ⊕ C2

9

244 C4
2

245 C2
7

248 C7
2 ⊕ C4 ⊕ C8

250 C8
5

252 C2
2 ⊕ C3

6 ⊕ C12

254 C2
2

256 C3
2 ⊕ C2

4 ⊕ C2
8 ⊕ C16

260 C6
2

261 C4
3

262 C2
2

264 C7
2 ⊕ C3

4

268 C5
2

270 C9
3 ⊕ C2

6

272 C3
2 ⊕ C4

4 ⊕ C8

275 C4
5

276 C7
2 ⊕ C2

4

278 C2

279 C4
3

280 C7
2 ⊕ C3

4

282 C2
2

284 C6
2 ⊕ C3

4

286 C4
2

288 C7
2 ⊕ C3

4 ⊕ C12 ⊕ C24

289 C2
17

290 C2

292 C5
2

294 C4
7

296 C6
2 ⊕ C2

4

297 C8
3 ⊕ C9

300 C2
2 ⊕ C3

10

302 C3
2

304 C4
2 ⊕ C4

4 ⊕ C8

306 C6
3

308 C7
2

310 C3
2

312 C11
2 ⊕ C2

4 ⊕ C8

315 C6
3

316 C6
2 ⊕ C2

4

318 C4
2

320 C6
2 ⊕ C3

4 ⊕ C3
8 ⊕ C16

322 C2
2

324 C7
3 ⊕ C3

6 ⊕ C18

325 C3
5
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Lemma 5.14. Let E be an elliptic curve over OL with good ordinary reduction.
Then the subgroup schemes of E of order p are p copies of Z/pZ and one copy
of µp.

Proof. Let G = E[p], and consider its connected-étale sequence

0 → G0 → G→ Get → 0.

Now G0 is in the kernel of the reduction map, and we know that the reduction
of E[p] has non-trivial order. Hence Get is non-trivial. By Cartier duality, G0

is also non-trivial. Hence Get is a Z/pZ and by duality, G0 is a µp. Thus one
of the subgroup schemes of E of order p is a copy of µp. Let H be any other
subgroup scheme of E of order p. Then H0 has to be trivial, since otherwise
H = H0 is a nontrivial subgroup scheme of G0 = µp, hence is equal to G0 = µp,
which has already been accounted for. Thus H is étale, and hence is a copy
of Z/pZ. The lemma follows, since there are p+1 subgroup schemes of order p
in E[p], hence in E.

We assume that p||N until just after the proof of Lemma 5.18. Let
M = N/p. We will use the superscript h to denote the subscheme of M0(N)
obtained by removing the supersingular points in characteristic p. Follow-
ing [DR73, VI.6.9] and [DR73, § V.2], the Fp-valued points of M0(N)h are in
one-to-one correspondence with isomorphism classes of triples consisting of
(a) a generalized elliptic curve E over Fp, whose smooth locus we denote Esm,
(b) a subgroup of Esm[p] isomorphic to µp or to Z/pZ, and
(c) a subgroup Z/MZ of Esm[M ],
such that the subgroup generated by the subgroups in (b) and (c) above meets
every irreducible component of every geometric fiber of E over Fp. Also,
M0(N)Fp

has two irreducible components, which may be described according
as whether the subgroup in (b) is isomorphic to µp or to Z/pZ. As mentioned
earlier, X0(N)Fp

is obtained from M0(N)Fp
by suitable blowups and consists

of two copies of X0(M)Fp
identified at supersingular points, along with some

copies of P1 (see the description of X0(N)Fp
on p. 175–177 of [Maz77] for

details). One of the copies of X0(M)Fp
corresponds to the irreducible compo-

nent of M0(N)Fp
where the subgroup in (b) is isomorphic to Z/pZ; we denote

this copy by C0. The other copy of X0(M)Fp
corresponds to the irreducible

component of M0(N)Fp
where the subgroup in (b) is isomorphic to µp, and

contains the cusp ∞; we denote this copy by C1. We denote the copies (if any)
of P1 by C2, . . . , Cr, where r is one less than the total number of irreducible
components of X0(N)Fp

.
The usual endomorphisms Up and Wp of J0(N) over Q can be extended by

base change to L, and extend uniquely to act on the Néron model of J0(N)
over OL. Since the formation of Néron models is compatible with completions
and unramified base change, this action is compatible with the already defined
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action on the the Néron model of J0(N) over Zp. The identity component of the
special fiber of the Néron model of J0(N) over OL is Pic0

X0(N)/Fp
, whose max-

imal abelian variety quotient is
∏r
i=0 Pic0

Ci/Fp
(cf. [DR73, I.3.7] and [BLR90,

§9.2, Example 8]). Thus we get an action of Up and Wp on Pic0
X0(N)/Fp

and

on
∏r
i=0 Pic0

Ci/Fp
. Let Frobp denote the Frobenius morphism on C0/Fp

.

Lemma 5.15. The endomorphisms Up and Wp of
∏r
i=0 Pic0

Ci/Fp
satisfy Up =

Frobp + (p− 1)Wp on Pic0
C0/Fp

.

Proof. The proof is a modification of the proof of Theorem 5.3 in [Wil80], along
with some details borrowed from the proof of Theorem 5.16 in B. Conrad’s
appendix to [RS01].

It suffices to check the desired identity on a Zariski dense subset
of Pic0

C0/Fp
(Fp) = J(C0)(Fp), where J(C0) is the Jacobian of C0. If g is

the genus of C0, then fixing a base point, we get a surjection Cg0 → J(C0).
Hence if U is any dense open subset of C0(Fp), then Ug hits a Zariski dense
subset of J(C0)(Fp). Taking U to be the ordinary locus of C0(Fp), it thus
suffices to prove the desired identity on divisors of the form (Q)− (Q′), where
the elliptic curves corresponding to Q,Q′ ∈ C0(Fp) are ordinary.

Let M0(N) denote the algebraic stack over OL associated to Γ0(N)
by [DR73, IV.3.3, IV.4.2], whose associated coarse moduli scheme is M0(N)
(over OL). Let π : M0(N) → M0(N) denote the associated natural map.
If k = Fp or an algebraic closure of L, then π is an isomorphism on k-
valued points, and so we will often identify points on M0(N)(k) with points
on M0(N)(k). Let Q be an ordinary point on C0(Fp). Then Q is given by a
triple (E,C,D), where E is an ordinary elliptic curve over Fp, C is a subgroup
isomorphic to Z/pZ, and D is a subgroup isomorphic to Z/MZ. We can choose
a Weierstrass model E ↪→ P2

OL
lifting E; then E is canonically an elliptic curve

by [KM85, Chap. 2]. By Lemma 5.14 and its proof, there is a subgroup C of E
isomorphic to Z/pZ that lifts C. Also, as argued in [RS01, p. 219], there is
a subgroup D of E isomorphic to Z/MZ that lifts D. Then (E,C,D) gives
a point on M0(N)(OL) (cf. [DR73, V.1.6]), whose image in M0(N)(OL) cor-
responds to a point P in X0(N)(OL) (since E has ordinary reduction). We
will use a bar to denote specialization. Thus we have Q = P . Similarly,
given another point Q′ ∈ C0(Fp), we will denote the corresponding associated
quantities by a prime superscript (thus P ′ in X0(N)(OL) denotes a lift of Q′,
etc.). As mentioned in the previous paragraph, it suffices to prove the relation
claimed in the lemma for elements of the form (Q) − (Q′) in Pic0

C0/Fp
(Fp).

Viewing P and P ′ as relative effective Cartier divisors of degree one, we see
that Up((Q) − (Q′)) is the image of Up((P ) − (P ′)) under specialization, i.e.,
Up((Q)− (Q′)) = Up((P )− (P ′)).

We next compute Up((P )−(P ′)). Now Pic0
X0(N)/OL

is the identity compo-
nent of J0(N)OL

, and we have J0(N)OL
(OL) = J0(N)(L) ⊆ J0(N)(L), where
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L is an algebraic closure of L. Denoting base change to L by a subscript L, we
have

Up((EL, CL, DL)− (E′
L
, C ′

L
, D′

L
))

=
∑
AL

(EL/AL, (CL +AL)/AL, (DL +AL)/AL)

−
∑
A′

L

(E′
L
/A′

L
, (C ′

L
+A′

L
)/A′

L
, (D′

L
+A′

L
)/A′

L
), (4)

where AL runs through the subgroups of EL of order p except CL (and similarly
for A′

L
). Enlarging L by a finite extension if needed (which does not change

the residue field Fp) we may assume that there are p+ 1 subgroups of order p
in EL. Their scheme-theoretic closures in E over OL are the subgroups schemes
mentioned in Lemma 5.14. If A is a subgroup scheme of E of order p, then
we denote the quotient map E → E/A by αA. Consider the Cartier divisors
corresponding to Up((P )− (P ′)) and to(

π(E/µp, αµp
(C), αµp

(D)) +
∑
B

π(E/B, cl(αB(C)), αB(D))
)

−
(
π(E′/µ′p, αµ′p(C ′), αµ′p(D′)) +

∑
B′

π(E′/B′, cl(αB′(C ′)), αB′(D′))
)
,

where B runs through the subgroups of E isomorphic to Z/pZ except for C, and
cl(αB(C)) denotes the Zariski closure of the image ofB/A in E/A (and similarly
with prime superscripts). These two divisors coincide since they induce the
same L-point by (4).

Passing to special fibers, and noting that the special fiber of the Néron
model of E/A is given by E/A, we find that

Up((Q)− (Q′)) = Up((P )− (P ′))

=
(
(E/µp, αµp(C), αµp(D)) +

∑
B

(E/B, cl(αB(C)), αB(D))
)

(5)

−
(
(E′/µ′p, αµ′p(C ′), αµ′p(D′)) +

∑
B′

(E′/B′, cl(αB′(C ′)), αB′(D′))
)
, (6)

where B again runs through the subgroups of E isomorphic to Z/pZ except
for C (and a similar statment holds with prime superscripts).

Let Fp denote the relative Frobenius map E → E
(p)

over Fp. Now µp is in
the kernel of Fp, and since the quotient map αµp

has the same degree as Fp,

there is an isomorphism φ : E/µp
∼=→ E

(p)
such that Fp = φ ◦ αµp

. Also φ

induces an isomorphism αµp
(C)

∼=→ C
(p)

and αµp
(D)

∼=→ D
(p)

. Thus the first

term in (5) is identified with (E
(p)
, C

(p)
, D

(p)
), which is the image under Frobp

of P = (E,C,D). Similarly, the first term in (6) is Frobp(P ′).
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As for the sum over B in (5), note that in each term, we are quotienting by
a group B which is isomorphic to Z/pZ, and hence cl(αB(C)) is of µp-type. In
a manner similar to the computation of the action of Up, we find that

Wp((E,C,D)− (E′, C ′, D′))
= (E/C,E[p]/C, (D + C)/C) (7)
− (E′/C ′, E′[p]/C ′, (D′ + C ′)/C ′). (8)

Considering that P = (E,C,D), with C isomorphic to Z/pZ, we see that
E[p]/C is isomorphic to µp. Also, if B is as in the sum in (5), then B is
a Z/pZ, but there is only one copy of Z/pZ in E, since E has good ordinary
reduction; hence B = C. Thus each of the terms in the sum over B in (5) is
the term in (7). A similar statment holds with prime superscripts (viz., each
of the terms in the sum over B′ in (6) is the term in (8)).

The lemma now follows from the previous two paragraphs.

Since we are assuming that p||N , the curve X0(N)Fp
has ordinary double

point singularities, and so the differentials in H0(X0(N)Fp
,ΩX0(N)/Fp

) may
be identified with meromorphic differentials (ωi)i=0,...,r on

∏r
i=0 Ci whose only

possible poles are at points on
∏r
i=0 Ci lying over an intersection point of

two components in X0(N)Fp
and where the sum of the residues at the points

lying over an intersection point is zero; such differentials are called regular
differentials (see [Con00, §5.2] for the justification that the relative dualiz-
ing sheaf under Grothendieck duality is indeed the sheaf of regular differen-
tials). By a holomorphic differential in H0(X0(N)Fp

,ΩX0(N)/Fp
), we mean

a regular differential all of whose corresponding ωi have no poles at all (i.e.,
for all i, ωi ∈ H0(Ci,ΩCi/Fp

) ). The subspace of holomorphic differentials
may be identified with

∏r
i=0H

0(Ci,ΩCi/Fp
) (which we will often do implic-

itly), and we let i1 denote the corresponding injection
∏r
i=0H

0(Ci,ΩCi/Fp
) ↪→

H0(X0(N)Fp
,ΩX0(N)/Fp

).
In a manner similar to the description in the third paragraph of Section 5.2,

Grothendieck duality gives an isomorphism

Θ : H0(X0(N)OL
,ΩX0(N)/OL

)
∼=→ Cot(Pic0

X0(N)/OL
), (9)

where Cot denotes the cotangent space at the identity section. Since we have an
action of Up and Wp on Pic0

X0(N)/OL
(by viewing it as the identity component

of the Néron model of J0(N) over OL), we may use Θ to get an action of
these operators on H0(X0(N)OL

,ΩX0(N)/OL
). As before, Prop. 3.3 on p. 68

of [Maz77] implies that base change to Fp gives an isomorphism

H0(X0(N)Fp
,ΩX0(N)/Fp

) ∼= H0(X0(N)OL
,ΩX0(N)/OL

)⊗OL
Fp. (10)

From this, we get an action of Up and Wp on H0(X0(N)Fp
,ΩX0(N)/Fp

).
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Corollary 5.16. The endomorphisms Up and Wp of H0(X0(N)Fp
,ΩX0(N)/Fp

)
preserve the subspace

∏r
i=0H

0(Ci,ΩCi/Fp
), and satisfy Up = ±Frob∗p + (p −

1)Wp on H0(C0,ΩC0/Fp
), where Frob∗p denotes pullback by Frobp and where we

have a possible sign ambiguity ± (which will not affect us later).

Proof. The proof is based on the following diagram; we describe below some of
the maps in it that have not been defined yet.

H0(X0(N)OL
,ΩX0(N)/OL

) Θ //

π1

��

Cot(Pic0
X0(N)/OL

)

π2

��
H0(X0(N)Fp

,ΩX0(N)/Fp
) θ // Cot(Pic0

X0(N)/Fp
)

∏r
i=0H

0(Ci,ΩCi/Fp
)

?�

i1

OO

θ′ //
∏r
i=0 Cot(Pic0

Ci/Fp
)

?�

i2

OO

Firstly, Cot always denotes the cotangent space at the identity section.
The map π1 is obtained by base change to Fp. By (10), π1 is surjective.
The map π2 is obtained by observing that Pic0

X0(N)/Fp
is the identity com-

ponent of the special fiber of the Néron model of J0(N) over OL, and hence
maps to the identity component of the Néron model of J0(N) over OL, which
is Pic0

X0(N)/OL
. The map θ is obtained using Grothendieck duality. The com-

patibility of Grothendieck duality under base change (see [Con00]) implies that
the top square in the diagram above commutes.

Now we have already defined actions of Up and Wp on Pic0
X0(N)/OL

and
on Pic0

X0(N)/Fp
(just before Lemma 5.15). Thus we get actions of Up and Wp

on Cot(Pic0
X0(N)/OL

) and on Cot(Pic0
X0(N)/Fp

). From the definitions of these
actions we see that π2 is compatible with the actions on its domain and
codomain. Recall that we used the isomorphism Θ to induce actions of Up
and Wp on H0(X0(N)OL

,ΩX0(N)/OL
) and then used formula (10) to get

actions on H0(X0(N)Fp
,ΩX0(N)/Fp

). Thus Θ and π1 are also compatible
with with the actions of Up and Wp on their domain and codomain. Let
ω ∈ H0(X0(N)Fp

,ΩX0(N)/Fp
), and let Ω ∈ H0(X0(N)OL

,ΩX0(N)/OL
) be

such that π1(Ω) = ω. Then θ(Up(ω)) = θ(π1(Up(Ω))) = π2(Θ(Up(Ω))) =
π2(Up(Θ(Ω))) = Up(π2(Θ(Ω))) = Up(θ(π2(Ω))) = Up(θ(ω)). Thus we see that
the isomorphism θ is compatible with the action of Up (and similarly for Wp)
on its domain and codomain.

Now we turn to the bottom square in the diagram above. As mentioned
earlier, the injection i2 arises because

∏r
i=0 Pic0

Ci/Fp
is the maximal abelian

variety quotient of the identity component Pic0
X0(N)/Fp

of the special fiber of
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the Néron model of J0(N) over OL. The map θ′ is the isomorphism coming
from Serre duality.

Next, by [Con00, §5.2], the Grothendieck duality isomorphism θ is the same
as the isomorphism coming from the duality theory of Rosenlicht (as in [Ser88,
Chap. IV]), perhaps up to multiplication by −1. Assume for the moment
that there is no sign ambiguity, so that θ is indeed the isomorphism coming
from the duality theory of Rosenlicht. One can check that the Serre duality
isomorphism θ′ is induced by the Rosenlicht duality isomorphism θ via the
inclusions i1 and i2 by looking at the proof of the two dualities in [Ser88,
Chaps. II and IV]. Note that in [Ser88], the curve X over the field k (notation
as in loc. cit.) is assumed to be irreducible. This hypothesis is needed in
loc. cit. (for our purposes) only to show that H1(X, k(X)) = 0 (p. 12, loc.
cit.); the latter condition holds so long as X is reduced (see top of p. 165
in [AK70], as well as the bottom of p. 138 and top of p. 132 therein), which
is true in our case (taking X = X0(N)Fp

and k = Fp) . We remark that our
contention that the Serre duality isomorphism θ′ is induced by the Rosenlicht
duality isomorphism θ via the inclusions i1 and i2 also follows from Section 6
(an appendix provided to us by Brian Conrad), by taking C = X0(N)Fp

and
C ′ to be any of the Ci in Section 6. In any case, we conclude that the bottom
square in the diagram above commutes as well, perhaps up to multiplication
by −1.

Now the action of Up and Wp on
∏r
i=0 Pic0

Ci/Fp
was defined by identifying

it as the maximal abelian variety quotient of Pic0
X0(N)/Fp

. Thus we see that i2
is compatible with the action of Up and Wp on its domain and codomain. Con-
sidering that moreover the isomorphism θ is compatible with the action of Up
(and Wp) and the bottom square in the diagram above commutes, perhaps up
to multiplication by −1, we see that Up and Wp preserve

∏r
i=0H

0(Ci,ΩCi/Fp
).

Now since θ is compatible with the action of Up and Wp on its domain and
codomain, so is θ′. Thus we may use the isomorphism θ′ to translate the iden-
tity in Lemma 5.15 from the right to the left of θ′ to get the desired identity
in the Corollary, where the ± ambiguity in front of Frobp∗ is really due to the
sign ambiguity about the compatibility of the action of Up and Wp on the two
sides of the isomorphism θ′.

Remark 5.17. We defined the action of the Hecke operators and the Atkin-
Lehner involution in characteristic p from their definition in characteristic 0 in
a somewhat indirect manner via the Néron mapping property, Grothendieck
duality, etc (cf. beginning of Section 5.2). This has made our proofs rather
complicated, since we have to show several compatibilities (as in the previous
Corollary 5.16 and the upcoming Lemma 5.18). After this article was written,
B. Conrad pointed out to us that one can define the action of the Hecke opera-
tors on suitable Artin stacks over Z for Γ0(N)-structures (see [Con07]) in such
a way that the definition agrees with the usual definition of the Hecke operators
over Q. This naturallly defines the action of the Hecke operators on objects
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related to X0(N) such as differentials, Picard groups, etc., in characteristic p
and these definitions are automatically “compatible” with the corresponding
definitions in characteristic zero. This alternative method would have been a
less complicated way to proceed.

By [Maz77, Prop. II.3.3] we have an isomorphism

H0(X0(N)Fp
,ΩX0(N)/Fp

) ∼= H0(X0(N)Fp ,ΩX0(N)/Fp
)⊗Fp Fp,

using which we may identify H0(X0(N)Fp
,ΩX0(N)/Fp

) as a subspace
of H0(X0(N)Fp

,ΩX0(N)/Fp
). Just before Corollary 5.16, we defined an

action of Up (and Wp) on H0(X0(N)Fp
,ΩX0(N)/Fp

).

Lemma 5.18. The action of Up (respectively Wp) on H0(X0(N)Fp
,ΩX0(N)/Fp

)
preserves the subspace H0(X0(N)Fp

,ΩX0(N)/Fp
), and agrees with the action

of Up (respectively Wp) on this subspace that we defined earlier in the third
paragraph of Section 5.2.

Proof. We have the following diagram, obtained by the obvious base changes:

H0(X0(N)Fp
,ΩX0(N)/Fp

) H0(X0(N)OL
,ΩX0(N)/OL

)oo Θ // Cot(Pic0
X0(N)/OL

)

H0(X0(N)Fp
,ΩX0(N)/Fp

)

OO

H0(X0(N)Zp
,ΩX0(N)/Zp

)

OO

oo Θ′
// Cot(Pic0

X0(N)/Zp
)

OO

where the map Θ′ is the isomorphism coming from Grothendieck duality as
discussed in the third paragraph of Section 5.2. Now the action of Up and Wp

on Cot(Pic0
X0(N)/OL

) = Cot(J0(N)OL
) (where J0(N)OL

is the Néron model
of J0(N) over OL) was obtained by base changing from Zp. Considering
that the formation of Néron models is compatible with completions and un-
ramified base change, we see that the rightmost vertical map above is com-
patible under the action of Up and Wp. Also, the action of Up and Wp

on H0(X0(N)OL
,ΩX0(N)/OL

) (respectively on H0(X0(N)Fp
,ΩX0(N)/Fp

)) was
obtained via the isomorphism Θ (respectively Θ′). Thus the rightmost two
horizonal maps above are also compatible under the action of Up and Wp on
their domain and codomain. Finally, the compatibility of Grothendieck duality
under base change (see [Con00]) implies that the right square in the diagram
above commutes. Arguing as in the third paragraph of the proof of Corol-
lary 5.16, one sees then that the middle vertical map above is compatible under
the action of Up and Wp.

Now the already defined action of Up and Wp on H0(X0(N)Fp
,ΩX0(N)/Fp

)
in the third paragraph of Section 5.2 is obtained via the lower leftward
pointing arrow in the diagram above, and the action of Up and Wp

on H0(X0(N)Fp
,ΩX0(N)/Fp

) is obtained via the upper leftward pointing ar-
row in the diagram above. Thus the leftmost two horizontal arrows are com-
patible under the action of Up and Wp on their domain and codomain. Re-
peated applications of [Maz77, Prop. II.3.3] show that the left square also
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commutes. Using all this, we see that the the action of Up (respectively Wp)
on H0(X0(N)Fp ,ΩX0(N)/Fp

) viewed as a subspace of H0(X0(N)Fp
,ΩX0(N)/Fp

)
agrees with the action of Up (respectively Wp) on H0(X0(N)Fp ,ΩX0(N)/Fp

) de-
fined in the third paragraph of Section 5.2, and in particular that Up and Wp

preserve this subspace.

We now revert to the assumption that p is a prime such that p2 - N (in par-
ticular p may not necessarily divide N). The Tate curve over Fp[[q]] gives rise
to a morphism from Spec Fp[[q]] to the smooth locus of X0(N)Fp

→ Spec Fp.
Since the module of completed Kahler differentials for Fp[[q]] over Fp is free of
rank 1 on the basis dq, we obtain a map

q-exp : H0(X0(N)Fp
,ΩX0(N)/Fp

) → Fp[[q]].

If p - N , then by a holomorphic differential in H0(X0(N)Fp ,ΩX0(N)/Fp
), we

mean any differential in H0(X0(N)Fp ,ΩX0(N)/Fp
).

Lemma 5.19. Recall that p is a prime such that p2 - N , and m is a maximal
ideal of T with residue characteristic p. If p|N , then assume that Up acts as a
non-zero scalar on H0(X0(N)Fp

,ΩX0(N)/Fp
)[m]. Then the map q-exp restricted

to homomorphic differentials in H0(X0(N)Fp
,ΩX0(N)/Fp

)[m] is injective.

Proof. The essential argument is quite standard, going back to Mazur, so we
only sketch the ideas. For some of the details, we refer the reader to the proof
of Lemma 4.2 in [ARS06]. If p - N , the injectivity follows from the q-expansion
principle. So suppose that p ‖ N , and let M = N/p. Recall that X0(N)Fp

is obtained from M0(N)Fp
by suitable blowups at supersingular points and

consists of two copies of X0(M)Fp
identified at supersingular points, along with

some copies of P1. Suppose ω ∈ H0(X0(N)Fp
,ΩX0(N)/Fp

)[m] is a holomorphic
differential that is in the kernel of q-exp. Then the q-expansion principle implies
that ω vanishes on the copy of X0(M)Fp

containing the cusp ∞, i.e., on C1.
By Corollary 5.16 and Lemma 5.18, we have Up(ω|C0) = ±Frobp∗(ω|C0)+ (p−
1)Wp(ω|C0). But pullback by Frobp is the trivial map and Wp swaps C0 and C1,
so Up(ω|C0) = (p− 1)(ω|C1) = 0. Now by hypothesis, Up acts as multiplication
by a non-zero scalar, hence ω is trivial on C0. Thus ω is trivial on both copies
of X0(M)Fp

. One can show that then ω is trivial on the copies of P1 as well
(see the proof of Lemma 4.2 in [ARS06]). Thus ω is trivial on X0(N)Fp

, hence
on X0(N)Fp

.

Lemma 5.20. We continue our hypotheses that p is a prime such that p2 - N ,
m is a maximal ideal of T with residue characteristic p, and if p|N , then Up
acts as a non-zero scalar on H0(X0(N)Fp ,ΩX0(N)/Fp

)[m]. Then

dimT/m H0(X0(N)Fp ,ΩX0(N)/Fp
)[m] ≤ 1.
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Proof. The idea behind the proof is the same as in the proof of Lemma 2.2
in [Wil80, p. 485-487], which in turn builds on ideas from p. 94–95 of [Maz77].
However, parts of our arguments are somewhat different, and may be considered
alternatives to some of the methods in the works cited in the previous sentence.

If ω ∈ H0(X0(N)Fp
,ΩX0(N)/Fp

) and n ≥ 1, then let an(ω) denote the
coefficient of qn in q-exp(ω). We have a pairing H0(X0(N)Fp

,ΩX0(N)/Fp
)×T →

Fp that takes (ω, T ) to a1(Tω). This induces a map

ψ : H0(X0(N)Fp
,ΩX0(N)/Fp

)[m] → HomFp
(T/m,Fp),

which is a homomorphism of T/m-vector spaces.

Claim 1: If ω ∈ ker(ψ), then q-exp(ω) is trivial.

Proof. Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

H0(X0(N)Fp
,ΩX0(N)/Fp

) ∼= H0(X0(N)Zp
,ΩX0(N)/Zp

)⊗Zp
Fp, (11)

and

H0(X0(N)(C),ΩX0(N)(C)/C) ∼= H0(X0(N)Zp ,ΩX0(N)/Zp
)⊗Zp C. (12)

The definition of the action of the Hecke operators on H0(X0(N)Zp ,ΩX0(N)/Zp
)

defined in the third paragraph of Section 5.2 shows that this action is com-
patible with the action of the Hecke operators on H0(X0(N)(C),ΩX0(N)(C)/C)
under (12). Also, the action of the Hecke operators on H0(X0(N)Fp ,ΩX0(N)/Fp

)
was defined in the third paragraph of Section 5.2 via their action
on H0(X0(N)Zp

,ΩX0(N)/Zp
) using (11), so these actions are clearly com-

patible under (11). Now

H0(X0(N)(C),ΩX0(N)(C)/C) ∼= H0(J0(N)(C),ΩJ0(N)(C)/C) ∼= S2(Γ0(N),C),

and thus a1(Tnω) = an(ω) for ω ∈ H0(X0(N)(C),ΩX0(N)(C)/C). Hence,
by (11), (12), and the discussion above, we also have the formula a1(Tnω) =
an(ω) for ω ∈ H0(X0(N)Fp

,ΩX0(N)/Fp
).

Thus if ω ∈ ker(ψ), then an(ω) = a1(Tnω) = 0 for all n ≥ 1, i.e., q-exp(ω)
is trivial, as was to be shown.

Claim 2: The T/m-dimension of the subspace of holomorphic differentials
in H0(X0(N)Fp

,ΩX0(N)/Fp
)[m] is at most 1.

Proof. If ω is a holomorphic differential in H0(X0(N)Fp
,ΩX0(N)/Fp

)[m] and
ψ(ω) = 0, then by Claim 1, q-exp(ω) is trivial, and hence by Lemma 5.19, ω
is trivial. This proves that ψ is injective when restricted to the subspace of
holomorphic differentials. Now the group HomFp

(T/m,Fp) has the same size
as T/m, which completes the argument because ψ embeds the subspace of holo-
morphic differentials in H0(X0(N)Fp

,ΩX0(N)/Fp
)[m] into HomFp

(T/m,Fp),
which has dimension 1 as a T/m-vector space.
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Claim 2 proves the lemma in the case when p - N . We now prove that
dimT/m H0(X0(N)Fp ,ΩX0(N)/Fp

)[m] ≤ 1 when p||N , which will finish the
proof of the lemma. Following the proof of Lemma 2.2 in [Wil95], we break
the argument into two cases:

Case I: There is no nonzero holomorphic differential in

H0(X0(N)Fp ,ΩX0(N)/Fp
)[m].

Suppose ω1 and ω2 are two differentials in H0(X0(N)Fp ,ΩX0(N)/Fp
)[m].

Then we can find a pair (µ, λ) ∈ (T/m)2 with (µ, λ) 6= (0, 0) such
that µψ(ω1) − λψ(ω2) = 0, i.e., ψ(µω1 − λω2) = 0. Hence by
Claim 1, q-exp(µω1 − λω2) = 0. Viewing µω1 − λω2 as an element
of H0(X0(N)Fp

,ΩX0(N)/Fp
), we see that µω1 − λω2 vanishes on C1 (re-

call that C1 is the copy of X0(N/p)Fp
that contains the cusp ∞) by the

“q-expansion principle” (see the proof of Lemma 4.2 in [ARS06] for details).
Now C2, . . . , Cr (the copies of P1) arise as chains that link C1 and C0 (recall
that C0 is the copy of X0(N/p)Fp

that does not contain the cusp ∞) and each
of C2, . . . , Cr has at most two points of intersection, with all intersection points
being ordinary double points (see the description of X0(N)Fp

on p. 175–177
of [Maz77] for details). Taking into consideration the definition of regular
differentials and the residue theorem we see that µω1 − λω2 is holomorphic
on the curves among C2, . . . , Cr that intersect C1 (for details, see the proof of
Lemma 4.2 in [ARS06] in a similar situation). Now a curve among C2, . . . , Cr
that does not intersect C1 intersects exactly one curve among C2, . . . , Cr
that does intersect C1. Hence by repeating the argument above, µω1 − λω2

is holomorphic on each curve in C2, . . . , Cr that does not intersect C1 as
well. Thus µω1 − λω2 is holomorphic on all of X0(N)Fp

except perhaps
on C0. But the only possible poles of µω1 − λω2 on C0 are over points of
intersection with other components, and again, considering the definition of
regular differentials, we see that there are no such poles, i.e., µω1 − λω2 is
holomorphic on C0 as well. Thus µω1 − λω2 is holomorphic everywhere and is
an element of H0(X0(N)Fp ,ΩX0(N)/Fp

)[m]. Hence it is trivial by the hypothesis
of this case. Thus ω1 and ω2 are linearly dependent. Since ω1 and ω2 were
arbitrary, this shows that dimT/m H0(X0(N)Fp

,ΩX0(N)/Fp
)[m] ≤ 1 in this case.

Case II: There is a nonzero holomorphic differential

ω ∈ H0(X0(N)Fp ,ΩX0(N)/Fp
)[m].

By Lemma 5.19, q-exp(ω) is non-trivial, and so by Claim 1, ψ(ω) 6= 0. Let
ω′ ∈ H0(X0(N)Fp

,ΩX0(N)/Fp
)[m]. Then there is a λ ∈ T/m such that ψ(ω′)−

λψ(ω) = 0, i.e., ψ(ω′ − λω) = 0. As in the proof of Case I, we conclude
that ω′ − λω is holomorphic; in particular ω′ is holomorphic. Thus every
differential in H0(X0(N)Fp ,ΩX0(N)/Fp

)[m] is holomorphic. Then by Claim 2,
dimT/m H0(X0(N)Fp ,ΩX0(N)/Fp

)[m] ≤ 1 in this case as well.
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Proof of Proposition 5.10. Recall that the hypotheses of Proposition 5.10 are
that p is a prime such that p2 - N , m is a maximal ideal of T with residue
characteristic p such that if p|N , then If ⊆ m for some newform f . We wish
to show that then T and T′ agree locally at m.

If p - N , then the result follows from Lemmas 5.11 and 5.20. If f is a
newform and p|N , then Up acts as ±1 on f , and hence Up ± 1 ∈ If . Thus if
p|N and If ⊆ m for some newform f , then Up acts as a non-zero scalar (±1)
on H0(X0(N)Fp

,ΩX0(N)/Fp
)[m] (note that the action of Up on regular differ-

entials was defined compatibly with the usual action of Up on complex differen-
tials, i.e., on cuspforms; cf. the proof of Claim 1 in the proof of Lemma 5.20).
The proposition follows again from Lemmas 5.11 and 5.20.

6 Duality theory: an appendix by Brian Conrad

Let k be a field and let C be a proper reduced k-scheme with pure dimension 1.
Assume that C is generically smooth, and let C ′ ⊆ C be a non-empty reduced
closed subscheme with pure dimension 1 (so C ′ is also generically smooth).
The case of most interest to us is when C is a geometrically connected and
semistable curve and C ′ is a smooth geometrically irreducible component. The
inclusion C ′ → C induces a natural map of k-groups PicC/k → PicC′/k, and
on tangent spaces at the identity this is the canonical pullback map

θ : H1(C,OC) → H1(C ′,OC′)

(as we see by computing with dual numbers over k). Each of C and C ′ satis-
fies Serre’s condition (S1) by reducedness, so each is Cohen-Macaulay. Thus,
by Serre duality we can identify the map of cotangent spaces with the map
H0(C ′, ωC′/k) → H0(C,ωC/k) dual to θ. We wish to give a concrete descrip-
tion of this latter map. To do this, we first review some basic definitions and
identifications in duality theory.

In what follows we use Grothendieck’s approach to duality theory, which has
the merit of permitting more localization operations than in Serre’s approach.
Since C and C ′ are Cohen-Macaulay with pure dimension 1, their relative
dualizing complexes over k are naturally identified with ωC/k[1] and ωC′/k[1]
respectively [Con00, 3.5.1]. Since (by construction) the formation of the relative
dualizing complex is compatible with Zariski-localization on the source, we have
canonical isomorphisms ωC′/k|C′sm ' Ω1

C′sm/k and ωC/k|Csm ' Ω1
Csm/k that

coincide on the open locus U = Csm ∩ C ′ that is dense in C ′ (and supported
in C ′sm). If we let j : Csm → C and j′ : C ′sm → C ′ denote the canonical dense
open immersions then by [Con00, 5.2.1] the natural maps

ωC′/k → j′∗(Ω
1
C′sm/k), ωC/k → j∗(Ω1

Csm/k)

are injective. By construction this is compatible with the natural isomorphism
ωC/k|U ' ωC′/k|U . Letting η : Spec(K) → C and η′ : Spec(K ′) → C ′ denote
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the canonical maps from the schemes of generic points, ωC′/k maps isomorphi-
cally onto a coherent subsheaf of η′∗(Ω

1
K′/k) and likewise for ωC/k in η∗(Ω1

K/k);
these image subsheaves are the so-called sheaves of regular differentials, and
a classical result of Rosenlicht describes these images explicitly using residues
when k is algebraically closed [Con00, 5.2.3]. We will not require Rosenlicht’s
result for the statement or proof of the theorem below.

Using Grothendieck’s theory of relative trace maps, the canonical closed
immersion ι : C ′ → C over k induces a trace morphism Trι : ι∗(ωC′/k) → ωC/k
whose formation commutes with Zariski-localization on C, so over the dense
open U = ι−1(Csm) ⊆ C ′ it induces the natural isomorphism ωC′/k|U '
ωC/k|U , or equivalently it is the identity map on Ω1

U/k. Hence, Trι is compatible
with the canonical inclusions ωC′/k ↪→ η′∗(Ω

1
K′/k) and ωC/k ↪→ η∗(Ω1

K/k). In
particular, the map Trι is compatible with the natural identification of mero-
morphic 1-forms on C ′ with meromorphic 1-forms on C (i.e., compatible with
the injection Ω1

K′/k ↪→ Ω1
K/k).

Having summarized some inputs from duality theory, we can now state the
result we want to prove.

Theorem 6.1. The pullback H1(C,OC) → H1(C ′,OC′) is dual to the natural
map

H0(C ′, ωC′/k) = H0(C, ι∗(ωC′/k)) → H0(C,ωC/k).

Proof. Let TrC : H1(C,ωC/k) → k and TrC′ : H1(C ′, ωC′/k) → k be the
canonical trace maps, so our problem is to prove that for s ∈ H1(C,OC) and
ξ′ ∈ H0(C ′, ωC′/k) ⊆ Ω1

K′/k,

TrC′(ξ′ ∪ s|C′) = TrC(Trι(ξ′) ∪ s)

in k. By the functoriality of Grothendieck’s trace map, TrC′ = TrC ◦ H1(Trι)
as maps H1(C ′, ωC′/k) → k. Thus, it suffices to show that the map
H1(C ′, ωC′/k) → H1(C,ωC/k) induced by Trι carries ξ′ ∪ s|C′ to Trι(ξ′) ∪ s.
We may view dualizing sheaves as subsheaves ωC/k ⊆ η∗(Ω1

K/k) and ωC′/k ⊆
η′∗(Ω

1
K′/k) in terms of which we have seen that the abstract trace map Trι is

induced by the natural inclusion Ω1
K′/k ⊆ Ω1

K/k.

To do the computation we work with Čech theory. Let {Un} be an ordered
finite open affine cover of C and let U ′n = Un∩C ′, so {U ′n} is an open affine cover
of C ′. The cohomology class s corresponds to a Čech 1-cocycle {sn,m}n<m with
sn,m ∈ OC(Un ∩ Um), so s′ corresponds to {s′n,m} with s′n,m = sn,m|U ′n∩U ′m .
Identifying ξ′ with an element of Ω1

K′/k, ξ
′ ∪ s|C′ ∈ H1(C ′, ωC′/k) corresponds

to {s′n,mξ′}n<m and Trι(ξ′) ∪ s ∈ H1(C,ωC/k) corresponds to {sn,mξ′}n<m,
where ξ′ is viewed in Ω1

K/k in the natural way. The product sn,mξ′ at the
generic points of Un ∩Um vanishes at generic points not in C ′, so the required
equality is clear even at the level of Čech 1-cocycles.
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[AU96] A. Abbes and E. Ullmo, À propos de la conjecture de Manin pour
les courbes elliptiques modulaires, Compositio Math. 103 (1996),
no. 3, 269–286.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system.
I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–
265, Computational algebra and number theory (London, 1993).

[BCDT01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modular-
ity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math.
Soc. 14 (2001), no. 4, 843–939 (electronic).

[BLR90] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models,
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