Visibility of Shafarevich-Tate groups *

Amod Agashe University of Texas, Austin

January 8, 2001

*These slides can be obtained from http://www.math.utexas.edu/~amod/mymath.html

Definition of visibility

- K = a number field
- E = an elliptic curve over K
- III(E) = Shafarevich-Tate group of E
 - = isomorphism classes of torsors for E that are locally trivial everywhere

B. Mazur: how can one "visualize" the curves of genus 1 that represent elements of III(E)?

Suppose we are given an embedding over K of E into an abelian variety J.

Definition 1 (Mazur, at AWS 98).

An element σ of $\operatorname{III}(E/K)$ is said to be visible in J if it is in the kernel of the natural homomorphism $\operatorname{III}(E/K) \to \operatorname{III}(J/K)$.

Under certain conditions, this definition is equivalent to the statement that the curve of genus 1 that represents σ is isomorphic over K to a curve contained in the variety J, hence the terminology "visible".

The definition generalizes easily to abelian varieties of arbitrary dimension.

Shimura quotients

N = a positive integer $J_0(N) = \text{Jacobian of the modular curve } X_0(N)$ T = Hecke algebra f = a newform $I_f = \text{Ann}_T f, \text{ an ideal of } T$ $A = A_f = J_0(N)/I_f J_0(N),$ the Shimura quotient associated to f

Then A^{\vee} is an abelian subvariety of $J_0(N)$ and we can ask about the visibility of elements of $III(A^{\vee})$ in $J_0(N)$. We will mainly be concerned with such abelian varieties for the rest of this talk.

How can we decide if an element of $III(A^{\vee})$ is visible in $J_0(N)$ or not?

Detecting existence of invisible elements

Consider the composite $A^{\vee} \hookrightarrow J_0(N) \twoheadrightarrow A$, which is an isogeny; call it ϕ_A .

Lemma 2 (Mazur, AA).

Every visible element of $III(A^{\vee})$ is killed by multiplication by the exponent of ker ϕ_A .

Assume, as conjectured, that III is finite. If a prime divides the order of III(A) but doesn't divide deg(ϕ_A), then III(A) has invisible elements.

For computing the structure of ker ϕ_A : Cremona for elliptic curves, Stein for higher dimensions.

For computing the order of III(A), assume and use the Birch and Swinnerton-Dyer formula for $L_A^{(r)}(1)/\Omega(A)$. For elliptic curves: Birch, Manin; Cremona. For higher dimensions, when $L_A(1) \neq 0$: AA, Stein.

Proving existence of visible elements

Theorem 3 (Mazur).

If E is an elliptic curve over a number field K and σ is an element of III(E) of order 3, then there is an abelian surface J over K such that σ is visible in J.

Theorem 4 (de Jong, Stein). If A is an abelian variety over a number field K and σ is an element of III(A), then there exists an abelian variety J over K containing A as an abelian subvariety such that σ is visible in J.

Theorem 5 (Mazur, Stein).

Let C be an abelian subvariety of $J_0(N)$ of rank 0.

Suppose D is another abelian subvariety of $J_0(N)$ and p is a prime s.t. $D[p] \subseteq C$. (Call D a p-complementary abelian variety to C.) Then, under certain additional hypotheses, there is an injection of $D(\mathbf{Q})/pD(\mathbf{Q})$ into the visible part of $\mathrm{III}(C)$. (So $\mathrm{rk}(D(\mathbf{Q})) > 0 \Rightarrow$ non-trivial visible elements of $\mathrm{III}(C)$.)

Prime levels with #IIIan $(A_f) > 1$

(Calculated by William Stein)

Warning: only odd parts of the invariants are shown.

$\mathbf{A_{f}}$	$\# \amalg_{an}(A_f)$	$\sqrt{deg(\phi_{A_f})}$	B_{g}
389E	5 ²	5	389A
433D	7 ²	$3 \cdot 7 \cdot 37$	433A
563E	13 ²	13	563A
571D	3 ²	$3^2 \cdot 127$	571B
709C	11 ²	11	709A
997H	3 ⁴	3 ²	997B
1061D	151 ²	$61 \cdot 151 \cdot 179$	1061B
1091C	7 ²	1	NONE
1171D	11 ²	$3^4 \cdot 11$	1171A
1283C	5 ²	$5\cdot41\cdot59$	none
•••	2		
2111B	211^2	1	NONE
	0		
2333C	83341 ²	83341	2333A

 $\# III_{an}(A_f) = order of the Shafarevich-Tate group as predicted by the BSD formula.$

 $B_g =$ an optimal quotient of $J_0(N)$ with $L(B_g, 1) = 0$ s.t. if an odd prime pdivides $\# III_{an}(A_f)$, then $B_g^{\vee}[p] \subseteq A_f^{\vee}$. Example 6 (Stein). $5^2 | \# III_{389E}$.

History

Warning: All results on invisibility are conjectural (BSD), and we consider only the odd part of III for simplicity.

Logan, Mazur: Elliptic curves of square-free conductor < 3000. Could detect invisibility only for 2849A; all others have complementary elliptic curve.

AA, Merel: Winding quotients of prime level. Upto level 1400, detected invisibility only for level 1091; not visible in $J_1(1091)$ either.

Cremona, Mazur: Extended to elliptic curves of conductors < 5500. Detected invisibility only in 3 out of 52 cases, found complementary elliptic curve in 43 cases. (Stoll: need not assume BSD)

Stein: Shimura quotients of prime level < 5650and non-zero special *L*-value. Invisible 90% of the time between 2600 & 5650.

Future

Mazur, Merel: For every element σ of III (A_f) , is there an M s.t. σ is visible in $J_0(NM)$? E.g., Stein: III(2849A) is visible in $J_0(3.2849)$.

Eventual visibility (Merel, Stein): Is the direct limit of $III(J_0(N))$ trivial?

Stein: Visibility of elements of Mordell-Weil groups.

Use complementary abelian varieties to prove non-triviality of ranks of abelian varieties, by proving non-triviality of III using Euler systems (Kolyvagin, McCallum).