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Abstract

Let p and q be two distinct primes and let Je denote the winding
quotient at level pq. We give an explicit formula that expresses the
special L-value of Je as a rational number, and interpret it in terms of
the Birch-Swinnerton-Dyer conjecture.

1 Introduction and results

Let N be a positive integer and let X0(N) denote the usual modular curve
of level N and J0(N) its Jacobian. Let {0, i∞} denote the projection of
the path from 0 to i∞ in H ∪ P1(Q) to X0(N)(C), where H is the com-
plex upper half plane. We have an isomorphism H1(X0(N),Z) ⊗ R '−→
HomC(H0(X0(N),Ω1),C), obtained by integrating differentials along cy-
cles. Let e ∈ H1(X0(N),Z) ⊗ R correspond to the map ω 7→ −

∫
{0,i∞} ω

under this isomorphism. It is called the winding element. Let T denote the
Hecke algebra, i.e., the sub-ring of endomorphisms of J0(N) generated by
the Hecke-operators Tl for primes l|N and by Up for primes p 6 |N . We have
an action of T on H1(X0(N),Z) ⊗ R. Let Ie be the annihilator of e with
respect to this action; it is an ideal of T. We consider the quotient abelian
variety Je = J0(N)/IeJ0(N) over Q. It is called the winding quotient of
J0(N). It is the largest quotient of J0(N) whose L-function does not vanish
at s = 1, and every optimal quotient of J0(N) whose L-function does not
vanish at s = 1 factors through the winding quotient. Thus the winding
quotient is especially interesting from the point of view of the second part
of the Birch and Swinnerton-Dyer conjecture. The winding quotient also
played a crucial role in the proof of the uniform boundedness conjecture for
elliptic curves [Mer96a].

∗During the writing of this article, the author was supported by National Security
Agency Grant No. Hg8230-10-1-0208.
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The goal of this article is to give a formula that expresses the alge-
braic part of the special L-value of Je as a rational number in the situa-
tion where N is a product of two distinct primes (see Theorem 1.1 below).
Such a formula is given implicitly for the case where N is prime in [Aga99].
Also an analogous formula is given for newform quotients in [AS05] (see
also [Aga10]). The last two quotients mentioned above factor through the
new part of J0(N). The winding quotient considered in this article for N
a product of two distinct primes need not factor through the new quotient
of J0(N). To our knowledge, this article is the first occasion where an ex-
plicit formula has been given that expresses the algebraic part of the special
L-value as a rational number for a quotient of J0(N) of arbitrary dimension
that does not factor through the new quotient of J0(N). This is especially
interesting from the point of view of the Birch and Swinnerton-Dyer con-
jecture, and we see some peculiarities that do not arise when the quotient
factors through the new quotient of J0(N). For example, we are led to a
conjecture regarding the Manin constant of Je (when N is a product of two
distinct primes).

We now prepare to state the formula alluded to above. Let W denote
the Z-module of invariant differentials on the Néron model of Je. Then
rank(W ) = d where d = dim(Je) and ∧dW is a free Z-module of rank 1
contained in H0(Je,Ωd

Je/Q). Let D be a generator of ∧dW . Let {ω1, ..., ωd}
be any Q-basis of H0(Je,ΩJe/Q). Then D = c · ∧jωj for some c ∈ Q. Let
{γ1, ..., γd} be a basis of H1(Je,Z)+, where the superscript + always denotes
the group of elements invariant under the action of complex conjugation. Let
c∞(Je) denote the number of connected components of Je(R). Then define
the real volume of Je as Ω(Je) = c∞(Je) · c · det(

∫
γi
ωj). Note that Ω(Je)

is independent of the choice of the basis {ωj}; it is the volume of Je(R)
computed using the measure given by the Néron differentials. It is known
that L(Je, 1)/Ω(Je) is a rational number (we shall show this below when N
is the product of two distinct primes); this is what we meant by the algebraic
part of the special L-value above.

Let S2(Γ0(N),Z) denote the Z-module of cusp forms over Γ0(N) with
coefficients in Z. Pulling back differentials along X0(N) → J0(N), one
gets an injection of H0(J0(N),ΩJ0(N)/Z) into S2(Γ0(N),Z), where if f ∈
S2(Γ0(N),Z), then the corresponding differential on X0(N) is given by ωf =
2πif(z)dz. One can show that a Q-basis for H0(Je,ΩJe/Q) is given by the
differentials corresponding the set of generators of Se = {f ∈ S2(Γ0(N),Z) :
Ief = 0}. If we use this for the basis {ωj} in the paragraph above, the
constant c in the paragraph above will be denoted cM(Je). It is the Manin
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constant of Je, as defined in [ARS06]. For future use, we note that from the
discussion above, we have

Ω(Je) = c∞(Je) · cM(Je) · disc(H1(Je,Z)+ × Se → C), (1)

where “disc” always denotes the discriminant of a pairing of Z-modules.
Let H = H1(X0(N),Z), He = H[Ie], Îe = AnnTIe, Ĥe = H[Îe] and

= = AnnT((0) − (∞)). If M is a positive integer, then let SM denote the
set of newforms f of level M with L(f, 1) 6= 0. If f is a newform of level M ,
then as usual, by an(f) we mean the n-th Fourier coefficient of f .

Theorem 1.1. Let N be a product of two distinct primes p and q. Then

L(Je, 1)
Ω(Je)

=
|(H/Ĥe)+

H+/Ĥe
+ |

c∞(Je)
·

| H+

Ĥe
+

+H+
e

| · |H
+
e
=e |∏

f∈Sp
(1 + q − aq(f)) ·

∏
g∈Sq

(1 + p− ap(g))· |Te/=e|
· q

|Sp| · p|Sq |

cM(Je)
. (2)

Note that the product
∏

f∈Sp
(1 + q − aq(f)) ·

∏
g∈Sq

(1 + p − ap(g)) in
the denominator on the right side is non-zero because of the Weil bound. It
should be possible to compute the special L-value using the formula above,
considering that a similar calculation was done when N is a prime in [Aga00]
and [Aga99].

We shall prove the theorem above in Section 2, but in the rest of this
section, we shall discuss its implications. It is instructive to first consider
the corresponding situation when N is prime. In that case, it follows from
equations (2) and (3) of [Aga99] (noting the correction just before the Ac-
knowledgments on page 374 of loc. cit., where “torsion-full” should really
be “torsion-free”) that

L(Je, 1)
Ω(Je)

=
| H+

Ĥe
+

+H+
e

| · |H
+
e
=e |

|Te/=e|
· 1
cM(Je)

. (3)

We now compare the formulas above to the conjectured value given for
the left hand sides by the second part of the Birch and Swinnerton-Dyer
conjecture. Let XJe denote the Shafarevich-Tate group of Je. If p is a
prime that divides N , then let cp(Je) denote the Tamagawa number at p.
Finally, let Ĵe denote the dual abelian variety of Je. For any N , by the
proof of Theorem 3.9 of [Par99], L(Je, 1) 6= 0 (this follows for N prime
and a product of two distinct primes by the formulas above), and hence by
[KL89], Je(Q) and the Shafarevich-Tate group of Je are both finite. Thus
the second part of the Birch-Swinnerton-Dyer conjecture (as generalized by
Tate and Gross) gives the formula (see [Lan91, III, §5]):
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L(Je, 1)
Ω(Je)

=
|XJe| ·

∏
p|N cp(Je)

|Je(Q)tor| · |Ĵe(Q)tor|
(4)

Supose now that N is prime, and denote it by p. It follows from [Maz77,
II.9.7] and Props. 3.4.1 and 3.4.2 of [Aga00] that |Je(Q)tor |=|Ĵe(Q)tor |=
|Te/=e|. Also, by [Eme03, Thm. 4.13], cp(Je) =| Je(Q)tor |. In view of
this, comparing formulas (3) and (4), the second part of the Birch and
Swinnerton-Dyer conjecture predicts that

|XJe|= | H+

Ĥe
+

+H+
e

| · |H
+
e

=e
| · 1
cM(Je)

.

In analogy with formula (14) in [Aga10], we suspect that

|XJe|= | H+

Ĥe
+

+H+
e

| · |H
+
e

=e
|,

and thus we are led to the following:

Conjecture 1.2. If N is prime, then cM(Je) = 1.

Note that it is conjectured in [ARS06] that the Manin constant is one
for quotients of J0(N) associated to newforms, which lends some credence
to the conjecture above, considering that all cuspforms on Γ0(N) are new
when N is prime. At the same time, Adam Joyce found an example of a
quotient of the new part of J0(N) whose Manin constant is not one.

Now let us consider the case where N is a product of two distinct primes
p and q, where we now compare formulas (2) and (4). First off, the first

term
| (H/Ĥe)+

H+/Ĥe
+ |

c∞(Je)
on the right side of (2) is a power of 2. Also, by Lemma 3.3,

if N were prime, then this term is actually one, and so one would suspect
that it is one in our case also. Anyhow, For both reasons, we shall not focus
much on it, and instead prefer to work away from the prime 2.

The primes dividing the level (in this case, p and q) rarely divide any
of the terms on the right side of formula (4), while the terms of the sort
(1+q−aq(f)) on the right side of formula (2) do have something to do with
torsion subgroups (e.g., if f has integer Fourier coefficients, then this term
is the number of points on the associated elliptic curve modulo p, to which
the torsion subgroup of the elliptic curve maps). These considerations and
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the analogy with the case where N is prime (as discussed above) leads us to
suspect that (at least up to a power of 2)

|XJe|= | H+

Ĥe
+

+H+
e

| · |H
+
e

=e
|, and

|Je(Q)tor| · |Ĵe(Q)tor|
cp(Je) · cq(Je)

=
∏

f∈Sp

(1 + q − aq(f)) ·
∏
g∈Sq

(1 + p− ap(g))· |Te/=e|,

and to make the following conjecture:

Conjecture 1.3. When N is a product of two distinct primes p and q, then
cM(Je) = q|Sp| · p|Sq |.

We remark that the terms | H+

Ĥe
+

+H+
e

| and |H
+
e
=e | likely have interpretations

similar to the analogous terms in [Aga10].
The plan for the rest of this article is as follows: in Section 2, we give the

proof of Theorem 1.1. In Section 3, which serves as an appendix, we prove a
result mentioned in the introduction and also state and prove some results
about the number of components in the real locus of an abelian variety that
may be of independent interest.

Acknowledgements: This article arose out of the author’s Ph.D. thesis. He
is grateful to L. Merel for suggesting the problem discussed in this article.

2 Proof of Theorem 1.1

The proof is similar to the proof of the analogous result when N is prime,
treated in [Aga99, Prop 2.1], with some added complications since N is not
prime in our case.

Let TM denote the set of Galois orbits of newforms f of level M with
L(f, 1) 6= 0. If f is a newform of level M , then let Jf denote the quotient of
J0(M) associated to f by Shimura. By the proof of Theorem 3.9 of [Par99],
it follows that

Je ∼
∏

f∈Tp

·J2
f ·

∏
g∈Tq

J2
g ·

∏
h∈Tpq

Jh. (5)

We have the pairing (H+ ⊗C)× S2(Γ0(N),C) → C given by (γ, f) 7→
〈γ, f〉 =

∫
γ ωf . In the following, at various points, we will be considering

pairings between two Z-modules; each such pairing is obtained in a natural
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way from the pairing in the previous sentence. Then by equation (5), we
have

L(Je, 1) =
∏

f∈Tp

L(Jf , 1)2 ·
∏
g∈Tq

L(Jg, 1)2 ·
∏

h∈Tpq

L(Jh, 1)

=
∏

f∈Sp

〈e, f〉2 ·
∏
g∈Sq

〈e, g〉2 ·
∏

h∈Spq

〈e, h〉. (6)

Note that in the formula above, for example, we should really be taking 〈e, f〉
“at level p”, but it is the same as taking it “at level pq” by the functoriality
of the de Rham pairing.

Using the fact that Je = J0(N)/IeJ0(N), one sees that H1(Je,Z) is
isomorphic to the quotient of H by the saturation of IeH in H, i.e., by Ĥe.
Thus, by formula (1),

Ω(Je) = cM · c∞(Je) · disc((H/Ĥe)+ × Se → C). (7)

We are going to replace (H/Ĥe)+ by another lattice. Consider the homo-
morphism

H+ → (H/Ĥe)+/H+
e . (8)

Its kernel is (Ĥe +He)+ and the map is not necessarily surjective. Consider
the following map to the cokernel:

(H/Ĥe)+ → (H/Ĥe)+/H+
e

H+/(Ĥe +He)+
.

It is surjective with kernel H+

(Ĥe)+
. Hence the cokernel of the map in (8) is

(H/Ĥe)+

H+/(Ĥe)+
. Thus we have

H+

(Ĥe +He)+
∼=

(H/Ĥe)+

H+
e

(H/Ĥe)+

H+/(Ĥe)+

.
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Using the equation above, we perform some change of lattices:

1
disc((H/Ĥe)+ × Se → C)

=
1

disc(H+
e × Se → C)

· |(H/Ĥe)+

H+/Ĥe
+ | · |

H+

Ĥe
+

+H+
e

|

=
1

disc(=e× Se → C)
· |(H/Ĥe)+

H+/Ĥe
+ | · |

H+

Ĥe
+

+H+
e

| · |H
+
e

=e
|

=
1

disc(Te× Se → C)
· |(H/Ĥe)+

H+/Ĥe
+ | ·

· | H+

Ĥe
+

+H+
e

| · |H
+
e

=e
| / |Te

=e
| . (9)

Thus from formulas (6), (7), and (9), we have

L(Je, 1)
Ω(Je)

=

∏
f∈Sp

〈e, f〉2 ·
∏

g∈Sq
〈e, g〉2 ·

∏
h∈Spq

〈e, h〉
disc(Te× Se → C)

·

·
|(H/Ĥe)+

H+/Ĥe
+ |

c∞(Je)
·
| H+

Ĥe
+

+H+
e

||H
+
e
=e |

|Te
=e |

· 1
cM(Je)

. (10)

We now focus on the term∏
f∈Sp

〈e, f〉2 ·
∏

g∈Sq
〈e, g〉2 ·

∏
h∈Spq

〈e, h〉
disc(Te× Se → C)

(11)

on the right side of equation (10). There is a perfect pairing T/Ie×Se → Z
which associates to (t, f) the first Fourier coefficient a1(tf) of the modular
form tf . This defines te ∈ T/Ie ⊗ C characterized by 〈e, f〉 = a1(tef)
(f ∈ Se). The discriminant of the pairing Te× Se → C which associates to
(te, f) the complex number 〈te, f〉 coincides, via the identification above and
the canonical isomorphism Te ∼= T/Ie, with the discriminant of the pairing
T/Ie × Hom(T/Ie,Z) → C which associates to (t, ψ) the complex number
ψ(tet) (obtained by extending ψ by C-linearity). The latter discriminant
is equal to det

T/Ie⊗C
te = det

Se⊗C
te. So we need to compute the action of te on

Se⊗C. Note that a basis for Se⊗C is given by {h : h ∈ Spq}∪{f(z), f(qz) :
f ∈ Sp} ∪ {g(z), g(pz) : g ∈ Sq}.

If f ′ is an eigenform for all the Hecke operators (including Up and
Uq), then it is easy to see that tef ′ = 〈e, f ′〉f ′ (compare the first Fourier
coefficients of either side). Now h ∈ Spq is an eigenform for all the Hecke
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operators. So the contribution from h to det
Se⊗C

te is 〈e, h〉, cancelling with the

corresponding contribution in the numerator of (11).
If g ∈ Sq, then g(z) and g(pz) are eigenvectors for all the Hecke op-

erators Tl for l 6= p, q and for Uq, but not for Up. However Up preserves
the subspace spanned by g(z) and g(pz). Let Bpg = g(pz). Then on q-
expansions (see [Par99, 3.1]),

Bp(
∑
n≥1

anq
n) =

∑
n≥1

anq
np,

Up(
∑
n≥1

anq
n) =

∑
n≥1

anpq
n, and

Tl(
∑
n≥1

anq
n) =

∑
n≥1

anpq
n +

∑
n≥1

anq
np.

Since g is an eigenform for Tp with eigenvalue ap = ap(g), from the above
formulas, it is easy to see that Up(g) = apg − pBpg and Up(Bpg) = g. Thus
the matrix of Up on the subspace spanned by g(z) and g(pz) is given by(

ap 1
−p 0

)
.

Hence the action of Up on this subspace is diagonalizable. The characteristic
polynomial of Up on this subspace is U2

p − apUp + p. If α1 and α2 are the
eigenvalues, then an easy check shows that g − α2Bpg and g − α1Bpg are
eigenvectors (with eigenvalues α1 and α2 respectively). Thus we can use
this eigenbasis to compute det te on this subspace. Using the fact that
〈e,Bpg〉 = 〈e, g〉/p (see the proof of Lemma 3.10 in [Par99]), we find that
this determinant is

〈e, g − α1Bpg〉 · 〈e, g − α2Bpg〉
= 〈e, g〉2(1− α1/p)(1− α2/p)
= 〈e, g〉2(1− (α1 + α2)/p+ α1α2/p

2)
= 〈e, g〉2(1− ap/p+ p/p2)
= 〈e, g〉2(1 + p− ap)/p.

But the contribution to the numerator of (11) corresponding to the
subspace spanned by g(z) and g(pz) is 〈e, g〉2. Thus the contribution to (11)
coming from the the subspace spanned by g(z) and g(pz) is a factor of
p/(1 + p− ap(g)).
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Similarly, if f ∈ Sp, then the contribution to (11) coming from the the
subspace spanned by f(z) and f(qz) is a factor of q/(1 + q − aq(f)). Thus
we find that ∏

f∈Sp
〈e, f〉2 ·

∏
g∈Sq

〈e, g〉2 ·
∏

h∈Spq
〈e, h〉

disc(Te× Se → C)

=
∏

f∈Sp

q

1 + q − aq(f)
·

∏
g∈Sq

p

1 + p− ap(g)
.

The theorem now follows from the equation above and equation (10).

3 Appendix: number of components in real locus

The main goal of the appendix from the point of view of this article is to
prove Lemma 3.3 below. In the process, we state some results about the
number of components in the real locus of an abelian variety.

The following lemma is probably well known, but we could not find a
suitable reference. The proof was provided to us by H. Lenstra.

Lemma 3.1. Let A be an abelian variety over Q, and let c denote the
action of complex conjugation on A(C) as well as the induced action on
H1(A,Z). Then the number of components in A(R) is the order of the
2-group H1(A,Z)+/(1 + c)H1(A,Z).

Proof. Write L for the lattice H1(A,Z) and V for its tensor product with
R; so V = H1(A,R). Now consider the exact sequence

0 → L→ V → A(C) → 0

of 〈c〉-modules, and take its Tate cohomology sequence. The group V is
uniquely divisible and so has trivial cohomology (note first that the coho-
mology groups are 2-groups, by [AW67, §6, Cor. 1], and multiplication by
any integer is an isomorphism on them). So the long exact sequence gives
us:

0 → Ĥ0(〈c〉, A(C)) → H1(〈c〉, L) → 0.

But Ĥ0(〈c〉, A(C)) is (by definition) equal to A(C)+/(1 + c)A(C), so we
get an isomorphism A(R)/(1 + c)A(C) '→ H1(〈c〉, L). Now A(C) is com-
pact and connected, so its continuous image (1 + c)A(C) is compact (hence
closed) and connected as well. Hence A(R)/(1 + c)A(C) is a Hausdorff
group (for example, using [Bou66, §III.2.6, Prop. 18]) with the same group
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of components as A(R) itself. But it is also finite, since H1(〈c〉, L) is fi-
nite (using [AW67, §6, Cor 2] and the fact that L is finitely generated). So
A(R)/(1 + c)A(C), being Hausdorff and finite, is discrete and equal to its
own component group. Thus, the group of components of A(R) is canoni-
cally isomorphic to H1(〈c〉, L).

To deduce that the number of components equals the order of L+/(1 +
c)L, observe that the latter group is Ĥ0(〈c〉, L), so that all that remains to be
proved is that L has Herbrand quotient equal to 1. Now by the semilinearity
of c on V (with respect to the complex structure on V ), it follows that c has
equally many eigenvalues +1 as −1 on V . Now use [AW67, §8, Prop. 12],
with L′ = Z〈c〉, and the fact that L ⊗Q ∼= Z〈c〉 ⊗Q as 〈c〉-representation
spaces (which can be checked by looking at traces), to conclude that the
Herbrand quotient of L is the same as that of Z〈c〉. But the latter lattice
has Herbrand quotient 1. Hence so does L, and that finishes the proof.

The following corollary was pointed out to us by L. Merel:

Corollary 3.2. If p is a prime, then J0(p)(R) is connected.

Proof. This follows from the Proposition above, in view of the fact that
H1(J0(p),Z)+ = (1 + c)H1(J0(p),Z) by [Mer96b, Prop. 5].

The following result was stated without proof in [Aga99]:

Lemma 3.3. We use the notation introduced in Section 1. Suppose N is
prime. Then

∣∣∣ (H/Ĥe)+

H+/(Ĥe)+

∣∣∣ = c∞(Je).

Proof. Since the level is prime, by [Mer96b, Prop. 5], H+ = (1+ c)H. Now,
H1(Je,Z) ∼= H/Ĥe, and so (1+c)H1(Je,Z) ∼= (1+c)H/(1+c)Ĥe

∼= H+/Ĥe
+
.

Thus ∣∣∣∣∣ (H/Ĥe)+

H+/(Ĥe)+

∣∣∣∣∣ =
∣∣∣∣ H1(Je,Z)+

(1 + c)H1(Je,Z)

∣∣∣∣ = c∞(Je),

by the proposition above.
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