
Reducibility and rational torsion in elliptic curves

Amod Agashe and Matthew Winters

Abstract

Let A be an optimal elliptic curve over Q and let N denote its
conductor. Suppose N is square-free and r is a prime such that r -6N .
We show that if A[r] is reducible, then A has a rational r-torsion point.
We mention some applications of this result, including an application
to the second part of the Birch and Swinnerton-Dyer conjecture for A.

1 Introduction

Let A be an optimal elliptic curve over Q, i.e., if N denotes the conductor
of A, then A is the quotient of J0(N) associated to a newform f of weight 2
on Γ0(N) with integer Fourier coefficients. If A has a rational point of order
a prime r, then clearly A[r] is reducible as a representation of Gal(Q/Q).
The converse need not be true. For example, for A = 99d1 (the notation is
as in [Cre97]), A[5] is reducible, but A has no rational 5-torsion. However,
the first author had conjectured:

Conjecture 1.1. [Aga13, Conjecture 2.5] Suppose N is square-free, i.e.,
A is semistable, and r is an odd prime. If A[r] is reducible, then A has a
rational r-torsion point (recall that we are assuming that A is optimal).

In this article, we prove

Theorem 1.2. Suppose N is square-free and r a prime such that r -6N . If
A[r] is reducible, then A has a rational r-torsion point.

Thus we prove the conjecture above, except for r = 3 and for r | N .
The proof of the theorem is given in Section 3. The idea of the proof is
very similar to that of the main theorem of [Aga18]: we use the hypotheses
to show that the newform f associated to A is congruent to an Eisenstein
series E modulo r (the tricky part is to get the congruence for Fourier
coefficients of indices that are not coprime to N). As part of the proof of
this congruence, we show that under the hypotheses of the theorem (but
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relaxing the hypothesis that r -N), for at least one prime p that divides N ,
the sign of the Atkin-Lehner involution at p acting on f is −1, which is an
interesting result on its own (see Proposition 2.6). Given the congruence
between f and E, and the fact that f is ordinary at r (which we show), a
result of Tang [Tan97, Thm 0.4] tells us that A[r] has nontrivial intersection
with a subgroup of the cuspidal group C, which is rational (since N is
square-free), giving us the theorem.

In Section 2, we prove some results regarding the Fourier coefficients of f
that are needed to show the congruence alluded to above, and in Section 3,
we use these results to prove Theorem 1.2. In the rest of this section, we
mention some applications of our theorem.

By a theorem of Mazur ([Maz77, Theorem III.5.1]), if r a prime bigger
than 7, then r does not divide the order of the torsion subgroup of any
elliptic curve over Q. So we get:

Corollary 1.3. Suppose N is square-free and r a prime such that r > 7
and r -N . Then A[r] is irreducible.

This result is already known by [Maz78, Theorem 4]; however, the proof
is different. In this context, we should also point out that if one drops
the hypothesis that N is square-free, then there is a finite list of primes r
such that an elliptic curve has a rational isogeny of degree r: see [Maz78,
Theorem 1].

As mentioned in [Ser72, p. 307], if A is semistable (it need not be
optimal) and r is a prime such that A[r] is reducible as a representation
of Gal(Q/Q), then this representation can be put in matrix form as[

χ′ ∗
0 χ′′

]
,

where χ′ and χ′′ are characters of Gal(Q/Q) such that one of them is the
identity character and the other is the mod r cyclotomic character. If χ′ is
the identity character, then A has a rational point of order r; however, one
does not know if χ′ is the identity character (as per loc. cit.). Theorem 1.2
above implies that under the additional hypotheses that r - 6N and A is
optimal, one may take χ′ to be the identity character.

In the rest of this section, we discuss an application of our theorem to
the second part of the Birch and Swinnerton-Dyer (BSD) conjecture for A.
Let LA(s) denote the L-function of A. Let KA denote the coefficient of the
leading term of the Taylor series expansion of LA(s) at s = 1, and let RA

denote the regulator of A. Let ΩA denote the volume of A(R) calculated
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using a generator of the group of invariant differentials on the Néron model
of A. Let XA denote the Shafarevich-Tate group of A, which we assume is
finite. If p is a prime that divides N , then let cp(A) denote the order of the
arithmetic component group of A at p (also called the Tamagawa number
of A at p). Then the second part of the BSD conjecture asserts the formula:

KA

ΩA ·RA

?
=
|XA| ·

∏
p cp(A)

|A(Q)tor|2
. (1)

Based on numerical evidence, the first author has conjectured:

Conjecture 1.4. [Aga13, Conjecture 2.4] If an odd prime ` divides cp(A)
for some prime p that divides N , then either ` divides |A(Q)tor| or the
newform f is congruent to a newform of level dividing N/p (for all Fourier
coefficients whose indices are coprime to N`) modulo a prime ideal over `
in a number field containing the Fourier coefficients of both newforms.

This indicates some conjectural cancellation between the numerator and
denomintor of the right side of the BSD formula (1) above (for more on such
cancellations, see [Aga13]). Towards the conjecture above, the first author
proved:

Proposition 1.5. [Aga13, Proposition 2.3] Let ` be an odd prime such that
either ` - N or for all primes r that divide N , ` - (r − 1). If ` divides
the order of the geometric component group of A at p for some prime p||N ,
then either A[`] is reducible or the newform f is congruent to a newform
of level dividing N/p (for all Fourier coefficients whose indices are coprime
to N`) modulo a prime ideal over ` in a number field containing the Fourier
coefficients of both newforms.

Note that if p is a prime that divides N , and if a prime ` divides cp(A),
then ` also divides the order of the geometric component group of A at p.

In view of Theorem 1.2, from the proposition above, we get:

Corollary 1.6. Suppose N is squarefree and let ` be a prime such that
` - 6N . If ` divides the order of the geometric component group of A at p
for some prime p |N , then either ` divides |A(Q)tor| or the newform f is
congruent to a newform of level dividing N/p (for all Fourier coefficients
whose indices are coprime to N`) modulo a prime ideal over ` in a number
field containing the Fourier coefficients of both newforms.

The corollary above is a better result towards Conjecture 1.4 than the
proposition above, when the hypothesis in the first line of the corollary hold.
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Since, as mentioned earlier, if r a prime bigger than 7, then r cannot not
divide |A(Q)tor|, we also have:

Corollary 1.7. Suppose N is squarefree and let ` be a prime such that ` > 7
and ` - N . If ` divides the order of the geometric component group of A at p
for some prime p | N , then the newform f is congruent to a newform of
level dividing N/p (for all Fourier coefficients whose indices are coprime
to N`) modulo a prime ideal over ` in a number field containing the Fourier
coefficients of both newforms.

Acknowledgement: We are grateful to E. Ghate for some comments regarding
our main result.

2 Some results on Fourier coefficients

Let an = an(f) denote the n-th Fourier coefficient of f . If p is a prime that
divides N , then let wp denote the sign of the Atkin-Lehner involution Wp

acting on f . Let T denote the Hecke algebra, and let If = AnnTf . Consider
the quotient map T→T/If ∼= Z, where in the last map, Tn maps to an for
all integers n ≥ 1. Let m denote the inverse image of (r) ⊆ Z. Then m
is a maximal ideal. Let ρm denote the canonical representation associated
to m (see [Rib90, Prop. 5.1]). Then ρm is the semisimplification of A[r], and
hence is reducible. Let r be a prime such that A[r] is reducible. We do not
assume the hypothesis in the main theorem that r -6N yet.

The following lemma is perhaps well known.

Lemma 2.1. For all primes ` -N , we have a`(f) ≡ 1 + ` mod r and for all
primes p |N , we have ap(f) = −wp.

Proof. Suppose ` -N . Since ρm is reducible, it follows from [Yoo16, p. 362]
that T`−`−1 ∈ m. Thus the image of T` in T/m is `+1, but T/m ∼= Z/(r),
and this image is a`. Hence a`(f) ≡ 1 + ` mod r.

If p |N , then ap(f) = −wp because Up = −Wp on the new subspace
of S2(Γ0(N),C). This finishes the proof of the lemma.

Next, we have:

Proposition 2.2. [Aga18, Proposition 2.1] Recall that N is square free. For
every prime p that divides N , suppose we are given an integer δp ∈ {1, p}
such that δp = 1 for at least one p. Then there is an Eisenstein series E
of weight 2 on Γ0(N) which is an eigenfunction for all the Hecke operators
such that for all primes ` -N , we have a`(E) = `+1, and for all primes p |N ,
we have ap(E) = δp.
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Keeping in mind the strategy of the proof of our main theorem (Theo-
rem 1.2) mentioned in the introduction, we see from the lemma and propo-
sition above that coming up with an Eisenstein series E such that ap(f) ≡
ap(E) mod r for all primes p -N is rather easy. Proving the congruence for
all p |N for a suitable Eisenstein series is the tricky part, for which we need
the results below.

Lemma 2.3 (Yoo). Suppose r ≥ 3. If p is a prime such that p |N , p 6= r,
and wp = 1, then p ≡ −1 mod r.

Proof. The argument is essentially given in the proof of [Yoo16, Lemma 2.1];
we repeat it here for the convenience of the reader. Since ρm is reducible,
ρm ∼= 1⊕χr, where 1 is the trivial character and χr is the mod r cyclotomic
character (in [Yoo19, Prop 2.1], this result is attributed to work of Ribet,
but it also follows from the discussion in Section 1 taken from [Ser72]). On
the other hand, the semisimplification of the restriction of ρm to Gal(Qp/Qp)
is isomorphic to ε⊕ εχr, where ε is the unramified quadratic character with
ε(Frob)p = ap = −1 because m is p-new (cf. [DDT94, Theorem 3.1(e)]).
From this, we get p ≡ −1 mod r.

Lemma 2.4. Suppose r |N . Then wr = −1.

Proof. As mentioned on p. 363 in [Yoo16], we have Ur ≡ 1 mod m by [Rib,
Lemma 1.1]; it is mentioned on p. 362 in [Yoo16] that the quoted lemma
also follows from the result by Deligne given in [Edi92, Theorem 2.5]. So
if wr = 1, then ar = −1, and so −1 ≡ 1 mod m, i.e. 2 ∈ m, which is not
possible since r is odd; thus wr = −1.

As mentioned in the introduction, the proof of the main theorem of
this article is similar to that of the main theorem of [Aga18], and the rest
of this paper is nearly identical to the part of [Aga18] that comes after the
proof of Corollary 3.4 in loc. cit., with a small number of necessary changes.
However, we have repeated the discussion (with the necessary changes) in
order to be clear and complete.

Following [Maz77, p. 77 and p. 70], by a holomorphic modular form
in ω⊗k on Γ0(N) defined over a ring R, we mean a modular form in the
sense of [Kat73, §1.3] (see also [DR73, § VII.3]). Thus such an object is a
rule which assigns to each pair (E/T , H), where E is an elliptic curve over
an R-scheme T and H is a finite flat subgroup scheme of E/T of order N , a

section of ω⊗2E/T
, where ωE/T

is the sheaf of invariant differentials. If r is a

prime such that r -6N and f is a modular form of weight 2 on Γ0(N) with
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coefficients in Z[ 1
6N ], then by [Maz77, Lemma II.4.8], there is a holomorphic

modular form in ω⊗2 on Γ0(N) defined over Z/rZ, which we will denote
f mod r, such that the q-expansion of f mod r agrees with the q-expansion
of f modulo r.

Lemma 2.5 (Mazur). Let R be a ring such that 1/N ∈ R. Let g be a
holomorphic modular form in ω⊗k on Γ0(N) defined over R. Suppose that
for some prime p that divides N , the q-expansion of g is a power series
in qp, i.e., there is h(q) ∈ R[[q]] such that g(q) = h(qp). Then h(q) is
the q-expansion of a holomorphic modular form in ω⊗k on Γ0(N/p) defined
over R.

Proof. The lemma is proved in [Maz77] under the condition that N is prime,
and p = N (Lemma II.5.9 in loc. cit.). The same proof works mutatis
mutandis to give the lemma above, with the only change to be made being
to replace certain occurrences of N by p (e.g., qN becomes qp everywhere)
and the occurrences of N − 1 at the bottom of p. 84 in [Maz77] by φ(N),
where φ is the Euler φ-function.

Proposition 2.6. Suppose r > 3. Then there is a prime p that divides N
such that wp = −1.

Proof. By Lemma 2.4, if r |N , then wr = −1, and we are done. Thus we
may assume henceforth that r -N . Suppose, contrary to the conclusion of
the Proposition, that for every prime p that divides N , we have wp = 1.
Then by Lemma 2.3, for every prime p that divides N , we have p ≡ −1
mod r (note that p 6= r since r -N).

If M is a postive integer, then let us say that a holomorphic mod-
ular form g in ω⊗2 on Γ0(M) defined over Z/rZ is special at level M if
an(g) ≡ σ( n

(n,M))
∏

p|M (−1)ordp(n) mod r for all positive integers n. Using
Lemma 2.1 and the fact that f is an eigenvector for all the Hecke operators,
we see that f mod r is special at level N .

Claim: If M is a square free integer and g is a holomorphic modular form
in ω⊗2 on Γ0(M) defined over Z/rZ that is special at level M and s is a
prime that divides M , then there exists a holomorphic modular form in ω⊗2

on Γ0(M/s) defined over Z/rZ that is special at level M/s (which is also
square free).

Proof. By Proposition 2.2, there is an Eisenstein series E which is an eigen-
vector for all the Hecke operators, with a`(E) = ` + 1 for all primes ` -M ,
ap(E) = p for all primes p that divide M except p = s, and as(E) = 1.
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Let p1, . . . , pt be the distinct primes that divide M/s. Then for any positive
integer n,

an(E) ≡ σ
(

n

(n,M)

) t∏
i=1

pi
ordpi (n) mod r.

Since pi ≡ −1 mod r for i = 1, . . . , t, we see that an(E) ≡ an(g) mod r if n
is coprime to s, and thus (E(q) − g(q)) mod r is a power series in qs, i.e.,
there is an h(q) ∈ (Z/rZ)[[q]] with h(qs) equal to (E(q) − g(q)) mod r. By
Lemma 2.5, h(q) is the q-expansion of a holomorphic modular form, which
we again denote h, in ω⊗2 on Γ0(M/s) defined over Z/rZ.

Let g′ = h/2. We shall now show that g′ is special of level M/s. Let n
be a positive integer, m′ = n

(n,s) , and e = ords(n) (so n = m′se). Then

an(h) = am′se(h) ≡ am′se+1(E − g) = am′se+1(E)− am′se+1(g) mod r. (2)

Now an(E) = am′(E)ase+1(E) since E is an eigenfunction and an(g) ≡
am′(g)ase+1(g) mod r since g is special. Putting this in (2), we get

an(h) ≡ am′(E)ase+1(E)− am′(g)ase+1(g)

≡ am′(g)(as(E)e+1 − as(g)e+1) mod r, (3)

where the last congruence follows since am′(g) ≡ am′(E) mod r, considering
that m′ is coprime to s. Now

as(E)e+1 − as(g)e+1 = 1− (−1)e+1 ≡ 1− se+1 mod r, (4)

since s ≡ −1 mod r. Also,

1− se+1 = (1− s)(1 + s+ · · ·+ se) ≡ 2σ(se) mod r, (5)

again considering that s ≡ −1 mod r. Thus putting (5) in (4), and the result
in (3), we get

an(h) ≡ am′(g) · 2σ(se) ≡ 2σ

(
m′

(m′,M)

)∏
p|M

(−1)ordp(m
′) · σ(se) mod r, (6)

where the last congruence follows since g is special at level M . Now since
n = m′se, with m′ coprime to s and s -(M/s), we have

σ

(
m′

(m′,M)

)
σ(se) = σ

(
m′se

(m′,M)

)
= σ

(
m′se

(m′se,M/s)

)
= σ

(
n

(n,M/s)

)
(7)
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and ∏
p|M

(−1)ordp(m
′) =

∏
p|M, p6=s

(−1)ordp(m
′se) =

∏
p|(M/s)

(−1)ordp(n). (8)

Using (7) and (8) in (6), and recalling that g′ = h/2, we see that

an(g′) ≡ σ
(

n

(n,M/s)

) ∏
p|(M/s)

(−1)ordp(n) mod r,

i.e., g′ is special of level M/s.

Starting with f mod r (note that r - 6N), and repeatedly using the
claim, we see that there is a holomorphic modular form that is special of
level 1, which is nontrivial since the coefficient of q is 1 mod r for a special
form (of any level). But by [Maz77, Lemma II.5.6(a)], there are no non-
trivial holomorphic modular forms of level 1 in ω⊗2 defined over a field of
characteristic other than 2 and 3. This contradiction proves the lemma.

As mentioned in [Aga18], in the proof above, the idea of “lowering
levels” and getting a contradiction is taken from an observation in [Maz77],
where N is prime and the level is “lowered” only once (see the proof of
Prop. II.14.1 on p. 114 of loc. cit.); we noticed that the Fourier coefficients
work out so nicely that the “level lowering” process can be repeated (when
N is not necessarily prime), giving the proof above.

3 Proof of Theorem 1.2

If p is a prime that divides N , then let δp = −wp if wp = −1 and δp = p if
wp = 1. By Proposition 2.6, for at least one p, we have wp = −1, i.e., δp = 1.
Hence by Proposition 2.2, there is an Eisenstein series E such that for all
primes ` -N , we have a`(E) = `+1, and for all primes p |N , ap(E) = 1 = −wp

if wp = −1 and ap(E) = p if wp = 1. In view of Lemma 2.3, if p | N and
wp = 1 (note that p 6= r since r -N), we have ap(E) = p ≡ −1 = −wp mod r.

Considering that f and E are eigenfunctions for all the Hecke operators,
we see from the paragraph above and by Lemma 2.1 that an(f) ≡ an(E) mod
r for all n ≥ 1. Hence (f(q)−E(q)) mod r is a constant; call this constant c.
Since r -6N , we may consider the holomorphic modular form (f −E) mod r
in ω⊗2 on Γ0(N) defined over Z/rZ. Using Lemma 2.5, for any prime p
dividing N we get a holomorphic modular form in ω⊗2 on Γ0(N/p) defined
over Z/rZ, whose q-expansion is the same constant c. By repeating this
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process (which we can do since at each stage we have a q-expansion that
is constant – in fact, the same constant c), we get a holomorphic modular
form in ω⊗2 on Γ0(1) defined over Z/rZ, whose q-expansion is c. By [Maz77,
Lemma II.5.6(a)], there are no nontrivial holomorphic modular forms of
level 1 in ω⊗2 defined over a field of characteristic other than 2 and 3.
Thus c ≡ 0 mod r, and so an(f) ≡ an(E) mod r for n = 0 as well. Hence
f ≡ E mod r.

To E is associated a subgroup CE of C by Stevens (see [Ste82, Def. 1.8.5]
and [Ste85, Def. 4.1]). Since r -N , by Lemma 2.1, ar ≡ (1 + r) ≡ 1 mod r;
in particular, f is ordinary at r. Then by [Tan97, Thm 0.4], A[r] ∩CE 6= 0.
Since CE is rational (as N is square-free), we find that A has a rational
r-torsion point.
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