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Abstract

Let A be a quotient of J0(N) associated to a newform f such that
the special L-value of A (at s = 1) is non-zero. We give a formula for
the ratio of the special L-value to the real period of A that expresses
this ratio as a rational number. We extract an integer factor from the
numerator of this formula; this factor is non-trivial in general and is
related to certain congruences of f with eigenforms of positive analytic
rank. We use the techniques of visibility to show that, under certain
hypotheses (which includes the first part of the Birch and Swinnerton-
Dyer conjecture on rank), if an odd prime q divides this factor, then
q divides either the order of the Shafarevich-Tate group or the order
of a component group of A. Suppose p is an odd prime such that p2

does not divide N , p does not divide the order of the rational torsion
subgroup of A, and f is congruent modulo a prime ideal over p to an
eigenform whose associated abelian variety has positive Mordell-Weil
rank. Then we show that p divides the factor mentioned above; in
particular, p divides the numerator of the ratio of the special L-value
to the real period of A. Both of these results are as implied by the
second part of the Birch and Swinnerton-Dyer conjecture, and thus
provide theoretical evidence towards the conjecture.

1 Introduction

Mazur introduced the notion of visibility in order to better understand geo-
metrically the elements of the Shafarevich-Tate group of an abelian variety.
The corresponding theory, which we call the theory of visibility, has been
used to show the existence of non-trivial elements of the Shafarevich-Tate
group of abelian varieties and motives (e.g., see [CM00], [AS02], [DSW03]).
∗The author was partially supported by National Science Foundation Grant No.

0603668. Mathematics subject classification: 11G40.
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The second part of the Birch and Swinnerton-Dyer conjecture gives a for-
mula for the order of the Shafarevich-Tate group, and one might wonder
how much of this conjectural order can be explained by the theory of vis-
ibility, as well as whether, when the theory of visibility implies that the
Shafarevich-Tate group is non-trivial, the Birch and Swinnerton-Dyer con-
jectural order of the Shafarevich-Tate group is non-trivial as well. While
this issue has been investigated computationally (e.g., see [CM00], [AS05]),
to our knowledge there have been no general theoretical results that directly
link visibility to the Birch and Swinnerton-Dyer conjecture.

In this paper, for abelian subvarieties of J0(N) associated to newforms
and having analytic rank zero, we take the first step in theoretically linking
visibility to the second part of the Birch and Swinnerton-Dyer conjecture.
Firstly, when the newform associated to such an abelian variety is congruent
to an eigenform whose associated abelian variety has positive Mordell-Weil
rank, the theory of visibility shows that the actual Shafarevich-Tate group of
such an abelian variety is non-trivial (subject to some other minor hypothe-
ses). We prove that in this situation, under some additional hypotheses, the
Birch and Swinnerton-Dyer conjectural order of the Shafarevich-Tate group
is non-trivial as well. Secondly, following an idea of L. Merel, we extract
an integer factor from the Birch and Swinnerton-Dyer conjectural formula
for the order of the Shafarevich-Tate group. This factor is a variant of the
notion of the modular degree and is divisible by certain congruence primes
associated to the newform. We show, using the theory of visibility, that if
an odd prime divides this factor, then it also divides the actual order of the
Shafarevich-Tate group under certain assumptions (the strongest assump-
tion being the first part of the Birch and Swinnerton-Dyer formula on ranks
of Mordell-Weil groups). We now describe our results more precisely.

Let N be a positive integer. Let X0(N) denote the modular curve
over Q associated to Γ0(N), and let J0(N) be its Jacobian, which is an
abelian variety over Q. Let f be a newform of weight 2 on Γ0(N). We will
denote by L(f, s) the L-function associated to f . Let T denote the subring
of endomorphisms of J0(N) generated by the Hecke operators (usually de-
noted T` for ` -N and Up for p |N). Let If = AnnTf . Let Af denote the
quotient abelian variety J0(N)/IfJ0(N) over Q, which was introduced by
Shimura in [Shi73]. If f has integer Fourier coefficients, then Af is just an
elliptic curve, and the reader may assume this for simplicity; in any casse,
in the proof of our main results, the dimension of Af does not play a major
role. Let LAf (s) denote the L-function associated to Af .

The order of vanishing of LAf (s) at s = 1 is called the analytic rank
of Af , and the order of vanishing of L(f, s) at s = 1 is called the analytic rank
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of f . The rank of the finitely generated abelian group Af (Q) is called the
Mordell-Weil rank of Af . The first part of the Birch and Swinnerton-Dyer
conjecture is the following:

Conjecture 1.1 (Birch and Swinnerton-Dyer). The analytic rank of Af
is equal to its Mordell-Weil rank.

Now suppose that LAf (1) 6= 0. Then by [KL89], Af has Mordell-Weil
rank zero, and the Shafarevich-Tate group X(Af ) of Af is finite. Let A
denote the Néron model of Af over Z and let A0 denote the largest open
subgroup scheme of A in which all the fibers are connected. Let d = dimAf ,
and let D be a generator of the d-th exterior power of the group of invariant
differentials on A. Let ΩAf

denote the volume of Af (R) with respect to the
measure given by D. If p is a prime number, then the group of Fp-valued
points of the quotient AFp/A0

Fp
is called the (arithmetic) component group

of A and its order is denoted cp(A). If A is an abelian variety, then we
denote by A∨ the dual abelian variety of A. Throughout this article, we use
the symbol ?= to denote a conjectural equality.

Considering that LAf (1) 6= 0, the second part of the Birch and Swinnerton-
Dyer conjecture says the following:

Conjecture 1.2 (Birch and Swinnerton-Dyer).

LAf (1)

ΩAf

?=
|X(Af )| ·

∏
p|N cp(Af )

|Af (Q)| · |A∨f (Q)|
. (1)

It is known that LAf (1)/ΩAf
is a rational number (this also follows

from Theorem 2.1 below) and we call this number the algebraic part of the
special L-value of Af . The importance of the second part of the Birch and
Swinnerton-Dyer conjecture is that it gives a conjectural value of |X(Af )|
in terms of the other quantities in (1) (which can often be computed). Let
us denote this conjectural value of |X(Af )| by |X(Af )|an (where “an”
stands for “analytic”). The theory of Euler systems has been used to
bound |X(Af )| from above in terms |X(Af )|an as in the work of Koly-
vagin and of Kato (e.g., see [Rub98, Thm 8.6]). Also, the Eisenstein series
method is being used by Skinner-Urban (as yet unpublished) to try to show
that |X(Af )|an divides |X(Af )|. In both of the methods above, one may
have to stay away from certain primes.

In order to explain our results, for the sake of simplicity, we assume for
the moment that N is prime. Suppose q is a prime such that f is congruent
modulo a prime ideal over q to a newform g ∈ S2(Γ0(N),C) such that Ag
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has positive Mordell-Weil rank. Then the theory of visibility often implies
the existence of non-trivial elements of X(Af ) of order q (for example, this
happens if q -N(N − 1) – see the proof of Theorem 6.1 below; this kind of
result is well known). Now if the second part of the Birch and Swinnerton-
Dyer conjecture is true, then q should also divide |X(Af )|an. We show that
this is indeed the case:

Theorem 1.3. Recall that we are assuming that N is prime. Suppose q
is an odd prime such that f is congruent modulo a prime ideal over q to
a newform g ∈ S2(Γ0(N),C) such that Ag has positive Mordell-Weil rank.
Then q divides |X(Af )|an.

The theorem follows from Corollary 5.5 below. Thus, in certain situa-
tions, when the theory of visibility implies that |X(Af )| is non-trivial, we
show that |X(Af )|an is non-trivial as well, which provides theoretical evi-
dence towards the second part of the Birch and Swinnerton-Dyer conjecture
based on the theory of visibility.

Our other contribution towards the second part of the Birch and Swinnerton-
Dyer conjecture is that we extract a factor of |X(Af )|an that can be re-
lated to |X(Af )|, as we now explain. Let H = H1(J0(N),Z) and let π∗
denote the map H1(J0(N),Q)→H1(Af ,Q) induced by the quotient map
π : J0(N)→Af . Let K denote the kernel of π∗ restricted to H. Let
e ∈ H1(J0(N),Q) denote the winding element (whose definition is recalled
below in Section 2) and let Ie denote the annihilator of e under the action
of T. Let = denote the annihilator, under the action of T, of the divisor
(0)− (∞), considered as an element of J0(N)(C). There is a complex con-
jugation involution acting on H, and if G is a group on which it induces an
involution, then by G+ we mean the subgroup of elements of G fixed by the
involution. By Lemma 3.1 below, =e ⊆ H[Ie]+. We show (see the discussion
preceding formula (14) at the end of Section 3):

|X(Af )|an =
∣∣∣ H+

H[Ie]+ +K+

∣∣∣ · ∣∣∣ H[Ie]+

=e+H[Ie]+ ∩K+

∣∣∣. (2)

Our long term goal is to show that |X(Af )|an divides |X(Af )|. We
have the following partial result towards this:

Theorem 1.4. Recall that we are assuming that N is prime.
(i) An odd prime q divides | H+

H[Ie]++K+ | if and only if there is a normalized
eigenform g ∈ S2(Γ0(N),C) such that L(g, 1) = 0 and f is congruent to g
modulo a prime ideal lying over q in the ring of integers of the number field
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generated by the Fourier coefficients of f and g.
(ii) Assume that the first part of the Birch and Swinnerton-Dyer conjecture
holds for all newform quotients of J0(N) of positive analytic rank. Let q
be a prime such that q - N(N − 1). If q divides the factor | H+

H[Ie]++K+ |
of |X(Af )|an, then q2 divides |X(Af )|.

Part (i) of the theorem follows from Corollary 5.6 below. Note that
this part shows that the factor | H+

H[Ie]++K+ | is non-trivial in general (cf.
Remark 6.8). Part (ii) follows from part (i) using the theory of visibil-
ity (see Theorem 6.1 below). Thus one may say that we relate a piece
of |X(Af )|an to |X(Af )| using the theory of visibility. Apart from pro-
viding additional theoretical evidence towards the second part of the Birch
and Swinnerton-Dyer conjecture, part (ii) of the theorem also shows some
consistency between the the implications of the two parts of the Birch and
Swinnerton-Dyer conjecture. Also, we remark that part (i) of the theorem
proves Theorem 1.3 above, in view of the comments preceding Theorem 1.3
and the fact that if Ag has positive Mordell-Weil rank, then it has positive
analytic rank by [KL89] (note that the proof of Theorem 1.4 does not use
Theorem 1.3).

We also have results similar to the ones above when N is not assumed
to be prime, as we will explain soon. Before doing that, we pause to com-
ment on how our result fits into a potential approach towards proving the
second part of the Birch and Swinnerton-Dyer conjecture. The Euler sys-
tem method gives results of the type that |X(Af )| divides |X(Af )|an (at
present under certain hypotheses, and staying away from certain primes).
In view of this, what one would like to show the reverse divisibility, i.e.,
that |X(Af )|an divides |X(Af )|. The Eisenstein ideal method of Skinner-
Urban works in this direction, as does the theory of visibility. Our Theo-
rem 1.4 may be seen as a first step in the approach using visibility to try
to show that |X(Af )|an divides |X(Af )|. We hope to show in future work
(using ideas similar to those in [Aga08]) that the entire factor | H+

H[Ie]++K+ |
of |X(Af )|an divides |X(Af )|, perhaps staying away from certain primes,
and under certain hypotheses, including the first part of the Birch and
Swinnerton-Dyer conjecture. One major hurdle that remains is to relate
the other factor | H[Ie]+

=e+H[Ie]+∩K+ | in (2) to |X(Af )|. It is our hope that this
factor can be explained by “visibility at higher level” (see Remark 6.10(3)
below).

We now drop the assumption thatN is prime, and describe more general
results as well as discuss the organization of the paper, which in turn will
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also indicate the steps in the proofs of our main results. In Section 2, we
give a formula that expresses the left hand side LAf (1)/ΩAf

of the Birch and
Swinnerton-Dyer conjectural formula (1) as a rational number. Using this
formula, in Section 3, we show (Theorem 3.2 below) that

LAf (1)

ΩAf

=
| H+

H[Ie]++K+ | · | H[Ie]+

=e+H[Ie]+∩K+ |
|π∗(Te)/π∗(=e)|

, (3)

up to powers of 2 and powers of primes whose squares divide N . Hence the
Birch and Swinnerton-Dyer conjectural formula (1) becomes:

| H+

H[Ie]++K+ | · | H[Ie]+

=e+H[Ie]+∩K+ |
|π∗(Te)/π∗(=e)|

?=
|X(Af )| ·

∏
p|N cp(Af )

|Af (Q)| · |A∨f (Q)|
, (4)

up to powers of 2 and powers of primes whose squares divide N . By
Lemma 3.3 below, |π∗(Te)/π∗(=e)| divides |Af (Q)|. In particular, the sec-
ond part of the Birch and Swinnerton-Dyer conjecture implies that the first
factor | H+

H[Ie]++K+ | in the numerator of the right side of formula (3), di-
vides |X(Af )| ·

∏
p|N cp(Af ), up to powers of 2 and powers of primes whose

squares divide N . Our goal is to prove results towards this implication.
In Section 4, we relate the factor | H+

H[Ie]++K+ | to the order of the inter-
section of certain abelian variety subquotients of J0(N). Then in Section 5,
we relate the order of this intersection to certain congruences of f with
eigenforms of positive analytic rank. In particular, we show that if q is an
odd prime such that q2

-N , then q divides | H+

H[Ie]++K+ | if and only if there
is a normalized eigenform g ∈ S2(Γ0(N),C) such that L(g, 1) = 0 and f
is congruent to g modulo a prime ideal lying over q in the ring of integers
of the number field generated by the Fourier coefficients of f and g (see
Corollary 5.6 below). Thus we obtain the following byproduct (for details,
see Proposition 5.4 and its proof):

Proposition 1.5. Let q be an odd prime such that q2
- N and q does

not divide |Af (Q)tor|. Suppose that there is a normalized eigenform g ∈
S2(Γ0(N),C) such that L(g, 1) = 0 and g is congruent to f modulo a prime
ideal over q in the ring of integers of the number field generated by the

Fourier coefficients of f and g. Then q divides
LAf (1)

ΩAf
, and in particular,

LAf (1)

ΩAf
≡ LAg (1)

ΩAg
mod q.

A result similar to the one above is proved in [DSW03] using ideas
from [Vat99] (our proof is different). These results fall under the general
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philosophy that congruences between eigenforms should lead to congruences
between algebraic parts the special L-values (e.g., see [Vat99], and the ref-
erences therein for more instances).

In Section 6, we use the theory of visibility to relate congruences as in
Proposition 1.5 to the product of the order of the Shafarevich-Tate group
and the orders of the component groups of Af , as we now explain. Sup-
pose q and g are as in Proposition 1.5. Assume the first part of the Birch
and Swinnerton-Dyer conjecture for all newform quotients; then the rank
of Ag(Q) is positive (considering that L(g, 1) = 0). In this situation, a
“visibility theorem” of [DSW03] shows that under certain other technical
hypotheses, the congruence prime q divides |X(Af )| ·

∏
p|N cp(Af ). The

precise result we obtain is as follows (see Theorem 6.7):

Theorem 1.6. Let q be a prime such that q divides | H+

H[Ie]++K+ |.
Suppose that q - 2N , and for all maximal ideals q of T with residue char-
acteristic q, Af [q] is irreducible. Assume that for all newforms g of level
dividing N , if L(g, 1) = 0, then the rank of Ag(Q) is positive (this would
hold if the first part of the Birch and Swinnerton-Dyer conjecture is true).
Suppose that for all primes p |N , p 6≡ −wp (mod q), where wp is the sign
of the Atkin-Lehner involution acting on f , and p 6≡ −1 (mod q) if p2 |N .
Suppose either that f is not congruent modulo a prime ideal over q to a
newform of lower level (for Fourier coefficients of index coprime to Nq), or
that there is a prime p dividing N and a maximal ideal q of T with residue
characteristic q such that f is congruent modulo q to a newform h of level
dividing N/p (for Fourier coefficients of index coprime to Nq), with p2

-N ,
wp = −1, and Ah[q] irreducible.
Then q divides |X(Af )| ·

∏
p|N cp(Af ).

Thus, under certain hypotheses, we show that if a prime divides | H+

H[Ie]++K+ |,
then it divides |X(Af )| ·

∏
p|N cp(Af ), which, as mentioned earlier, is as im-

plied by the second part of the Birch and Swinnerton-Dyer conjecture. Also,
in some sense, one may say that our approach uses visibility to link the first
part of the Birch and Swinnerton-Dyer conjecture to the second.

Note that if N is not prime, then the arithmetic component groups
intervene in trying to explain the Shafarevich-Tate group using the the-
ory of visibility. In fact, in Example 6.9 below, a prime divides the factor
| H+

H[Ie]++K+ |, but does not divide the Birch and Swinnerton-Dyer conjectural
order of X(Af ), and instead divides

∏
p|N cp(Af ). As opposed to some of

the other approaches to the second part of the Birch and Swinnerton-Dyer
conjecture, our approach gives information about

∏
p|N cp(Af ) vis-a-vis the
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conjecture. In fact, our result seems to indicate that instead of considering
the quantities |X(Af )| and

∏
p|N cp(Af ) separately, one should consider the

product |X(Af )| ·
∏
p|N cp(Af ) in approaches towards the second part of the

Birch and Swinnerton-Dyer conjecture (at least in the approaches that use
the theory of visibility).

We would also like to mention some of our speculations on how to
understand the second part of the Birch and Swinnerton-Dyer conjecture
based on our formula (3) for LAf (1)/ΩAf

even when the level N is not prime.
Let Cf denote the subgroup ofAf (Q) generated by the image of π((0)−(∞)).
By Lemma 3.3, π∗(Te)/π∗(=e) = Cf , and so |π∗(Te)/π∗(=e)| = |Cf |. For
simplicity, assume that N is square free and that Af is an elliptic curve.
Then, by (4) and the discussion above, away from the prime 2, the second
part of the Birch and Swinnerton-Dyer conjecture becomes:

∣∣∣ H+

H[Ie]+ +K+

∣∣∣ · ∣∣∣ H[Ie]+

=e+H[Ie]+ ∩K+

∣∣∣ · ∣∣∣Af (Q)
Cf

∣∣∣ · |Af (Q)|

?= |X(Af )| ·
∏
p|N

cp(Af ) . (5)

One would like to understand how the various quantities on the left are
related to the quantities on the right. Based on some numerical data and
theoretical results, we suspect that the product

(
|(Af (Q)/Cf )| · |Af (Q)|

)
divides

∏
p|N cp(Af ) (cf. [Aga07]). For example, when N is prime, then

by [Eme03],
|Cf | = cN(Af ) = |Af (Q)|,

and so the two quantities
(
|(Af (Q)/Cf )| · |Af (Q)|

)
and

∏
p|N cp(Af ) are

actually equal. If N is not prime, then we do not expect equality (e.g.,
see Example 6.9 below), but we expect that the ratio of

∏
p|N cp(Af ) to(

|(Af (Q)/Cf )| · |Af (Q)|
)

is explained by congruences of f with newforms of
lower level having positive analytic rank (cf. Proposition 6.3 and Remark 6.4
below). Thus we suspect that the product |(Af (Q)/Cf )| · |Af (Q)| on the
left side of (5) contributes to part of

∏
p|N cp(Af ) in the product |X(Af )| ·∏

p|N cp(Af ) on the right side of (5), and the rest of the product |X(Af )| ·∏
p|N cp(Af ) is explained by the product | H+

H[Ie]++K+ | · | H[Ie]+

=e+H[Ie]+∩K+ | on the
left side of (5), via congruences of f with eigenforms of positive analytic rank,
possibly of some higher level (cf. Remark 6.10(3) below).

While the picture above is largely speculative at this stage and may need
some extra conditions for it to be true (e.g., one may have to stay away
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from certain primes), there are several reasons for mentioning it. Firstly,
our Theorem 1.6 may be seen as a first step in proving results towards our
speculations above, and shows that the theorem fits into a bigger picture
(albeit speculative). Secondly, as opposed to other approaches to the second
part of the Birch and Swinnerton-Dyer conjecture, our approach predicts
more explicitly how non-trivial elements in the various quantities on the
right side of the second part of the Birch and Swinnerton-Dyer conjectural
formula (1) “arise”. We hope that this may lead to a better understanding of
the conjecture, even if it were proven by some other means. Lastly, we hope
that the broader speculative picture above may help motivate computations
or theoretical results regarding parts of it.

We end our paper with an appendix in Section 7, where we prove that
for a prime p, the prime-to-p parts of the component group at p used in
the Birch and Swinnerton-Dyer conjecture and the component group at p
used in the formulation of the Bloch-Kato conjecture are equal. While the
result is well known, to our knowledge, it has not been proven as such in
the literature.

We remark that throughout this article, the notation introduced in one
section is carried over to the next.

Acknowledgements: This paper owes its existence to Löic Merel. It was his
idea to extract a factor as above and he expected that one can relate the
factor to the order of the Shafarevich-Tate group using Mazur’s theory of
visibility. The author’s task was to work out the details and see how far
this idea can be taken. We also thank Neil Dummigan for several helpful
conversations regarding Section 6, and Dipendra Prasad and Minhyong Kim
for discussions regarding the Appendix. We would also like to thank the
anonymous referee for suggestions that improved the presentation of this
paper. Part of the work was done during visits to the Institut des Hautes
Études Scientifiques and the Tata Institute for Fundamental Research; we
are grateful to both institutions for their kind hospitality.

2 A formula for the ratio of special L-value to real
volume for newform quotients

The goal of this section is to give a formula (formula (6) below) that ex-
presses LAf (1)/ΩAf

, the left hand side of (1), as a rational number.
Let H denote the complex upper half plane, and let {0, i∞} denote the

projection of the geodesic path from 0 to i∞ in H ∪ P1(Q) to X0(N)(C).
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We have an isomorphism

H1(X0(N),Z)⊗R
∼=−→ HomC(H0(X0(N),Ω1),C),

obtained by integrating differentials along cycles (see [Lan95, § IV.1]). Let
e be the element of H1(X0(N),Z) ⊗ R that corresponds to the map ω 7→
−
∫
{0,i∞} ω under this isomorphism. It is called the winding element.

By the Manin-Drinfeld Theorem (see [Lan95, Chap. IV, Theorem 2.1]
and [Man72]), e ∈ H1(X0(N),Z)⊗Q. Also, since the complex conjugation
involution on H1(X0(N),Z) is induced by the map z 7→ −z on the complex
upper half plane, we see that e is invariant under complex conjugation.
Thus Te ⊆ H1(X0(N),Z)+ ⊗Q. If the torsion-free group π∗(Te) has rank
equal to d (= dimAf ), then let [H1(Af ,Z)+ : π∗(Te)] denote the absolute
value of the determinant of an automorphism of H1(Af ,Q) that takes the
lattice H1(Af ,Z)+ isomorphically onto the lattice π∗(Te); otherwise, define
[H1(Af ,Z)+ : π∗(Te)] to be zero.

Let g1, . . . , gd be a Z-basis of S2(Γ0(N),Z)[If ], and for j = 1, . . . , d,
consider ωj = 2πigj(z)dz as differentials in H0(Af ,ΩAf/Q). There exists
c ∈ Q∗ such that D = c · ∧jωj . As in [ARS06], we call the absolute value
of c the Manin constant of Af , and denote it by cAf . Let c∞(A) denote the
number of connected components of A(R).

The following theorem is similar to Theorem 4.5 in [AS05] and the key
idea behind the proof goes back to [Aga99].

Theorem 2.1.

LAf (1)

ΩAf

=
[H1(Af ,Z)+ : π∗(Te)]

cAf · c∞(Af )
. (6)

The rest of this section is devoted to proving the theorem above, and
apart from Lemma 2.2, none of the discussion in the rest of this section will
be used later.

We start by giving some lemmas that will be used in the proof of the
theorem. Let Sf = S2(Γ0(N),Z)[If ]. There is a perfect pairing

T× S2(Γ0(N),Z)→Z (7)

which associates to (T, f) the first Fourier coefficient a1(f |T ) of the modular
form f |T (see [Rib83, (2.2)]); this induces a pairing

ψ : T/If × Sf→Z.

10



Lemma 2.2. The pairing ψ above is a perfect pairing.

Proof. Both T/If and Sf are free Z-modules of the same rank. So it suffices
to prove that the induced maps Sf→Hom(T/If ,Z) and T/If→Hom(Sf ,Z)
are injective. The injectivity of the first map follows from the perfectness
of the pairing (7). Suppose the image of T ∈ T in T/If maps to the trivial
element of Hom(Sf ,Z). Then a1(f | T ) = 0. But f is an eigenform for T ;
suppose the eigenvalue is λ. Then 0 = a1(f | T ) = λa1(f) = λ. Thus
f |T = 0, i.e., T ∈ If . Thus the map T/If→Hom(Sf ,Z) is injective and we
are done.

Lemma 2.3. The map T→Te given by t 7→ te induces an isomorphism
T/If

∼=−→ Te/Ife.

Proof. It is clear that the map T→Te/Ife given by t 7→ te is surjective.
All we have to show is that the kernel of this map is If . It is clear that
the kernel contains If . Conversely, if t is in the kernel, then te ∈ Ife; let
i ∈ If be such that te = ie. Then (t − i)e = 0, and thus

∫
(t−i)e ωf = 0,

i.e.,
∫
e ω(t−i)f = 0. If the eigenvalue of f under (t− i) is λ, then this means

λ · L(f, 1) = 0, i.e., λ = 0. Thus (t− i) ∈ If , i.e., t ∈ If .

We have a pairing

H1(X0(N),Z)⊗C× S2(Γ0(N),C)→C (8)

given by (γ, f) 7→ 〈γ, f〉 =
∫
γ ωf and extended C-linearly. At various points

below in this section, we will consider pairings between two Z-modules; un-
less otherwise stated, each such pairing is obtained in a natural way from (8).
If 〈 , 〉 : M ×M ′→C, is a pairing between two Z-modules M and M ′, each
of the same rank m, and {α1, . . . , αm} and {β1, . . . , βm} are bases of M
and M ′ (respectively), then by disc(M ×M ′→C), we mean the absolute
value of det(〈αi, βj〉); this value is independent of the choices of bases made
in its definition.

Lemma 2.4. ΩAf
= cAf · c∞(Af ) · disc(H1(Af ,Z)+ × Sf→C).

Proof. Let A(R)0 denote the component of A(R) containing the identity.
Then

ΩAf
=
∫
A(R)D = c∞(Af ) ·

∫
A(R)0 D = c∞(Af ) · cAf ·

∫
A(R)0 ∧jωj

= c∞(Af ) · cAf · disc(H1(A(R)0,Z)× Sf→C)
= c∞(Af ) · cAf · disc(H1(Af ,Z)+ × Sf→C),
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where the last equality follows from the canonical isomorphismH1(A(R)0,Z) ∼=
H1(Af ,Z)+ (see, e.g., [AS05, Lemma 4.4]; note that several of the A(R)’s
in Section 4.2 of [AS05] should really be A(R)0’s).

Proof of Theorem 2.1. Let {fi}, for i = 1, 2, . . . d, denote the set of Galois
conjugates of f . By [Shi94, Thm. 7.14] and [Car86], LAf (s) =

∏
i L(fi, s) =∏

i〈e, fi〉. Hence, using Lemma 2.4,

cAf · c∞(Af ) ·
LAf (1)

ΩAf

=
∏
i〈e, fi〉

disc(H1(Af ,Z)+ × Sf→C)

=
∏
i〈e, fi〉

disc(Te/Ife× Sf→C)
·
[
H1(Af ,Z)+ : π∗(Te)

]
.

To prove the theorem, it suffices to prove that∏
i〈e, fi〉

disc(Te/Ife× Sf→C)
= 1. (9)

In what follows, i, j, k, and ` are indices running from 1 to d. Let {gk}
be a Z-basis of Sf and let {tj} be the corresponding dual basis of T/If under
the perfect pairing ψ in Lemma 2.2 above. Then by Lemma 2.3, {tje} is
a basis for Te/Ife. Now gk =

∑
k akifi for some {aki ∈ C}. Let A be the

matrix having (k, i)-th entry aki, and let (a−1)i` denote the (i, `)-th element
of the inverse of A. Then

disc(Te/Ife× Sf→C)
= det{〈tje, gk〉} = det{〈e, gk | tj〉} = det{〈e, (

∑
i akifi) | tj〉}

= det{〈e,
∑

i akia1(fi | tj)fi〉} (since fi’s are eigenvectors)
= det{〈e,

∑
i aki

∑
`(a
−1)i`a1(g` | tj)fi〉} (using fi =

∑
`(a
−1)i`g`)

= det{〈e,
∑

i aki(a
−1)ijfi〉} (using a1(g` | tj) = δ`j)

= det{
∑

i aki(a
−1)ij〈e, fi〉} = det{

∑
i aki〈e, fi〉(a−1)ij}

= det(A∆A−1) (where ∆ = diag(〈e, fi〉))
= det(∆) =

∏
i〈e, fi〉.

This proves (9), and finishes the proof of the theorem.

3 Extracting an integer factor

The goal of this section is to rewrite the right hand side of formula (6) so that
it can be better compared to the formula given by the Birch and Swinnerton-
Dyer conjecture (Conjecture 1.2). We also extract the factor | H+

H[Ie]++K+ |

12



from
LAf (1)

ΩAf
. Recall that H = H1(J0(N),Z), Ie is the annihilator ideal of e,

K denotes the kernel of π∗ restricted to H, and = denotes the annihilator
ideal of the divisor (0)− (∞).

Lemma 3.1. =e ⊆ H[Ie]+.

Proof. By [Maz77, II.18.6], we have =e ⊆ H+ (note that in loc. cit., the
definition of = is different and N is assumed to be prime; but the only
essential property of = that is used in the proof is that = annihilates the
divisor (0)− (∞), and the assumption that N is prime is not used). Also, e
is killed by Ie, hence so is =e, and the lemma follows.

Theorem 3.2. Up to a power of 2,

cAf · c∞(Af ) ·
LAf (1)

ΩAf

=
| H+

H[Ie]++K+ | · | H[Ie]+

=e+H[Ie]+∩K+ |
|π∗(Te)/π∗(=e)|

. (10)

Proof. Since =e ⊆ H+, and the map π∗ : H→H1(Af ,Z) is surjective (as the
kernel of J→Af is connected), from Theorem 2.1, we have

cAf · c∞(Af ) ·
LAf (1)

ΩAf

= [π∗(H)+ : π∗(Te)] =
|π∗(H)+/π∗(=e)|
|π∗(Te)/π∗(=e)|

. (11)

Now π∗(H) = H/K and up to a power of 2, (H/K)+ = H+/K+.
Also, π∗(=e) = =e/(=e ∩K+) and the kernel of the natural injective map
=e→(=e+K+)/K+ is =e ∩K+; so π∗(=e) = (=e+K+)/K+. Thus up to
a power of 2,

|π∗(H)+/π∗(=e)| =
∣∣∣ H+

K+ + =e

∣∣∣. (12)

Now =e ⊆ H[Ie]+, and so we have∣∣∣ H+

K+ + =e

∣∣∣ =
∣∣∣ H+

H[Ie]+ +K+

∣∣∣ · ∣∣∣H[Ie]+ +K+

=e+K+

∣∣∣.
We have a map H[Ie]+→(H[Ie]+ + K+)/(=e + K+) given by h 7→

h + (=e + K+). It is clearly a surjection, and its kernel is precisely =e +
H[Ie]+ ∩K+. So we have∣∣∣ H+

K+ + =e

∣∣∣ =
∣∣∣ H+

H[Ie]+ +K+

∣∣∣ · ∣∣∣ H[Ie]+

=e+H[Ie]+ ∩K+

∣∣∣.
Putting this in (12) and using (11), we get the theorem.
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By [ARS06], if a prime p divides cAf , then p = 2 or p2 | N . Also,
c∞(Af ) is a power of 2. Hence, in view of Theorem 3.2, the second part of
the Birch and Swinnerton-Dyer conjecture (Conjecture 1.2) just says that
up to powers of 2 and powers of primes whose squares divide N , we have

| H+

H[Ie]++K+ | · | H[Ie]+

=e+H[Ie]+∩K+ |
|π∗(Te)/π∗(=e)|

?=
|X(Af )| ·

∏
p|N cp(Af )

|Af (Q)| · |A∨f (Q)|
. (13)

Lemma 3.3 (A-Stein). π∗(Te)/π∗(=e) is the subgroup of Af (Q) generated
by the image of π((0)− (∞)) and so |π∗(Te)/π∗(=e)| divides |Af (Q)|.

Proof. The first claim follows from the proof of Prop. 4.6 of [AS05] and the
second claim follows from the first by Lagrange’s theorem that the order of
a subgroup divides the order of the group.

Thus the second part of the Birch and Swinnerton-Dyer conjecture im-
plies that up to powers of 2 and powers of primes whose square divides N ,
the factor | H+

H[Ie]++K+ | divides |X(Af )| ·
∏
p|N cp(Af ).

If N is prime, then things simplify significantly, since cAf is a power
of 2 by [ARS06] and by [Eme03], we have |π∗(Te)/π∗(=e)| = cN(Af ) =
|Af (Q)| = |A∨f (Q)|. Hence if N is prime, the Birch and Swinnerton-Dyer
conjecture says that up to powers of 2,∣∣∣ H+

H[Ie]+ +K+

∣∣∣ · ∣∣∣ H[Ie]+

=e+H[Ie]+ ∩K+

∣∣∣ ?= |X(Af )|. (14)

In particular, we note the following result for easy reference:

Proposition 3.4. If N is prime, then the second part of the Birch and
Swinnerton-Dyer conjecture implies that the odd part of | H+

H[Ie]++K+ | divides
|X(Af )|.

4 Relating the factor to an intersection

In this section, we will relate the factor | H+

H[Ie]++K+ | to the order of the
intersection of certain subquotients of J .

We first need the following lemma, which is an adaptation of [AS05,
Prop. 3.2]. Suppose J is an abelian variety over Q, and A and B are abelian
subvarieties of J . Let (A ∩ B)0 denote the connected component of A ∩ B
that contains the identity; it is an abelian variety over Q. Let (A ∩ B)c

denote the component group of A ∩ B, i.e., (A ∩ B)/(A ∩ B)0. If G is a
finitely generated abelian group, then we denote its torsion part by Gtor.
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Lemma 4.1. With notation as above, there is a natural isomorphism of
groups

(A ∩B)c ∼=
(

H1(J,Z)
H1(A,Z) +H1(B,Z)

)
tor .

Proof. If E is an abelian variety over Q, then let TE denote the vector
space HomC(H0(EC,Ω1),C), and let HE denote H1(E(C),Z). There is a
natural inclusion HE→TE , and the complex torus E(C) is isomorphic to
TE/HE . There is also a natural inclusion of TA and TB in TJ , and we have
HA = HJ ∩ TA and HB = HJ ∩ TB.

The exact sequence

0→A ∩B→A⊕B→J

fits into the following diagram obtained from complex analytic uniformiza-
tion.

0

��

0

��
H(A∩B)0

��

// HA ⊕HB

��

// HJ
//

��

HJ/(HA +HB)

��
T(A∩B)0 //

��

TA ⊕ TB

��

// TJ //

��

TJ/(TA + TB)

��
A ∩B // A⊕B //

��

J

��

// J/(A+B)

0 0

Using the snake lemma, which connects the kernel A ∩ B of A ⊕ B→J to
the cokernel of HA ⊕HB→HJ , we obtain an exact sequence

0→T(A∩B)0/H(A∩B)0→A ∩B→HJ/(HA +HB)→TJ/(TA + TB).

Now T(A∩B)0/H(A∩B)0 = (A ∩B)0, so the exact sequence becomes

0→(A ∩B)c→HJ/(HA +HB)→TJ/(TA + TB).

Since TJ/(TA + TB) is a C-vector space, the torsion part of HJ/(HA +HB)
must map to 0. No non-torsion in HJ/(HA +HB) could map to 0, because
if it did then (A ∩B)c would not be finite. The lemma follows.
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In this paragraph and the next, the symbol g stands for a newform of
level Ng dividing N . Let S′g denote the subspace of S2(Γ0(N),C) spanned
by the forms g(dz) where d ranges over the divisors of N/Ng. If n is a
positive integer, then let σ0(n) denote the number of divisors of n. Then S′g
has dimension σ0(N/Ng). Let [g] denote the Galois orbit of g, and let S[g]

denote the Q-subspace of forms in⊕h∈[g]S
′
h with rational Fourier coefficients.

We have S2(Γ0(N),Q) = ⊕[g]S[g], where the sum is over Galois conjugacy
classes of newforms of some level dividing N .

Let Bg denote the abelian subvariety of J0(Ng) associated to g by
Shimura [Shi94, Thm. 7.14], and let Jg be the sum of the images of Bg
in J = J0(N) under the usual degeneracy maps. Then Jg is isogenous
to B

σ0(N/Ng)
g . If J ′ is an abelian subvariety of J that is preserved by

End J , then by AnnT⊗QJ
′ we mean the kernel of the image of T ⊗ Q

in End J ′ ⊗Q. Note that End J preserves Jg (e.g., see [ARS07, § 3]) and
AnnT⊗QJg = AnnT⊗QS[g]. If T is a subset of the set of Galois conjugacy
classes of newforms of some level dividing N , then let ST = ⊕[g]∈TS[g],
IT = AnnTST , and let JT denote the abelian subvariety of J generated by
the Jg for all [g] ∈ T . Then JT is isogenous to

∏
[g]∈T Jg, hence is preserved

by End J and moreover, AnnT⊗QJT = AnnT⊗QST . Intersecting with T,
we get

Lemma 4.2. AnnTJT = AnnTST = IT .

We say that a subgroup G′ of a finitely generated abelian group G
is saturated (in G) if the quotient G/G′ is torsion-free. Recall that H =
H1(J0(N),Z).

Lemma 4.3. H1(JT ,Z) = H[IT ].

Proof. We haveH1(JT ,Z) = H∩HomC(H0(JT (C),Ω1),C). HenceH1(JT ,Z)
is saturated in H and it is clear by Lemma 4.2 that H1(JT ,Z) ⊆ H[IT ]. So
it suffices to show that the inclusion H1(JT ,Z)⊗Q ⊆ H[IT ]⊗Q is an equal-
ity, for which in turn, it suffices to check that the two Q-vector spaces have
the same dimension. Now H ⊗Q is free of rank 2 over T ⊗Q, and thus,
dimQH[IT ] = 2 · dimQ(T/IT ⊗Q). We have

dimQ(H1(JT ,Z)⊗Q)
= 2 · dim JT = 2 · dimQH0(JT (Q),ΩJT (Q)/Q)
= 2 ·

∑
[g]∈T dimQH0(Jg(Q),ΩJg(Q)/Q) = 2 ·

∑
[g]∈T dimQ T[g]

= 2 · dimQ ST = 2 · dimQ(T/IT ⊗Q),

where the last equality follows since S2(Γ0(N),Q) is free of rank one over T⊗
Q. Thus dimQH1(JT ,Z)⊗Q = dimQH[IT ]⊗Q, and we are done.
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Let T1, T2, and T3 be the sets of Galois conjugacy classes of newforms of
level dividing N of analytic rank zero, of classes not in [f ], and of classes of
newforms of analytic rank zero except those in [f ] respectively. Let A = JT1 ,
B = JT2 , and C = JT3 . Also for simplicity, we will write IA for IT1 , IB
for IT2 , and IC for IT3 , as well as SA for ST1 , SB for ST2 , and SC for ST3 .
Note that both IA and IB are contained in IC , and C is an abelian subvariety
of both A and B. The differentials on A/C and B/C correspond respectively
to the space generated by the conjugates of f and the space generated by
eigenforms of analytic rank greater than zero.

Lemma 4.4. ∣∣∣ H

H[Ie] +K

∣∣∣ = |(A/C) ∩ (B/C)| ,

where the latter intersection is considered in J/C.

Proof. Claim 1: H1(A,Z) = H[Ie].

Proof. By Lemma 4.3, it suffices to show that IA = Ie. It follows from
Lemma 3.10 in [Par99] that Ie ⊆ IA. We next prove the reverse inclusion.
Let t ∈ T. By the first statement in the proof of Lemma 3.10 in [Par99], if
f is a newform with analytic rank greater than zero of level M dividing N ,
and g ∈ S′f , then 〈e, g〉 = 0; hence 〈te, f〉 = 〈e, tf〉 = 0. If moreover t ∈ IA,
then for all newforms g of analytic rank zero, 〈te, g〉 = 〈e, tg〉 = 〈e, 0〉 = 0.
Thus te is orthogonal to all of S2(Γ0(N),C), and so te = 0, i.e., t ∈ Ie,
which shows that IA ⊆ Ie, and we are done.

Recall that K denotes the kernel of π∗ : H1(J0(N),Q)→H1(Af ,Q) re-
stricted to H.

Claim 2: H1(B,Z) = K.

Proof. Now B is easily seen to be the kernel of the map J→Af , and so we
have a short exact sequence 0→B→J→Af→0, and part of the associated
long exact sequence of homology is:

. . .→H1(B,Z)→H1(J,Z) π∗→ H1(Af ,Z)→0→ . . .

Hence it is clear that H1(B,Z) ⊆ K. Since H1(B,Z) is saturated in H, it
suffices to show that H1(B,Z) ⊗ Q = K ⊗ Q, i.e., that H1(B,Z) and K
have the same rank. If G is a free abelian group, then we denote its rank
by rk(G). Now
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rk(K) = 2 · dim J − 2 · dimAf = 2 · dimQ S2(Γ0(N),Q)− 2 · dimQ S[f ]

= 2 · dimQ ST2 = 2 · dimQB = rk(H1(B,Z)).

This proves the claim.

Also, (A ∩ B)0 = C, and so (A ∩ B)c = |(A/C) ∩ (B/C)|. The desired
result now follows by Lemma 4.1 in view of the two claims above.

5 Relating the intersection to certain congruences

If T is a subset of the set of Galois conjugacy classes of newforms of some
level dividing N , then let T ′ denote its complement. For simplicity, we will
write IA′ for IT ′1 , IB′ for IT ′2 , and IC′ for IT ′3 , as well as SA′ for ST ′1 , SB′
for ST ′2 , and SC′ for ST ′3 . Note that since T ′2 is the set of Galois conjugacy
classes of newforms of level dividing N that are in [f ], we have IB′ = If . Let
S be short for S2(Γ0(N),Z). Recall that the exponent of a finite group G
is the smallest positive integer that annihilates G.

Lemma 5.1. The exponent of the group (A/C)∩(B/C) divides the exponent
of the group S[I

C′ ]

S[I
B′ ]+S[I

A′ ]
. Moreover, if ` is a prime such that `2 - N , then

` does not divide the ratio of the exponent of S[I
C′ ]

S[I
B′ ]+S[I

A′ ]
to the exponent

of (A/C) ∩ (B/C).

Proof. Both parts of the lemma are generalizations of results in [ARS07].
The proof of the first part is a generalization of the proof of Theo-

rem 3.6(a) in [ARS07] which says that the modular exponent divides the
congruence exponent. Note that End J0(N) preserves A, B, and C, and
hence A/C and B/C, and that the image of T acting on J0(N)/C is TC′

(since AnnT⊗QJ/C = AnnT⊗QS2(Q)/SC = AnnT⊗QSC′). We have a per-
fect T-equivariant bilinear pairing T× S → Z given by (t, g) 7→ a1(t(g)).

Claim: The induced pairing

T/IC′ × S[IC′ ]→Z (15)

is perfect.

Proof. We follow the proof of Lemma 2.2, and the only thing that one has to
show differently is that the map T/IC′→Hom(S[IC′ ],Z) is injective. Suppose
the image of T ∈ T in T/IC′ is in the kernel of this map. Then if h ∈ S[IC′ ],
we have a1(h | T ) = 0. But then an(h | T ) = a1((h | T ) | Tn) = a1((h | Tn) |
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T ) = 0 for all n (considering that h |Tn ∈ S[IC′ ]), and hence h |T = 0 for all
h ∈ S[IC′ ]. Hence T annihilates S[IC′ ] = S ∩ SC′ , and so it annihilates SC′ .
Thus T ∈ IC′ , which proves the injectivity.

Using this pairing, Hom(TC′/AnnT
C′

(A/C),Z) may be viewed as a
saturated subgroup of S[IC′ ]. Now AnnT

C′⊗QA/C = AnnT
C′⊗QSA/SC =

If/IC′ ⊗Q = IB′/IC′ ⊗Q and thus on tensoring with Q, TC′/AnnT
C′

(A/C)
is dual, under the pairing (15), to S[IB′ ], which is itself saturated in S[IC′ ].
Hence

Hom(TC′/AnnT
C′

(A/C),Z) = S[IB′ ].

Similarly,
Hom(TC′/AnnT

C′
(B/C),Z) = S[IA′ ].

Bearing all this in mind, and making the following changes in Sections 3–4
of [ARS07]: replace J by J0(N)/C, A by A/C, B by B/C, T by TC′ =
T/IC′ , the proof in loc. cit. that the modular exponent divides the con-
gruence exponent (with the changes mentioned above) gives us the first
statement in the lemma.

The proof of the second part of the lemma is a generalization of the proof
of Theorem 3.6(a) in [ARS07], which says that if ` is a prime such that `2 - N ,
then ` does not divide the ratio of the congruence exponent to the modu-
lar exponent, as we now explain. Let TA/C and TB/C denote the images
of TC′ acting on A/C and B/C respectively. Let πA/C and πB/C denote the
maps TC′→TA/C and TC′→TB/C respectively. Let RC′ = πA/C(ker(πB/C))
and let SC′ be the annihilator in TA/C of (A/C) ∩ (B/C). By a reason-
ing as in [ARS07, §5.1], except replacing J by J0(N)/C, A by A/C, B
by B/C, T by TC′ , R by RC′ , and S by SC′ in loc. cit., we get the following:
RC′ ⊆ SC′ , the exponent of S[I

C′ ]

S[I
B′ ]+S[I

A′ ]
is the exponent of TA/C/RC′ , and

multiplication by the exponent of (A/C) ∩ (B/C) annihilates TA/C/SC′ .
Let T′

C′ be the saturation of TC′ in End (J/C). Then in a manner sim-
ilar to loc. cit. (with the changes mentioned above), we get an injection
SC′/RC′ ↪→ T′

C′/TC′ and to prove the second part of our lemma, it suf-
fices to show that TC′ = T′

C′ locally at all maximal ideals of TC′ with
residue characteristic ` that contain the annihilator of A/C, which is If/IC′
(since AnnT⊗QA/C = AnnT⊗QSA/SC = AnnT⊗QS[f ]). Considering that
TC′ = T/IC′ , it suffices to show that T = T′ for all maximal ideals of T
with residue characteristic ` which contain If (where T′ is the saturation
of T in End J). But this is proved in [ARS07, §5.1].
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If g and h are eigenforms in S2(Γ0(N),C) and q is an ideal in the ring of
integers of a number field that contains all the Fourier coefficients of g and h,
then we will say that g is congruent to h modulo q and write g ≡ h (mod q)
if an(g) ≡ an(h) (mod q) for all n ∈ N, where as usual if g′ ∈ S2(Γ0(N),C),
then an(g′) denotes the n-th Fourier coefficient of g′.

Lemma 5.2. A prime q divides the order of the group

S[IC′ ]
S[IB′ ] + S[IA′ ]

if and only if there is a normalized eigenform g ∈ S2(Γ0(N),C) with L(Ag, 1) =
0 such that g is congruent to f modulo a prime ideal q over q in the ring of
integers of the number field generated by the Fourier coefficients of f and g.

Proof. This follows from a slight modification of [Rib83, §1] and we only
indicate the changes that need to be made in loc. cit. Replacing S by
S2(C)[IC′ ] and letting X = S[IB′ ] ⊗C and Y = S[IA′ ] ⊗C in loc. cit., by
the discussion on p. 194-196 of loc. cit., there exist normalized eigenforms
f ′ ∈ S[IB′ ] = S[If ] and g′ ∈ S[IA′ ] such that f ′ ≡ g′ modulo a prime ideal
over q in the ring of integers of the number field generated by the Fourier
coefficients of f ′ and g′. By the definitions of IC′ , IA′ , and IB′ = If , it is clear
that f ′ is a Galois conjugate of f by some σ ∈ Gal(Q/Q), and L(g′, 1) = 0.
Applying the inverse of σ, and letting g = σ−1(g′), we get the statement in
the lemma.

Proposition 5.3. If an odd prime q divides | H+

H[Ie]++K+ |, then there is a
normalized eigenform g ∈ S2(Γ0(N),C) with L(g, 1) = 0 such that g is
congruent to f modulo a prime ideal over q in the ring of integers of the
number field generated by the Fourier coefficients of f and g.

Proof. Note that | H+

H[Ie]++K+ | differs from | H
H[Ie]+K

| only in powers of 2. The
proposition now follows from Lemmas 4.4, 5.1, and 5.2.

Proposition 5.4. Let q be an odd prime such that q2
- N . Suppose that

there is a normalized eigenform g ∈ S2(Γ0(N),C) with L(g, 1) = 0 such
that g is congruent to f modulo a prime ideal over q in the ring of integers
of the number field generated by the Fourier coefficients of f and g. Then
q divides | H+

H[Ie]++K+ |. Suppose moreover that q does not divide |Af (Q)tor|.

Then q divides LAf (1)/ΩAf
, and in particular,

LAf (1)

ΩAf
≡ LAg (1)

ΩAg
mod q.
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Proof. The first part of the proposition follows from Lemma 4.4, the second
statement in Lemma 5.1, and the fact that | H+

H[Ie]++K+ | differs from | H
H[Ie]+K

|
only in powers of 2. The second part follows from Theorem 3.2, in view of
the following facts: |π∗(Te)/π∗(=e)| divides |Af (Q)tor| (by Lemma 3.3),
q -c∞(Af ) (since q is odd), q -cAf (by [ARS06], considering that q2

-N), and
LAg(1) = 0 (since L(g, 1) = 0).

Corollary 5.5. Let q be an odd prime such that q2
-N . Suppose that there is

a normalized eigenform g ∈ S2(Γ0(N),C) such that Ag has positive Mordell-
Weil rank and g is congruent to f modulo a prime ideal over q in the ring of
integers of the number field generated by the Fourier coefficients of f and g.
Then the second part of the Birch and Swinnerton-Dyer conjecture implies
that q divides |X(Af )| ·

∏
p|N cp(Af ). If moreover, N is prime, then the

conjecture implies that q divides |X(Af )|.

Proof. By [KL89], since Ag has positive Mordell-Weil rank, L(g, 1) = 0.
Hence by Proposition 5.4, q divides | H+

H[Ie]++K+ |. The first conclusion of the
Corollary now follows from formula (13) and Lemma 3.3, and the second
conclusion (for N prime) follows from Proposition 3.4.

We also have the following characterization of certain primes that divide
the factor | H+

H[Ie]++K+ |.

Corollary 5.6. Suppose q is an odd prime such that q2
-N . Then q divides

| H+

H[Ie]++K+ | if and only if there is a normalized eigenform g ∈ S2(Γ0(N),C)
with L(g, 1) = 0 such that g is congruent to f modulo a prime ideal over q in
the ring of integers of the number field generated by the Fourier coefficients
of f and g.

Proof. This follows from Propositions 5.3 and 5.4.

6 Visibility: relating the congruence to the Shafarevich-
Tate group and the component group

In this section, we finally relate the factor | H+

H[Ie]++K+ | in the numerator
of our formula (6) for LAf (1)/ΩAf

to the numerator |X(Af )| ·
∏

p|N cp(Af )
of the Birch and Swinnerton-Dyer conjectural formula (1) for LAf (1)/ΩAf

.
Recall that since L(Af , 1) 6= 0, by [KL89], X(Af ) is finite and Af (Q) has
rank zero. At several instances below, we will consider the torsion group
Af [q] where q is a prime ideal in a number field L containing the Fourier
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coefficients of f and another eigenform – this makes sense if Af has the
full action of the ring of integers of L. If not, then we merely replace q by
a prime of fusion, which is a maximal ideal of T (see, e.g., [Rib83, p.196]
and [Gha02, §2]) that is contained in q, and all the arguments go through.
We have preferred to consider prime ideals of L instead of maximal ideals
of T simply to keep the notation similar to the one in the article [DSW03],
which we will often refer to in this section. If p is a prime that divides N ,
then we denote by wp the eigenvalue of the Atkin-Lehner involution Wp

acting on f . Similarly wN denotes the eigenvalue of the Atkin-Lehner
involution WN acting on f (so that wN is the product over all primes that
divide N of the wp’s).

Theorem 6.1. Suppose N is prime, and q is a prime such that q divides
| H+

H[Ie]++K+ |, and q - N(N − 1). Assume that for all newforms g on Γ0(N),
if L(g, 1) = 0, then the rank of Ag(Q) is positive. Then q divides |X(Af )|.
If moreover we assume the parity conjecture, then q2 divides |X(Af )| (both
the assumption on the rank and the parity conjecture hold if the first part of
the Birch and Swinnerton-Dyer conjecture (Conjecture 1.1) is true).

Proof. By Prop. 5.3, there is a normalized eigenform g ∈ S2(Γ0(N),C)
such that L(Ag, 1) = 0, and f is congruent to g modulo a prime ideal q

over q in the ring of integers of the number field generated by the Fourier
coefficients of f and g. By the hypothesis, the rank of Ag(Q) is positive.
By [Maz77, Prop. 14.2], since q - 2 · numr(N−1

12 ), it follows that A∨f [q] and
A∨g [q] are irreducible. Also, since LAf (1) 6= 0, we have wN = −1. Hence
by hypothesis, N 6≡ −wN (mod q). Thus the hypotheses of Theorem 6.1
of [DSW03] are satisfied and the conclusion of this theorem tells us that q
divides |X(A∨f )| (in the notation of [DSW03], r ≥ 1 since the dimension
of H1

f (Q, V ′q(1)) is an upper bound for the rank of Ag(Q); also given that
X(A∨f ) is finite, the q-primary part of X(A∨f ) is the same as H1

f (Q, Aq(1))).
By the perfectness of the Cassels-Tate pairing, q divides |X(Af )| as well.
This proves the first assertion of the theorem.

Since q is odd, f and g have the same eigenvalue under the Atkin-
Lehner involution, and hence the same sign in their functional equations
(see, e.g., Remark 6.4). Thus if we assume the parity conjecture, then A∨g
has even Mordell-Weil rank, and so r ≥ 2 (where r is as in the statement of
Theorem 6.1 of [DSW03]). Theorem 6.1 of [DSW03] in fact tells us that qr

divides |X(A∨f )|, which gives the second assertion of our theorem.

As mentioned towards the end of Section 3, the second part of the Birch
and Swinnerton-Dyer conjecture implies that when N is prime, if an odd
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prime q divides | H+

H[Ie]++K+ |, then q divides |X(Af )|. Thus Theorem 6.1
may be viewed as a partial result towards the second part of the Birch and
Swinnerton-Dyer conjecture.

Example 6.2. Consider the prime level 389. From [Ste], one sees that
the quotient associated the newform denoted 389E1 is the winding quo-
tient J0(N)/IeJ0(N) for N = 389 (the other newforms of level 389 have
positive analytic rank). The factor | H+

H[Ie]++K+ | was computed for this wind-
ing quotient in [Aga00, §3.3] and its odd part was found to be 5. Moreover,
5 - 389(389 − 1), and hence if one assumes the first part of the Birch and
Swinnerton-Dyer conjecture, Theorem 6.1 implies that 5 divides X(389E).
In fact, it turns out that one can show 5 divides X(389E) without assuming
the conjecture – see [AS02, §4.1].

The following proposition is easily extracted from §7.4 of [DSW03]; see
also [Dum04, §7].

Proposition 6.3 (Dummigan-Stein-Watkins). Let p be a prime such
that p||N . Suppose that there is a newform h of level dividing N/p, and an
odd prime q 6= p such that modulo a prime ideal q over q in some number
field containing the Fourier coefficients of f and h, we have f ≡ h (for
Fourier coefficients of index coprime to Nq). Suppose Af [q] and Ah[q] are
irreducible and that p 6≡ −wp (mod q). If wp = −1, then ordq(cp(Af )) > 0.

Proof. The proof is essentially given in the first example in §7.4 of [DSW03];
we repeat the argument here for clarity. We use the notation as in [DSW03].

Let T ′′q , V ′′q , and A′′q be the objects attached to h, just as Tq, Vq, and Aq

have been attached to f . Since p2
-N , p does not divide the level of h, and

so the representation V ′′q is unramified at p. Hence H0(Ip, A′′[q]) is two di-
mensional. Since Af [q] and Ah[q] are irreducible, by the Chebotarev density
theorem, they are isomorphic as Galois representations and thus H0(Ip, A[q])
is also two dimensional. Since p||N , by [Car86], H0(Ip, Vq) is one dimen-
sional, and following the argument in Case (2) of the proof of Theorem 6.1
of [DSW03], we see that the eigenvalue of Frob−1

p acting on H0(Ip, Vq) is
α = −wpp(k/2)−1 (for us, k = 2). Hence Frob−1

p acts as α = −wpp(k/2)−1

on the subspace of H0(Ip, A[q]) formed by the image of H0(Ip, Vq). Since
αβ = pk−1, the other eigenvalue must be β = −wppk/2. Twisting by k/2,
we see that the corresponding eigenvalues of Frob−1

p on H0(Ip, A[q](k/2))
are −wp and −wp/p. Since p 6≡ −wp (mod q) and wp = −1, the two eigen-
values are different. Hence the quotient of H0(Ip, A[q](k/2)) by the image
of H0(Ip, Vq(k/2)) may be viewed as a subspace, and Frob−1

p acts as −wp
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on the quotient. As wp = −1, we have ordq(cp(k/2)) > 0. Since k = 2, the
prime-to-p parts of cp(k/2) (as defined in [DSW03, §4]) and cp(Af ) are the
same (see the Appendix).

Remark 6.4. In Proposition 6.3, f need not have analytic rank 0. Note
that if wp = −1, then the analytic rank of h has a different parity than that
of f . This is because the sign in the functional equation of a newform (of
weight 2) is the negative of the product of the eigenvalues of Wp over all
primes p dividing the level of the form in question. If this sign is positive,
then the analytic rank of the newform is even, and it is odd otherwise (see,
e.g., [Sil01, Ex. 4.3.3]).

Proposition 6.5. Let q be an odd prime such that q -N . Suppose g ∈
S2(Γ0(N),C) is an eigenform (for all the Hecke operators) such that Ag(Q)
has positive rank and f is congruent to g modulo a prime ideal q over q in the
ring of integers of the number field generated by the Fourier coefficients of f
and g. Suppose that Af [q] is an irreducible representation of the absolute
Galois group of Q. Assume that for all primes p |N , p 6≡ −wp (mod q) and
p 6≡ −1 (mod q) if p2 |N . We have two possibilities:
Case (i) For all primes p |N , f is not congruent modulo q to a newform of
level dividing N/p (for Fourier coefficients of index coprime to Nq):
In this case, q divides |X(Af )|.
Case (ii) f is congruent modulo q to a newform of lower level (for Fourier
coefficients of index coprime to Nq):
In this case, suppose that
(*) there is a prime p dividing N such that p2

- N , wp = −1, Ah[q] is
irreducible, and f is congruent modulo q to a newform h of level dividing
N/p (for Fourier coefficients of index coprime to Nq).
Then q divides

∏
p|N cp(Af ).

Proof. The first part follows from [DSW03, Thm. 6.1] (cf. the proof of
Theorem 6.1 for details), and the second part follows from Proposition 6.3.

In view of Corollary 5.5, the Proposition above provides theoretical evi-
dence towards the second part of the Birch and Swinnerton-Dyer conjecture.

Remark 6.6. (1) In condition (*), the statement “f is congruent mod q

to a newform of level dividing N/p (for Fourier coefficients of index coprime
to Nq)” may be replaced by the potentially weaker statement “A[q] is un-
ramified at p” (this can be seen from the proof of Prop. 6.3).
(2) Suppose h is a newform of level N/p for some prime p||N with wp = 1
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such that f ≡ h modulo a prime ideal with odd residue characteristic. This
is one situation where the condition (*) does not hold. Then, as N. Dum-
migan pointed out to us, by the reasoning in Remark 6.4, the sign in the
functional equation of L(Ah, s) is the same as that of L(Af , s), i.e., it is
positive. Thus Ah has even analytic rank. If the analytic rank of h is in
fact zero, then since h ≡ g (mod q), one expects that X(Ah) is non-trivial,
and hence h should show up in the tables in [AS05]. With this in mind, we
searched the tables in [AS05] and found only one potential example where
(*) may fail because the condition on wp does not hold: At level N = 1994,
whose prime factorization is 2 · 997, the newform f = 1994D is of rank 0
with w2 = 1 (w997 = −1, but there are no cusp forms over Γ0(2)). The
newform f is congruent modulo a prime ideal over 3 to g = 997B of pos-
itive analytic rank (this can be deduced from the table in [AS05] and the
result of [ARS07] that the modular exponent divides the congruence expo-
nent). Similarly, one finds that g is congruent modulo a prime ideal over 3
to h = 997H of Mordell-Weil rank zero. However, we do not know if the
congruences mentioned in the previous two sentences hold modulo the same
ideal over 3.

Theorem 6.7. Let q be a prime such that q divides | H+

H[Ie]++K+ |.
Suppose that q - 2N and that for all maximal ideals q of T with residue
characteristic q, Af [q] is irreducible. Assume that for all newforms g of
level dividing N , if L(g, 1) = 0, then the rank of Ag(Q) is positive (this
would hold if the first part of the Birch and Swinnerton-Dyer conjecture
(Conjecture 1.1) is true). Suppose that for all primes p | N , p 6≡ −wp
(mod q) and p 6≡ −1 (mod q) if p2 |N . We have two possibilities:
Case (i) For all primes p |N , f is not congruent modulo a maximal ideal
of T over q to a newform of level dividing N/p (for Fourier coefficients of
index coprime to Nq):
In this case, q divides |X(Af )|.
Case (ii) For some prime p dividing N , f is congruent modulo a maximal
ideal of T over q to a newform of level dividing N/p (for Fourier coefficients
of index coprime to Nq):
In this case, suppose that
(*) there is a prime p dividing N and a maximal ideal q of T over q such
that p2

-N , wp = −1, Ah[q] is irreducible, and f is congruent modulo q to a
newform h of level dividing N/p (for Fourier coefficients of index coprime
to Nq).
Then q divides

∏
p|N cp(Af ).

Proof. By Prop. 5.3, there is a normalized eigenform g ∈ S2(Γ0(N),C) such
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that L(g, 1) = 0, and f ≡ g modulo a prime ideal q over q in the ring of
integers of the number field generated by the Fourier coefficients of f and g.
By the hypothesis, the rank of Ag(Q) is positive. The theorem then follows
by Proposition 6.5.

As mentioned towards the end of Section 3, the second part of the Birch
and Swinnerton-Dyer conjecture implies that the part of | H+

H[Ie]++K+ | that
is coprime to |Af (Q)| divides |X(Af )| ·

∏
p|N cp(Af ) up to a power of 2 and

powers of primes whose squares divide N . Thus Theorem 6.7(ii) is a partial
result towards the second part of the Birch and Swinnerton-Dyer conjecture.

Remark 6.8. The factor | H+

H[Ie]++K+ | is often non-trivial. In [AS05], one
finds a table of all quotients associated to newforms f of level N < 2333
such that L(f, 1) 6= 0 and the conjectured value of |X(Af )| is bigger than 1.
In all the cases when the entry under the column labelled “B” is not NONE,
there is an odd prime q and a normalized eigenform g ∈ S2(Γ0(N),C) such
that L(g, 1) = 0, and f ≡ g modulo a prime ideal lying over q. If q2

-N ,
then by Prop. 5.4, q divides | H+

H[Ie]++K+ |. Thus all such entries in the table

give examples where the factor | H+

H[Ie]++K+ | is non-trivial, and where a prime
dividing this factor divides the conjectural order of X(Af ). The first level
where this happens (also the first level where an odd prime divides the Birch
and Swinnerton-Dyer conjectural order of X(Af )) is 389, where there is a
newform quotient of dimension 20 for which 5 divides | H+

H[Ie]++K+ |. When

the entry under the column labelled “B” is NONE, the factor | H+

H[Ie]++K+ |
is a (possibly trivial) power of 2.

Example 6.9. We now give an example where a prime divides the fac-
tor | H+

H[Ie]++K+ |, but does not divide the conjectured order of X(Af ), and
instead divides

∏
p|N cp(Af ). This example was obtained using W. Stein’s

“The Modular Forms Explorer” [Ste] and we use the notation as therein. The
newform f = 1751C1 is of analytic rank 0 and the newform h = 103A1
has positive analytic rank (note that 1751 = 17 · 103). From [AS05, Ta-
ble 2], we find that 505 divides the order of the intersection of A∨f with the
abelian subvariety of J0(1751) generated by the images of A∨h under the de-
generacy maps. Hence, by the result in [ARS07] that the modular exponent
divides the congruence exponent, we conclude that f is congruent modulo
a prime ideal over 101 to an eigenform g in the subspace generated by h
and B17(h) (a similar result holds for the congruence prime 5). We conclude
from Proposition 5.4 that 101 divides | H+

H[Ie]++K+ |. One finds that w17 = −1,
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and since 103 is prime and 101 - numr(103−1
12 ), Af [q] ∼= Ah[q] is irreducible.

Hence, Theorem 6.5 implies that 101 divides c17(f) (a similar result holds
for the congruence prime 5 replacing 101 as well). As a confirmation, one
finds from [Ste] that c17(Af ) = 6565 (which is divisible by 101 and 5). It
turns out that 5 divides the conjectural value of |X(Af )|, but 101 doesn’t.
Note that neither 5 nor 101 divides the order of either Af (Q)tor or A∨f (Q)tor.

Remark 6.10. (1) By the comment just after the proof of Theorem 6.7,
the Birch and Swinnerton-Dyer conjecture suggests that the extra hypothe-
sis (*) is unnecessary in Proposition 6.5 and Theorem 6.7. There are other
versions of “visibility theorems” similar to Theorem 6.5. In the version
in [AS02] and that of Cremona and Mazur (see the appendix of [AS05]),
instead of our hypothesis (*) in Proposition 6.5 there is the hypothesis that
q does not divide

∏
p|N cp(Ag). It is not clear to us whether the two hy-

potheses are related (there is some difference in the other hypotheses of the
theorems as well).
(2) In [AS05], whenever an odd prime q divides | H+

H[Ie]++K+ | (cf. Remark 6.8)
and the entry under the column labelled “Vis” is a number, one finds that q2

divides |X(A)|. Note that in most of these cases, we do not expect q2 to di-
vide | H+

H[Ie]++K+ | (roughly speaking, locally the homology is often of rank two
over the Hecke algebra, and our factor captures only half of the homology;
see also Example 6.2). This seems to suggest that if an odd prime q divides
| H+

H[Ie]++K+ |, then it also divides the other factor | H[Ie]+

=e+H[Ie]+∩K+ | in (10) (per-
haps under some additional mild hypotheses).
(3) We have not said much about the factor | H[Ie]+

=e+H[Ie]+∩K+ |, except the
remark just above, which indicates that this factor should be divisible by
primes q such that f is congruent modulo a prime ideal over q to an eigenform
in S2(Γ0(N),C) with positive analytic rank. However, these are not all the
primes that divide this factor in general. In most of the examples in [AS05]
where the entry under the column B is NONE, this factor is non-trivial and
is divisible by primes q such that there is no eigenform g congruent to f
modulo a prime over q with L(g, 1) = 0. It is our guess, however, that the
factor | H[Ie]+

=e+H[Ie]+∩K+ | can be explained by “visibility at higher level”, as we
now explain. It can be shown that the non-trivial elements of X(A∨f ) (whose
order is the same as that of X(Af )) whose existence is implied by Theo-
rems 6.1 and 6.7 are in the kernel of the natural map X(A∨f )→X(J0(N))
(this can be seen from the proof of [DSW03, Thm. 6.1], or better still, from
the analogous Theorem 3.1 of [AS02]). In general, if J is an abelian vari-
ety with a map A∨f→J , then we say that an element of X(A∨f ) is visible
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in J if it is in the kernel of the induced map X(A∨f )→X(J). If an element
of X(A∨f ) is visible in J0(N) under the natural inclusion A∨f→J0(N), we
say that it is visible at the same level. Now one has certain natural degen-
eracy maps J0(N)→J0(NM) for every positive integer M . We say that an
element of X(A∨f ) is visible at higher level if it is visible in J0(NM) under a
map A∨f→J0(N)→J0(NM) for some integer M bigger than one. In [AS02,
§4.2], there is an example of a particular f for which an element of X(A∨f )
is not visible at the same level, but becomes visible at a higher level. In
fact, it has been conjectured that any element the Shafarevich-Tate group
can be explained by visibility at some higher level (see Conjecture 7.1.1
in [JS07] for details and a precise statement). Thus there is hope that the
factor | H[Ie]+

=e+H[Ie]+∩K+ | may be interpreted by considerations of visibility at
the same and higher levels. This also suggests that while our formula for
LAf (1)/ΩAf

was obtained via the parametrization of Af by J0(N), perhaps
one should try to prove and use a similar formula for LAf (1)/ΩAf

obtained
via a parametrization of Af by J0(NM) for an integer M .

7 Appendix: component groups

The proofs of some of the results in Section 6 employ the language of repre-
sentations (à la [BK90]) as opposed to the language of abelian varieties. In
this appendix we show that if p is a prime, then the definitions of the prime
to p part of the component group at p coincide in the two languages. This
is well known to experts, and our aim is simply to provide some details that
we could not find in the literature.

Let A be an abelian variety and A its Néron model. Let A0 denote the
largest open subgroup scheme of A in which all the fibers are connected.
Let p be a prime. In Section 1, we had defined cp(A) = [Ap(Fp) : A0

p(Fp)],
where the subscript p denotes the special fiber at p.

Let B be a group and ` is a prime. Consider the inverse system
{B[`n]}n∈N where for each n, the map B[`n+1]→B[`n] is multiplication by `.
We denote by T`B the inverse limit of the this system, which is a Z`-module
in a natural way. Let V`B = T`B ⊗Q`, and W`B = V`B/T`B. The natural
map T`B ⊗Q`→T`B ⊗Q`/Z` is surjective, with kernel T`B; hence we have
a canonical isomorphism W`B ∼= T`B ⊗Q`/Z`.

For simplicity of notation, for the case B = A(Q), we simply write
T`, V`, and W` for the corresponding objects. In [DSW03, §4], the authors
define an integer cp(1) associated to A as follows: if Ip denotes the inertia
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subgroup of the absolute Galois group of Qp and ` 6= p is a prime, then

ord`(cp(1)) = #H0(Qp,W`
Ip)−#H0(Qp, V`

Ip/T`
Ip), (16)

(note that in their notation T`(1) = T`A, as mentioned at the end of §1
in [DSW03]). The definition of ordp(cp(1)) is more complicated, and we
shall not be concerned with it. Our first goal in this appendix is to show
that if ` 6= p is a prime, then ord`(cp(1)) = ord`(cp(A)) (this is used in the
proof of Prop. 6.3). The other goal of this appendix is to give some details
of how the definition in (16) comes naturally from the formulation of the
Bloch-Kato conjecture [BK90].

Henceforth, ` 6= p is a prime. The following lemma is well known:

Lemma 7.1. Suppose the inverse system {B[`n]}n∈N is surjective, i.e., the
multiplication by ` maps B[`n+1]→B[`n] are surjective for all n. Then one
has a canonical isomorphism (of groups) T`B ⊗Q`/Z` = B[`∞].

Proof. Our proof is inspired by [Gro72, IX.11]. Consider the direct sys-
tem {Z`/`nZ`}n∈N, where the maps Z`/`nZ`→Z`/`n+1Z` are multiplica-
tion by `. The direct limit lim

−→
n

Z`/`nZ` of this system is the direct sum

⊕(Z`/`nZ`) modulo the subgroup generated by all elements of the form
(. . . , 0, xn, 0, . . . , 0, xm, 0, . . . ), such that xm = −`m−nxn, where m > n and
xn and xm are the entries in the n-th and m-th position respectively. Then
the assignment (xn) ∈ ⊕(Z`/`nZ`) maps to

∑ xn
`n gives a canonical isomor-

phism lim
−→
n

Z`/`nZ` ∼= Q`/Z`.

Next, let (ti)i∈N be an element of T`B. Let m be any positive integer.
Using the construction of the inverse limit and the fact that {B[`n]} is
a surjective system, one sees that the assignment (ti) ⊗ 1 7→ tm gives a
canonical isomorphism T`B ⊗ (Z`/`mZ`) ∼= B[`m]. This maps the direct
system {T`B ⊗ (Z`/`mZ`)}m∈N with the multiplication by ` map on the
second component and identity on the first isomorphically to the direct
system {B[`m]} where the maps are the natural inclusion maps B[`m] ↪→
B[`m+1].

Thus we see that T`B ⊗Q`/Z` = lim
−→
m

T`B ⊗ Z`/`mZ` = lim
−→
m

B[`m] =

B[`∞].

We now apply this to the case B = A(Q). Note that since ` 6= p, the
reduction map gives an isomorphism of Galois modules

A[`n]Ip ∼= Ap(Fp)[`n] (17)

(e.g., see [ST68, p. 495]).
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Proposition 7.2. We have isomorphisms H0(Qp,W`
Ip) ∼= Ap(Fp)[`∞] and

H0(Qp, V`
Ip/T`

Ip) ∼= A0
p(Fp)[`∞].

Proof. By lemma 7.1, W`
∼= A[`∞], and from its proof, we see that this

isomorphism respects the action of the absolute Galois group of Qp. Us-
ing (17), we get W`

Ip = A[`∞]Ip ∼= Ap(Fp)[`∞]. Hence H0(Qp,W`
Ip) =

H0(Qp/Ip,W`
Ip) ∼= (Ap(Fp)[`∞])Frobp = Ap(Fp)[`∞], which gives the first

isomorphism in the Proposition.
Next, note that since A0

p is connected, the system A0
p[`

n] is surjective.
Moreover, since A0

p is of finite index in Ap, by the construction of inverse
limits, we have T`Ap = T`A0

p (the only infinitely `-divisible points in Ap(Fp)
are those coming from A0

p(Fp)). Thus from (17), we have an isomorphism
(T`A)Ip = T`(AIp) ∼= T`Ap = T`A0

p. Thus

H0(Qp, V`
Ip/T`

Ip) = H0(Qp, T`
Ip ⊗Q`/Z`)

= H0(Qp/Ip, (T`A)Ip ⊗Q`/Z`) ∼= H0(Qp/Ip, (T`A0
p)
Ip ⊗Q`/Z`)

= (A0
p(Fp)[`∞])Frobp = A0

p(Fp)[`∞].

Thus it follows that ord`(cp(1)) = #H0(Qp,W`
Ip)−#H0(Qp, V`

Ip/T`
Ip) =

ord`Ap(Fp)− ord`A0
p(Fp) = ord`(cp(A)), as was to be shown.

We next indicate how the definition in (16) arises naturally from the
formulation of the Bloch-Kato conjecture [BK90]. Following the discussion
on p.26-30 of [Fla93], if cp denotes the Tamagawa measure of A(Q`) defined
in [BK90], then

ord`(cp) = #H0(Qp,W`)− ord`(Pp(p−1)), (18)

where Pp(p−s) = det(1 − Frobp−1p−s | H1
et(A ⊗Q,Q`)) is the usual Euler

factor at p. To see that the prime-to-p parts of cp and cp(1) coincide, one
only needs the following Proposition, whose proof is skipped in [Fla93].

Proposition 7.3. ord`(Pp(p−1)) = #H0(Q`, V`
Ip/T`

Ip).

Proof. We have the following isomorphisms of Galois modules: H1
et(A ⊗

Q,Q`) ∼= Hom(V`,Q`) ∼= V`(−1), where the second isomorphism comes
from the Weil pairing combined with a polarization map on A∨ (thus the
isomorphism may not hold over Z`). Hence

Pp(p−1) = det(1− Frobp−1p−1 | H1
et(A⊗Q,Q`))

= det(1− Frobp−1p−1 | V`(−1))
= det(1− Frobp−1 | V`). (19)
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Now there is a Z`-basis (e1, . . . , en) of T`Ip and a1, . . . , an ∈ Z` such
that (a1e1, . . . , anen) is a basis for the submodule (1−Frobp−1)T`Ip (see, e.g.,
[Lan93, Thm. III.7.8]). Then #T`Ip/(1−Frobp−1)T`Ip = ord`(

∏n
i=1 ai). The

endomorphism (1−Frobp−1) may map T`Ip to some basis of (1−Frobp−1)T`Ip

other than (a1e1, . . . , anen), but the change of basis matrix has determinant
invertible in Z`. Thus

ord`(det(1− Frobp−1 | V`)) = ord`(
n∏
i=1

ai)

= #T`Ip/(1− Frobp−1)T`Ip . (20)

Next we need the following lemma:

Lemma 7.4. The groups (V`Ip/T`Ip)Frobp
−1

and T`Ip/(1− Frobp−1)T`Ip are
isomorphic.

Proof. If v ∈ V`Ip is such that v+T`
Ip ∈ (V`Ip/T`Ip)Frobp

−1
, then Frobp−1v−

v ∈ T`Ip . This gives us a homomorphism φ : (V`Ip/T`Ip)Frobp
−1→(V`Ip/T`Ip)Frobp

−1
,

which we will show is an isomorphism.
For simplicity, let F = Frobp−1, T = (T`A)Ip and V = (V`A)Ip . By (17),

T ∼= T`Ap(Fp); hence TF = T`Ap(Fp). Thus TF is trivial, and hence so is
V F . We have an exact sequence

0→V F→V (1−F )−→ V→V/(1− F )V→0.

Since V F is trivial, this shows that V/(1−F )V is of dimension zero. Hence
T/(1 − F )T is torsion. Thus if t ∈ T , then there is an integer n such
that nt ∈ (1 − F )T ; so there is a t′ ∈ T such that nt = (1 − F )t′. Then
v = t′/n ∈ V maps to t. Thus φ is surjective. Suppose v ∈ V is such that
φ(v) = 0. Then Fv− v = Ft− t, for some t ∈ T , so v− t is fixed by F . But
V F = 0, so v = t ∈ T . Thus φ is injective, and hence an isomorphism.

By (19), (20), and Lemma 7.4,

ord`(Pp(p−1)) = #(V`/T`)Frobp
−1

= #(V`/T`)Frobp = #H0(Q`, V`
Ip/T`

Ip),

which proves the proposition.
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