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A VISIBLE FACTOR OF THE HEEGNER INDEX

Amod Agashe

Abstract. Let E be an optimal elliptic curve over Q of conductor N , such that the

L-function of E vanishes to order one at s = 1. Let K be a quadratic imaginary field
in which all the primes dividing N are split and such that the L-function of E over K

also vanishes to order one at s = 1. In view of the Gross-Zagier theorem, the Birch and

Swinnerton-Dyer conjecture says that the index in E(K) of the subgroup generated by
the Heegner point is equal to the product of the Manin constant of E, the Tamagawa

numbers of E, and the square root of the order of the Shafarevich-Tate group of E
(over K). We extract an integer factor from the index mentioned above and relate

this factor to certain congruences of the newform associated to E with eigenforms of

analytic rank bigger than one. We use the theory of visibility to show that, under
certain hypotheses (which includes the first part of the Birch and Swinnerton-Dyer

conjecture on rank), if an odd prime q divides this factor, then q divides the order of

the Shafarevich-Tate group, as predicted by the Birch and Swinnerton-Dyer conjecture.

1. Introduction and results

Let N be a positive integer. Let X = X0(N) denote the modular curve over Q
associated to Γ0(N), and let J = J0(N) denote the Jacobian of X, which is an
abelian variety over Q. Let T denote the Hecke algebra, which is the subring of
endomorphisms of J0(N) generated by the Hecke operators (usually denoted T` for
` -N and Up for p |N). If g is an eigenform of weight 2 on Γ0(N), then let Ig = AnnTg
and let Ag denote the quotient abelian variety J/IgJ , which is defined over Q. Also, if
g is an eigenform of weight 2 on Γ0(N), then the order of vanishing of the L-function
L(g, s) at s = 1 is called the analytic rank of g. Let f be a newform of weight 2
on Γ0(N) whose analytic rank is one and that has integer Fourier coefficients. Then
E = Af is an elliptic curve whose L-function vanishes to order one at s = 1, i.e., E
has analytic rank one (in general, the analytic rank of an elliptic curve is the order of
vanishing of its L-function at s = 1). By [BCDT01], up to isogeny, all elliptic curves
of analytic rank one arise this way. We denote the quotient map J→J/If = E by π.

Let K be a quadratic imaginary field of discriminant not equal to −3 or −4, such
that all primes dividing N split in K and the L-function of E over K vanishes to order
one at s = 1 (such a K exists by [Wal85]). Choose an idealN of the ring of integersOK

of K such that OK/N ∼= Z/NZ. Then the complex tori C/OK and C/N−1 define
elliptic curves related by a cyclic N -isogeny, hence a complex valued point x of X0(N).
This point, called a Heegner point (on X0(N)), is defined over the Hilbert class field H
of K. Let P ∈ J(K) be the class of the divisor

∑
σ∈Gal(H/K)((x)−(∞))σ. We remark

that sometimes P is called a Heegner point (on J0(N)), and π(P ) is also called a
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Heegner point (on E). We will use the term “Heegner point” rarely in this paper,
and it should be clear from the context what point we mean.

Let X(E/Q) and X(E/K) denote the Shafarevich-Tate group of E over Q
and K respectively. The inflation-restriction sequence shows that the natural map
X(E/Q)→X(E/K) has kernel a finite group of order a power of 2. By [GZ86,
§V.2:(2.1)], since E/K has analytic rank one, π(P ) has infinite order, and by work
of Kolyvagin (e.g., see [Kol90, Thm. A] or [Gro91, Thm. 1.3]), E(K) has rank one
and X(E/K) is finite. In particular, X(E/Q) is also finite, and the index in E(K)
of the subgroup generated by π(P ) is finite; note that this subgroup is just π(TP ).
By [GZ86, §V.2:(2.2)], the Birch and Swinnerton-Dyer conjecture says:

Conjecture 1.1 (Birch and Swinnerton-Dyer, Gross-Zagier).

|E(K)/π(TP )| ?= cE ·
∏
p|N

cp(E) ·
√
|X(E/K)| ,(1)

where cE is the Manin constant of E (conjectured to be one), and cp(E) is the Tam-
agawa number of E at the prime p (i.e., the order of the arithmetic component group
of E at the prime p – see Section 4 for details).

The theory of Euler systems, initiated by Kolyvagin [Kol90], can be used to show
that under certain hypotheses and staying away from certain primes, the actual order
of X(E/K) divides the order predicted by the conjectural formula (1) (equivalently,
that the right side of (1) divides the left side). For example, we have the following
(see[Jet08, Cor. 1.5]):

Theorem 1.2 (Jetchev). Suppose that ` is a prime such that ` - 2N , the image
Gal(Q/Q) acting on E[`] is isomorphic to GL2(Z/`Z), and ` divides at most one cp(E).
Then

ord`(|X(E/K)|) ≤ ord`(|X(E/K)|an),

where |X(E/K)|an denotes the value of |X(E/K)| predicted by formula (1).

Our ultimate goal is to try to prove results in a direction opposite to those arising
from the theory of Euler systems, i.e., that the left side of (1) divides the right side.
Note that this often requires one to produce non-trivial elements of the Shafarevich-
Tate group when the Birch and Swinnerton-Dyer conjecture predicts their existence,
which is a difficult problem. When the elliptic curve has analytic rank zero, to our
knowlegde, the only two general methods that give theoretical results in this direction
are Ribet’s method (more precisely, the adaptation of Ribet’s proof of the converse to
Herbrand’s theorem, as in the work of Skinner-Urban, unpublished) and the theory
of visibility (see [Aga10]). We remark that the theory of Euler systems can also be
used to construct non-trivial elements of the Shafarevich-Tate group under certain
hypotheses (e.g., see [McC91, p. 2]); however, to our knowledge, this construction has
not been linked theoretically to predictions coming from the Birch and Swinnerton-
Dyer conjecture. The theory of visibility can be applied to elliptic curves of any
analytic rank, and in this article, we show that it gives fruitful results vis-a-vis the
Birch and Swinnerton-Dyer conjectural formula for the order of the Shafarevich-Tate
group in the analytic rank one case as well, in the direction we are interested in. In
particular, we shall extract an integer factor of the left side of (1) which we will relate
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to congruences of f with eigenforms of analytic rank bigger than one. Under certain
hypotheses, these congruences will in turn be related to the right hand side of (1)
using the theory of visibility. We now describe our results more precisely.

Let T be a non-empty set of Galois conjugacy classes of newforms of level divid-
ing N and not containing f . Let ST denote the subspace of S2(Γ0(N),C) spanned by
the forms g(dz), where g runs over elements in the Galois conjugacy classes in T , and
d ranges over the divisors of N/Ng, where Ng denote the level of g. Let IT denote the
annihilator of ST under the action of T. Recall that J = J0(N), and let J ′ denote
the quotient abelian variety J/(If ∩ IT )J . For example, if T consists of the Galois
conjugacy classes of all newforms of level dividing N except the conjugacy class of f ,
then If ∩ IT = 0, and so J ′ = J in this case. The quotient map π : J→J/IfJ factors
through J ′ = J/(If ∩ IT )J . Let π′ denote the map J ′→E and π′′ the map J→J ′

in this factorization. Let B′ denote the kernel of π′. Thus we have the following
diagram:

J

π′′

��

π

  @
@@

@@
@@

@

0 // B′ // J ′
π′
// E // 0

Note that J ′ and B′ depend on the choice of the set T ; we have suppressed the depen-
dency in the notation for simplicity (for certain interesting choices of T , see Section 2).
Let E′ denote the image of E∨ ⊆ J in J ′ under the quotient map π′′ : J→J ′ and let
π′′(TP )f denote the free part of π′′(TP ). As we show in Lemma 3.1 below,

|E(K)/π(TP )|(2)

=
∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣ · ∣∣ B′(K)+E′(K)
B′(K)+π′′(TP )f∩E′(K)

∣∣∣∣ B′(K)+π′′(TP )
B′(K)+π′′(TP )f∩E′(K)

∣∣ .

Suppose in this paragraph that q is a prime that does not divide the order of
the torsion subgroup of π′′(TP ) and that f is not congruent to a newform g in ST of
analytic rank one modulo a prime ideal over q in the ring of integers of the number
field generated by the coefficients of f and g (for Fourier coefficients of index coprime
to Nq). Then by Lemma 3.2 below, q does not divide the term

∣∣ B′(K)+π′′(TP )
B′(K)+π′′(TP )f∩E′(K)

∣∣
in the denominator on the right side of equation (2). If x is a positive integer and r
is a prime, then let xr denote the highest power of r that divides x. Then in view of
equation (2), the Birch and Swinnerton-Dyer conjectural formula (1) says:(

cAf
·
∏
p|N

cp(E)
)
q
·
√
|X(E/K)|q(3)

?=
∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣
q

·
∣∣ker

(
H1(K, B′)→H1(K, J ′)

)∣∣
q
·∣∣∣∣ B′(K) + E′(K)

B′(K) + π′′(TP )f ∩ E′(K)

∣∣∣∣
q

.

In particular, the conjecture predicts that the product∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣
q

·
∣∣ker

(
H1(K, B′)→H1(K, J ′)

)∣∣
q
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divides cE ·
∏

p|N cp(E) ·
√
|X(E/K)|.

We have the following result towards this predicted divisibility:

Theorem 1.3. Let q be a prime that divides the product∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣.
1) Then q divides the order of B′ ∩E′, and there is an eigenform g in ST such that f
is congruent to g modulo a prime ideal q over q in the ring of integers of the number
field generated by the Fourier coefficients of f and g.
2) Suppose that q - 2N and that E[q] is an irreducible representation of the absolute
Galois group of Q. Assume that the first part of the Birch and Swinnerton-Dyer
conjecture holds for all quotients of J0(N) associated to eigenforms of analytic rank
greater than one. Suppose that for all primes p | N , p 6≡ −wp (mod q), where wp

is the sign of the Atkin-Lehner involution Wp acting on f and that for all primes p
such that p2 | N , we have p 6≡ −1 (mod q). Assume that f is not congruent to a
newform g in T of level N and analytic rank one modulo a prime ideal over q in the
ring of integers of the number field generated by the coefficients of f and g. Suppose,
moreover, that for all primes p |N , f is not congruent to a newform g of level dividing
N/p (for Fourier coefficients of index coprime to Nq) modulo a prime ideal over q in
the ring of integers of the number field generated by the coefficients of f and g.
Then q divides |X(E/Q)| and |X(E/K)|.

We will give the proof of the theorem above in Section 3. For now, we just remark
that the proof of the first part relies on some Galois cohomology arguments, and that
the second part follows from the first using the theory of visibility.

Remark 1.4. If for some prime p dividing N , f is congruent to a newform g of
level dividing N/p (for Fourier coefficients of index coprime to Nq) modulo a prime
ideal q over q in the ring of integers of the number field generated by the coefficients
of f and g, then under certain conditions it follows that q divides the orders of the
arithmetic and geometric component groups of E at p – see Section 4 for details. In
particular, by Corollary 4.2 in Section 4, if in addition to the congruence hypothesis
above, p2 - N , wp = −1, and E[q] and Ag[q] are irreducible as Gal(Q/Q)-modules,
then q divides cp(E), which is a factor on the left side of (3). This is in conformity
with the Birch and Swinnerton-Dyer conjectural formula.

The proof of the following corollary is given in Section 3.

Corollary 1.5. Let q be a prime that divides the product∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣.
Suppose that N is prime, q - N(N + 1), E[q] is an irreducible representation of the
absolute Galois group of Q, and f is not congruent to a newform g in T of level N and
analytic rank one modulo a prime ideal over q in the ring of integers of the number field
generated by the coefficients of f and g. Assume that the first part of the Birch and
Swinnerton-Dyer conjecture holds for all quotients of J0(N) associated to eigenforms
of analytic rank greater than one. Then q divides |X(E/Q)| and |X(E/K)|.
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Remark 1.6. N. Dummigan has informed us that the hypothesis that for all primes p
dividing N , p 6≡ −wp mod q can be eliminated from [DSW03, Thm. 6.1], and hence
from Theorem 1.3; if this is the case, then the hypothesis that q - (N + 1) can be
eliminated from the corollary above.

In view of our discussion just preceding Theorem 1.3, the theorem and corol-
lary above are partial results towards the Birch and Swinnerton-Dyer conjecture in
the analytic rank one case, and provide theoretical evidence supporting the conjec-
ture. Also, under certain hypotheses (the most serious of which is the first part of
the Birch and Swinnerton-Dyer conjecture), we have shown that if a prime q di-
vides a certain factor of the left side of the Birch and Swinnerton-Dyer conjectural
formula (1), then q divides the right side the formula (which includes

√
|X(E/K)|

as a factor). Thus our result is a first step in trying to prove that the left side of
the Birch and Swinnerton-Dyer conjectural formula (1) divides the right side. The
next step would be to try to show that the other factor

∣∣ B′(K)+E′(K)
B′(K)+π′′(TP )∩E′(K)

∣∣
q

on
the right side of equation (3) divides the left side of (3) under certain hypotheses
on q. Unfortunately, we have nothing much to say about this factor, except that
in analogy with the analytic rank zero situation [Aga10], we do not expect that
one can use visibility with eigenforms at level N to explain all of the Birch and
Swinnerton-Dyer conjectural order of the Shafarevich-Tate group (as we do for the
factor

∣∣ J′(K)
B′(K)+E′(K)

∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣ in the proof of Theorem 1.3), and

so we suspect that in order to explain the factor
∣∣ B′(K)+E′(K)
B′(K)+π′′(TP )∩E′(K)

∣∣
q
, one may have

to use the theory of visibility involving eigenforms at level a multiple of N (cf. [AS02b,
§4.2]).

As mentioned earlier, the theory of Euler systems gives results in the direction
opposite to our results, viz., that the right side of the Birch and Swinnerton-Dyer
conjectural formula (1) divides the left side (under certain hypotheses). Thus our
result fits well in the ultimate goal of trying to prove the Birch and Swinnerton-
Dyer conjectural formula in the analytic rank one case. As remarked earlier, the
theory of Euler systems can also be used to construct non-trivial elements of the
Shafarevich-Tate group under certain hypotheses (e.g., see [McC91, p. 2]); however,
to our knowledge, this construction has not been linked to any predictions coming
from the Birch and Swinnerton-Dyer conjecture.

In Section 2, we make some further remarks about our main result. In Section 3,
we prove some lemmas that were referred to in this section, and give the proof of
Theorem 1.3. In Section 4, we discuss the relationship between congruences with
forms of lower level and the component group, which was alluded to in Remark 1.4.

2. Some further remarks

In this section we discuss some interesting choices for the set T , on which several
of the quantities in our main results depend, and also discuss a potential example
where the product∣∣∣∣ J ′(K)

B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣(4)

is nontrivial (recall that our main results concern this product).
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As mentioned in Section 1, if T consists of the Galois conjugacy classes of all
newforms of level dividing N except the conjugacy class of f , then J ′ = J . If instead,
we choose a T with the restriction that it does not contain any newform of analytic
rank one, then the hypothesis in Theorem 1.3 and Corollary 1.5 that f is not congruent
to a newform g in T of level N and analytic rank one modulo a prime ideal over q
in the ring of integers of the number field generated by the coefficients of f and g is
automatic, and hence can be dropped. Under this restriction, there are two interesting
choices of T , which are the two extreme cases. The first is where T consists of
conjugacy classes of all newforms of level dividing N that have analytic rank not
equal to one; this is the biggest choice of T for which the hypothesis mentioned two
sentences above can be dropped. The other extreme choice of T is where T consists
of the conjugacy class of a single newform g on Γ0(N) having analytic rank not equal
to one. By the first part of Theorem 1.3, in order that an odd prime q divides the
product in (4) above, g has to have odd analytic rank (otherwise the N -th Fourier
coefficients of f and g will not be congruent modulo a prime ideal over q). Also, in
order for the strategy of the proof of Theorem 1.3 to show that this prime q divides
the order of the Shafarevich-Tate group of E, g must have analytic rank bigger than
one. Thus among the sets T consisting of the conjugacy class of a single newform g
on Γ0(N), the only ones for which our results are non-trivial are the ones where the
newform g has odd analytic rank bigger than one. One advantage of such a choice
of T is that we are able to prove a sort of converse to the first part of Theorem 1.3.

Recall that f is a newform with integer Fourier coefficients that has analytic rank
one.

Proposition 2.1. Suppose there is a newform g with integral Fourier coefficients that
has analytic rank greater than one such that f and g are congruent modulo an odd
prime q (as mentioned earlier, the analytic rank of g will necessarily be odd). Take T
to be the singleton set {g} in the definition of J ′ and B′ in Section 1. Suppose that
either q - N or that q||N and Af [q] and Ag[q] are irreducible representations of the
absolute Galois group of Q. Then q divides the product∣∣∣∣ J ′(K)

B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣.
Proof. The proposition follows from [Aga09], as we now indicate. Take p = q in loc.
cit. Since B′ is isogenous to A∨

g , we see that F ′ = B′ in the notation of loc. cit. Our
result now follows from Lemma 2.1, Lemma 2.2, and Theorem 4.4 of loc. cit. �

As mentioned before, the proposition above is a result that is in a direction oppo-
site to that of the first part of Theorem 1.3, and is a partial result in trying to charac-
terize the primes that divide the factor

∣∣ J′(K)
B′(K)+E′(K)

∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣
of the “analytic” left side of the Birch and Swinnerton-Dyer conjectural formula (1),
which we related to the “arithmetic” right side of this formula. Notice the similarity
with the rank zero case in [Aga10], where we isolated a factor of the “analytic” left
side of the Birch and Swinnerton-Dyer formula that could be characterized in terms
of congruences analogous to the ones above and related these congruences to the
“arithmetic” right side (the results for the analytic rank zero case are more precise).
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While we showed in Proposition 2.1 that the product∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣
is non-trivial for a particular choice of T under certain hypotheses, one may wonder
how often the hypotheses are satisfied. It would be nice to have some numerical
data where these hypotheses are satisfied, so that the product above is non-trivial. If
this happens, then in view of Theorem 1.3, we expect that either X(E/Q) is non-
trivial or an arithmetic component group of E is non-trivial, of which the former
seems more likely. Since it is difficult to compute the actual order of the Shafarevich-
Tate group, we looked at the Birch and Swinnerton-Dyer conjectural orders in Cre-
mona’s online “Elliptic curve data” [Cre]. Unfortunately the conjectural orders of
the Shafarevich-Tate groups of elliptic curves of analytic rank one at low levels are
usually one or powers of 2, which makes it difficult to find examples where the hy-
potheses of Proposition 2.1 can be verified easily. For levels up to 30000, we found
only one optimal elliptic curve of Mordell-Weil rank one for which the conjectural
order of the Shafarevich-Tate group was divisible by an odd prime: the curve E with
label 28042A, for which the conjectural order of the Shafarevich-Tate group is 9. At
the same level, the curve F = 28042B has Mordell-Weil rank 3 and the newforms f
and g corresponding to 28042A and 28042B respectively have Fourier coefficients that
are congruent modulo 3 for every prime index up to 100 (although this is not enough
to conclude that the newforms are congruent modulo 3 for all Fourier coefficients,
cf. [AS02a]). We do not know how to verify the hypotheses in Proposition 2.1 that
3 does not divide the order of the torsion subgroup of the projection of TP in J ′

and that E[3] and F [3] are irreducible representations of the Galois group of K (we
remark though that by [Cre], E and F have no 3-torsion over Q). So while we cannot
be sure that Proposition 2.1 applies to show that 3 divides the product∣∣∣∣ J ′(K)

B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣
for T = g, it is quite encouraging that for the first example where the conjectural
order of the Shafarevich-Tate group of an elliptic curve is divisible by an odd prime,
there is a congruence modulo the same prime that might show that the product above
is divisible by the prime in question, and hence explain why the prime divides the
conjectural and actual order of the Shafarevich-Tate group.

In view of the remarks above, we hope that our article motivates more detailed
computations similar to those in [AS05] for the analytic rank one case, especially since
all this pertains to the Birch and Swinnerton-Dyer conjecture.

3. Proofs

In this section, we first prove two lemmas referred to in Section 1. After that,
we give the proof of Theorem 1.3 and Corollary 1.5. We continue to use the notation
introduced in Section 1.
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Lemma 3.1. We have

|E(K)/π(TP )|

=
∣∣∣∣ J ′(K)
B′(K) + E′(K)

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣ · ∣∣ B′(K)+E′(K)
B′(K)+π′′(TP )f∩E′(K)

∣∣∣∣ B′(K)+π′′(TP )
B′(K)+π′′(TP )f∩E′(K)

∣∣ .

Proof. By [Aga09, Prop. 4.2], we have

|E(K)/π(TP )| =
∣∣∣∣ J ′(K)
B′(K) + π′′(TP )

∣∣∣∣ · ∣∣ker
(
H1(K, B′)→H1(K, J ′)

)∣∣.(5)

Also note that TP ∩ E∨(K) is infinite since f has analytic rank one (as follows
by [GZ86, Thm 6.3]). It follows that π′′(TP )f ∩ E′(K) is of finite index in E′(K).
This shows that the group B′(K)+E′(K)

B′(K)+π′′(TP )f∩E′(K) is finite. Also, the group

B′(K) + π′′(TP )
B′(K) + π′′(TP )f ∩ E′(K)

is finite since J ′ is isogenous to the direct sum of E′ and B′. In view of this, the
lemma follows from equation (5). �

Lemma 3.2. Suppose q is a prime that does not divide the order of the torsion
subgroup of π′′(TP ). Assume that f is not congruent to a newform g in ST of
analytic rank one modulo a prime ideal over q in the ring of integers of the number
field generated by the coefficients of f and g (for Fourier coefficients of index coprime
to Nq). Then q does not divide

∣∣ B′(K)+π′′(TP )
B′(K)+π′′(TP )f∩E′(K)

∣∣.
Proof. If h is a newform of level Nh dividing N , then let Bh denote the abelian
subvariety of J0(Nh) associated to h by Shimura [Shi94, Thm. 7.14], and let Jh denote
the sum of the images of Bh in J = J0(N) under the usual degeneracy maps; note
that Jh depends only on the Galois conjugacy class of h. Then J ′ is isogenous to the
direct sum of E′ and the Jh’s as h ranges over representatives of Galois conjugacy
classes in T . If h is such a newform, then TP ∩ Jh(K) is infinite if and only if h has
analytic rank one (this follows by [GZ86, Thm 6.3] if h has analytic rank bigger than
one, and the fact that Jh(K) is finite if h has analytic rank zero, by [KL89]). Also, if
g is a newform in T of analytic rank one, then q does not divide the order of E∨ ∩Jg,
considering that by hypothesis, f is not congruent to g modulo any prime ideal over q
in the ring of integers of the number field generated by the coefficients of f and g
for Fourier coefficients of index coprime to Nq (this follows by a generalization of the
result that the modular degree of an elliptic curve divides its congruence number – cf.
the proof of Theorem 1.3 in Section 3. From the discussion above, we see that q does
not divide the order of the torsion part of the group π′′(TP )f/(π′′(TP )f ∩ E′(K)).
The lemma now follows from the hypothesis that q does not divide the order of the
torsion subgroup of π′′(TP ). �

The rest of this section is devoted to giving the proof of Theorem 1.3. Following
a similar situation in [CM00], consider the short exact sequence

0→B′ ∩ E′→B′ ⊕ E′→J ′→0,(6)
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where the map B′ ∩E′→B′⊕E′ is the anti-diagonal embedding x 7→ (−x, x) and the
map B′ ⊕ E′→J ′ is given by (b′, e′) 7→ b′ + e′.

Lemma 3.3. Suppose q is a prime that divides
∣∣ J′(K)
B′(K)+E′(K)

∣∣. Then q divides the
order of B′ ∩ E′.

Proof. The long exact sequence associated to (6) gives us

· · ·→B′(K)⊕ E′(K)→J ′(K)→H1(K, B′ ∩ E′)→H1(K, B′ ⊕ E′)→· · · ,

from which we get
J ′(K)

B′(K) + E′(K)
= ker

(
H1(K, B′ ∩ E′)→H1(K, B′ ⊕ E′)

)
.(7)

Since q divides | J′(K)
B′(K)+E′(K) |, there is an element σ of the right hand side of (7)

of order q. Now B′ ∩ E′ is finite, and so σ ∈ H1(K, B′ ∩ E′) has order dividing
|B′ ∩ E′|. Hence q divides |B′ ∩ E′|. �

Lemma 3.4. Suppose q is a prime that divides
∣∣ker

(
H1(K, B′)→H1(K, J ′)

)∣∣. Then
q divides the order of B′ ∩ E′.

Proof. By hypothesis, there is an element σ of ker
(
H1(K, B′)→H1(K, J ′)

)
of order q.

The long exact sequence associated to (6) gives us

· · ·→H1(K, B′ ∩ E′)→H1(K, B′)⊕H1(K, E′)→H1(K, J ′)→· · · .(8)

The element (σ, 0) ∈ H1(K, B′) ⊕ H1(K, E′) of order q in the middle group in (8)
maps to zero in the rightmost group H1(K, J ′) in (8), and thus by the exactness
of (8), there is a non-trivial element σ′ ∈ H1(K, B′ ∩ E′) of order divisible by q that
maps to (0, σ) ∈ H1(K, B′) ⊕ H1(K, E′). Again, since B′ ∩ E′ is finite and so is
σ′ ∈ H1(K, B′ ∩E′) has order dividing |B′ ∩E′|, we see that q divides |B′ ∩E′|. �

Proof of Theorem 1.3. We start by proving the first part of the theorem. By Lem-
mas 3.3 and 3.4, we see that q divides the order of B′∩E′, which was the first claim in
the first part of Theorem 1.3. The other claim in the first part of the theorem is that
there is an eigenform g in ST such that f is congruent to g modulo a prime ideal q
over q in the ring of integers of the number field generated by the Fourier coefficients
of f and g. This second claim follows from the first claim, using an argument similar
to the one in [Aga10, §5], which in turn mimics the proof that the modular degree
divides the congruence number [ARS], as we now explain.

If h is a newform of level Nh dividing N , then let Bh denote the abelian subvariety
of J0(Nh) associated to h by Shimura [Shi94, Thm. 7.14], and let Jh denote the sum
of the images of Bh in J = J0(N) under the usual degeneracy maps; note that Jh

depends only on the Galois conjugacy class of h. Let C denote (If ∩ IT )J . Then C
is the abelian subvariety of J generated by Jg where g ranges over Galois conjugacy
classes of newforms of level dividing N other than orbit of f and other than the classes
in T . Let B denote the abelian subvariety of J generated by Jg where g ranges over
Galois conjugacy classes of newforms of level dividing N other than the orbit of f
and let A denote the abelian subvariety of J generated by Jg where g ranges over
Galois conjugacy classes of newforms of level dividing N other than the classes in T .
Then E′ = A/C and B′ = B/C. Now applying the arguments of [Aga10, §5] but
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with A, B, and C as above, the fact that q divides the order of E′∩B′ = A/C ∩B/C
implies that there is an eigenform g in the subspace of S2(Γ0(N),C) generated by
the newforms in T such that f is congruent to g modulo a prime ideal q over q in the
ring of integers of the number field generated by the Fourier coefficients of f and g.
This finishes the proof of the first part of Theorem 1.3.

We now turn to proving the second part of Theorem 1.3. By the first part, there
is an eigenform g in ST such that f is congruent to g modulo a prime ideal q over q
in the ring of integers O of the number field generated by the Fourier coefficients of f
and g. By the definition of ST and the hypotheses of the theorem, it follows that
g has analytic rank greater than one (note that g has to be new, and cannot be of
analytic rank zero, since the eigenvalues of the Atkin-Lehner involution would have
different signs and q is odd).

The second part of Theorem 1.3 now follows from Theorem 6.1 of [DSW03], as
we now indicate (for details of some of the definitions below, see [DSW03]). Let
Tq denote the q-adic Tate module of E∨ = E. Let Lq denote the quotient field
of Oq, let Vq = Tq ⊗Oq Lq, and let Aq denote Vq/Tq. We denote the corresponding
objects for A∨

g by T ′
q, V ′

q , and A′
q. Let r denote the dimension of H1

f (Q, V ′
q) over Lq.

Then r is at least the analytic rank of g (since we are assuming the first part of
the Birch and Swinnerton-Dyer conjecture for A∨

g ), i.e., at least 2. Theorem 6.1 of
loc. cit. tells us that the q-torsion subgroup of the Selmer group H1

f (Q, Aq) of E

has Oq/q-rank at least r. Since the abelian group E(K) has rank one, the abelian
subgroup E(Q) has rank at most one, and so the image of H1

f (Q, Vq) in the q-torsion
subgroup of H1

f (Q, Aq) has Oq/q-rank at most one. This shows that |X(E/Q)|
is divisible by qr−1, in particular by q2−1 = q (since r ≥ 2). Since the natural
map X(E/Q)→X(E/K) has kernel a finite group of order a power of 2 and q is
odd, we see that q divides the order of X(E/K) as well. This finishes the proof of
Theorem 1.3. �

Proof of Corollary 1.5. Since wN = 1, we have N 6≡ −1 (mod q) by hypothesis. Also,
since the level is prime, there are no newforms of lower level. The corollary now follows
from Theorem 1.3. �

4. Appendix: Congruences with forms of lower level and the component
group

Let N be a positive integer, and let f be a newform of weight 2 on Γ0(N) having
integer Fourier coefficients. Denote by E the optimal elliptic curve over Q associated
to f . Let p be a prime that divides N . Let E denote the Néron model of E over Z, and
let EFp denote the special fiber of E at p. Denote by E0

Fp
the connected component

of EFp containing the identity. The component group ΦE,p is defined by the exact
sequence

0→E0
Fp
→EFp

→ΦE,p→0 .(9)

Then the geometric component group of E at p is ΦE,p(Fp) and the arithmetic arith-
metic component group of E at p is ΦE,p(Fp), whose order is called the Tamagawa
number of E at p.
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In this section, we prove the following three results relating congruences with
forms of lower level and the geometric and arithmetic component groups. These
results are perhaps well known, but we could not find a suitable reference. We are
grateful to the anonymous referee for outlining the proofs of Propositions 4.1 and 4.3
below.

Proposition 4.1. Let q be a prime such that q 6= p. Suppose f is congruent to a
newform g of level dividing N/p (for Fourier coefficients of index coprime to Nq)
modulo a prime ideal q over q in the ring of integers of the number field generated by
the coefficients of f and g. Assume that E[q] and Ag[q] are irreducible as Gal(Q/Q)-
modules. Then q divides the order of the geometric component group of E at p.

Corollary 4.2. Let q be a prime such that q 6= p. Assume that p||N and wp = −1,
where recall that wp is the sign of the Atkin-Lehner involution Wp acting on the
newform associated to E. Suppose f is congruent to a newform g of level dividing
N/p (for Fourier coefficients of index coprime to Nq) modulo a prime ideal q over q
in the ring of integers of the number field generated by the coefficients of f and g.
Assume that E[q] and Ag[q] are irreducible as Gal(Q/Q)-modules. Then q divides the
order of the arithmetic component group of E at p.

Proof. By Proposition 4.1, q divides the order of ΦE,p(Fp). Considering that p||N ,
the Frobenius endomorphism acts as −wp on ΦE,p(Fp). Since wp = −1, this action is
trivial and thus ΦE,p(Fp) = ΦE,p(Fp). The corollary follows. �

Proposition 4.3. Suppose p||N . Let q be an odd prime not equal to p such that
either q2 -N or p 6≡ 1 mod q. Assume that E[q] is irreducible as a Gal(Q/Q)-module.
If q divides the order of the geometric component group at p, then f is congruent to
a newform g of level dividing N/p (for Fourier coefficients of index coprime to Nq)
modulo a prime ideal over q in the ring of integers of the number field generated by
the coefficients of f and g.

Remark 4.4. One of the two hypotheses that p 6≡ 1 mod q and that E[q] is irreducible
as a Gal(Q/Q)-module made in Proposition 4.3 above is essential. For example, the
unique optimal elliptic curve of conductor 11 has Tamagawa number 5 (at 11), but
since the level 11 is prime, there can be no congruences with lower level (for this
example, with p = 11 and q = 5, p ≡ 1 mod q and q divides |E(Q)tor| = 5, so that
E[q] is reducible as a Gal(Q/Q)-module; at the same time, all other hypotheses of
Proposition 4.3 are satisfied).

We now prove Propositions 4.1 and 4.3. From the exact sequence (9), we deduce
the exact sequence:

0→E0
Fp

(Fp)→EFp
(Fp)→ΦE,p(Fp)→0 .(10)

Suppose that q 6= p. If p||N , then E0
Fp

is a multiplicative group, and the multipli-
cation by q map on E0

Fp
(Fp) is surjective. If p2 |N , then E0

Fp
is an additive group, but

since q 6= p, the multiplication by q map on E0
Fp

(Fp) is still surjective. Considering
the snake lemma applied to the multiplication by q map on the exact sequence (10)
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above, and using the fact that the multiplication by q map on E0
Fp

(Fp) is surjective,
we get the exact sequence:

0→E0
Fp

(Fp)[q]→EFp
(Fp)[q]→ΦE,p(Fp)[q]→0 .(11)

Let Ip denote the inertia subgroup of Gal(Qp/Qp). Then the reduction map in-
duces an isomorphism of Galois modules E[q]Ip ∼= EFp

(Fp)[q] (e.g., see [ST68, p. 495]).

Proof of Proposition 4.1. Recall that in addition to the hypotheses made above on q,
we are assuming that f is congruent to a newform g of level dividing N/p (for Fourier
coefficients of index coprime to Nq) modulo a prime ideal q over q in the ring of inte-
gers of the number field generated by the coefficients of f and g and that E[q] = E[q]
and Ag[q] are irreducible as Gal(Q/Q)-modules. Then by the Chebotarev and Brauer-
Nesbitt theorems, E[q] ∼= Ag[q] as Gal(Q/Q)-modules. Hence E[q] is unramified at p,
and so E[q]Ip = E[q]. Thus EFp

(Fp)[q] ∼= E[q]Ip has dimension 2 over Fq. Now
E0
Fp

(Fp)[q] has dimension at most one over Fq. Hence the exact sequence (11) shows
that ΦE,p(Fp)[q] is non-trivial, i.e., q divides the order of the geometric component
group at p. �

Proof of Proposition 4.3. Recall that in addition to the hypotheses made above on q,
we are assuming that ΦE,p(Fp)[q] is non-trivial. Suppose p2 -N . Then E0

Fp
(Fp)[q] has

dimension one over Fq, and hence by the exact sequence (11), we see that E[q]Ip ∼=
EFp(Fp)[q] is two dimensional over Fq. Thus E[q]Ip = E[q], i.e., E[q] is unramified
at p. Our result now follows from [Rib90, p. 1-2]. �
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