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Abstract

The �xed-lag Kalman smoother (FLKS) has been proposed as the framework to construct

data assimilation procedures capable of producing high-quality climate research datasets. The

FLKS-based systems, referred to as retrospective data assimilation systems, are basically an

extension to three-dimensional �ltering procedures with the added capability of incorporating

observations not only in the past and present time of the estimate, but also at future times. A

variety of simpli�cations are necessary to render FLKS-based retrospective assimilation proce-

dures practical.

In this article, we present an FLKS-based retrospective data assimilation system implemen-

tation for the Goddard Earth Observing System Data Assimilation System (GEOSDAS). The

practicality of this implementation comes from the practicality of its underlying (�lter) analysis

system, i.e., the physical-space statistical analysis system (PSAS). The behavior of two schemes

are studied here. The �rst retrospective analysis (RA) scheme is designed to simply update

the regular PSAS analyses with observations available at times ahead of the regular analysis

times. Although our GEOSDAS implementation is general, results are only presented for when

observations 6-hours ahead of the analysis time are used to update the PSAS analyses and cal-

culate the so-called lag-1 retrospective analyses. Consistency tests for the RA scheme show that

the lag-1 retrospective analyses indeed have better 6-hour predictive skills than the predictions

from the regular analyses. This motivates the introduction of the second scheme which, at each

analysis time, uses the 6-hour retrospective analysis to replace the �rst-guess normally used

in the PSAS analysis, and therefore allows the calculation of a revised (�lter) PSAS analysis.

Since in this scheme the lag-1 retrospective analyses in
uence the �lter results, this procedure

is referred to as the retrospective-based iterated analysis (RIA) scheme. Results from the RIA

scheme indicate its potential for improving the overall features of the assimilation.
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1 Introduction

The concept of retrospective data assimilation, as invoked in the present article, was introduced

by Cohn et al. (1994) as the procedure to calculate analyses using observations in the past,

present, and future of the times at which analyses are sought for. In estimation theory, esti-

mates of the state of a system produced this way are known as smoother estimates, and the

techniques behind deriving them are known as smoothing. In sequential data assimilation the

most natural smoothing technique to employ is that of �xed-point smoothing. In this case, the

usual �lter estimate obtained at a �xed time using observations before and at the analysis time is

sequentially updated as future observations became available. Future observations can be used

for as long as experimentation show their impact to be useful. The idea of estimating the state

of a system at a �xed time over and over again the more observations become available can be

taken a step further by seeking �xed point estimates at a series of consecutive �xed times. This

is what is accomplished by �xed-lag smoothing. Speci�cally, for linear systems under the typi-

cal assumption of unbiased Gaussian-distributed errors the �xed-lag Kalman smoother (FLKS)

provides the best linear unbiased estimate of the state of the system at a given time using ob-

servations in the past, present, and at a time lag-` ahead of the time of the estimate. The FLKS

was proposed by Cohn et al. (1994; CST94 hereafter) as the strategy to follow when developing

retrospective data assimilation schemes designed to produce the highest possible quality datasets

for climate research.

The FLKS is composed of two major components: the Kalman �lter (KF) portion and the

�xed-lag smoother portion. The FLKS is fully dependent on the KF as it is formulated on the

basis of the observation-minus-forecast residuals used by the KF. In general, when the �lter is

not the KF, but rather some suboptimal implementation of it, we can still think of suboptimal

implementations of FLKS-based retrospective data assimilation schemes as consisting of a �lter

portion and a smoother (or retrospective) portion. Todling et al. (1998) used this explicit
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separation between �ltering and smoothing to study the behavior of a variety of combinations of

�lter and smoother approximations to the linear FLKS. One particular approximation studied

then, namely the adaptive CCF-based retrospective data assimilation scheme, could be seen

as having the potential for being implemented in practice. The abbreviation CCF stands for

constant forecast error covariance �lter which in many respects is a good representation of

some practical three-dimensional variational analysis systems operational today. The spectral

statistical-interpolation analysis system of Parrish and Derber (1992) is an example of such a

system; the U.S. Navy analysis system of Daley and Barker (2001) is another; and so is the

physical-space statistical analysis system (PSAS) of Cohn et al. (1998), which is also central to

the work in the present article.

To really take forward the idea of developing a practical retrospective data assimilation sys-

tem the linear FLKS formulation of CST94 has to be extended to handle nonlinear dynamics.

Since the retrospective portion of the algorithm relies completely on the �lter, designing nonlin-

ear �lters immediately result in designing nonlinear smoothers. Todling and Cohn (1996; TC96

hereafter) derived a nonlinear FLKS algorithm based on the traditional extended Kalman �lter

(EKF). Similar derivations can be found elsewhere (e.g., Biswas and Mahalanabis 1973; Verlaan

1998). The way smoothers use future observations to calculate updates to state estimates is

by propagating information back in time using the adjoint dynamical model. For nonlinear

dynamics the adjoint of the tangent linear dynamics must be provided in principle, e.g., as when

using an EKF-based FLKS. Four-dimensional variational (4D-var) procedures such as that of

Rabier et al. (2000) also require the adjoint of the tangent linear dynamics. The need for the

adjoint model can be avoided if the retrospective assimilation strategy is designed on the basis

of ensemble techniques such as that of Evensen and van Leeuwen (2000).

In this article, we study the performance of a PSAS-based retrospective analysis (RA) system

developed for the Goddard Earth Observing System (GEOS) data assimilation system (GEOS-
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DAS). Since the current forecast error covariance matrix of PSAS varies very slowly in time we

can identify the GEOS-based suboptimal RA procedure studied here with the CCF scheme of

Todling et al. (1998). Our RA implementation in GEOSDAS is general and applicable to any

number of time lags, but in the present article we concentrate on results for the 6-hour, i.e.

lag-1, retrospective analysis. Motivated by some of the results obtained with this version, and

by the ideas of constructing so-called iterated �lters and smoothers common in the engineering

literature, we also study here the performance of a retrospective-based iterated analysis (RIA)

scheme. In the RIA, the lag-1 retrospective analysis at a given time tk�1 is used to produce

a new �rst-guess at time tk that is used to revise the �lter analysis, i.e. PSAS, at the same

time tk . In the RIA the �nal analysis is the second (iterated) analysis calculated using the

�rst-guess generated from the lag-1 retrospective analysis. This is a considerably di�erent use

of the \static" retrospective analyses proposed by CST94. Though a formal argument for the

RIA procedure is not presented here, the procedure is found to bene�cially impact the overall

quality of the analyses. This lag-1 RIA scheme makes the retrospective procedure resemble a

4D-var cycle (e.g., Courtier et al. 1994; Rabier et al. 2000).

Indeed, the original FLKS-based retrospective analysis formulation of CST94 is meant as

an alternative approach to 4D-var. The FLKS framework is a natural four-dimensional exten-

sion to three-dimensional procedures formulated sequentially rather than variationally. Four-

dimensional variational procedures are an extension of 3D-var that take into account observations

within a time interval. M�enard and Daley (1996) have showed the equivalence of 4D-var and

�xed-interval smoothing. Similarly, for linear dynamics, the FLKS is algebraically equivalent

to 4D-var and can be derived from the 4D-var cost function by solving a two-point boundary

value problem (Zhu et al. 1999). The main distinction between 4D-var and the FLKS is in

their computational approach. The former involves an iterative optimization procedure to get

to the solution, whereas the latter deals directly with the analytical solution of the problem.

One practical consequence of this distinction relates to how these procedures allow to account
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for model error. As pointed out by Todling et al. (1998), FLKS-based assimilation schemes

directly enherit any model error covariance parameterization embbeded in the �lter portion.

Various techniques can be found in the literature that account for model error in 4D-var by

using the dynamical model as a weak constraint to the optimization problem (e.g., Derber 1989;

Bennett et al. 1996; and Zupaski 1997). However, until reasonable understading of model error

is acquired, and the corresponding model error covariance parameterizations can be relied upon,

this distinction between 4D-var and FLKS-based assimilation is rather mute. Another impor-

tant point to make relates to what it now seems to be recognized (Fisher and Andersson 2001)

as one of the main advantages of 4D-var over 3D-var-like procedures, namely that, the former

uses the observations nearly at their proper times [as it is the case in the European Centre for

Medium-Range Forecasts (ECMWF) 4D-var implementation of Rabier et al. 2000)], whereas

in the latter it is more common to bundle the observations into 6-hour batches. This can be

resolved, particularly in sequential, 3D-var assimilation procedures by using a rapid update cycle

strategy. Though this is not explored in the present article, since in GEOSDAS observations are

bundled into 6-hour batches, we should point out that there is no intrinsic diÆculty in building

an FLKS-based retrospective analysis system under the rapid update cycle �ltering strategy.

In the sequel, we brie
y review, in section 2, the theoretical framework behind retrospective

analysis. The presentation is based on the EKF and the corresponding nonlinear extension of

the FLKS. In section 3, we describe the framework of our practical implementation directed to

adding a retrospective component to GEOS; here, both the RA and RIA schemes are presented.

In section 4, results of a preliminary evaluation of these retrospective schemes are presented and

discussed. Conclusions are drawn in section 5.
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2 Theoretical framework: the �xed-lag Kalman smoother

In this section we brie
y recapitulate the formulations of the �xed-lag Kalman smoother of

CST94 and TC96. Following Todling et al. (1998) we separate the FLKS into a �lter portion and

a retrospective portion. The �lter portion is based on the linear Kalman �lter, or more generally

in any nonlinear extension of the KF; the retrospective portion is based on the linear �xed-lag

Kalman smoother, or any equivalent nonlinear extension compatible with the underlying �lter.

As in TC96, the discussion below is based on the EKF.

(a) The �lter portion

Using the notation of CST94, the �lter portion of the FLKS formulation of TC96 can be

summarized by the usual EKF equations

w
f
kjk�1

= Ak;k�1(w
a
k�1jk�1) ; (1a)

wa
kjk = w

f
kjk�1

+Kkjkvk ; (1b)

Kkjk = P
f
kjk�1

HT
k �

�1
k ; (1c)

P
f
kjk�1

= Ak;k�1P
a
k�1jk�1A

T
k;k�1 +Qk ; (1d)

Pa
kjk = (I�KkjkHk)P

f
kjk�1

: (1e)

The �rst two expressions refer to the state evolution, which depend on the last three expressions

essentially related to error covariance evolution and update. At time tk , the forecast n-vector

w
f
kjk�1

evolves through the nonlinear dynamical operator Ak;k�1 from the analysis n-vector

wa
k�1jk�1, according to (1a). The dynamical operatorAk;k�1 stands for, say, a general circulation

model, and possibly any transformations necessary to convert the model prognostic variables

into the �lter state vector, and vice-versa.

The main di�erence in the EKF equations written above and the way they more commonly

appear in the atmospheric data assimilation literature (e.g., Miller et al. 1994) is in the time
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subscripts. Here, the subscripts follow standard engineering notation developed in linear esti-

mation theory and mostly suitable to the development of smoothers. This subscript notation is

also particularly helpful in reminding that for linear systems perturbed by Gaussian-distributed

noise the forecast w
f

kjk�1
and analysis wa

kjk
state vectors are actually the conditional means of

the true state n-vector wt
k, that is,

w
f

kjk�1
= Efwt

kjw
o
k�1; � � � ;w

o
1g ; (2a)

wa
kjk = Efwt

kjw
o
k;w

o
k�1; � � � ;w

o
1g ; (2b)

at time tk . The conditioning, represented by the vertical bar in the ensemble mean operator

Ef � j�g, is on the time series of observations wo
k. The forecast at time tk is an estimate of

the true state ensemble mean conditioned on all observations prior to time tk ; equivalently, the

analysis at time tk is an estimate of the true state ensemble mean conditioned on all observations

up to and including those at time tk .

The EKF, as the KF, is based on the residual pk-vector vk in (1b) formed of the di�erence

between the pk-vector of observations w
o
k and the model predicted \observations" Hk(w

f
kjk�1

)

at time tk , that is,

vk � wo
k � Hk(w

f
kjk�1

) : (3)

The nonlinear operator Hk stands for the transformations involved in converting �lter state

vector quantities into observables. Optimality of the �lter depends on the n � pk weighting

matrix Kkjk given to this observation-minus-forecast (OMF) residual vector vk through (1b).

Although the expression for the weighting matrix Kkjk in the EKF is very similar in form to

its linear KF equivalent, contrary to the linear case, Kkjk in (1c) is now state-dependent since

the pk � n Jacobian matrix Hk of the observation operator Hk is linearized around the forecast

state vector w
f

kjk�1
. State dependence of the EKF weighting matrix Kkjk also comes from its

dependence on the OMF residuals covariance matrix �k, given by

�k = HkP
f

kjk�1
HT

k +Rk ; (4)
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for uncorrelated observation and forecast errors. Here, Rk is the pk � pk observation error

covariance matrix and P
f
kjk�1

is the state-dependent n�n forecast error covariance matrix. The

dependence of the forecast error covariance matrix in (1d) on the state comes from the n � n

Jacobian matrix Ak;k�1 of the dynamics operator Ak;k�1 and its linearization about model

trajectory initialized from the analysis vector wa
k�1jk�1. The forecast error covariance matrix

also depends on the model error covariance matrix Qk , which is normally assumed to be known.

Since the forecast error covariance matrix P
f

kjk�1
evolves from the n�n analysis error covariance

matrix Pa
k�1jk�1 it depends further on the accuracy of the previous estimate calculated by the

�lter, i.e., through (1e) applied at time tk�1.

In the linear case, the dynamics and observation operators reduce Ak;k�1 = Ak;k�1 and

Hk = Hk , respectively, and (1) reduces to the linear KF for known model and observation error

statistics. Moreover, as pointed out in TC96, in the linear Gaussian-distributed noise case, the

forecast and analysis error covariance matrices are the conditional mean error covariances. It is

when the observation errors are white, Gaussian, in time that the time series of residual vectors

vk can be identi�ed with the innovation sequence (see for example, Anderson and Moore 1979,

section 5.3)

(b) The retrospective portion

In the FLKS, the retrospective portion uses the OMF residual vector vk at time tk to

calculate corrections to previous �lter analyses and to previous retrospective analyses using an

update equation similar to the state update expression (1b) of the �lter portion. That is, the

lag-` retrospective analysis is calculated by

wa
k�`jk = wa

k�`jk�1 +Kk�`jkvk ; (5)

for ` = 1; 2; : : : ;min(k; L), and a maximum desired lag ` = L. Each retrospective analysis

corresponds to an \incremental" correction to an estimate of the state calculated previously.
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For example, when k = � and ` = 1, the lag-1 retrospective analysis wa
��1j�

corresponds to

a correction to the most recently available state estimate at time t��1, i.e., the �lter analysis

wa
��1j��1; when k = � + 1 and ` = 2, the lag-2 retrospective analysis wa

��1j�+1 corresponds of

a correction to the most recently available state estimate at time t��1 which is now the lag-1

retrospective analysis wa
��1j�; and so on up to the desired lag ` = L when the estimate at time

t��1 is given by the lag-L retrospective analysis wa
��1j�+L�1

.

This example to illustrate the mechanism for correcting consecutive state estimates at a given

time with successive smoother calculations makes the FLKS algorithm resemble very much the

�xed-point smoother. This is simply because in this example we chose to �x the time at which

estimates are being sought, that is, time t��1. The resemblance between the �xed-lag and

�xed-point smoothers is no coincidence. The FLKS of CST94 and CT96 can be derived from a

�xed-point smoother formulation using, for example, the approach of state augmentation (e.g.,

Biswas and Mahalanabis 1973). The point of matter here is that the \incremental" corrections

to the state estimates at time t��1 are calculated on the basis of the OMF residual vectors v�,

v�+1, and so on up to v�+L�1. That is, each lag of the algorithm introduces corrections to the

state estimate by using observations at times ahead of the retrospective analysis time, up to the

maximum desired lag L.

Because the retrospective analyses are based on the same OMF residual vectors used in

the �lter portion of the algorithm, the retrospective n � pk weighting matrix Kk�`jk depends

on the OMF residual covariance matrix �k in (4). Furthermore, Kk�`jk also depends on the

n� pk matrix H
T
k , the transpose of the Jacobian of the observation operator, and on the n� n

forecast-analysis cross-covariance matrix P
fa

k;k�`jk�1
, through the EKF-based expression

Kk�`jk = (P
fa
k;k�`jk�1

)THT
k �

�1
k ; (6)

as can be found in TC96. The forecast-analysis cross-covariance P
fa

k;k�`jk�1
evolves from previ-

ously calculated analysis error covariances and analysis-analysis error cross-covariances through
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the Jacobian Ak;k�1 of the dynamics operator. Its evolution equation and the update equations

for the retrospective analysis error cross-covariances are

Pa
k�`jk = Pa

k�`jk�1 �Kk�`jkHkP
fa
k;k�`jk�1

; (7a)

Paa
k;k�`jk = (I�KkjkHk)P

fa
k;k�`jk�1

; (7b)

P
fa
k;k�`jk�1

= Ak;k�1P
aa
k�1;k�`jk�1 ; (7c)

and the details of their derivation can also be found in TC96.

That retrospective analyses are built on the basis of future observations can be simply

understood by recalling the meaning of the time subscript notation used here. In the linear

Gaussian-distributed noise case the time subscript notation signi�es that the retrospective anal-

ysis estimates are indeed estimates of the conditional means. In this case, the retrospective

analysis at time tk�` is

wa
k�`jk = Efwt

k�`jw
o
k;w

o
k�1; � � � ;w

o
1g ; (8)

where now, in contrast to the �lter estimates (2), the ensemble mean is conditioned on all ob-

servations before, during and after time tk�` and up to time tk . As mentioned previously, in

the linear optimal case, when the underlying �lter is the KF and the sequence of OMF residual

vectors is actually the innovation sequence, the retrospective portion just described reduces to

the optimal FLKS. Independently of nonlinearities, in general, if the �lter is suboptimal the cor-

responding retrospective analyses are suboptimal as well. This is simply because both the �lter

and the smoother are based on the same sequence of OMF residual vectors vk. Unfortunately,

in the suboptimal case, there is no guarantee that consecutive retrospective lagged estimates

will represent improvements over estimates with smaller lag(s) or even over the �lter results (see

Todling et al. 1998 for illustration).

As pointed out by Todling et al. (1998), one interesting feature of the FLKS that is directly

related to it being formulated on the basis of an underlying �lter is that it incorporates model
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error covariances naturally (see also appendix A, here). A variety of techniques exist to incorpo-

rate model error in 4D-var (e.g., Derber 1989; Bennett et al. 1996; and Zupanski 1997). Since

4D-var is equivalent to �xed-interval smoothing (see M�enard and Daley 1996; and Zhu et al.

1999) and for all practical purposes we can always choose a lag L in �xed-lag smoothing that

accomplished the same bene�t as �xed-interval smoothing (Moore 1973), FLKS-based assimila-

tion procedures present a potential alternative to 4D-var. Since we currently lack the necessary

knowledge to parameterize model error covariances this advantage of the FLKS over 4D-var is

not very signi�cant, but it may prove to be relevant in the future.

3 Practical framework: GEOSDAS considerations

When it comes to practical applications, the algorithm described in the previous section serves

mainly as a guide to help design suitably feasible data assimilation procedures. Besides the overly

stressed computational cost requirements argument made against practical implementations of

assimilation procedures such as the one presented in the previous section, there is the more

fundamental argument made about the nearly utter lack of knowledge of the underlying error

statistics, speci�cally, of the model and the observation error statistics. Both these arguments

have motivated the study of a number of simpli�cations to both �ltering (e.g., Cohn and Todling

1996, and references therein) and smoothing (e.g., Todling et al. 1998, and references therein)

procedures. In this section, we describe the details of the implementation of the FLKS-based

retrospective procedure as we see �t to GEOSDAS. Before describing the GEOS retrospective

analysis portion of the implementation we review the current GEOSDAS that is the practical

equivalent of the �lter portion of the algorithm.

(a) The GEOS analysis and data assimilation system

The DAO operational GEOS data assimilation system consists of three major components:
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an atmospheric general circulation model (GCM); the physical-space statistical analysis system

(PSAS); and the incremental analysis update (IAU) procedure. At the so called analysis times,

the GCM provides a �rst-guess �eld to PSAS so it can process OMF residuals and generate the

analysis state. Essentially, PSAS is the practical equivalent to the EKF equations (1b)-(1c), and

obtains the analysis state as a correction to the model �rst-guess. For practical reasons, PSAS

neglects the error covariance expressions (1d) and (1e) and therefore it is a suboptimal �lter.

The suboptimality of GEOS analyses is not unique to this system but indeed all operational

systems to date are suboptimal implementations of their underlying mathematical framework.

Each PSAS analysis is used in the IAU procedure of Bloom et al. (1996) to construct a tendency

term that is used to force the GCM during a 6-hour period around the analysis time. The GCM

trajectory obtained during the IAU integration is known as the assimilated trajectory.

In GEOSDAS the state-space of the GCM is di�erent than the state-space of the analysis

system and it is convenient to de�ne a speci�c nomenclature for the purposes of the present

article. In what follows, we refer to background as the state-vector provided by the GCM and to

forecast or �rst-guess as the background �eld transformed to the analysis space. The model and

analysis spaces are di�erent because their state variables and grids are di�erent. For instance,

the GCM state variables are surface pressure, potential temperature, speci�c humidity and the

zonal and meridional components of the wind, where all variables are de�ned on the Arakawa

C-grid and on a vertical sigma coordinate system. On the other hand, the analysis state vector

is composed of sea level pressure, zonal and meridional components of the sea level wind, zonal

and meridional components of the upper-air wind, mixing ratio, and geopotential heights, where

all variables are de�ned on the Arakawa A-grid and in pressure coordinates (see for example

DAO 1996, for details).

We designate an m-dimensional GCM state vector by y(�) and an n-dimensional analysis

state vector by w(p), where the space distinction between the model and analysis is emphasized
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in the notation by showing explicitly the vertical coordinate system these states are de�ned on.

For our purposes, we can represent a GCM integration during the time interval � as

dy(�)

dt
= M[y(�)] + � Æya

kjk(�) : (9)

Here, M is the nonlinear GCM operator and the second term in the rhs corresponds to the con-

stant IAU forcing term applied to the GCM during the IAU integration period. The parameter

� controls when and how the model-space analysis increment Æya
kjk
(�) a�ects the integrations.

During the IAU time interval � = � iau = tk+1=2 � tk�1=2 we set � = 1=� iau; and during the

3-hour GCM background integration time interval � = tk+1�tk+1=2 we set � = 0. At an analysis

time tk , the GCM-provided background �eld yb
kjk�1

(�) is converted into the analysis �rst-guess

through the operation

w
f

kjk�1
(p) = �[yb

kjk�1(�)] ; (10)

where for convenience we use similar time subscript notation as that used in the previous section.

The space conversion operator � is nonlinear since it represents not only simple interpolation

from one grid to another but also variable transformations such as conversion from potential

temperature to geopotential heights.

The forecast vector w
f

kjk�1
(p) is used to construct the OMF residual p-vector vk in (3).

Instead of calculating explicitly the weighting matrix (1c), PSAS splits the calculation of the

last term in the analysis equation (1b) in two steps. The �rst step is to solve the following linear

system of equations

�kxk = vk ; (11)

for the variable xk, so that in a second step the analysis wa
kjk
(p) can be calculated by

wa
kjk(p) = w

f
kjk�1

(p) + P
f
kjk�1

HT
k xk : (12)

To keep notation simple, we denote the PSAS forecast error covariance with the same symbol

P
f

kjk�1
used in the previous section. However, as mentioned above, PSAS does not use the
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equivalent of (1d) to calculate the forecast error covariance matrix. Instead, the forecast error

covariance in PSAS is parameterized using simple dynamical constraints. Only its variance �elds

vary (slowly) in time; its correlations are constant in time. A consequence of such simpli�cation

is that the forecast w
f

kjk�1
(p) and the analysis wa

kjk
(p) vectors in (12) are also distinct from

those of the previous section, even though they are designated with the same symbols as in the

previous section. Notice also that currently the forecast error covariance formulation of PSAS is

for the analysis variables and, in particular, in pressure coordinates. Moreover, the observation

operator Hk in PSAS is linear, that is, Hk = Hk.

To proceed with the GEOS IAU assimilation, the analysis in (12) is converted back to the

model space, through a conversion operator �+, as in

ya
kjk(�) = �+[wa

kjk(p)] ; (13)

which is then used to �nally construct the IAU Æya
kjk
(�) increment to be used in (9),

Æya
kjk(�) = ya

kjk(�)� yb
kjk�1(�) : (14)

The actual implementation of �+ is such that it renders minimal the di�erence jjw(p) �

�[�+[w(p)]]jj. In other words, the error is minimal when transforming an analysis state vector

into the model space and then transforming the resulting vector back to the analysis space. In

a nonlinear sense, �+ is a pseudo-inverse of �.

A schematic representation of the IAU assimilation procedure is shown in Fig. 1. In GEOS-

DAS observations are processed at 6-hour intervals, which in the IAU framework implies that

the GCM is integrated for 6 hours starting 3 hours before the analysis time. Going from the

left to right in the diagram, at an analysis time, say t = 6Z, observations and a 3-hour model

�rst-guess (represented by the north-eastward pointing dashed arrow) are combined in PSAS

to calculate the �lter analysis. This analysis is used to construct the IAU increment (14) and

the model is integrated forward forced by the IAU tendency starting from t = 3Z up to t = 9Z.
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Beyond this time, the IAU forcing is set to zero and the model runs \free" for the next 3 hours.

At the end of this free 3-hour integration the GCM provides the background to be used in the

PSAS analysis of the 12Z observations, and the cycle is repeated. The assimilated trajectory is

represented in the �gure by the thick-solid eastward-pointing arrows.

(b) The GEOS retrospective analysis

We have now the challenge of converting the retrospective portion of the FLKS as presented

in the previous section into a practical algorithm. We have seen above that when building a

practical �ltering procedure such as PSAS one of the main approximations is to avoid dealing

directly with the error covariance equations (1d)-(1e). Analogously, when building a practical

implementation of the retrospective portion of the FLKS we want to calculate retrospective

increments

Æwa
k�`jk(p) � wa

k�`jk(p)�wa
k�`jk�1(p) = Kk�`jkvk ; (15)

for lags ` = 1; 2; � � � ; min(k; L), without having to calculate the smoother cross-covariances

implicit in the retrospective gains Kk�`jk through (6) and (7). As it turns out, calculating these

cross-covariances can be avoided since the retrospective gain matrices Kk�`jk can be written as

Kk�`jk = P
f
k�`jk�`�1

2
4 kY
j=k�`+1

(I�Kj�1jj�1Hj�1)
TAT

j;j�1

3
5HT

k�
�1
k ; (16)

(see appendix A), with the consequence that the retrospective increments in (15) become

Æwa
k�`jk(p) = P

f

k�`jk�`�1

2
4 kY
j=k�`+1

(I�HT
j�1�

�1
j�1Hj�1P

f

j�1jj�2
)AT

j;j�1

3
5HT

k xk : (17)

where we used (11) to replace ��1
k vk with xk. We see from this expression that the lag-` ret-

rospective increment correspond is calculated as a linear combination of the columns of the

forecast error covariances P
f
k�`jk�`�1

. The advantage of the expression above is that it refers

only to quantities used by the �ltering portion of the FLKS: the (�lter) forecast error covari-

ance matrix P
f

j�1jj�2
; the observation error covariance matrix Rj�1; the linear (or linearized)
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observation operator Hj�1 and its transpose (adjoint); and the adjoint of the Jacobian Aj;j�1

of the dynamics operator. The smoother error cross-covariances P
fa
k;k�`jk�1

and Paa
k;k�`jk

, and

smoother error covariance Pa
k�`jk never appear in (17).

At a given analysis time tk , the retrospective increments can be calculated through a succes-

sion of operations similar to the two-step PSAS operations (11) and (12). De�ning an n-vector

zk as

zk � HT
k xk ; (18)

corresponding to the PSAS conjugate gradient solution xk converted from the observation space

to the analysis space by HT
k , the term in the square brackets of (17) can be calculated using the

following algorithm:

j = k

while j > 1 and j �max(1; k� `+ 1)

z
p
j�1 = AT

j;j�1zj (19a)

�j�1x
r
j�1 = Hj�1P

f

j�1jj�2
z
p
j�1 (19b)

zj�1 = z
p
j�1 �HT

j�1x
r
j�1 (19c)

Æwa
j�1jk(p) = P

f
j�1jj�2

zj�1 (19d)

j = j � 1

endwhile

for a maximum number of time lags ` = L. In this algorithm the n-vector z
p
j�1 is the result

of the adjoint dynamics evolution of the auxiliary n-vectors zj , for each backward integration

j. This backward propagated vector z
p
j�1 serves as the input to an equation similar to the �rst

step (11) of the regular PSAS analysis, but with now a di�erent rhs that is aimed at getting
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the retrospective solution xrj�1 in (19b). The following step in the retrospective analysis loop is

to update the n-vector z
p
j�1 with the analysis-space projection of xrj�1 as in (19c). Finally, the

n-vector zj�1 in (19c) is used to calculate the retrospective analysis increment for each desired

lag ` up to a maximum lag ` = L through application of the forecast error covariance operator

as in (19d).

Notice that the entire retrospective analysis algorithm (18)-(19) works in the analysis space.

In particular, the propagation operator AT
k;k�1 = AT

k;k�1(p) in (19a) is de�ned in pressure

coordinates and it operates on geopotential heights, mixing ratio, zonal and meridional winds,

etc, that is, the analysis variables. In fact, the linearized dynamical operator Ak;k�1(p) is given

by

Ak;k�1(p) � �kMk;k�1(�)�
+
k�1 : (20)

where Mk;k�1(�) is the m�m Jacobian matrix of the nonlinear operator M in (9),

M(�) �
@M[y]

@y

����
y=y(�)

(21)

and � and �+ are given by

� �
@�[y]

@y

����
y=y(�)

; (22a)

�+ �
@�+[w]

@w

����
w=w(p)

; (22b)

and correspond to the n�m and m� n Jacobian matrices of � and �+, respectively. Similarly

as for the nonlinear counterpart of these operators, we should require that �+ be a pseudo-

inverse of �. In practice, however, numerical inaccuracies and the character of the original

nonlinearities are such that this can only be achieved to a certain extent. As we can see, the

adjoint operator (20) needed in (19a) involves more than simply the adjoint of the tangent

linear GCM. It involves the adjoint of the linearized transformations � and �+ in (10) and (13),

responsible for converting model state vectors and analysis state vectors back and forth between

the two spaces.
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A few remarks can be made at this point.

� Currently in PSAS the analysis error covariance matrix Pa
kjk

is never referenced. Indeed,

the current implementation of PSAS parameterizes the forecast error covariance matrix in

a such a simple manner that none of the terms in the rhs of (1d) are taken into account.

This is an approximation based partially on practical considerations that in the long line

of further PSAS developments is bound to change. However, when the expressions (7)

for the smoother error cross-covariances are bypassed and retrospective increments are

calculated using the gains in (16) there are actually no approximations involved. The only

consequence of not calculating the smoother error covariances is that we get no estimates

for the accuracy of the retrospective analyses | which, in principle, can be extracted

from Pa
k�`jk

. Expression (16) is exact for the linear FLKS and its nonlinear EKF-based

extension.

� We see from (17) that an FLKS-based retrospective scheme allows future observations

to be used to correct previous �lter and retrospective analyses impaired by the lack of

observations over a certain region earlier on in the assimilation. That is, when at, say,

time tk�1 there are no observations over a certain region, the �lter analysis at this time

will essentially equal the �rst-guess over that region - aside from possible contributions

by farther away regions through the forecast error correlations. If at, say, time tk , ob-

servations become available over the region in question, or information from observations

at downstream nearby regions get propagated through the adjoint of the tangent linear

dynamics AT
k;k�1 into the region in question, this new information can be used to calculate

a correction to the �lter analysis at tk�1 as the lag-1 retrospective analysis represented

in (17). In these cases, it is the the �rst term in the square-bracket of (17) that mostly

contributes to the correction to the �lter analysis. This argument can be taken beyond

this simple lag-1 reasoning.
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� Notice that the linear system (19b) solved within the retrospective analysis algorithm

involves exactly the same operators required to calculate the sensitivity of forecasts to

observations changes, as measured by some pre-speci�ed cost function, as in the approach

of Baker and Daley [2000; compare with their eq. (2.7a)]. Furthermore, (19c) involves

exactly the operator required to examine forecast sensitivity with respect to changes in

the background. It has been pointed out elsewhere that some of the operations in 4D-var,

are closely related to operations required to study forecast sensitivity; the same is true of

the operations in FLKS-based retrospective analysis schemes.

� When the forecast errors do not dynamically propagate the smoother follows an algorithm

similar to (19) but with the adjoint operator in (19a) replaced by the identity. Since

in the current implementation of PSAS the forecast error covariance is not dynamically

determined, and even with its slowly varying forecast error variances it can be thought of

having a time-independent forecast error covariance, it is conceivable that replacing the

adjoint by the identity operator in (19a) may result in a reasonable retrospective analysis

approximation consistent with the current underlying PSAS statistics. Todling (2000) has

experimented with this idea using an identical-twin con�guration setup for GEOS and has

found a signi�cant improvement in the mean error due to lag ` = 1 and even to lag ` = 2

retrospective analyses.

(c) The GEOS lag-1 retrospective-based iterated analysis

When the system is nonlinear, the idea to feedback the �lter estimate into the analysis

equation is particularly attractive, especially if we expect the �lter analysis to be a better es-

timate of the state of the system than the �rst-guess provided by the model. Indeed, �ltering

strategies making use of such feedback procedures are commonly found in the literature. For

instance, Jazwinski (1970, Theorem 8.2) introduces the so-called iterated EKF, which is suitable

for nonlinear observation operators. Cohn (1997) proposes a similar procedure as an extension
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to PSAS so it can handle such types of operators. Iterated procedures aimed at dealing with

nonlinearities of the observation operator are sometimes referred to as locally-iterated methods,

since the iterations are performed at a single time. Jazwinski (1970, Theorem 8.3) also presents

an iterative procedure that is aimed at correcting errors due to the dynamical linearizations re-

quired by the EKF. This latest procedure involves integrating the model with a newly estimated

trajectory at each iteration and for this reason it resembles a smoother procedure referred to as

the iterated linear �lter-smoother algorithm. Combining ideas of �ltering and smoothing leads

to the possibility of developing globally-iterated procedures in which the �lter analyses may

be revised by a backward-�lter integration within a certain time interval. Most these iterative

procedures are inspired by Newton-type methods for solving systems of nonlinear equations (see

Navon and Legler 1987, for a review of Newton-type methods).

Motivated by these methods we introduce here a procedure to use the retrospective analysis

and try to improve the overall GEOS IAU-based assimilation. At �rst, the algorithm is based

only on the lag-1 retrospective analyses. At any single time tk, when a lag-1 retrospective analysis

wa
kjk+1

(p) is available we can construct a model-space lag-1 IAU retrospective increment as

Æya
kjk+1(�) = �+[wa

kjk+1(p)]� yb
kjk�1(�) ; (23)

which is similar to (14), but is constructed using observations one step ahead of time tk . This

lag-1 retrospective increment can now be used to integrate the GCM over an IAU integration

period already covered before. This is illustrated schematically in Fig. 2. The diagram resembles

much the regular IAU procedure presented before in Fig. 1. In fact, the top part of the diagram,

above the horizontal dotted line, is identical to the regular IAU procedure. However, now at, say,

time t = 12Z we calculate a retrospective analysis by integrating the transformed PSAS solution

vector in (18) back in time using the adjoint operation (19a); this is represented in the diagram

by the south-westward pointing dashed arrow. A new PSAS-like linear system problem can be

solved as in (19b) with the corresponding update (19c); which is represented in the diagram by

the box tagged \Retro Ana". In the end, a lag-1 retrospective increment at t = 6Z is construct
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as in (23), and the GCM is integrated for 6 hours using this increment as the tendency term

in (9). From this point on, the procedure follows the regular IAU schematics until it is time

to process the observations at t = 18Z when the lag-1 retrospective analysis at t = 12Z can be

calculated and the whole cycle repeated. The �nal assimilated trajectory is represented, as in

Fig. 1, by the thick solid arrows. At a given analysis time, the relevant iterated PSAS analysis

is represented in the diagram as the analysis from the lowest PSAS box in a column of the

diagram (see thick vertical dashed lines).

Looking at the diagram in Fig. 2 we see that the retrospective-based iterated analysis

amounts to a considerable increase in computational requirements when compared with the

regular procedure in Fig. 1. Each iteration of the iterated analysis scheme requires one extra

9-hour GCM integration and two extra PSAS analyses. Such increased in the computational

cost can only be justi�ed if the procedure results in considerably improved analyses. If indeed

this procedure proves to be worth, its computational burden can be reduced by calculating some

of the steps in (19) at di�erent resolutions. Similarly, to the strategy of incremental 4D-var of

Courtier et al. (1994), we can for example integrate the adjoint of the tangent linear GCM in

(19a) at lower resolution than the actual model integration (9). Also, the retrospective PSAS-like

linear system (19b) can be solved at lower resolution than the regular linear system (11) solved

in the �rst step of PSAS. For that matter, the calculations in (19a) and (19b) do not even have to

be performed at the same resolution. Clearly, this type of approach to reduce computational cost

involves the development of additional interpolation operators and their corresponding adjoints.

Results obtained with full resolution tests will likely not translate equally to modi�cations of

the algorithm involving resolution changes. Still, only experimental tests will demonstrate the

feasibly and accuracy of such approach.

Independently of the IAU, in a linear optimal sense it can be shown that to feedback the lag-1

retrospective analysis at, say, tk�1 to calculate a revised �lter analysis at time tk does not amount
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to an improved �lter analysis. In this iterated procedure, an optimal analysis can be calculated

using the �rst-guess from the lag-1 retrospective analysis when the cross-covariance between

the revised �rst-guess and the observations are properly taken into account. In fact, since the

retrospective-based iterated analysis procedure here amounts to a modi�ed �ltering procedure

the optimal gains in this case are similar to the usual modi�ed �lter gains when the forecast

and observations are correlated (e.g., Jazwinski 1970, Example 7.5). Since in practice it would

be quite diÆcult to account for this cross-covariance, we choose to neglect the cross-covariance

terms all together.

4 GEOS experiments results

(a) Con�guration and experimental setup

The retrospective analysis procedures of the previous section were implemented as an ex-

tension to GEOSDAS. The retrospective portion of the GEOS software is compatible with the

�rst operational version of GOES, designed to support NASA's Earth Observing System mission

and its Terra satellite. We refer to this earlier operational version as GEOS-30 to avoid possible

confusion with the considerably upgraded version of GEOS-3 operational at the time of this

writing. The GEOS-30 GCM operates at a resolution of 1o latitude by 1o longitude and it has 48

vertical sigma levels, with a dynamical core much similar to that of Suarez and Takacs (1995).

At the synoptic hours, PSAS calculates analysis at a resolution of 2o latitude by 2:5o longitude

on 20 pressure levels. Details on the implementation of PSAS can be found in da Silva et al.

(1996), Guo et al. (1998), and Larson et al. (1998). And, as we have mentioned in the previous

section, GEOS-30 uses the IAU procedure of Bloom et al. (1996) to generate a time-continuous

state trajectory referred to as the assimilation. To simplify matters, the experiments performed

for the present article used both the GCM and PSAS at the coarse horizontal resolution of 4o

latitude by 5o longitude; the GCM and PSAS vertical resolutions were kept unchanged. Except
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for sea-wind satellite observations, all observation data types used in GEOS-30 are included in

our experiments. Conventional observations from ships, environment and drifting buoys, surface

stations, winds from pilot balloons, aircraft reports, and radiosonde stations are used. Cloud

track wind retrievals and TOVS geopotential height retrievals are used as well. Furthermore,

the Wentz (1997) SSM/I-derived total precipitable water retrievals are assimilated, though not

through PSAS but rather by using the method of Hou et al. (2000).

Four new components are required to implement the retrospective capability in GEOSDAS:

the adjoint of the tangent linear GCM; the additional PSAS-like operators involved in (19b);

the adjoint of the tangent linear operator (10) taking model-space variables into analysis-space

variables; and the adjoint of the tangent linear operator (13) taking analysis-space variables into

model-space variables. Presently, the adjoint of the GCM includes the hydrodynamics adjoint

and the adjoint of a simple di�usion scheme. No attempts to produce the adjoint of parts of

the model physical processes has been made. Most modi�cations required to PSAS were quite

cosmetics since they only required rearranging operators already available in the original PSAS

software. Some e�ort was devoted to derive the proper tangent linear and adjoint operators for

the transformations (10) and (13), particularly, because we striven to make sure that the back

and forth operations would render minimal error. Some of this work was done by hand, some

was done using the automatic di�erentiation tool of Giering and Kaminski (1998).

In the present article, only results for the lag-1 (6-hour) retrospective analysis are discussed.

The behavior and impact of the simplest possible implementation of an FLKS-based assimilation

scheme needs to be fully assessed and understood before engaging into experimentations with

higher lags. Furthermore, we focus on the mean overall impact of the retrospective analysis.

Therefore, leaving synoptic impact studies to future presentations. Since only the mean overall

impact is of interest, we simplify the experimental con�guration by updating the GCM trajectory

needed during the adjoint integrations with the frequency of the analyses, that is, we update
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the adjoint basic state only every 6 hours.

We compare the results of three experiments conducted over the period of January 1998.

To avoid possible di�erences due to spin-up issues, the experiments are actually started on 14

December 1997, but the results are ignored during this half-month period. Our �rst experiment

is taken as the control and it uses the reduced resolution GEOS-30 data assimilation system

mentioned above. The control is referred to as the CTL experiment. The second experiment,

referred to as the RA experiment, involves calculating lag-1 (6-hour) retrospective analyses for

the entire month of January 1998 using the background �elds and OMF time series of the

control experiment. The third, and �nal, experiment is aimed at evaluating the lag-1 (6-hour)

retrospective-based iterated analysis procedure introduced in the previous section, and it is

referred to as the RIA experiment.

Mainly, we evaluate the RA and RIA experiments by examining the statistics of their cor-

responding residuals time series. That is, depending on the case, we calculate time root-mean-

square (RMS) bias and standard deviation from the di�erences of the observations with either

the forecast, or the analysis, or the retrospective analysis, or the retrospective forecast (see be-

low). To ease comparisons, we grid the residuals over a 4o latitude by 5o longitude on the 20

pressure levels of the analysis space before calculating any statistics. Since during the course

of one month observations, particularly from certain instruments, can still be sporadic within a

grid-box we make sure that only grid-boxes containing 15 or more reports enter the calculation

of the corresponding statistic. In the discussion that follows, we concentrate on results obtained

in the troposphere.

(b) Evaluation of the 6-hour retrospective analysis

We start by comparing the results of the CTL and RA experiments using the set of ob-

servations assimilated in the CTL experiment. If everything works properly, and the 6-hour
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retrospective analyses are indeed an improvement over the regular control analyses we should

see that in some mean sense the RA observation-minus-analysis (OMA) residuals are reduced in

comparison to the OMA residuals of the control experiment. As a matter of fact, we can show

that in the linear optimal case,

Ef(wo
k �Hkw

a
kjk+1)(w

o
k �Hkw

a
kjk+1)

Tg < Ef(wo
k �Hkw

a
kjk)(w

o
k �Hkw

a
kjk)

Tg : (24)

Although there is no guarantee of this holding in general for the, suboptimal, nonlinear case

under study, we would like to see the extent to which this is so. In practice, to assess this

quantity we must take the usual ergodic assumption and replace the ensemble average by a

time average. Examination of the time RMS biases and standard deviations for the OMA

residuals when the analysis are either the regular �lter analyses of the CTL experiment or the

lag-1 retrospective analyses of the RA experiment has shown that they are virtually the same

(not shown). Therefore, this point of view we might be led to think that there is no payo� in

calculating lag-1 retrospective analyses.

Because of nonlinearities and suboptimalities in a practical system such as GEOS it is possible

that we may see bene�ts from the RA scheme by looking at quantities other than the OMA

residuals. If there is any value in the retrospective analyses, and indeed they correspond to a

better analyses than the regular (�lter) analyses, we should expect the former to have improved

predictive skills over the latter. We cannot expect this to hold true for any forecast length,

but it would be nice to see if it at least holds for predictions up to the time-lag period of

the retrospective analyses; 6 hours in the lag-1 case here. Hence, we can compare the OMF

residuals statistics when the forecasts are the regular �lter forecasts of the CTL experiment and

the so-called retrospective forecasts issued from the lag-1 retrospective analyses. Since the OMF

residuals from a regular GEOSDAS run, such as the CTL experiment, involve 6-hour forecasts

that are produced from partly integrating the GCM with the IAU forcing for 3 hours and partly

integrating the GCM for another 3 hours without the in
uence from the IAU tendencies (see Fig.

1), we must carefully use the retrospective analyses when constructing OMF residuals from them.
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To make a fair comparison, we calculate OMF residuals from the 6-hour retrospective analyses

following a forecasting procedure based on IAU. For each available retrospective analysis for

the entire month of January 1998 a retrospective forecast is issued following the the schematic

representation shown in Fig. 3. As illustrated in the �gure, the retrospective OMF residuals

at, say, 12Z are calculated by converting the 6Z retrospective analysis to the model space and

constructing the corresponding increment on the model space, following (23). This retrospective

analysis increment is used as a tendency term during a 6-hour GCM integration, started at 3Z.

At the end of the 6-hour integration the retrospective tendency term is turned o�, by setting

� = 0 in (9), and the model is left to run free for another 3 hours when the OMF residuals at

12Z can be calculated using the observations at the same time.

Using these retrospective forecasts, Fig. 4 shows the time RMS bias (top panels) and stan-

dard deviation (bottom panels) for the geopotential height OMF radiosondes residuals for the

CTL (solid curves) and RA (dashed curves) experiments averaged over the western (left) and

eastern (right) quadrants of the Northern Hemisphere, for latitudes higher than 20N. These

two domains are chosen because they represent the largest concentration of radiosondes in the

globe. We see from the top panels that, in the RMS bias sense, the forecasts from the lag-1

retrospective analyses correspond to a considerable improvement over the regular GEOSDAS

analyses. However, the bottom-left panel for the RMS standard deviations shows that the retro-

spective forecasts are considerably noisier than the regular forecasts over what is mostly North

America; results are roughly neutral over most of Europe and Asia, as seen from the bottom-

right panel. Figure 5 displays similar quantities but now for the zonal wind radiosondes OMF

residuals. Except in the Northwestern region, between pressure levels 700 mb to 400 mb, the

RMS bias for the zonal component of the zonal wind OMF radiosonde residuals are improved

when forecasts are issued from the lag-1 retrospective analyses. In this same region, the zonal

wind OMF standard deviations [panel (b.1)] shows a minor deterioration at levels below 400

mb, con�rming the deterioration seen in the OMF heights in Fig. 4b.1; minor improvement
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in the standard deviations are seem above 400 mb. Over the Northeastern region a minor but

consistent improvement is observed in both the RMS bias and standard deviation, as indicated

from the panels on the right.

The statistics of OMF residuals for other variables and other observing systems can also be

examined. Figure 6 shows the time RMS biases (top panels) and standard deviations (bottom

panels) for the geopotential height TOVS retrievals OMF residuals. Since TOVS provides global

coverage in the course of a single day, the spatial averages now cover the entire Northern Hemi-

sphere (left panels) and the entire Southern Hemisphere (right panels). We see considerable

improvement in the OMF biases and standard deviations from the retrospective forecast resid-

uals. Interestingly, the standard deviation results over the Northern Hemisphere [panel (b.1)]

contradict the deterioration observed in the geopotential heights of radiosondes OMF residuals

[panel (b.1) of Fig. 4]. We attribute this contradiction over North American to contradictions

between the geopotential height observations from the radiosondes and the TOVS retrievals

themselves and not to the retrospective analysis procedure.

Another quantity we have studied is simply the spatial average of the residuals time mean.

Though we expect considerable cancellation of errors in this quantity, it still serves as an indicator

of the overall behavior of the residuals and of the underlying procedure used to produce them.

Figure 7 shows the time mean OMF residuals for the CTL 6-hour �rst-guesses (forecasts) and the

lag-1 retrospective forecasts. The globally-averaged time means for geopotential height TOVS

retrievals and radiosondes OMF residuals are displayed in panels (a) and (b), respectively. We see

mostly a reduction in the time mean residuals when the retrospective forecasts are used instead

of the regular forecasts, with some overshooting at levels below 700 mb for the TOVS retrievals

residuals. The zonal and meridional components of the radiosondes wind OMF residuals are

displayed in panels (c) and (d), respectively, and again, we see an overall reduction when the

retrospective forecasts are used, with some overshooting of the mean meridional wind around

26



150 mb.

It seems fair to say that, overall, in the nonlinear suboptimal case of the GEOS application,

we see some bene�t in producing the 6-hour forecasts issued from the lag-1 retrospective analyses

over the regular GEOSDAS forecasts. This serves to indicate that there is some bene�t from

the RA scheme. This also serves as further motivation to use the iterated retrospective analysis

procedure proposed in the previous section since it makes direct use of these retrospective

forecasts (see Fig. 2).

(c) Evaluation of the 6-hour retrospective-based iterated analysis

We now evaluate the performance of the 6-hour (lag-1) retrospective-based iterated analysis

scheme of Fig. 2. We start by comparing the OMA residuals between the CTL and the RIA

experiments. Figure 8 shows the globally-averaged time RMS bias of geopotential heights from

TOVS retrievals and radiosondes OMA residuals [panels (a) and (b), respectively], and the same

quantity for the zonal and meridional components of the radiosondes winds [panels (c) and (d),

respectively]. Although small, we actually see improvement in the OMA residuals due to the

iterated analysis. To the extent that the ensemble mean can be replaced by the time RMS

mean the inequality (24) holds when wa
kjk+1 corresponds to the iterated analysis, at least in a

globally-averaged sense. Another proxy to (24) would be the time RMS standard deviations.

We have examined this quantity for the OMA of both the CTL and RIA experiments and have

found it to change very insigni�cantly, sometimes in favor of the RIA scheme, and other times

with the CTL experiment results being slightly less noisy (not shown). The results in the time

RMS standard deviations can however be made neutral or favor the RIA procedure by properly

re-tuning the PSAS error statistics, but this is outside the scope of the present article.

Even though small, the improvement due to the RIA scheme seen in Fig. 8 is also visible di-

rectly from the time series of the globally-averaged OMA residuals RMS bias. Furthermore, this
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improvement is seen not only for TOVS retrievals and radiosondes OMA residuals, but for other

instruments as well. An illustration is presented in Figure 9 by displaying the globally-averaged

RMS bias of the zonal (top) and meridional (bottom) cloud-track winds OMA residuals at 200

mb. The thin curves correspond to the OMA residual times series from the CTL experiment

and the thick curves are for the RIA experiment. The global reduction in the RMS bias can be

as much as 1 m s�1 at certain times. This con�rms the reduction in the globally-averaged time

RMS bias of the radiosondes OMA residuals observed in panels (c) and (d) of Fig. 8 around the

same pressure level.

Frequently, changes made to assimilation systems are evaluated and validated by making

comparisons with independent observations, that is, observations which are not assimilated by

the system. There are certainly plenty of reasons to take such comparisons and validations

with caution as independent observations may contain errors of their own. Moreover, it is often

diÆcult to �nd independent data sources that are not assimilated, particularly those providing

global coverage. Data withholding experiments are commonly used to assess the impact of a

particular observing system and can also be used to evaluate the impact of system changes (e.g.,

Bouttier and Kelly 2001, and references therein). Here we choose to verify the change in the 200

mb winds of Figs. 8 and 9 by using wind observations from the Global Aircraft Data Set (GADS)

of the British Airways Boeing 747-400 
ights, and by using further wind aircraft observations

from ACARS (Aircraft Communications, Addressing, and Reporting System). Neither of these

observation types are used in our assimilation experiments and therefore provide for legitimately

independent checks.

The GADS wind observations have been shown by Rukhovets et al. (1998) to be of potential

value to GEOSDAS if used regularly in the PSAS analyses. This suggests that any changes

made to GEOS that show its analyses to draw more closely to these observations, even when

they are not assimilated, should be considered an improvement. With that in mind, we used a
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dataset for the January 1998 GADS observations to construct OMA residuals for the analyses of

both the CTL and RIA experiments. Figure 10 shows maps of the time RMS standard deviation

of the zonal (top) and meridional (bottom) GADS winds OMA gridded residuals for the RIA

experiment subtracted by the similar quantity for the CTL experiment. Essentially, with this

di�erencing the color scheme in the �gure indicates that blue (negative values) corresponds to

improvements due to the RIA procedure. Though we see areas where the impact of RIA is

neutral or negative, in most places it seems that the analyses of the RIA experiment are closer

to the GADS observations than the analyses of the CTL experiment.

Similarly, Fig. 11 shows the di�erences shown in Fig. 10, but now for the ACARS wind OMA

residuals. The maps are focused over North America since that is where the majority of the

observations are concentrated in this case. Relatively neutral results are seen in the meridional

component of the wind (bottom map), but undeniable improvement due to the RIA scheme is

seen in the zonal component of the wind (top map).

Ultimately, as emphasized by CST94, one of the main motivations for performing retrospec-

tive analysis is to produce the best possible dataset for climate research. As such, it is important

to examine the climatological impact of changes induced by the RIA procedure. Since the re-

sults of the experiments discussed here are still preliminary we do not want to duel too much

on the signi�cance of performing RA and RIA for the purposes of improving the climatological

aspects of the assimilation strategy | recall that our experiments are for a very low resolution

version of GEOS-30. Still, we cannot avoid looking more closely to see what is the climatologi-

cal impact of changes such as those observed in the wind �eld. In fact, the signi�cance of the

RIA scheme impact to the upper level winds can be seen more clearly by looking directly at

the monthly-averaged winds. For instance, Fig. 12 shows the zonally-averaged, January 1998

monthly mean, meridional wind (top) for the RIA experiment and its di�erence from the CTL

experiment (bottom). The bottom panel, shows a distinct tropical wind strengthening at the
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upper levels and a slight weakening at the mid- to lower levels when the RIA scheme is used.

This change in the tropical meridional wind is bound to a�ect the tropical circulation, namely,

the Hadley circulation. To see the meridional circulation, we calculate the mass stream function

 by integrating the zonally-averaged monthly mean meridional wind using the expression

 =
2�R cos�

g

Z
[v] dp ; (25)

where v stands for the meridional wind, the operator � represents the time mean, the operator [�]

represents for the zonal average, R is the mean radius of the earth, g is the gravity constant, � is

the latitude, and the integral is taken downward from the pressure of 10 mb to the surface. Figure

13 shows the January 1998 mass stream function for both the CTL (top) and RIA (bottom)

experiments. We see a clear enhancement of the Hadley circulation when the RIA procedure is

used with the mass stream function peaking at about 16� 1010 kg s�1 in contrast to the weaker

peak of 12� 1010 kg s�1 for the circulation of the CTL experiment. Although we do not expect

the circulation pattern to be completely well represented at the coarse resolution we use in our

experiments here, we must say that the circulation obtained with the RIA procedure looks very

close to the circulation pattern of the full resolution, 1o latitude by 1o longitude, GEOSDAS

(not shown), with its tropical circulation peaking at 18� 1010 kg s�1.

As we have stated above, the main motivation for, say, the RIA procedure is to obtain overall

improved assimilated �elds. Results such as the one in Fig. 13 seem to suggest that the RIA

scheme has the potential for improving climatologically relevant features. Still, it would be hard

to convince any operational group to apply an FLKS-based scheme without showing that it

improves medium-range forecast skills or at least that it leaves the skills essentially unchanged.

Therefore, we compared the skills of 5-day forecasts when the forecasts are issued from the

CTL and the RIA analyzed �elds. Notice that these are now regular forecasts, instead of the

IAU-based forecasts obtained by following the schematic in Fig. 3. Since our experiments are

con�ned to the single month of January 1998, there are so many independent samples we can
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obtained over this period. We issued 5-day forecasts starting from 2 January 1998 every 3

days until 26 January 1998, to have a small sample of 9 5-day forecasts. We veri�ed that the

overall conclusions and skills calculated from this small ensemble were not a�ected by the size

of the sample by reducing the size of the sample further down to 5 members and performing

cross-validation. As a measure of forecast skill we calculated anomaly correlations and RMS

errors [e.g., see von Storch and Zwiers 1999, Eqs. (18.17) and (18.18)]. Both the CTL and RIA

forecasts were evaluated against their own analyses. Furthermore, anomalies were calculated

using a 10 year climatology obtained from the ECMWF operational analyses for the period of

1988 to 1997, and interpolated to the resolution of our experiments. We should say that the

scores shown below are not representative of the actual scores of the operational GEOS-3 data

assimilation system.

Figure 14 shows the anomaly correlations for the 500 mb geopotential height �eld calculated

over four di�erent regions for the 5-day forecasts issued from the CTL (solid curves) and RIA

(dashed curves) analyses. We see that over the Northern Hemisphere extra tropics (top-left

panel) forecasts from RIA are of similar skills as forecasts from the control analyses, at least up

to day 4. In North America (bottom-left panel) the forecast skills from RIA analyses show some

deterioration when compared against the skills of the regular forecasts. As when studying the

OMF obtained from the retrospective forecast using the RA analyses, this deterioration over

North America might be related to contradictions in the observing system over this area. In fact,

this seems to be an issue con�ned to this region since, for example, over the Southern Hemisphere

(top-right panel) and Europe (bottom-right panel) we actually see some improvement in skills

when the 5-day forecasts are issued from the RIA analyses.

As a �nal illustration along the lines of comparing the skills of 5-day forecast from the

CTL and RIA experiments we examine the RMS error of the wind �elds at 850 mb and 200

mb. Figure 15 displays these quantities averaged over the tropics for both the zonal (right
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panel) and meridional (left panels) components of the wind. The RMS errors at 850 mb are

virtually identical, while at 200 mb we see a slight improvement when using forecasts from the

analyses of the RIA experiment. Although these are small improvements they serve as further

con�rmation of what we have seen previously when comparing the analyses of the CTL and the

RIA experiments with independent observations.

5 Conclusions

The purpose of atmospheric data assimilation is to produce the best possible estimate of the

the state of the atmosphere at any single time. In theory this can be accomplished by using

smoothing techniques since they are aimed at maximizing data usage through inclusion of ob-

servations in the past, present, and future of the time an estimate is sought for. In the context

of sequential data assimilation, the �xed-lag Kalman smoother (FLKS) provides a particularly

attractive framework. The FLKS formulation is fully based on the underlying �ltering strategy.

Its standard formulation requires no error covariance information beyond what is require by the

�ltering approach. Indeed, the FLKS can be separated into a �lter portion and a retrospec-

tive analysis (RA) portion and this separation renders practical implementation of FLKS-based

procedures a relatively simple extension of an already existing (�lter) analysis scheme.

Two di�erent types of retrospective procedures are investigated in the present work. The

�rst is the original FLKS-based formulation referred to simply as RA. The second is an iterated

version of the original algorithm, referred to as RIA, in which lag-1 retrospective analyses are

used to revise a previously calculated �lter analysis. Both these procedure are implemented as

an extension of the Goddard Earth Observing System (GEOS) data assimilation system. The

new components required for implementing a retrospective capability in GEOS are the adjoint

of the tangent linear of the GEOS general circulation model (GCM); the rearrangement of a few

operators already available in the physical-space statistical analysis system (PSAS) of GEOS;
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and the development of the tangent linear and adjoint operators responsible for transforming

model-space variables into analysis-space variables back and forth as well as the adjoint of the

operator transforming analysis-space variables into observables. The adjoint of the tangent

linear GCM used in the present work includes the adjoint of the tangent linear hydrodynamics

and the adjoint of a simple di�usion term; the adjoint of the physics is not included.

Only results for the 6-hour, lag-1, retrospective analysis are studied here. Although close

examination of the observation-minus-analysis (OMA) residuals seem to suggest a rather neutral

overall bene�t from the lag-1 retrospective analysis, we see improved skills in the 6-hour forecasts

issued from these lag-1 retrospective analyses. That is, the so-called retrospective forecasts are

a closer match to the observations than the regular GEOSDAS forecasts. This is not to be taken

as a surprising result but rather as veri�cation that the RA scheme works. This improved 6-hour

skill motivates the investigation of the RIA scheme since this scheme makes explicit use of the

retrospective forecasts. Evaluation of the analyses from the RIA procedure indicates them to be

closer to the observations than the usual PSAS analyses. The OMA residuals for independent

observations not used during the assimilation further con�rms some of the improvements due

to the RIA scheme. More signi�cant improvements are seen when examining climatologically

relevant �elds such as the mass stream function describing the meridional wind circulation.

Lastly, anomaly correlations and root-mean-square errors from a small sample of 5-day forecasts

indicate a mild improvement in skill scores when analyses from the RIA procedure are used for

the 5-day forecasts instead of the regular GEOS analyses. Although the skill scores are not

improved everywhere in the globe, there are improvements nonetheless.

Much work remains to be done to show that either RA or RIA are a �t extension to the usual

PSAS analysis procedure of GEOS. The present work used only a reduced resolution version of

GEOS and a study with a higher resolution version is necessary. Just as in four-dimensional

variational procedures, one of the main feature of the retrospective analysis is its capability
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to incorporate backward-propagated information into the retrospective analyses via the model

adjoint. This should, in particular, result in improved representation of synoptically relevant

atmospheric events. This has not been explored in the present work and should serve as material

for future studies. Furthermore, more and more it becomes evident that instead of windowing

the observations in 6-hour batches, as it is commonly done in the 3D-var system, much can be

gained by assimilating observations at their proper time, as it is done in 4D-var. For a PSAS-like

system the rapid update cycle strategy is more readily implementable for this purpose and it

will be important to investigate the impact of retrospective analysis in this context. Whether

these studies will be done in the context of GEOS or in the context of the newly developed

�nite-volume data assimilation system in our group is still to be decided. In any case, we feel

that the present work serves to justify the development of retrospective analysis capabilities in

this new assimilation system.
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Appendix A

Retrospective gains as a function of �lter variables only

The purpose of this appendix is to derive the alternative expression (16) for the retrospective

gain matrix (see also Zhu et al. 1999). Using (6) and (7) with ` = 1; 2; :::; j we have

Kk�1jk = Pa
k�1jk�1A

T
k;k�1H

T
k�

�1
k

= P
f

k�1jk�2

�
(I�Kk�1jk�1Hk�1)

TAT
k;k�1

�
HT

k�
�1
k ; (A.1a)
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This can be written generally as in (16) or, making explicit use of (1c) for the �lter gain matrix,

we can also write

Kk�`jk = P
f

k�`jk�`�1

2
4 kY
j=k�`+1

(I�HT
j�1�

�1
j�1Hj�1P

f

j�1jj�2
)AT

j;j�1

3
5HT

k �
�1
k ; (A.2)

which shows that, as pointed out in the main text, the retrospective gains only depend on �lter

quantities. Todling et al. (1998) have pointed out that the retrospective portion of the FLKS

implicitly accounts for model error. The equation above serves to re-emphasize that remark as

it shows that the retrospective gains depend directly on the forecast error covariance matrix,

which is the �lter quantity containing model error covariance information.
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(a.1) (a.2)

(b.1) (b.2)

Figure 4: Time root-mean-square (RMS) bias (panels a) and standard deviation (panels b) for

the geopotential height radiosondes gridded OMF residuals for the control experiment (solid

curves) and for when forecasts are calculated from the lag-1 retrospective analyses from the RA

experiment (dashed curves). Panels 1 on the left are for the Northwestern quadrant of the globe

de�ned between longitudes 180W-0 and between latitudes 20N-90N; panels 2 on the right are

for the Northeastern quadrant of the globe between longitudes 0-180E and latitudes 20N-90N.

Units are in 1 m, and the scales in the abscissa is properly adjusted in each panel.
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(a.1) (a.2)

(b.1) (b.1)

Figure 5: As in Fig. 4, but for zonal wind radiosondes OMF residuals. Units are now in 1 m

s�1.
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(a.1) (a.2)

(b.1) (b.2)

Figure 6: Similar to Fig. 4, but for TOVS geopotential heights retrievals OMF residuals and

somewhat di�erent regions: left panels are now for the Northern Hemisphere; right panels are

now for the Southern Hemisphere.
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(a) (b)

(c) (d)

Figure 7: Globally-averaged time mean OMF residuals for the CTL experiment (solid curves)

and for the retrospective forecasts (dashed curves). Panel (a) is for the geopotential height

TOVS retrievals residuals; panels (b)-(d) are for the geopotential height, zonal wind, meridional

wind radiosondes residuals, respectively.
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(a) (b)

(c) (d)

Figure 8: Globally-averaged time RMS bias of observation-minus-analysis (OMA) residuals for

analysis of CTL experiment (solid curves) and retrospective assimilation from RIA experiment.

Panels are arranged as in Fig. 7: panel (a) is for the geopotential height TOVS retrievals

residuals; panels (b)-(d) are for the geopotential height, zonal wind, meridional wind radiosondes

residuals, respectively.
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Figure 9: Time series of the glabally avaraged RMS bias for the zonal (top) and meridional

(bottom) component of the cloud-track winds OMA residuals at 200 mb. The thin curves are

for the CTL experiment, and the thick curves are for the RIA experiment. Units are in 1 m s�1.
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Figure 12: January 1998 zonally-averaged meridional wind for the RIA experiment (top) and

its di�erence from the zonally-averaged meridional wind of the CTL experiment (bottom). Unit

are in 1 m s�1
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Figure 13: Mass stream function for CTL (top) and RIA (bottom) experiments. Units are in

1010 kg s�1.
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Figure 14: Anomaly correlations for 500 mb geopotential heights for CTL (solid curves) and

RIA (dashed curves) experiments.
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Figure 15: Root-mean-square error from forecast skill study for the zonal (left) and meridional

(right) components of the wind at 200 mb (top) and 850 mb (bottom). Solid curves are for CTL

experiment; dashed curves are for RIA experiment.
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