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Abstract

Stock price fluctuations result from interactions between economic

agents. Modelling the financial world as a complex self-organizing

system is thus natural. To keep tractability, obtain theoretical re-

sults and develop our intuition about complexity economics, we have

constructed a very simple artificial stock market. Despite its necessary

over-simplification, our model is rich enough to offer interesting results

about limit behavior and suggests monetary policies. Our multi-agent

model also exhibits real world features that more traditional financial

models usually fail to explain or consider.
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1 Introduction

First, it is natural to ask the following question. Why shall we try to develop

a new methodology? Indeed, there already exist skillful models where agents

maximize their expected utility by forming rational expectations about fu-

ture outcomes based on past observations of the economy in equilibrium1.

But what if the market is new or perturbed by external factors? Macroeco-

nomic and financial external factors are shocks that might put the economy

out of equilibrium. Evolutionary models allow studying how a composite

system reacts to such disturbances. For example, it becomes possible to

study the dynamics of the economy in response to a sequence of monetary

policies. In this context, evolutionary game theory can strongly contribute

to our economic understanding.

We have constructed a simplistic model. Three risk-averse economic agents

interact in our artificial market. An agent can be any financial institution

or a single investor. Time is discrete. There are two kinds of assets: a

stock and zero coupon bonds earning a riskless rate of interest r. Bonds

are issued at each time step and are of maturity one period. The role of

the bonds is similar to the one of cash paying interest rates in saving ac-

counts. For convenience, we adopt the following convention: all bonds have

the same time zero value denoted by B0. Buying a bond at time tk thus

represents a cost at time tk of Bk = B0(1 + r)tk and a payoff at time tk+1

of Bk+1 = B0(1 + r)tk+1 . At each time step, an agent can own bonds only

or stocks only. Agents simply seek the maximization of their wealth: there

is no consumption.

1new classical school
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The state of the composite system, at a given time, can be represented

as in figure 1. The x−axis corresponds to the proportion of wealth that an

agent invests in the stock. The wealth is given by the y−component. With

our restrictions, an agent can only be in one of two states:

- state |0〉: agent no i owns bonds only (x = 0, y ≥ 0),

- state |1〉: agent no i owns stocks only (x = 1, y ≥ 0).

The quantum mechanical formalism is only used as a convenient mathemat-

ical tool. In quantum game theory, players can adopt quantum strategies

usually more efficient than classical mixed strategies (e.g., Lee and Johnson,

2003). We do not consider quantum strategies in this article.

Figure 1: the economic space

There are six configurations of interest distinguishing all possible forms of

allocations (figure 2). For example, in configuration A, agents no 1 and

no 2 own bonds, agent no 3 owns stocks. The wealths could be differently

configured. Stock price fluctuations result from transitions from one config-

uration to another. We do not consider the two static configurations where

all agents own bonds only or stocks only. Indeed, for all agents to be in the
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state |0〉 (respectively |1〉), it must be so all the time.

Figure 2: the six configurations

It is important to notice that all transitions are not feasible. If our simplified

economy is in configuration C at time tk, then configuration A cannot be

attained at time tk+1. Indeed, there is no potential buyer of stock shares to

allow agent no 2 moving from the state |1〉 to the state |0〉. Feasible transi-

tions are schematized in figure 3: if the system is in configuration A at time

tk, then it can remain in configuration A or switch to the configurations B,

D, or F at time tk+1.

When a transition occurs, the budget constraints and conservation laws al-

low calculating the new stock price and allocations. Assume for example

that our simplified economy is in configuration A at time tk and in configu-
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Figure 3: feasible transitions

ration F at time tk+1. We use the following notations:

Sk denotes the stock price at time tk

a
(i)
k is the number of stock shares owned by agent no i at time tk

b
(i)
k is the number of bond shares owned by agent no i at time tk

W
(i)
k represents agent no i’s wealth at time tk

If the system is in configuration A at time tk, then the respective wealths

are: 
W

(1)
k = b

(1)
k B0(1 + r)tk

W
(2)
k = b

(2)
k B0(1 + r)tk

W
(3)
k = a

(3)
k Sk

(1)

The budget constraints and conservation law are:

• Our economy being closed, the total number of stock shares remain

constant:

a
(1)
k+1 + a

(2)
k+1 = a

(3)
k (2)

• Agents no 1 and no 2 buy stocks from the earnings of selling bonds:

b
(1)
k B0(1 + r)tk+1 = a

(1)
k+1Sk+1 (3)

b
(2)
k B0(1 + r)tk+1 = a

(2)
k+1Sk+1 (4)
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• Agent no 3 buys bonds from the earnings of selling stocks:

a
(3)
k Sk+1 = b

(3)
k+1B0(1 + r)tk+1 (5)

The stock price at time tk+1 is thus:

Sk+1 =
b
(1)
k + b

(2)
k

a
(3)
k

B0(1 + r)tk+1 (6)

and the new wealths are:

W
(1)
k+1 =

(
b
(1)
k

b
(1)
k

+b
(2)
k

a
(3)
k

)
Sk+1

W
(2)
k+1 =

(
b
(2)
k

b
(1)
k

+b
(2)
k

a
(3)
k

)
Sk+1

W
(3)
k+1 = (b(1)

k + b
(2)
k )B0(1 + r)tk+1

(7)

Similar calculations can be carried for all feasible transitions. To simplify, we

can form two classes of configurations. For the first class, two agents are in

the state |0〉 and one agent is in the state |1〉. The first class thus regroups

the configurations A, B and D. The remaining configurations belong to

the second class. It is sufficient to consider transitions occurring from one

configuration of each class to the respective attainable configurations. The

other cases are obtained by permutations of the agents.

2 How do transitions occur?

As in game theory, agents adopt mixed strategies constructed from the two

pure strategies:

- hold bonds if already own them, otherwise try to trade,

- hold stocks if already own them, otherwise try to trade.
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Strategies can be modelled with two special orthogonal matrices R (Remain)

and C (Change) defined as:

R =

 1 0

0 1

 and C =

 0 1

−1 0

 (8)

Recall that a square matrix U of dimension n is a unitary matrix if:

U †U = In (9)

where

 U † represents the conjugate transpose of U

In is the n-dimensional identity matrix

The above unitary operators transform collapsed wave functions as sug-

gested by their names:

C |0〉 = C

 1

0

 =

 0

−1

 = −|1〉 (10)

C |1〉 = C

 0

1

 =

 1

0

 = |0〉 (11)

And trivially, R |0〉 = |0〉 and R|1〉 = |1〉.

Let p(i)
0,k (respectively p

(i)
1,k) denote agent no i’s probability to play the first

(respectively second) pure strategy at time tk. Naturally, p(i)
0,k + p

(i)
1,k = 1.

Assume that agent no i is in the state |0〉 at time tk and adopts the mixed

strategy:

U
(i)
k =

√
p
(i)
0,k R+

√
p
(i)
1,k C (12)

It is straightforward to check that U (i)
k is a unitary operator. Agent no i’s

wave function then becomes at time tk+1:

|ψ(i)
k+1〉 = (

√
p
(i)
0,k R+

√
p
(i)
1,k C)|0〉

=
√
p
(i)
0,k |0〉 −

√
p
(i)
1,k |1〉

(13)
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In other words, agent no i is in the state |0〉 (respectively in the state |1〉)

with a probability p(i)
0,k (respectively p(i)

1,k).

The state of the composite system at time tk+1 is given by the Kronecker

tensor product ⊗:

|ψ(1)
k+1〉 ⊗ |ψ(2)

k+1〉 ⊗ |ψ(3)
k+1〉 = (U (1)

k |ψ(1)
k 〉)⊗ (U (2)

k |ψ(2)
k 〉)⊗ (U (3)

k |ψ(3)
k 〉) (14)

where |ψ(i)
k 〉, for i ∈ {1, 2, 3}, are collapsed wave functions (|ψ(i)

k 〉 = |0〉 or

|ψ(i)
k 〉 = |1〉). The Kronecker tensor product ⊗ of two vectors x and y is the

larger vector formed from all possible products of the elements of x with

those of y. The elements are arranged in the following order:



x1

x2

...

xn


⊗



y1

y2

...

yp


=



x1y1

x1y2

...

x1yp

...

xnyp


(15)

At time tk+1, offers for potential trades or refusals are made by the agents.

If a trade occurs, portfolio allocations are modified. Otherwise, they remain

the same as at time tk. In both cases, portfolio allocations are observed at

time tk+1. In other words, the individual wave functions |ψ(i)
k+1〉 collapse to

one of the two pure states |0〉 or |1〉. The components of |ψ(1)
k+1〉 ⊗ |ψ(2)

k+1〉 ⊗

|ψ(3)
k+1〉 give the probabilities of occurrence of each configuration at time tk+1.

The probabilities associated to non-feasible transitions are naturally added

to the probability that the system remains in its present configuration.

To complete the description of our artificial stock market, we now explain
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how agents choose their mixed strategies p(i)
0,k. Replicator dynamics provide

the basis for realistic behavioral rules (Canning, 1992):

“A more intuitively appealing approach is to assume that agents

follow behavioral rules that are less complex than full Bayesian

learning. A behavioral rule should tell the agent what actions to

take, and how to change these actions in the light of experience.”

Replicator dynamics originated in the field of evolutionary biology. They

have recently become very popular among evolutionary game theorists (e.g.,

Fudenberg and Levine, 1998, Samuelson, 1997). In their discrete version,

the replicator equations can be expressed as:

p
(i)
0,k+1 = p

(i)
0,k

{
1 +

γ∆t [u(i)
k − u

(i)
k ]

1 + γ∆t u(i)
k

}
(16)

where

γ is a learning rate

∆t = tk+1 − tk represents the time interval between two potential trades

u
(i)
k is the payoff to using the first pure strategy

u
(i)
k is the average expected payoff

Learning is myopic and local: the probability of adopting the first pure

strategy is directly related to how well the strategy has been doing in the

past.

Agent no i’s payoff at time tk+1 is defined as the discounted increase of

wealth:

P
(i)
k+1 =

W
(i)
k+1

(1 + r)tk+1
−

W
(i)
k

(1 + r)tk
(17)

We can easily calculate the payoffs associated to each feasible transition.
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For example, if the system is in configuration A at time tk, then the payoff

matrices are:

• If agent no 3 adopts the first pure strategy:

agent no 2

1st 2nd

agent no 1 1st
(
0, 0,−a

(3)
k S∗

k

(
1− 1

(1+r)tk+1−tk

))
(0, 0, b

(2)
k B0 − a

(3)
k S∗

k)

2nd (0, 0, b
(1)
k B0 − a

(3)
k S∗

k) (0, 0, (b
(1)
k + b

(2)
k )B0 − a

(3)
k S∗

k)

• If agent no 3 adopts the second pure strategy:

agent no 2

1st 2nd

agent no 1 1st
(
0, 0,−a

(3)
k S∗

k

(
1− 1

(1+r)tk+1−tk

)) (
0, 0,−a

(3)
k S∗

k

(
1− 1

(1+r)tk+1−tk

))
2nd

(
0, 0,−a

(3)
k S∗

k

(
1− 1

(1+r)tk+1−tk

)) (
0, 0,−a

(3)
k S∗

k

(
1− 1

(1+r)tk+1−tk

))

We notice that the payoff to buying stocks is zero. However, it is easy to

check that owning stocks for several periods can be a winning strategy. Sup-

pose for example that the composite system is in configuration A at time tk.

If all agents participate in a trade at time tk+1, then the system switches to

configuration F and the stock price and allocations become:

Sk+1 = b
(1)
k

+b
(2)
k

a
(3)
k

B0(1 + r)tk+1

b
(1)
k+1 = b

(2)
k+1 = 0 b

(3)
k+1 = b

(1)
k + b

(2)
k

a
(1)
k+1 = b

(1)
k

b
(1)
k

+b
(2)
k

a
(3)
k a

(2)
k+1 = b

(2)
k

b
(1)
k

+b
(2)
k

a
(3)
k a

(3)
k+1 = 0

(18)

If agent no 1 decides to keep the current portfolio (stocks only) for a second

period: a(1)
k+2 = a

(1)
k+1, and if agent no 2 and no 3 participate in a trade at
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time tk+2, then the stock price Sk+2 is:

Sk+2 =
b
(3)
k+1

a
(2)
k+1

B0(1 + r)tk+2 =
(b(1)

k + b
(2)
k )2

b
(2)
k a

(3)
k

B0(1 + r)tk+2 (19)

Agent no 1’s wealth at time tk+2 is thus:

W
(1)
k+2 = a

(1)
k+2Sk+2 =

b
(1)
k

b
(2)
k

(b(1)k + b
(2)
k )B0(1 + r)tk+2 (20)

Focusing on these two periods only and assuming the above sequence of

events, having bought stocks at time tk+1 and kept them at time tk+2 makes

a better strategy for agent no 1 than always owning bonds. Such a strategy

indeed induces greater wealth:

b
(1)
k

b
(2)
k

(b(1)
k + b

(2)
k )B0(1 + r)tk+2 ≥ b

(1)
k B0(1 + r)tk+2 (21)

From the replicator dynamics, an agent who experiences such a winning

strategy is more likely to own stocks in the future. As we will discuss later,

there are other reasons why stocks might be attractive.

Finally, to make sure that the discrete dynamic equations indeed provide

probabilities, that is to say:

∀k ∈ N : 0 ≤ p
(i)
0,k ≤ 1 (22)

we impose on γ∆t the constraint:

γ∆t (
3∑

i=1

a
(i)
0 )M < 1 (23)

where M is an upper-bound for the discounted stock price. If tx denotes

the first time at which two agents own stocks, then M can be defined as

(Montin, 2004):

M = max

S0,

∑3
i=1 b

(i)
0

min{i|a(i)
x 6=0}{a

(i)
x }

B0

 (24)
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3 Stochastic equilibria

“For dynamic economic models, an equilibrium (or steady state)

is defined to be a point in the state space that is stationary under

the period to period transition rule. In the case of stochastic

economies, a state cannot be stationary in the same sense as that

of deterministic models, given that shocks continue to disturb

activity in each period. Instead a steady state must be viewed

as a situation where the probabilistic laws that govern the state

variables cease to change over time (Stachurski).”

The state sk of the composite system at time tk is completely described by

the following random vector:

sk = (xk, p
(1)
0,k, p

(2)
0,k, p

(3)
0,k, a

(1)
k , a

(2)
k , a

(3)
k , b

(1)
k , b

(2)
k , b

(3)
k , S∗k) (25)

where xk equals A, B, C, D, E or F depending on the present configuration

at time tk and S∗k denotes the discounted stock price at time tk. Let’s call

Σ the state space. By construction:

Σ ⊂ {a, · · · , F} × [0, 1]3 × [0,
3∑

i=1

a
(i)
0 ]3 × [0,

3∑
i=1

b
(i)
0 ]3 × [0,M ] (26)

We consider the square metric ρ on the state space Σ:

ρ(u,v) = max
i
{di(ui, vi)} (27)

The metric chosen for the first dimension induces the discrete topology:

d1(u1, v1) = 1 if u1 6= v1

= 0 if u1 = v1

(28)

The usual distance on R is used for the other dimensions. We complete the

state space Σ with its limit points so that it is compact. Let Σ denote the
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Borel σ−field of Σ.

Agents face the following set of events:

e1 = configuration A is present at the following time step
...

e6 = configuration F is present at the following time step

Let E = {e1, · · · , e6} be the space of events and E be its power set.

The stochastic kernel Q : Σ × E → [0, 1] gives the probability Q(s,A) of

realizing the event A ∈ E given that the current state is s ∈ Σ.

The mapping θ : Σ×E → Σ specifies which state succeeds: sk+1 = θ(sk, ei).

We could write explicitly Q and θ (Montin, 2004). With the above defini-

tions, it is easy to prove that our simplified economy is a random dynamical

system (Futia, 1982). As such, the function P : Σ×Σ → [0, 1] defined by:

P (s,A) = Q(s, (θ−1A)s) (29)

where (θ−1A)s = {e ∈ E | θ(s, e) ∈ A} is the section of Imθ ∩ A determined

by s, is a transition probability. With our choice of state representation, our

dynamic economy is thus a discrete-time Markov process.

The n−step transition probability Pn(s,A) is defined recursively:

P 0(s,A) =

 1 if s ∈ A

0 otherwise
Pn(s,A) =

∫
Σ
Pn−1(s, dt)P (t, A) (30)

Let B(Σ) denote the set of all bounded, Σ−measurable, real-valued func-

tions on Σ. B(Σ) is a Banach space under the sup norm: ‖f‖ = sups∈Σ |f(s)|.

The Markov operator associated to the transition probability P is the con-

tinuous linear transformation T : B(Σ) → B(Σ) defined by:

(T f)(s) =
∫
Σ
f(t)P (s, dt) (31)
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Notice that: ‖T‖ = sup‖f‖≤1 ‖T f‖ = 1.

By isometric isomorphism (Dunford and Schwartz, 1957), we can define the

adjoint

T ∗ : ba(Σ) → ba(Σ) by:

∀A ∈ Σ, (T ∗λ)(A) =
∫
Σ
P (s,A)λ(ds) (32)

where ba(Σ) denotes the Banach space of all bounded finitely additive set

functions λ under the total variation norm. Notice that T ∗ maps probabili-

ties into probabilities.

More generally, the nth iterate satisfies: [(T ∗)nλ](A) =
∫
Σ P

n(s,A)λ(ds).

By definition, an invariant probability measure λ, for a transition proba-

bility P , satisfies:

∀A ∈ Σ :
∫
Σ
P (s,A)λ(ds) = λ(A) (33)

In other words, λ is a fixed point of the adjoint operator T ∗.

Our state space Σ being compact, the Markov operator T is tight. More-

over, T satisfies the Feller property, that is to say that Tf is continuous and

bounded whenever f is. We deduce from these two properties the existence

of at least one invariant probability measure λ. To reach stronger results,

we adopt Canning’s key behavioral assumption (Canning, 1992):

“Agents sometimes make mistakes, choosing an action that is

independent of their history. This condition implies that the

empirical distribution of outcomes in the model converges to a

unique limit distribution.”

Allowing agents to make mistakes naturally makes our model more realistic

as well. Notice that the word mistake could also encompass innovative
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strategies or overlapping generation models. At each time step:

- with a probability p, agent no i makes a mistake and adopts the first

pure strategy with the initial probability I(i) = p
(i)
0,0,

- with a probability (1− p), agent no i plays according to the probabil-

ities obtained from the replicator dynamic equations.

At this point, we need to enlarge the space of events to take into consid-

eration possible mistakes. Let Tp denote the Markov operator when agents

make mistakes. Using Doeblin’s condition, we can show that Tp is quasi-

compact.

Moreover, the state s = (A, I(1), I(2), I(3), 0, 0, a(3), b(1), b(2), 0, b(1)

a(3)B0) satis-

fies the generalized uniqueness criterion: for any integer k ≥ 1, any state

s ∈ Σ and any neighborhood U of s, there exits an integer n such that

Pnk(s, U) > 0.

By allowing agents to make mistakes, we have given a special role to the

state s (and to other states of the same form). Indeed, if the composite sys-

tem is in an arbitrary state sk at time tk, then the state s will be reached at

time tk+3 with a strictly positive probability independent of sk. The proofs

of the above two properties rely on this remark.

From the above, we conclude that:

- there exists a unique invariant probability measure λp,

- the sequence of probability measures {(T ∗
p )nµ}, for any initial proba-

bility measure µ, converges to λp at a geometric rate in the topology

induced by the total variation norm.

In words, the unique invariant probability measure λp reflects the long run

average (Cesaro sequence: 1
n

∑n
i=0(T

∗
p )iµ) and the limit behavior for any ini-
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tial condition. Moreover, when the probability of making a mistake p tends

to zero, the equilibrium distribution λp converges to an invariant distribution

λ for the model without mistakes. Formally, the equilibrium correspondence

E : p→ λp is upper hemi-continuous in the topology of weak convergence at

p = 0. Mistakes can thus be considered as an equilibrium selection device.

However, as Canning (1992) warns us:

“While mistakes are a refinement, they do not necessarily pick

out a unique equilibrium; in some cases the distribution of the

mistakes, which actions are chosen if a mistake is made, may

affect which equilibrium is selected.”

Montin (2004) provides proofs of the properties of this section.

4 Simulations

All simulations have been performed with Matlab.

Simulated stock price fluctuations over one year (250 trading days) are plot-

ted in figure 4. At each time step (for simplicity’s sake, tk = k), a random

number generator is used to make the composite system collapse to an at-

tainable configuration according to the transition probabilities.

We have used the following set of parameters:

S0 = B0 = 1

a
(1)
0 = a

(2)
0 = 0 a

(3)
0 = 6 b

(1)
0 = 4 b

(2)
0 = 3 b

(3)
0 = 0

p = 0.02 (the probability of making a mistake)

r = (1.1)
1

250 − 1 (the annual riskfree rate of interest is 10%)

It is quite intuitive to understand that the stock’s high volatility comes from

its lack of liquidity. A model involving more agents would most probably lead
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to lower daily average returns and volatilities. The high historic annualized

Sharpe ratio (approximately 2.09) gives a second explanation to why agents

might like stocks.

Figure 4: stock price fluctuations

As a simple monetary policy, we now study the impact of a decrease of

the riskfree rate of interest r on the limit distribution of the discounted

stock price. Recall that the iterates {Pn(s, .) = (T ∗
p )nδs} converge to the

invariant distribution λp at a geometric rate in the topology induced by the

total variation norm. When agents make mistakes, there are 32 possible

succeeding states sk+1 to sk. Exploring the entire tree to compute the exact

distribution after n iterations quickly becomes unrealistic. We thus adopt

a frequentist approach. Figure 5 represents the empirical distributions of

the discounted stock price after respectively 200 and 250 iterations. Both

distributions have been constructed with 15, 000 independent sample paths.

To better visualize the impact of r, we have chosen the one-period riskfree

rate to be equal to r = 0.05. We have also computed the distance induced

by the total variation norm between the two distributions (d ' 0.11) to
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measure the quality of convergence toward the unique invariant distribution

λp.

Figure 5: discounted stock price distributions after 200 and 250 iterations

Qualitatively, a decrease of the riskfree rate of interest r has two complemen-

tary consequences on the shape of the limit distribution of the discounted

stock price.

- As it can be observed in figure 6, positive rates of interest induce the

existence of local left-tails shifting the mean of the discounted stock

price to lower values. The larger the rate of interest is, the wider the

local tails are.

- Intuitively, decreasing the riskfree rate of interest r makes stocks more

attractive. From the replicator equations, it is easy to prove that the

probability p(i)
1,k, with which agent no i is willing to own stocks at time

tk+1, indeed increases when r decreases. It is thus more likely to be in

a configuration of the second class (two agents own stocks) for lower

values of r. Discounted stock price fluctuations resulting from transi-

tions among configurations of the second class correspond to the right
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side of the discounted stock price distribution.

Figure 6: discounted stock price distributions after 250 iterations for r =

0.05, r = 0.025, r = 0.01 and r = 0

Finally, figure 7 gives the empirical distribution of the one-period stock log

returns after 250 iterations: ln
(

S250
S249

)
. The probability that the log return

equals zero is approximately 0.6664. To better visualize the tails of the

distribution, the y−axis stops at the value 0.045. Again, the distribution

has been constructed with 15, 000 independent sample paths and the daily

risk free rate of interest is 0.05. For comparison, the Gaussian distribution,

with the same first two moments, is also represented. It is striking and

comforting that the empirical distribution’s peak around the mean is higher

19



and narrower and that the tails are fatter (leptokurtic). This is a nice result

since more traditional financial models usually fail to consider or explain

such real world features (e.g., Pagan, 1996). The skewness and kurtosis are:

Skewness ' 1.07 Kurtosis ' 8.03

The above values partially explain why agents might like stocks. The ex-

pected net stock return over one period is approximately 0.05, that is to

say very similar to the riskfree rate of interest r. But there are states of

the world with very high payoffs. Friedman and Savage’s (1948) double-

inflection utility function could explain the agents’ behavior: depending on

the level of wealth, an agent is risk-averse (poor) or risk-loving (wealthy).

Figure 7: log returns, Gaussian and hyperbolic distributions

The class of generalized hyperbolic distributions exhibits the observed semi
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heavy-tails. The subclass of hyperbolic distributions was introduced in fi-

nance by Eberlein and Keller (1995). Their Lebesgue density can be ex-

pressed as:

dH(x) =
√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp (− α
√
δ2 + (x− µ)2 + β(x− µ)) (34)

where K1 denotes the modified Bessel function of the third kind. The im-

provement in fitting our empirical log return distribution with an hyperbolic

distribution instead of a Gaussian distribution is as well illustrated in figure

7. The parameters have been estimated by maximum likelihood with the

free statistical software R (we have also truncated the peak to better fit the

tails).

5 Conclusion

Other aspects, such as option pricing, can easily be studied in the frame of

our model. If only two agents were present, then our setting would fall under

the extensively studied Cox-Ross Rubinstein binomial tree (1979). Indeed,

only two events could occur: the agents remain in their respective states or

they switch allocations. With three agents, given the stock price Sk at time

tk, there are four possible values for Sk+1. With two assets, it is not possible

to replicate an arbitrary contingent claim: the market is incomplete. The

potential buyers and sellers have different goals and set different prices. We

can follow Mel’nikov (1999) for an intuitive definition of the bid and ask

prices:

• To hedge the claim’s risk, the seller is ready to sell the claim for a

price equal to the most inexpensive portfolio that ensures a cashflow

at maturity greater than or equal to the claim’s cashflow.

21



• Conversely, the buyer of the claim is ready to short-sell the most ex-

pensive portfolio which cashflow at maturity is covered by the claim’s

cashflow.

The interested reader should refer to Mel’nikov (1999) and Montin (2004)

for a more complete analysis with examples.

Most agent-based computational economies heavily rely on simulations. Hav-

ing adopted a simple representation of financial markets, we have been able

to prove theoretical results and gain intuition on complexity economics. Of

interest, the limit empirical stock log return distribution presents real world

features usually not taken into account by more traditional models. We

hope to create more realistic models as by-products of these first steps.
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