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SUMMARY 

The pointwise error of a finite-difference calculation of supersonic flow is discussed. The local 
truncation error is determined by a Taylor series with the remainder being in a Lagrange form. 
The contribution of the local truncation error to the total pointwise approximation error is 
estimated via adjoint parameters. It is demonstrated by numerical tests that the results of the 
numerical calculation of gasdynamics parameter at an observation point may be refined and an 
error bound may be estimated. The results of numerical tests for the case of parabolized Navier-
Stokes (PNS) are presented as an illustration of the proposed method. 
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1. INTRODUCTION 

  
At present, the Richardson extrapolation [1, 2, and 3] is the most popular method for 

estimation of discretization error in CFD. Unfortunately, a correct use of Richardson 
extrapolation requires a set of grids to prove monotonous convergence and to determine the real 
order of the convergence for the considered solution. This may turn out to be very expensive 
from the viewpoint of computer resources. The reason for this situation is the existence of many 
effects that may change the nominal order of the grid convergence. The simplest example is the 
convergence order reduction in presence of shocks. For schemes of third and fourth accuracy 
order, reduction of the convergence rate was demonstrated in [4] for the compression wave. The 
works of [5-7] confirm this effect. Spatial nonuniformity of the grid may also reduce the 
convergence rate ([8]). 

An alternative approach for a posteriori error estimation has intensively been developed 
for the last decade (Refs. [9-35]). It is used for estimation of error of some quantities of interest 
(goal functionals, point-wise parameters etc) using residual (truncation error) and adjoint (dual) 
equations. In Ref. [28] this approach is used for wave equations, in Ref [31] it is used for 
transport equation. In Refs. [13-15] a posteriori error estimation is obtained for Navier-Stokes 
and Euler equations. In these works the Galerkin method is used for the local error estimation 
while the adjoint equations are used for calculating their weights in the target functional error. A 
similar approach was used in [16-27] for the refinement of practically useful functionals both by 
finite-element and finite-difference methods. The local truncation error (residual) was estimated 
through the action of differential operator on interpolated solution, while its contribution to the 
functional was calculated using an adjoint problem. The error is demonstrated to be composed 
of two components, the first being computable using adjoint parameters and residual while the 
second being incomputable (depending on errors of solution of both primal and adjoint 
problems). In [16-18] the information on the spatial distribution of the residuals was used for 
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mesh refining (for diminishing the incomputable error) above the estimation of the computable 
error. A survey of a posteriori error estimation using the adjoint equations may be found in [24]. 

In the present work we consider another approach for the estimation of the computable 
error if compared with [16-27]. It is based on a differential approximation (DA) [38] instead of 
on residual estimation and is more natural for finite-differences. This provides certain 
peculiarities both in applicability domain and the features of the methods. We use a local 
truncation error determined by a Taylor series with the remainder in Lagrange form and adjoint 
equations in a continuous form. This enables us to correct the error and to obtain an asymptotic 
error bound for refined solution. The refinement and the error bound are obtained on the same 
grid as that employed for the primal problem solution and require identical computer time. This 
approach was used for heat transfer equation in [37, 47]. Herein, we consider an application of 
the approach to a finite-difference approximation of the parabolized Navier-Stokes and Euler 
equations. 
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Thus, a finite-difference equation is equivalent to an approximated equation with an 
additional perturbation term. Mathematical details of this equivalence may be found in [1, 38]. 

Let us find the error of the functional  as a 

function of truncation error. For this purpose let us introduce the 

Lagrangian
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the variation of the functional caused by the truncation error component (from x derivative) 
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Its discrete form it may be recast to assume the form 
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Using a Taylor expansion, expression (4) may be written as  
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The first part of sum (5) may be used for refining the functional; the error is caused by 
the second part due to unknown parameters . These parameters belong to the unit 

interval , so we may obtain a bound of this expression 
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Using such estimates for both coordinates we can determine a bound of the functional 
error after refinement 
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For a second order estimate we obtain 
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not guarantee the estimation to be small enough to be of a practical significance. 
We should use numerical expressions for high order derivatives in the above 

formulations. If the numerical solution has oscillations, these estimates may be too large and be 
of no practical use. So, the considered approach may be used only for finite difference schemes 
which are monotonous enough. 

Expression (7) is correct for exact values of adjoint parameter. In reality, the adjoint 
problem is solved by some finite-difference method, so it contains some approximation 
error ),(),(),( xtxtxt exact ψψψ ∆+= . Hence, the estimation of the functional variation has a 
component determined by the adjoint problem error. 
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This term corresponds to the remaining error according to [19] and is associated to the errors of 
approximation of both adjoint and primal equations. Works [16-18] concern a construction of a 
mesh for the minimization of this term. As an alternative, we may use the second order adjoint 
equations [43, 44, and 47] for calculating this term. If the primal and adjoint problems are 
solved by methods of order  and , this term is of order. For schemes of 
high enough order (  or ) this term is asymptotically small if compared with error 
bounds determined by (6).  
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2. THE ESTIMATE OF APPROXIMATION ERROR FOR FINITE-DIFFERENCE 

CALCULATION OF A FLOW PARAMETER 
Consider the discussed method of approximation error for estimating two dimensional 

supersonic viscous flow, Fig. 1. 
The nondivergent form of parabolized Navier-Stokes equations (PNS) is used. The flow 

is calculated by march along the X axis. 
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 P= ρRT; 
1−

==
γ
RTTCe v ; (X,Y)∈Ω=(0<X< Xmax; 0<Y<Ymax); 

On inflow boundary (A (X=0), Fig. 1) we have: 
e(0,Y)=e∞ (Y); ρ(0,Y)=ρ∞ (Y)); U(0,Y)=U∞ (Y); V(0,Y)=V∞ (Y);                                   
On lateral boundaries B, D (Y=0, Y=Ymax) the conditions ∂f/∂Y=0  are 
imposed. 

)),,,(( eVUf i ρ=

The density at some point is considered as an estimated parameter. Let us write the 
estimated value  in the form of a functional. ),( estest YXρ
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We need to calculate the gradient of target functional with respect to local disturbances 
(truncation error) . It is known that the most efficient way for the gradient calculation is 
based on using the adjoint equations [36]. These equations may be obtained in a standard way 
by unifying in a single Lagrangian the estimated functional and the weak formulation of the 
flow dynamics problem. Herein, we present the result. Additional details may be found in [39, 
40]. 
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3. ADJOINT PROBLEM 
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The source in (16) corresponds to the location of the estimated parameter.  
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Parameters ),,,( eVU ΨΨΨΨρ  are the adjoint analogs of density, velocity components, 
and energy. 
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Adjoint problem is calculated in the reverse direction along X. For point-wise error 
estimation the equations have singular sources (Dirac’s delta functions, Equation (16)). 
Unfortunately, the regularity both of parabolized Navier-Stokes and corresponding adjoint 
system are unknown. Both these systems of equations are of mixed hyperbolic-parabolic nature. 
According to [48] the heat transfer (parabolic) problem with similar source is well-posed for 
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1>β  (although containing an error proportional to smoothing parameter , which may 
be as small as necessary). Methods of finite difference solution for such equations are also 
presented in [45,46]. 

0, >ss

The target functional variation as a function of the truncation error has the following 
form: 

 
( )dXdYeVU eVU Ψ+Ψ+Ψ+Ψ= ∫∫

Ω

δδδδρδε ρ   
(22) 

In tests presented below we compare the results of finite-difference calculations with 
the analytical solutions corresponding to inviscid gas flows. In this context, the influence of 
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In contrast to (16-19), the corresponding adjoint equations have no viscous terms. 
Certainly, this approach is valid only when influence of viscous terms is small enough, 

i.e. when they do not cause a radical change of flow structure. 
Another reason for the development of this technique arises for discontinuities that are 

typical of supersonic flows described by Euler equations, for example. The approach based on 
differential approximation is not applicable for supersonic Euler equations due to unbound 
derivatives. Nevertheless, we may use parabolized Navier-Stokes for basic flow calculation, 
consider viscous terms as a perturbation, and calculate the effect of this perturbation on the 
solution. This may enable us to expand the applicability of the differential approximation 
approach to discontinuous flows described by Euler equations. 

 
4. FINITE DIFFERENCE SCHEME 

To study the approximation error herein we need a finite difference scheme having 
largest truncation error. As a consequence, we use a first order scheme, the convective terms 
being obtained by upwind differences [41]. Nevertheless, several terms are approximated by 
symmetrical differences with the result that they have second order. A finite-difference scheme 
(for  option) is presented below. It contains two steps, predictor and corrector. Both steps 
are calculated implicitly, using the three point Thomas algorithm. The tilde marks parameters 
computed at the first step. 
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The finite difference scheme has a similar form for the adjoint system. The main feature is the 
presence of the source term  in (16), which is related to the location of 
estimated point. For fine enough grids a mollification (smooth approximation of 

)()( estest YYXX −− δδ
δ -function) 

may be necessary for approximation of this source term [10]. The methods of finite 
difference solution of equations with such sources are presented in [45,46]. 
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5. ESTIMATION OF THE TRUNCATION ERROR 

The total approximation error depends on a local truncation error. In order to determine 
it, we expand finite differences in Taylor series with Lagrange remainder. For illustration let us 
present this estimation for one of finite-difference terms in (29). 
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The corresponding component of target functional variation estρ∆  assumes the form: 
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Its discrete form 
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The first part of this sum may be used for refining of the functional 
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Noneliminated error is engendered by the second part of (34). It has an upper bound: 
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Total refinement of the functional determined by all first order terms of finite-difference 
scheme (28-31) follows: 

2
,,,2

2,

2,1

),(
2
1

nxky
n

k
n
k

kn
NxN

nk

corr hhU
X

YX
ρ

ρ
ρ Ψ

∂
∂

−=∆ ∑
==

2
,,,2

2,

2,1

),(
2
1

nykx
n

k
n

k
kn

NxN

nk

hhV
Y

YX
ρ

ρ
Ψ

∂
∂

− ∑
==

 

2
,,,2

2,

2,1

),(
2
1

nxky
n

k
n
k

kn
NxN

nk

hh
X

YXU
ρρ Ψ

∂
∂

− ∑
==

 

2
,,,2

2,

2,1

),(
2
1

nxky
n

kU
n
k

kn
NxN

nk

hhU
X

YXU
Ψ

∂
∂

− ∑
==

2
,,,2

2,

2,1

),(
2
1

nykx
n

kU
n

k
kn

NxN

nk

hhV
Y

YXU
Ψ

∂
∂

− ∑
==

2
,,,2

2,

2,1

),(
2

1
nxky

n
kU

n
k

kn
NxN

nk
n
k

hhe
X

YX
Ψ

∂
∂−

− ∑
==

ρ
ρ

γ 2
,,,2

2,

2,1

),(
2

1
nxky

n
kU

kn
NxN

nk

hh
X

YXe
Ψ

∂
∂−

− ∑
==

γ
 

2
,,,2

2,

2,1

),(
2
1

nxky
n

kV
n
k

kn
NxN

nk

hhU
X

YXV
Ψ

∂
∂

− ∑
==

2
,,,2

2,

2,1

),(
2
1

nykx
n

kV
n

k
kn

NxN

nk

hhV
Y

YXV
Ψ

∂
∂

− ∑
==

 

2
,,,2

2,

2,1

),(
2
1

nxky
n

ke
n
k

kn
NxN

nk

hhU
X

YXe
Ψ

∂
∂

− ∑
==

2
,,,2

2,

2,1

),(
2
1

nykx
n

ke
n

k
kn

NxN

nk

hhV
Y

YXe
Ψ

∂
∂

− ∑
==

 

2
,,,2

2,

2,1

),(
2

1
nxky

n
ke

n
k

kn
NxN

nk

hhe
X

YXU
Ψ

∂
∂−

− ∑
==

γ
 

 
 
 
 
 
 
 
 

(37) 



 8

Total expression for error bound caused by the first order terms of (28-31) has the form: 
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(38) 

Similar expressions are obtained for the convective terms of second order accuracy and 
for the viscous terms. A bound of the refined functional error may be determined by these 
expressions as: 

 
supρρρρ ∆<−∆− exact

corr  (39) 

This bound does not account for the incomputable error (expressions similar to (10)), or 
errors caused by boundary condition approximation etc. It also uses derivatives whose 
boundedness can not be proven at present. So, it requires a confirmation via numerical tests. 

 
 

6. NUMERICAL TESTS 
 

6.1. CONTINUOUS FLOW FIELD 
 
A comparison between computations by finite-differences and analytic expressions, and 

an analysis of error estimates is performed for Prandtl-Mayer flow. The error of flow density 
past the expansion fan was addressed (freestream Mach number M=4, angle of flow rotation 

°=10α ). 
Let us determine the approximation error using adjoint approach and compare it with 

the deviation of the finite-difference solution from analytic one. Fig. 2 presents the density 
isolines in flow-field, Fig. 3 illustrates the adjoint density isolines (a concentration of isolines 
corresponds to a point of estimation). Fig. 4 presents the spatial distribution of density of error 
bound (38), and Fig. 5 depicts isolines of density of error caused by the viscous terms (23). 
Figs. 4 and 5 determine those spatial regions that generate the main part of error for parameter at 
the estimated point. Results presented in Figs. 2-5 correspond to calculations taking into account 
the viscosity (PNS, Re=1000). 

Fig. 6 presents the relative error of flow density calculation for Re=1000 as a function 
of the reciprocal of spatial step in Y direction (number of nodes). The part of error caused by 
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viscous terms (21), relative deviation 
ρ

ρρρρ exactvisc
corr −∆−∆−

of refined solution from the 

analytical one, and bound of refined solution error (36) are presented. It can be seen that the 
main part of error is determined by viscosity and it may be computed and eliminated. The 
refined result is close to analytical one and is located within the interval of error bound. 
Nevertheless, there is no convergence of error bound as expected from expression (36). Let us 
consider the related results for inviscid flow. Fig. 7 presents the deviation of the finite-
difference solution from the analytic one  and correction of error in accordance with (35). The 
refinement of the solution using adjoint parameters according (35) enables the elimination of 
major part of the discretization  error. The first order of computable error (35) may be detected 
if analyze the Fig. 7. Calculations demonstrated a good coincidence of the refined solution with 
analytical one and reliability of the error bound estimate (Fig. 8). Nevertheless, the expectable 
second order of accuracy (36) does not manifest itself. When mesh is fine enough the error 
bound practically does not depend on the step size. This is caused by the growth of third 
derivatives of flow parameters as step size decreases. It may be due to the formation of weak 
discontinuities in the flowfield. 

A comparison of Figures 6 and 8 demonstrates that the impact of viscosity effect using 
adjoint equations enables us to obtain result close to inviscid computation as far as accuracy is 
concerned. Thus, there exist feasibility for calculation of inviscid flow (Euler equations) and a 
posteriori error estimation on the basis of PNS. This extends the applicability of the considered 
method which is not directly applicable to the supersonic Euler equations due to the existence of 
discontinuous solutions. 

Fig. 9 presents the dependence of error of refined solution in the comparison with the 
initial error of solution (caused both by viscous terms and by approximation error) as a function 
of Re number. As the viscosity decreases, a certain increase of error bound estimate is visible 
due to growth of third derivatives of gasdynamical parameters. For small enough Re numbers 
the error of finite-difference calculation breaks the error bound that is caused by the significant 
distortion of flow pattern (compare Fig. 2 (Re=1000) and Fig. 10 (Re=10)). 

In general, for a smooth flow the errors both for inviscid flow and for viscous flow 
(refined via adjoint parameters) are close. 

 
 
 

6.2. DISCONTINUOUS FLOW FIELD 
As another test, the error of the density past crossing shocks ( , M=4, 

Re=1000) is calculated. Fig. 11 presents the density isolines within flowfield, Fig. 12 illustrates 
isolines of the adjoint density, Fig. 13 shows the density of error bound according (38), and Fig. 
14 presents isolines of the error caused by viscous terms. 

o23.22±=α

This test is more complicated due to unbounded derivatives of gasdynamics parameters 
for inviscid flow. The presence of viscosity enables us to calculate flows with shocks, while at 
the same time it introduces an error proportional to 1/Re. When viscosity decreases this error 
diminishes too, unfortunately the error related to unbounded derivatives increases 
simultaneously. 

Fig. 15 presents results for Re=1000 as a function of the spatial step size. The viscous 
component of error is small enough, the deviation of the finite-difference solution from 
analytical one is small also and weakly depends on the step size, and this effect may be 
attributed to uncontrolled errors (the non-divergence of the scheme, possible). 

Fig. 16 presents results for inviscid flow as a function of the spatial step size. Both error 
and error bound have an order of convergence over grid size of . )1(O

Fig. 17 shows the dependence of error on Reynolds number. As the viscosity decreases 
the error and error bound increase and approach the asymptote at the inviscid limit. 
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A natural way to eliminate errors connected with a nondivergent scheme is the choice of 
divergent one. The following systems of divergent Euler equations (two-dimensional) and 
related adjoint equations were used in numerical tests.  

 
Divergent Euler equations: 
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∂
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Here , VUUU == 21 , ePh γρ =),(  is the enthalpy,   is the 
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(45) 

 
Several variants of first order finite-difference schemes (two dimensional) were used, 

including "donor cells" [41] and a scheme of Courant-Isaacson-Rees [42]. As expected, the 
deviation of finite-difference solution from analytic one for divergent scheme is significantly 
smaller compared with nondivergent one. Unfortunately, error estimates use derivatives that are 
unbounded in divergent case also (excluding one-dimensional flow). The results of test 
computations are analogous to results obtained using the nondivergent scheme. We may 
compare the grid convergence for nondivergent scheme (Fig. 16) with results for divergent one 
(Fig. 18, inviscid flow). 

If we introduce viscosity, we can obtain convergent estimates of error for divergent 
scheme too (Fig. 19).  

The above tests are oriented towards comparison with analytical solutions that belong to 
inviscid flows. This creates some specifics. For example, the previous test flowfield is 
composed of regions of constant gasdynamical parameters separated by shocks. So, it is not the 
best problem from error estimates viewpoint using derivatives of gasdynamical parameters. 
Thus, it is expedient to consider a test problem more typical of viscous gas flows. Let us 
consider a viscous (Re=1000) supersonic weakly underexpanded ( ) jet in 
supersonic flow. Fig. 20 presents isolines of the density in flowfield, Fig. 21 presents isolines of 
the adjoint density, and Fig. 22 presents the spatial density of error bound estimate (38). 
Unfortunately, corresponding analytical solutions for this problem are unknown. Hence, the 
solution on the finest mesh was regarded as an “exact” one. Fig. 23 presents the error bound and 
the deviation of the solution from “exact” one in dependence on the grid step. The convergence 
order for error bound is close to one (slightly below and decreases as the mesh is refined). This 
result may be an indirect evidence of presence of discontinuities in derivatives of gasdynamical 
parameters. 

2/ =∞pp j
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7. THE EVALUATION OF COMPUTABLE ERROR USING RESIDUAL 
 
The residual based approach closely related to [19] is used herein for an estimation of 

computable error without explicit use of differential approximation. The main difference 
between this approach and that of [19] is in the residual calculation. We do not use an 
interpolation of flow parameters from grid points to total domain. Instead, we use a higher order 
scheme on the same numerical solution. Let us consider this approach at a heuristic level. 
Assume we have a flow-field computed via certain finite-difference method. We try to estimate 

the error of this calculation. Let us use the equation 0
~~
=

∂
∂
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xt
ρρ

 as an example. Let the 

flowfield be calculated via first order finite-difference approximation  
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The differential approximation of (44)  may be written as  0=+
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. Let us 

write it in more detail using a Taylor series with the remainder in a Lagrange form. (parameters  
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(47) 

Let us replace (46) by the stencil of next (second) order of accuracy and calculate residual , 
arising from applying the high order scheme to the flowfield calculated using the low order 
scheme. 
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Expression (48) may be expanded in the Taylor series as  
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(49) 

The function  is obtained from solution of (46) and so complies with the condition (47). Let 
us substitute (47) in (49), then the residual assumes the form  
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Correspondingly, the lower order term of truncation error (47) has a form  
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(51) 

Thus, the lower term of differential approximation (47) may be estimated via a residual 
obtained from using high order stencil on the solution calculated using main finite-difference 
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scheme. As a result we obtain the field of residuals that locally disturb the exact solution. 
According to (3) the variation of estimated value has a form . Taking  

into account (51) we obtain  

dtdxδρψδρε ∫
Ω

=∆ )(

dtdxdtdx ηψδρψδρε ∫∫
ΩΩ

−≈=∆ )(  (52) 

In contrast to (3), the expression (52) may be easily calculated without knowledge of 
differential approximation. On other hand, the differential approximation approach provides a 
more accurate account of higher terms and estimation of refined solution bounds. Let us 
compare these approaches using first order upwind scheme and divergent form of Euler 
equations (38-43). For estimation of residual we use second order approximation (48). 

The deviation of calculation from analytical, the error estimation using DA based (35) 
and residual based methods are presented in Fig. 24 for Prandtl-Mayer flow. The close 
correlation of estimates (35) and (52) for continuous flow is visible. If we recast Fig. 24 on a 
logarithm scale, all these functions may be described by a first order curve . )(hO

In contrast to (3) the expression (52) may be extended to discontinuous flows if 
divergent finite difference schemes are used. 

For discontinuous flow both derivatives in (48) are unbound, nevertheless these 
singularities are mutually compensated due to conservation law and the residual  is bounded. 
This residual may be calculated using only a bounded combination of derivatives of flow 
parameters and applied for error estimation. A corresponding example is presented in Fig. 25 for 
crossing shocks. It presents the error estimation using a residual based method (52), DA based 
(35) one, and the deviation of the calculation from the analytical value. Fig. 25 demonstrates the 
residual approach (52) to provide a much more accurate estimation of error if compared with the 
differential approximation (35), which explicitly diverges. Unfortunately, the residual based 
approach does not provide an error bound. 

n
kη

 
 
 

8. DISCUSSION 
 
The difficulties connected with using adjoint approach are of the same nature as those 

arising while using Richardson extrapolation. They are caused by the presence of discontinuities 
that determine the order of accuracy observable in numerical tests. Let us consider this problem 
at an heuristic level. For this purpose let us write (5) in more detail. Let m be the number of 
bounded derivatives (derivatives of the order m and higher may have a finite number of jump 
discontinuities), p is the order of the approximated derivative, j is the formal order of accuracy 

of a finite-difference scheme. Let us approximate derivatives by the finite differences 
Dx

xtD ),(ρ
. 

The limit τρ
τ

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

Ω
→ ∑ h

Dx
xtDh jp

jp
j ),(lim

0
 corresponds to the first term (5). Consider its 
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number of nodes that participate in the summation in the vicinity of discontinuity, so the 
multiplier  (appearing during summation) should be taken into account, yielding h
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Thus, the terms of j-th formal order of accuracy contain a component of j-th 
order (appearing due to integration over the smooth part of the solution) and a 
component having the order 1+−= pmi  (engendered by the jump discontinuity of the 

 order derivative). So, the order of convergence depends on the solution and may 
asymptotically tend to a minimal order 

thm −
1+−= pmi  as the  grid size decreases. In [47] 

the influence of discontinuities on the error is considered for example that of the spatial 
derivative of temperature. 

The calculation of approximation errors by considered method requires the existence of 
bounded derivatives of relatively high order. They do not exist always, so, for supersonic Euler 
equations, these estimates may be calculated only for smooth solutions. If discontinuities are 
expected for the studied flow, the use of viscosity enables us to conduct these estimates. The 
viscosity engenders its own component of error, which may also be eliminated using adjoint 
equations. This approach permits to obtain error estimates for inviscid supersonic flows using 
this method. 

Naturally, we can estimate not only the error of density written as a functional (15), but 
the error of other functionals. The differences are only in the form of the source terms in adjoint 
equations (16-19). 

For justification of error estimates we should verify that the unaccounted error 
component induced by approximation error of adjoint equations is small enough. For calculation 
of this component we can solve second order adjoint equations[43]. Such a suitable example is 
presented in [47] for heat conduction equation. 
 For error estimates we use numerical results that may be significantly less smooth then 
the computed physical field. Thus, for certain finite-difference schemes (non-monotonic) the 
error bounds may be too large. The applicability of method considered above is restricted to 
numerical schemes which do not exhibit nonphysical oscillations. 

9. CONCLUSION 
The computable pointwise error of viscous flow parameter caused by a finite-difference 

approximation may be evaluated using differential approximation terms and adjoint equations. 
The asymptotic bound of refined solution error may be determined simultaneously. 

Numerical tests carried out demonstrated the efficiency of this method for parabolized 
Navier-Stokes. The influence of viscous terms may be calculated similarly and that provides 
also for feasibility of estimating errors of the Euler equations. 

The computer time required for point-wise refining of a single parameter at a single 
point and error bound calculation is equal to the time required for flow-field calculation on the 
same grid. 

 
APPENDIX A. NOMENCLATURE 

Cv- specific volume heat capacity; 
e - specific energy, CvT 
f  - flow parameters (ρ,U,V,e) 
h-enthalpy 
h0-total enthalpy 
hx,hy- spatial steps along X and Y; 
M - Mach number  
Nt-number of time steps,   Nx – number of spatial nodes along X, – number of spatial nodes along Y N
L- Lagrangian 
P  -pressure  
PR - Prandtl number (Pr=µCv/λ) 
R  - gas constant 
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∞

∞∞=
µ

ρ maxRe
YU

 -Reynolds number  

T-temperature 
U- velocity component along X 
V- velocity component along Y 
X,Y –coordinates 
 
Greek letters 

γβα ,, - coefficients in Taylor-Lagrange series, δ -Dirac’s delta function; 
corr
xρ∆ - correctable error, connected with the expansion along X; - correctable error; - 

component of bound of inherent error, connected with the expansion in coordinate X; - 

component of bound of inherent error 

corrρ∆ sup
xρ∆

supρ∆

γ    - specific heat ratio 
ε  - functional; 
µ   -viscosity 
λ - thermal conductivity; 
ρ - density; 
τ -temporal step 
Ψρ,ΨU,ΨV,Ψe - adjoint variables 
Ω- domain of calculation  
 
Subscripts: 
∞  entrance boundary parameters; an- analytical solution; corr- corrected error; est – estimated point; 
exact- exact solution; k- number of spatial mesh node along Y; n-number of  step along X; sup- bound of 
inherent error; x-component of truncation error connected with Taylor expansion in coordinate X; t- 
component of truncation error connected with Taylor expansion in time. 
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Figure Captions 
Fig. 1. Flow sketch. A- Entrance boundary, B,D- lateral boundaries, *-location of estimated 
parameter 
Fig. 2. Isolines of density (Prandtl-Mayer flow)  
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Fig. 3. Isolines of adjoint density (concentration correlates with estimated point) 
Fig. 4. Isolines of density of error bound (38) 
Fig. 5. Isolines of error density caused by viscosity (23).  
Fig. 6. The error of calculation as a function of the reciprocal of mesh step (viscous flow, 
Re=1000). 1-error due to viscous terms, 2-deviation of refined solution from analytical one, 
3, and 4- bounds of error 
Fig. 7. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 
1-deviation of finite-difference solution from analytical one, 2 error correction according 
(37). 
Fig. 8. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 
1-deviation of refined solution from analytical one, 2, 3 error bounds (38)  
Fig. 9. The error of calculation as a function of Reynolds number. 1- deviation of finite-
difference solution from analytical one, 2- error due to viscous terms, 3- deviation of refined 
solution from analytical one, 4, 5 error bounds (38)  
Fig. 10. Isolines of density for small Re (Re=10) 
Fig. 11. Isolines of density (crossing shocks) 
Fig. 12. Isolines of adjoint density (concentration correlates with estimated point) 
Fig. 13. Isolines of error bound density (38) 
Fig. 14. Isolines of error density caused by viscosity (23). 
Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow). 
1- deviation of refined solution from analytical one, 2- error density caused by viscosity 
(23), 3, 4 error bounds (38)  
Fig. 16. The error of calculation in dependence on the reciprocal of mesh step (inviscid 
flow). 1- deviation of refined solution from analytical one, 2 error bounds (38). 
Fig. 17. The error of calculation as a function of Reynolds number. 1- deviation of finite-
difference solution from analytical one, 2- error caused by viscosity (23). 3- error bound 
(38)  
Fig. 18. The error of calculation as a function of the reciprocal of mesh step (inviscid flow, 
divergent scheme). 1-deviation of finite-difference solution from analytical one, 2-
correction (37), 3- bound of error 
Fig. 19. The error of calculation as a function of the reciprocal of mesh step (viscous flow, 
divergent scheme). 1- deviation of refined solution from analytical one, 2, 3 error bounds 
(38)  
Fig. 20. Isolines of density  
Fig. 21. Isolines of adjoint density  
Fig. 22. The density of error bound (38). 
Fig. 23. The error of calculation as a function of the reciprocal of mesh step. 1- deviation of 
refined solution from “exact” one, 2- bound of error. 
Fig. 24. The comparison of different error evaluations as a function of the reciprocal of mesh 
step.  1- DA based error, 2- residual based error (52), 3 difference of the analytical and 
numerical values. 
Fig. 25. The errors as functions of the reciprocal of mesh step. 1- difference of the analytical 
and numerical values, 2- DA based error, 3- residual based error (52). 
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Fig. 1. Flow sketch. A- Entrance boundary, B,D- lateral boundaries, *-location of estimated 
parameter 
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Fig. 2. Isolines of density (Prandtl-Mayer flow) Fig. 3. Isolines of adjoint density 
(concentration correlates with estimated 

point) 
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Fig. 4. Isolines of density of error bound (38) Fig. 5. Isolines of error density caused by 
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 viscosity (23) 
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Fig. 6. The error of calculation as a function of the reciprocal of mesh step (viscous flow, Re=1000). 1-

error due to viscous terms, 2-deviation of refined solution from analytical one, 3, 4- bounds of error 
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Fig. 7. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1-deviation of 

finite-difference solution from analytical one, 2 error correction according (37). 
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Fig. 8. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1-deviation of 

refined solution from analytical one, 2, 3 error bounds (38) 
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Fig. 9. The error of calculation as a function of Reynolds number. 1- deviation of finite-difference solution 
from analytical one, 2- error due to viscous terms, 3- deviation of refined solution from analytical one, 4, 5 

error bounds (38) 
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Fig. 10. Isolines of density for small Re (Re=10) 
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Fig. 11. Isolines of density (crossing shocks) Fig. 12. Isolines of adjoint density 
(concentration correlates with estimated 

point) 
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Fig. 13. Isolines of error bound density (38) Fig. 14. Isolines of error density caused by 



 22

 viscosity (23). 
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Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow). 1- deviation 
of refined solution from analytical one, 2- error density caused by viscosity (23), 3, 4 error bounds (38) 
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Fig. 16. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1- deviation 

of refined solution from analytical one, 2 error bounds (38). 
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Fig. 17. The error of calculation as a function of Reynolds number. 1- deviation of finite-difference 

solution from analytical one, 2- error caused by viscosity (23). 3- error bound (38) 
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Fig. 18. The error of calculation as a function of the reciprocal of mesh step (inviscid flow, divergent 
scheme). 1-deviation of finite-difference solution from analytical one, 2-correction (37) , 3- bound of 
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Fig. 19. The error of calculation as a function of the reciprocal of mesh step (viscous flow, divergent 

scheme). 1- deviation of refined solution from analytical one, 2, 3 error bounds (38) 
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Fig. 20. Isolines of density  Fig. 21. Isolines of adjoint density 
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Fig. 22. The density of error bound (38). 
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Fig. 23. The error of calculation as a function of the reciprocal of mesh step.  

1- deviation of refined solution from “exact” one, 2- bound of error. 
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Fig. 24. A comparison of different error evaluations as a function of the reciprocal of mesh 

step.  
1- DA based error, 2- residual based error (52), 3 difference of the analytical and numerical 

values. 
 
 

-3.0E-02

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

0 50 100 150 200 250 300 350 400 450 500

N

dRo/Ro

1

2

3

 
Fig. 25. The errors as functions of the reciprocal of mesh step. 1- difference of the analytical and 

numerical values, 2- DA based error, 3- residual based error (52). 
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