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SUMMARY

The pointwise error of a finite-difference calculation of supersonic flow is discussed. The local
truncation error is determined by a Taylor series with the remainder being in a Lagrange form.
The contribution of the local truncation error to the total pointwise approximation error is
estimated via adjoint parameters. It is demonstrated by numerical tests that the results of the
numerical calculation of gasdynamics parameter at an observation point may be refined and an
error bound may be estimated. The results of numerical tests for the case of parabolized Navier-
Stokes (PNS) are presented as an illustration of the proposed method.
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1. INTRODUCTION

At present, the Richardson extrapolation [1, 2, and 3] is the most popular method for
estimation of discretization error in CFD. Unfortunately, a correct use of Richardson
extrapolation requires a set of grids to prove monotonous convergence and to determine the real
order of the convergence for the considered solution. This may turn out to be very expensive
from the viewpoint of computer resources. The reason for this situation is the existence of many
effects that may change the nominal order of the grid convergence. The simplest example is the
convergence order reduction in presence of shocks. For schemes of third and fourth accuracy
order, reduction of the convergence rate was demonstrated in [4] for the compression wave. The
works of [5-7] confirm this effect. Spatial nonuniformity of the grid may also reduce the
convergence rate ([8]).

An alternative approach for a posteriori error estimation has intensively been developed
for the last decade (Refs. [9-35]). It is used for estimation of error of some quantities of interest
(goal functionals, point-wise parameters etc) using residual (truncation error) and adjoint (dual)
equations. In Ref. [28] this approach is used for wave equations, in Ref [31] it is used for
transport equation. In Refs. [13-15] a posteriori error estimation is obtained for Navier-Stokes
and Euler equations. In these works the Galerkin method is used for the local error estimation
while the adjoint equations are used for calculating their weights in the target functional error. A
similar approach was used in [16-27] for the refinement of practically useful functionals both by
finite-element and finite-difference methods. The local truncation error (residual) was estimated
through the action of differential operator on interpolated solution, while its contribution to the
functional was calculated using an adjoint problem. The error is demonstrated to be composed
of two components, the first being computable using adjoint parameters and residual while the
second being incomputable (depending on errors of solution of both primal and adjoint
problems). In [16-18] the information on the spatial distribution of the residuals was used for



mesh refining (for diminishing the incomputable error) above the estimation of the computable
error. A survey of a posteriori error estimation using the adjoint equations may be found in [24].

In the present work we consider another approach for the estimation of the computable
error if compared with [16-27]. It is based on a differential approximation (DA) [38] instead of
on residual estimation and is more natural for finite-differences. This provides certain
peculiarities both in applicability domain and the features of the methods. We use a local
truncation error determined by a Taylor series with the remainder in Lagrange form and adjoint
equations in a continuous form. This enables us to correct the error and to obtain an asymptotic
error bound for refined solution. The refinement and the error bound are obtained on the same
grid as that employed for the primal problem solution and require identical computer time. This
approach was used for heat transfer equation in [37, 47]. Herein, we consider an application of
the approach to a finite-difference approximation of the parabolized Navier-Stokes and Euler
equations.
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possess all necessary derivatives to be bounded. Let us use the Taylor series with the remainder
in Lagrange form (parameters «, € (0,1), 8, € (0,1), are unknown).
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additional perturbation term. Mathematical details of this equivalence may be found in [1, 38].
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Its discrete form it may be recast to assume the form
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Using a Taylor expansion, expression (4) may be written as
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The first part of sum (5) may be used for refining the functional; the error is caused by
the second part due to unknown parameterser,. These parameters belong to the unit

interval ¢, € (0,1) , so we may obtain a bound of this expression
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Using such estimates for both coordinates we can determine a bound of the functional
error after refinement
P=APE = AP = P < APEP + AP 0
This approach also provides an estimate of higher order terms in (4). For example, an

estimate of the second order over ¢ h, has the form
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For a second order estimate we obtain
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For an infinitely smooth solution we may

write p — Ap™" — Ap" — p%d‘ <D AP+ Apy?. If all derivatives are bounded,
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not guarantee the estimation to be small enough to be of a practical significance.

We should use numerical expressions for high order derivatives in the above
formulations. If the numerical solution has oscillations, these estimates may be too large and be
of no practical use. So, the considered approach may be used only for finite difference schemes
which are monotonous enough.

Expression (7) is correct for exact values of adjoint parameter. In reality, the adjoint
problem is solved by some finite-difference method, so it contains some approximation

error y(t, X) = W (t, X) + Aw(t, X) . Hence, the estimation of the functional variation has a
component determined by the adjoint problem error.
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This term corresponds to the remaining error according to [19] and is associated to the errors of
approximation of both adjoint and primal equations. Works [16-18] concern a construction of a
mesh for the minimization of this term. As an alternative, we may use the second order adjoint
equations [43, 44, and 47] for calculating this term. If the primal and adjoint problems are

solved by methods of order O(h®) and O(h?), this term is of O(h""®) order. For schemes of
high enough order (p>2 ora>2) this term is asymptotically small if compared with error
bounds determined by (6).

2. THE ESTIMATE OF APPROXIMATION ERROR FOR FINITE-DIFFERENCE
CALCULATION OF A FLOW PARAMETER
Consider the discussed method of approximation error for estimating two dimensional
supersonic viscous flow, Fig. 1.
The nondivergent form of parabolized Navier-Stokes equations (PNS) is used. The flow
is calculated by march along the X axis.
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On inflow boundary (A (X=0), Fig. 1) we have:
&0,Y)=e.(Y); A(0,Y)=p- (Y)); U(0,Y)=U. (Y); V(O,Y)=V.. (Y);
On lateral boundaries B, D (Y=0, Y=Yue) the conditions &/av=0 (f' =(p,U,V,€)) are
imposed.
The density at some point is considered as an estimated parameter. Let us write the

estimated value p (X = ,Y ®) in the form of a functional.
p= =c=[ p(X,Y)5(Y - Y)5(X - X = )dXdY
Q
We need to calculate the gradient of target functional with respect to local disturbances

(truncation error) of ' It is known that the most efficient way for the gradient calculation is
based on using the adjoint equations [36]. These equations may be obtained in a standard way
by unifying in a single Lagrangian the estimated functional and the weak formulation of the

flow dynamics problem. Herein, we present the result. Additional details may be found in [39,
40].
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The source in (16) corresponds to the location of the estimated parameter.
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Parameters (‘Pp W, Y, , Y,) are the adjoint analogs of density, velocity components,
and energy.
X=X max _ O’ (20)

Expression for ‘¥, corresponds to the location of an estimated parameter on the

Initial conditions C (X=Xma): ¥, v e

boundary X

oY

Boundary conditions on B,D (Y=0; Y=Yu): —~ EY, =0; (21)

Adjoint problem is calculated in the reverse direction along X. For point-wise error
estimation the equations have singular sources (Dirac’s delta functions, Equation (16)).
Unfortunately, the regularity both of parabolized Navier-Stokes and corresponding adjoint
system are unknown. Both these systems of equations are of mixed hyperbolic-parabolic nature.
According to [48] the heat transfer (parabolic) problem with similar source is well-posed for

Y(t,x) e H*(Q), f>,, Qe R". From this analogy, the considered problem may be well-
2

posed in H™ (Q) a fact that engenders corresponding computational difficulties. However, if
we smooth the source term according to [45,46], we may obtain a solution ¥_(t,x) e H”(Q),

S >1 (although containing an error proportional to smoothing parameter s,s> 0, which may

be as small as necessary). Methods of finite difference solution for such equations are also
presented in [45,46].

The target functional variation as a function of the truncation error has the following
form:

se = [[ (00, + oUW, + oV, +5e¥, JiXdY -
In tests presented below we compare the results of finite-difference calculations with

the analytical solutions corresponding to inviscid gas flows. In this context, the influence of

viscous terms in equations (11-14) on an estimated parameter is of interest. We consider the

solution of equations without viscosity as a non-perturbed one. Let the viscous terms disturb this

solution. For example, for the longitudinal velocity undisturbed values are governed by the

equationU &+v Z:J(: 0, while the disturbed ones are governed
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due to viscous terms assumes the form
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In contrast to (16-19), the corresponding adjoint equations have no viscous terms.

Certainly, this approach is valid only when influence of viscous terms is small enough,
i.e. when they do not cause a radical change of flow structure.

Another reason for the development of this technique arises for discontinuities that are
typical of supersonic flows described by Euler equations, for example. The approach based on
differential approximation is not applicable for supersonic Euler equations due to unbound
derivatives. Nevertheless, we may use parabolized Navier-Stokes for basic flow calculation,
consider viscous terms as a perturbation, and calculate the effect of this perturbation on the
solution. This may enable us to expand the applicability of the differential approximation
approach to discontinuous flows described by Euler equations.

4. FINITE DIFFERENCE SCHEME
To study the approximation error herein we need a finite difference scheme having
largest truncation error. As a consequence, we use a first order scheme, the convective terms
being obtained by upwind differences [41]. Nevertheless, several terms are approximated by
symmetrical differences with the result that they have second order. A finite-difference scheme

(for V' >0 option) is presented below. It contains two steps, predictor and corrector. Both steps

are calculated implicitly, using the three point Thomas algorithm. The tilde marks parameters
computed at the first step.
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The finite difference scheme has a similar form for the adjoint system. The main feature is the
presence of the source term S(X—XZ)AY-Y®) in (16), which is related to the location of
estimated point. For fine enough grids a mollification (smooth approximation of J-function)

may be necessary for approximation of this source term [10]. The methods of finite
difference solution of equations with such sources are presented in [45,46].



5. ESTIMATION OF THE TRUNCATION ERROR
The total approximation error depends on a local truncation error. In order to determine
it, we expand finite differences in Taylor series with Lagrange remainder. For illustration let us
present this estimation for one of finite-difference terms in (29).

ur-—uynt o*U (X, —agh,,,
UQM—U@—EU h, . ( S Y (32)
h, oX 2 oX
The corresponding component of target functional variation Ap., assumes the form:
0% (X — ,
As(oU) = —H h,. (X, Zk Min: i) U, dxdY (33)
2 o ‘ oX

Its discrete form

is Ag(5U):—§ > o

k=1,n=2

N, Nx 2 —a”
1 (h o°U (X, ath'Yk)]UI?lPS,khy,khx,n' For a first

order over a,'h,_ it may be presented as

k' 'x,n
1 pXg 62U(Xn,Y) np2 3U(Xn!Y) n n
Ag(w)——zk;}_ihx,naxzk khxnax—gk U W0 chychyn (34)
The first part of this sum may be used for refining of the functional

1 ¥ 2%U(X,,Y,)
Acorr: kUn\Pnh h2
/Ox ZK;Z axZ k U.,k"y,k"x,n (35)
Noneliminated error is engendered by the second part of (34). It has an upper bound:
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Total refinement of the functional determined by all first order terms of finite-difference
scheme (28-31) follows:
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Total expression for error bound caused by the first order terms of (28-31) has the form:
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Similar expressions are obtained for the convective terms of second order accuracy and

for the viscous terms. A bound of the refined functional error may be determined by these
expressions as:
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This bound does not account for the incomputable error (expressions similar to (10)), or

errors caused by boundary condition approximation etc. It also uses derivatives whose
boundedness can not be proven at present. So, it requires a confirmation via numerical tests.

6. NUMERICAL TESTS
6.1. CONTINUOUS FLOW FIELD

A comparison between computations by finite-differences and analytic expressions, and
an analysis of error estimates is performed for Prandtl-Mayer flow. The error of flow density
past the expansion fan was addressed (freestream Mach number M=4, angle of flow rotation
a =10°).

Let us determine the approximation error using adjoint approach and compare it with
the deviation of the finite-difference solution from analytic one. Fig. 2 presents the density
isolines in flow-field, Fig. 3 illustrates the adjoint density isolines (a concentration of isolines
corresponds to a point of estimation). Fig. 4 presents the spatial distribution of density of error
bound (38), and Fig. 5 depicts isolines of density of error caused by the viscous terms (23).
Figs. 4 and 5 determine those spatial regions that generate the main part of error for parameter at
the estimated point. Results presented in Figs. 2-5 correspond to calculations taking into account
the viscosity (PNS, Re=1000).

Fig. 6 presents the relative error of flow density calculation for Re=1000 as a function
of the reciprocal of spatial step in Y direction (number of nodes). The part of error caused by



corr
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analytical one, and bound of refined solution error (36) are presented. It can be seen that the
main part of error is determined by viscosity and it may be computed and eliminated. The
refined result is close to analytical one and is located within the interval of error bound.
Nevertheless, there is no convergence of error bound as expected from expression (36). Let us
consider the related results for inviscid flow. Fig. 7 presents the deviation of the finite-
difference solution from the analytic one and correction of error in accordance with (35). The
refinement of the solution using adjoint parameters according (35) enables the elimination of
major part of the discretization error. The first order of computable error (35) may be detected
if analyze the Fig. 7. Calculations demonstrated a good coincidence of the refined solution with
analytical one and reliability of the error bound estimate (Fig. 8). Nevertheless, the expectable
second order of accuracy (36) does not manifest itself. When mesh is fine enough the error
bound practically does not depend on the step size. This is caused by the growth of third
derivatives of flow parameters as step size decreases. It may be due to the formation of weak
discontinuities in the flowfield.

A comparison of Figures 6 and 8 demonstrates that the impact of viscosity effect using
adjoint equations enables us to obtain result close to inviscid computation as far as accuracy is
concerned. Thus, there exist feasibility for calculation of inviscid flow (Euler equations) and a
posteriori error estimation on the basis of PNS. This extends the applicability of the considered
method which is not directly applicable to the supersonic Euler equations due to the existence of
discontinuous solutions.

Fig. 9 presents the dependence of error of refined solution in the comparison with the
initial error of solution (caused both by viscous terms and by approximation error) as a function
of Re number. As the viscosity decreases, a certain increase of error bound estimate is visible
due to growth of third derivatives of gasdynamical parameters. For small enough Re numbers
the error of finite-difference calculation breaks the error bound that is caused by the significant
distortion of flow pattern (compare Fig. 2 (Re=1000) and Fig. 10 (Re=10)).

In general, for a smooth flow the errors both for inviscid flow and for viscous flow
(refined via adjoint parameters) are close.

6.2. DISCONTINUOUS FLOW FIELD

As another test, the error of the density past crossing shocks (a =+22.23°, M=4,
Re=1000) is calculated. Fig. 11 presents the density isolines within flowfield, Fig. 12 illustrates
isolines of the adjoint density, Fig. 13 shows the density of error bound according (38), and Fig.
14 presents isolines of the error caused by viscous terms.

This test is more complicated due to unbounded derivatives of gasdynamics parameters
for inviscid flow. The presence of viscosity enables us to calculate flows with shocks, while at
the same time it introduces an error proportional to 1/Re. When viscosity decreases this error
diminishes too, unfortunately the error related to unbounded derivatives increases
simultaneously.

Fig. 15 presents results for Re=1000 as a function of the spatial step size. The viscous
component of error is small enough, the deviation of the finite-difference solution from
analytical one is small also and weakly depends on the step size, and this effect may be
attributed to uncontrolled errors (the non-divergence of the scheme, possible).

Fig. 16 presents results for inviscid flow as a function of the spatial step size. Both error
and error bound have an order of convergence over grid size of O(1) .

Fig. 17 shows the dependence of error on Reynolds number. As the viscosity decreases
the error and error bound increase and approach the asymptote at the inviscid limit.
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A natural way to eliminate errors connected with a nondivergent scheme is the choice of
divergent one. The following systems of divergent Euler equations (two-dimensional) and
related adjoint equations were used in numerical tests.

Divergent Euler equations:

olpu*)
oxk
AU +Ps,) .
X" o
alpuhy)
k ]
X

Uk

Here U'=U,U* =V, h(p,P) = je is the enthalpy, h, =(U?+V?)/2+h is the
total enthalpy.

Adjoint equations:
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Several variants of first order finite-difference schemes (two dimensional) were used,
including "donor cells" [41] and a scheme of Courant-lsaacson-Rees [42]. As expected, the
deviation of finite-difference solution from analytic one for divergent scheme is significantly
smaller compared with nondivergent one. Unfortunately, error estimates use derivatives that are
unbounded in divergent case also (excluding one-dimensional flow). The results of test
computations are analogous to results obtained using the nondivergent scheme. We may
compare the grid convergence for nondivergent scheme (Fig. 16) with results for divergent one
(Fig. 18, inviscid flow).

If we introduce viscosity, we can obtain convergent estimates of error for divergent
scheme too (Fig. 19).

The above tests are oriented towards comparison with analytical solutions that belong to
inviscid flows. This creates some specifics. For example, the previous test flowfield is
composed of regions of constant gasdynamical parameters separated by shocks. So, it is not the
best problem from error estimates viewpoint using derivatives of gasdynamical parameters.
Thus, it is expedient to consider a test problem more typical of viscous gas flows. Let us

consider a viscous (Re=1000) supersonic weakly underexpanded (p;/p, =2) jet in

supersonic flow. Fig. 20 presents isolines of the density in flowfield, Fig. 21 presents isolines of
the adjoint density, and Fig. 22 presents the spatial density of error bound estimate (38).
Unfortunately, corresponding analytical solutions for this problem are unknown. Hence, the
solution on the finest mesh was regarded as an “exact” one. Fig. 23 presents the error bound and
the deviation of the solution from “exact” one in dependence on the grid step. The convergence
order for error bound is close to one (slightly below and decreases as the mesh is refined). This
result may be an indirect evidence of presence of discontinuities in derivatives of gasdynamical
parameters.

(40)

(41)
(42)

(43)

(44)

(45)
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7. THE EVALUATION OF COMPUTABLE ERROR USING RESIDUAL

The residual based approach closely related to [19] is used herein for an estimation of
computable error without explicit use of differential approximation. The main difference
between this approach and that of [19] is in the residual calculation. We do not use an
interpolation of flow parameters from grid points to total domain. Instead, we use a higher order
scheme on the same numerical solution. Let us consider this approach at a heuristic level.
Assume we have a flow-field computed via certain finite-difference method. We try to estimate

. . . Op O0Op
the error of this calculation. Let us use the equation a—/t)+a—p =0 as an example. Let the
X
flowfield be calculated via first order finite-difference approximation

PP Pl P,
T h,

(46)

op 0
The differential approximation of (44) may be written as §+6§+5p:0. Let us

write it in more detail using a Taylor series with the remainder in a Lagrange form. (parameters
a, €(0), B! €(0,1) are unknown).

o plt,,, o’ plt,,, 20°pt, + B, 2 0ot ¥
@+ip+} r p(n Xk)+hK p(n Xk) +L p(n+ﬁerk)+g p(n Xk+0[kh<)
o ox 2 o’ o 6 o’ 6 x

=0 (47)

Let us replace (46) by the stencil of next (second) order of accuracy and calculate residual 7,

arising from applying the high order scheme to the flowfield calculated using the low order
scheme.

n+l

P — p|?_1 n Pia ~ Pia
27 2h,
Expression (48) may be expanded in the Taylor series as

n+l

0 PP PP _0p T 8P+t | Op O p(t X+ k)

=1y (48)

" 27 oh a6 o x . 6 o (49)
The function p[j is obtained from solution of (46) and so complies with the condition (47). Let
us substitute (47) in (49), then the residual assumes the form
n :iﬁsp(tn +7kT %) +ifa3p(tn’xk +2¢he) _
6 ot 6 ox: (50)
1 Tﬁzp(tn,xk)JrhK O*plta ) |72 @ plta+AiT%) h & plty X +arch)
2 ot? ox° 6 ot 6 e
Correspondingly, the lower order term of truncation error (47) has a form
o2 p(t , X 0% p(t X 20%p(t +7M1, % 20%p(t + B, X
1 . p(r;_ k)+hk A( " «) :_m?_l_L A, Zkr k)_L A, ISBkT k)+ (51)
2 ot OX 6 ot 6 ot

he O°plta, % + 2eh)  he @p(t, X +ahy)
Tt 3 -y 3 ~ 1k
6 OX 6 OX

Thus, the lower term of differential approximation (47) may be estimated via a residual
obtained from using high order stencil on the solution calculated using main finite-difference
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scheme. As a result we obtain the field of residuals that locally disturb the exact solution.
According to (3) the variation of estimated value has a form Ag(5p) = J- opydtdx . Taking
Q

into account (51) we obtain
Az(dp) = [ dpydtdx ~ ~[ nydtdx (52)
Q Q

In contrast to (3), the expression (52) may be easily calculated without knowledge of
differential approximation. On other hand, the differential approximation approach provides a
more accurate account of higher terms and estimation of refined solution bounds. Let us
compare these approaches using first order upwind scheme and divergent form of Euler
equations (38-43). For estimation of residual we use second order approximation (48).

The deviation of calculation from analytical, the error estimation using DA based (35)
and residual based methods are presented in Fig. 24 for Prandtl-Mayer flow. The close
correlation of estimates (35) and (52) for continuous flow is visible. If we recast Fig. 24 on a
logarithm scale, all these functions may be described by a first order curve O(h).

In contrast to (3) the expression (52) may be extended to discontinuous flows if
divergent finite difference schemes are used.
For discontinuous flow both derivatives in (48) are unbound, nevertheless these

singularities are mutually compensated due to conservation law and the residual 7, is bounded.

This residual may be calculated using only a bounded combination of derivatives of flow
parameters and applied for error estimation. A corresponding example is presented in Fig. 25 for
crossing shocks. It presents the error estimation using a residual based method (52), DA based
(35) one, and the deviation of the calculation from the analytical value. Fig. 25 demonstrates the
residual approach (52) to provide a much more accurate estimation of error if compared with the
differential approximation (35), which explicitly diverges. Unfortunately, the residual based
approach does not provide an error bound.

8. DISCUSSION

The difficulties connected with using adjoint approach are of the same nature as those
arising while using Richardson extrapolation. They are caused by the presence of discontinuities
that determine the order of accuracy observable in numerical tests. Let us consider this problem
at an heuristic level. For this purpose let us write (5) in more detail. Let m be the number of
bounded derivatives (derivatives of the order m and higher may have a finite number of jump
discontinuities), p is the order of the approximated derivative, j is the formal order of accuracy
of a finite-difference scheme. Let us approximate derivatives by the finite differences Dp[gtxX) .

. ; D p(t, %) . o
The limit Ilmz h! — =2 1h%r corresponds to the first term (5). Consider its
70 45 DxP*!

asymptotic form. The derivative of order m+1 has an asymptotic (o™ — p™)/h~ A/h for

the jump discontinuity, while the derivative of order n+2 has the asymptotic
(A/h=0/h)/h~A/h?*, correspondingly the derivative of the order p+j has the

A ) ) p+i ) )
—. Thus Ilm{h'D p(t.’x)]~llm(hJA. j There is a limited
RPHi-m hes0 Dx P+ pPH-m

number of nodes that participate in the summation in the vicinity of discontinuity, so the
multiplier h (appearing during summation) should be taken into account, yielding

asymptotic
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k=Nx,n=n, +ng ) p+j
3 (h’ D’O(t.’x))h‘lfr ~ h™PH
DxP*!

Thus, the terms of j-th formal order of accuracy contain a component of j-th
order (appearing due to integration over the smooth part of the solution) and a
component having the order i = m— p+1 (engendered by the jump discontinuity of the

m-—th order derivative). So, the order of convergence depends on the solution and may
asymptotically tend to a minimal order i = m— p+1 as the grid size decreases. In [47]

the influence of discontinuities on the error is considered for example that of the spatial
derivative of temperature.

The calculation of approximation errors by considered method requires the existence of
bounded derivatives of relatively high order. They do not exist always, so, for supersonic Euler
equations, these estimates may be calculated only for smooth solutions. If discontinuities are
expected for the studied flow, the use of viscosity enables us to conduct these estimates. The
viscosity engenders its own component of error, which may also be eliminated using adjoint
equations. This approach permits to obtain error estimates for inviscid supersonic flows using
this method.

Naturally, we can estimate not only the error of density written as a functional (15), but
the error of other functionals. The differences are only in the form of the source terms in adjoint
equations (16-19).

For justification of error estimates we should verify that the unaccounted error
component induced by approximation error of adjoint equations is small enough. For calculation
of this component we can solve second order adjoint equations[43]. Such a suitable example is
presented in [47] for heat conduction equation.

For error estimates we use numerical results that may be significantly less smooth then
the computed physical field. Thus, for certain finite-difference schemes (non-monotonic) the
error bounds may be too large. The applicability of method considered above is restricted to
numerical schemes which do not exhibit nonphysical oscillations.

9. CONCLUSION

The computable pointwise error of viscous flow parameter caused by a finite-difference
approximation may be evaluated using differential approximation terms and adjoint equations.
The asymptotic bound of refined solution error may be determined simultaneously.

Numerical tests carried out demonstrated the efficiency of this method for parabolized
Navier-Stokes. The influence of viscous terms may be calculated similarly and that provides
also for feasibility of estimating errors of the Euler equations.

The computer time required for point-wise refining of a single parameter at a single
point and error bound calculation is equal to the time required for flow-field calculation on the
same grid.

k=1,n=n, —ng

APPENDIX A. NOMENCLATURE
C.,- specific volume heat capacity;
e - specific energy, C, T
f - flow parameters (p,U,V,e)
h-enthalpy
ho-total enthalpy
hy,h,- spatial steps along X and Y;
M - Mach number

Ni-number of time steps, N,—number of spatial nodes along X, N —number of spatial nodes along Y
L- Lagrangian
P -pressure

PR - Prandtl number (Pr=xC,/2)
R - gas constant
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_ pooU ooYmaX

Hy,
T-temperature
U- velocity component along X
V- velocity component along Y
X,Y —coordinates

Re -Reynolds number

Greek letters
a, B,y - coefficients in Taylor-Lagrange series, o -Dirac’s delta function;

corr

Ap”" - correctable error, connected with the expansion along X; Ap*"

sup _

- correctable error; Ap,

component of bound of inherent error, connected with the expansion in coordinate X; Ap " -
component of bound of inherent error

¥ - specific heat ratio

& - functional;

i -Viscosity

A - thermal conductivity;

L - density;

T -temporal step

¥, ¥, ¥, e - adjoint variables

- domain of calculation

Subscripts:

o0 entrance boundary parameters; an- analytical solution; corr- corrected error; est — estimated point;
exact- exact solution; k- number of spatial mesh node along Y; n-number of step along X; sup- bound of
inherent error; x-component of truncation error connected with Taylor expansion in coordinate X; t-
component of truncation error connected with Taylor expansion in time.
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Figure Captions

Fig. 1. Flow sketch. A- Entrance boundary, B,D- lateral boundaries, *-location of estimated
parameter
Fig. 2. Isolines of density (Prandtl-Mayer flow)
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Fig. 3. Isolines of adjoint density (concentration correlates with estimated point)

Fig. 4. Isolines of density of error bound (38)

Fig. 5. Isolines of error density caused by viscosity (23).

Fig. 6. The error of calculation as a function of the reciprocal of mesh step (viscous flow,
Re=1000). 1-error due to viscous terms, 2-deviation of refined solution from analytical one,
3, and 4- bounds of error

Fig. 7. The error of calculation as a function of the reciprocal of mesh step (inviscid flow).
1-deviation of finite-difference solution from analytical one, 2 error correction according
(37).

Fig. 8. The error of calculation as a function of the reciprocal of mesh step (inviscid flow).
1-deviation of refined solution from analytical one, 2, 3 error bounds (38)

Fig. 9. The error of calculation as a function of Reynolds number. 1- deviation of finite-
difference solution from analytical one, 2- error due to viscous terms, 3- deviation of refined
solution from analytical one, 4, 5 error bounds (38)

Fig. 10. Isolines of density for small Re (Re=10)

Fig. 11. Isolines of density (crossing shocks)

Fig. 12. Isolines of adjoint density (concentration correlates with estimated point)

Fig. 13. Isolines of error bound density (38)

Fig. 14. Isolines of error density caused by viscosity (23).

Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow).
1- deviation of refined solution from analytical one, 2- error density caused by viscosity
(23), 3, 4 error bounds (38)

Fig. 16. The error of calculation in dependence on the reciprocal of mesh step (inviscid
flow). 1- deviation of refined solution from analytical one, 2 error bounds (38).

Fig. 17. The error of calculation as a function of Reynolds number. 1- deviation of finite-
difference solution from analytical one, 2- error caused by viscosity (23). 3- error bound
(38)

Fig. 18. The error of calculation as a function of the reciprocal of mesh step (inviscid flow,
divergent scheme). 1-deviation of finite-difference solution from analytical one, 2-
correction (37), 3- bound of error

Fig. 19. The error of calculation as a function of the reciprocal of mesh step (viscous flow,
divergent scheme). 1- deviation of refined solution from analytical one, 2, 3 error bounds
(38)

Fig. 20. Isolines of density

Fig. 21. Isolines of adjoint density

Fig. 22. The density of error bound (38).

Fig. 23. The error of calculation as a function of the reciprocal of mesh step. 1- deviation of
refined solution from “exact” one, 2- bound of error.

Fig. 24. The comparison of different error evaluations as a function of the reciprocal of mesh
step. 1- DA based error, 2- residual based error (52), 3 difference of the analytical and
numerical values.

Fig. 25. The errors as functions of the reciprocal of mesh step. 1- difference of the analytical
and numerical values, 2- DA based error, 3- residual based error (52).
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viscosity (23)
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Fig. 6. The error of calculation as a function of the reciprocal of mesh step (viscous flow, Re=1000). 1-
error due to viscous terms, 2-deviation of refined solution from analytical one, 3, 4- bounds of error
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Fig. 7. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1-deviation of
finite-difference solution from analytical one, 2 error correction according (37).
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Fig. 8. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1-deviation of
refined solution from analytical one, 2, 3 error bounds (38)
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Fig. 9. The error of calculation as a function of Reynolds number. 1- deviation of finite-difference solution
from analytical one, 2- error due to viscous terms, 3- deviation of refined solution from analytical one, 4, 5
error bounds (38)
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viscosity (23).
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Fig. 15. The error of calculation as a function of the reciprocal of mesh step (viscous flow). 1- deviation
of refined solution from analytical one, 2- error density caused by viscosity (23), 3, 4 error bounds (38)
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Fig. 16. The error of calculation as a function of the reciprocal of mesh step (inviscid flow). 1- deviation
of refined solution from analytical one, 2 error bounds (38).
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Fig. 17. The error of calculation as a function of Reynolds number. 1- deviation of finite-difference
solution from analytical one, 2- error caused by viscosity (23). 3- error bound (38)
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Fig. 18. The error of calculation as a function of the reciprocal of mesh step (inviscid flow, divergent
scheme). 1-deviation of finite-difference solution from analytical one, 2-correction (37) , 3- bound of
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Fig. 19. The error of calculation as a function of the reciprocal of mesh step (viscous flow, divergent
scheme). 1- deviation of refined solution from analytical one, 2, 3 error bounds (38)

80

20

ol IR NI M
150 200

T I R | L R L
50 100 150 200
X

I IR R M
50 100
X

Fig. 20. Isolines of density Fig. 21. Isolines of adjoint density



1.2E-01

1.0E-01

8.0E-02

6.0E-02

4.0E-02 A

2.0E-02 ~

0.0E+00

-2.0E-02

25

(20T T 71 70 oA Grdgen

50 100 150 200
X

Fig. 22. The density of error bound (38).

d?o/Ro

-1

-2

0

100 200 300 400

Fig. 23. The error of calculation as a function of the reciprocal of mesh step.
1- deviation of refined solution from “exact” one, 2- bound of error.

700



26

2.0E-03

1.8E-03 4 dRo/Ro

1.6E-03

1.4E-08 A

——1
—--2
—&—3

1.26-03
1.0E-03 |

8.0E-04 A\
6.0E-04 |
4.0E-04

2.0E-04 &\\

0.0E+00 T T T 1
0 100 200 300 400 500 600

Fig. 24. A comparison of different error evaluations as a function of the reciprocal of mesh
step.
1- DA based error, 2- residual based error (52), 3 difference of the analytical and numerical
values.
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Fig. 25. The errors as functions of the reciprocal of mesh step. 1- difference of the analytical and
numerical values, 2- DA based error, 3- residual based error (52).
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