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Suppose f is a convex function on an open interval I. The following facts are
well known and easy to verify:

(a) the second (distributional) derivative of f is a nonnegative locally finite Borel
measure on I, and any such measure is the second derivative of a convex
function f which is unique up to the addition of an affine function;

(b) it follows from (a) that

(1) 〈f ′′, φ〉 ≥ 0

whenever φ ∈ C∞c (I) is nonnegative; conversely, if f is a distribution on I
which satisfies (1), then f is a convex function.

The purpose of this note is to describe certain analogues of these facts for functions
of several variables and then to prove Theorem 2 below. Thus let U be a convex
open subset of Rn. Suppose f is a convex function on U . Then, as a continuous
function, f defines a distribution on U . The derivatives of f mentioned below are to
be interpreted in that sense. In particular, the second derivative D2f is the Hessian
matrix of distributions on U whose entries are the second-order partial derivatives
fxixj of f . Let B0(U) be the collection of all Borel sets E ⊂ U having compact
closures contained in U . An analogue of (a) is

Theorem 1. Suppose f is convex on U . For 1 ≤ i, j ≤ n there are real-valued set
functions µij : B0(U) → C which are complex measures on any compact subset of
U . For all φ ∈ C∞0 (U) and k = 1, · · · , n, the µij satisfy the equations

(2) 〈fxixj , φ〉 = 〈µij , φ〉,

(3) 〈µij , φxk〉 = 〈µik, φxj 〉.

Further, the symmetric matrix

µ(E) =
(
µij(E)

)
is positive definite for all E ∈ B0(U). Conversely, if

µ =
(
µij

)
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is such a (positive definite matrix valued) set function, then there is a convex
function f on U with D2f = µ. Such an f is unique up to the addition of an affine
function.

The following analogue of (b) is a corollary of Theorem 1.

Corollary. Suppose f is a distribution on U satisfying

n∑
i,j=1

〈fxixj , φiφj〉 ≥ 0

whenever φi ∈ C∞0 (U). Then f is a convex function on U .

More interestingly, there is a lower bound on the Hausdorff dimension of the support
of D2f for nontrivial convex functions f :

Theorem 2. With D2f = µ as above, if µ is supported on a Borel set having
Hausdorff dimension less than n− 1, then f is affine.

To begin the proofs, suppose that η is a nonnegative and radial C∞ function
supported in B(0, 1) and having integral 1. With ηε(x) = ε−nη(x/n) for ε > 0
and for ρ a distribution on U , let ρε = ηε ∗ ρ be the usual ε-mollification of ρ, a
distribution acting on those φ ∈ C∞0 (U) whose support is distant at least ε from
∂U .

Proof of Theorem 1: Suppose that f is convex on U . Fix an open V ⊆ U
such that V has compact closure contained in U and choose ε0 > 0 such that
V + B(0, 3ε0) ⊆ U . Then if 0 < ε < ε0, f ε is convex and C∞ on V . Suppose
ψ ∈ C∞0 is nonnegative, identically 1 on V , and supported in V +B(0, 2ε0). Since

0 ≤
∫
V

f εxixi(x) dx ≤
∫
f εxixi(x)ψ(x)dx =

∫
f ε(x)ψxixi(x) dx −→

∫
f(x)ψxixi(x) dx

as ε→ 0, the nonnegative measures

χV (x)f εxixi(x) dx

have uniformly bounded total variations on V . Since

|f εxixj | ≤ |f
ε
xixi |

1/2|f εxjxj |
1/2 ≤

|f εxixi |+ |f
ε
xjxj |

2
,

the same is true for the complex measures

χV (x)f εxixj (x) dx.

Taking weak* limits gives complex measures µij on V satisfying (2) and (3) if
φ ∈ C∞0 (V ). Letting V −→ U then yields the set functions µij whose existence is
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the first claim of Theorem 2. (The statement about the positive definite character
of µ(E) follows from

n∑
i,j=1

∫
V

f εxixj (x)φi(x)φj(x) dx ≥ 0

and a limit argument.)
Suppose now that µ =

(
µij
)

is as in Theorem 2. Suppose that V and ε0 are
as above and suppose additionally that ∂V is C1. Fix i, j = 1, . . . , n. For ε < ε0,
the C∞ functions µεij have uniformly bounded L1(V +B(0, ε)) norms (since the set
functions µij are complex measures on V +B(0, 2ε0)). The conditions (3) and the
symmetry of µ imply that there are C∞ functions fε on V +B(0, ε0) with

∂2fε
∂xixj

= µεij .

The Poincaré-Sobolev inequalities and the uniform bounds on

‖µεij‖L1(V+B(0,ε0))

show that there is q = q(n) > 1 such that the functions fε can be chosen to have

‖fε‖Lq(V+B(0,ε0)) ≤ C

for some positive C independent of ε. Passing to a subsequence which converges
weakly in Lq(V +B(0, ε0)) shows that there is f ∈ Lq(V +B(0, ε0)) satisfying

(4)
∂2f

∂xixj
= µij

(in the sense of distributions on V + B(0, ε0)). To check that f is equal a.e. to a
convex function on V , we begin by noting that, for 0 < ε < ε0, (4) and the positive
definite assumption on µ show that the mollifications f ε are convex on V . The
formula

gδ(0) =
1
2

∫
Σn−1

∫ ∞
0

η(rσ)
∫ δr

−δr

d2

dt2
g(tσ)rn−1dr dσ + g(0)

for the δ-mollification of a twice differentiable function g at 0 shows that δ-mollifications
of twice differentiable convex functions decrease pointwise as δ −→ 0. In particular,
if B(x, δ) ⊆ V and 0 < δ < δ0, this applies to (f ε)δ(x) for each ε and so, in the
limit as ε→ 0, to fδ(x). If

lim
δ→0

fδ(x) = −∞

held for any x ∈ V , it would follow from convexity that

lim
δ→0
‖fδ‖Lq(V ) →∞.

Thus the decreasing limit
lim
δ→0

fδ(x)
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gives a realization of f as a convex function on V . Now suppose that Ṽ satisfies
the same hypotheses as V and is such that V ⊆ Ṽ . Then the argument above
yields a convex function f̃ on Ṽ satisfying (4) on Ṽ . Such an f̃ can be adjusted
by the addition of an affine function to agree with f on V . Considering a sequence
V1 ⊆ V2 ⊆ · · · of such open sets with ∪Vn = U furnishes a convex f on U satisfying
D2f = µ on U . Since such an f is clearly unique up to the addition of an affine
function, the proof of Theorem 1 is complete.

Proof of Corollary: If f is a distribution on U satisfying the hypothesis, then
it is clear that each fxixi is nonnegative and therefore realizable as a nonnegative
Borel measure µii on U . The hypothesis also implies that

n∑
i,j=1

〈fxixj , φ2〉ζi ζj ≥ 0

for all real numbers ζ1, . . . , ζn whenever φ ∈ C∞0 (U). It follows that

|〈fxixj , φ2〉| ≤
〈fxixi , φ2〉+ 〈fxjxj , φ2〉

2
=
〈µii, φ2〉+ 〈µjj , φ2〉

2

for φ ∈ C∞0 (U). This implies that each fxixj is realizable as a complex Borel
measure µij on each open and bounded V ⊆ U . Thus the desired result follows
from Theorem 1.

Proof of Theorem 2: It follows from the proof of Theorem 1 that if f is convex
on U , each of the distributions fxj is realizable as a function on U . Thus Theorem
2 can be proved by applying the following result to each fxj :

Lemma 1. Suppose the locally integrable function g on U has the property that
each of the distributions gxj is realized by a Borel measure µj supported on a set
of Hausdorff dimension less than n−1. Then g is equal a.e. to a constant function.

The proof depends on a simple fact:

Lemma 2. Suppose E ⊆ Rn is a set of Hausdorff dimension less than n− 1. Then
the n-dimensional Lebesgue measure of

∪t>0

(
tE
)

is 0.

Proof of Lemma 2: The mapping π : x 7→ x
|x| is Lipschitz on

Eδ
.= E ∩ {δ < |x| < 1/δ}

for each δ > 0. Thus π(Eδ) has (n − 1)-dimensional measure 0 in Σn−1 and the
desired result follows by integrating in polar coordinates.

Proof of Lemma 1: Assume without loss generality that 0 ∈ U and that

lim
ε→0

gε(0) = g(0).
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This is possible since the local integrability of g implies that

lim
ε→0

gε(x) = g(x)

for a.e. x ∈ U . If h is C1 on U and x ∈ U , then

h(x) =
∫ 1

0

n∑
j=0

xjhxj (xt) dt+ h(0)

leads to∫
U

h(x)φ(x) dx = h(0)
∫
U

φ(x) dx+
∫
U

∫ 1

δ

φ(
x

t
)
n∑
j=0

xjhxj (x)
dt

tn+1
dx

for φ ∈ C∞0 (U) and δ = δ(φ) > 0. Thus

〈g, φ〉 = lim
ε→0
〈gε, φ〉 =

lim
ε→0

[
gε(0)

∫
U

φ(x) dx+
∫
U

∫ 1

δ

φ(
x

t
)
n∑
j=0

xjg
ε
xj (x)

dt

tn+1
dx
]
.

Letting φt(x) = φ(x/t), we have

lim
ε→0

∫
U

gεxj (x)xjφt(x) dx = 〈gxj , xjφt〉

uniformly for δ ≤ t ≤ 1 and so

(5) 〈g, φ〉 =
(
lim
ε→0

gε(0)
) ∫

U

φ(x) dx+
∫
U

∫ 1

δ

φ(
x

t
)
n∑
j=0

xjgxj (x)
dt

tn+1
dx.

If E is a set of Hausdorff dimension less than n − 1 which supports each of the
measures gxj , then (5) implies that

〈g, φ〉 =
(
lim
ε→0

gε(0)
) ∫

U

φ(x) dx+
∫
U

φ(x) dν(x)

where the measure ν is supported on the set

∪t>0

(
tE
)
.

By Lemma 2, that set has Lebesgue measure 0. Since g is a locally integrable
function, it must be the case that ν = 0, and Lemma 1 follows.


