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Abstract: The Maximum Likelihood Ensemble Filter (MLEF) equations are derived 
without the differentiability requirement for the prediction model and for the observation 
operators. Derivation reveals that a new non-differentiable minimization method can be 
defined as a generalization of the gradient-based unconstrained methods, such as the 
preconditioned conjugate-gradient and quasi-Newton methods. In the new minimization 
algorithm the vector of first order increments of the cost function is defined as a 
generalized gradient, while the symmetric matrix of second order increments of the cost 
function is defined as a generalized Hessian matrix. In the case of differentiable 
observation operators, the minimization algorithm reduces to the standard gradient-based 
form.  
 

The non-differentiable aspect of the MLEF algorithm is illustrated in an example 
with one-dimensional Burgers model and simulated observations. The MLEF algorithm 
has a robust performance, producing satisfactory results for tested non-differentiable 
observation operators.  
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1 Introduction 

 

The maximum likelihood ensemble filter (MLEF) is an ensemble data 

assimilation algorithm based on control theory (Zupanski 2005; Zupanski and Zupanski 

2006).  The MLEF is a posterior maximum likelihood approach, in a sense that it 

calculates the optimal state as the maximum of the probability density function (PDF), 

while most of the ensemble data assimilation methodologies used in meteorology and 

oceanography are based on the minimum variance approach (e.g., Evensen 1994; 

Houtekamer and Mitchell 1998; Bishop et al. 2001; Whitaker and Hamill 2002; Anderson 

2003; Ott et al. 2004). The maximum of the PDF is found by an iterative minimization of 

the cost function derived from a multivariate posterior PDF. The iterative minimization is 

an important component of the MLEF since it provides practical means for finding the 

nonlinear analysis solution. The process of minimization produces both the most likely 

state and associated uncertainty.  

The MLEF was successfully tested in applications with various weather 

prediction and related models, such as the Korteweg-de Vries-Burgers model (Zupanski 

2005; Zupanski and Zupanski 2006), the Colorado State University (CSU) global shallow 

water model (Zupanski et al. 2006; Uzunoglu et al. 2007), the Large-Eddy Simulation 

(LES) model (Carrio et al. 2007), the National Aeronautics and Space Administration 

GEOS-5 column precipitation model (Zupanski et al. 2007b), and the CSU Lagrangian 

Particle Dispersion Model (LPDM) (Zupanski et al. 2007a). In all those applications a 

nonlinear conjugate-gradient method (e.g., Gill et al. 1981) was used for minimization of 

the cost function. As all other unconstrained gradient-based minimization algorithms, the 

nonlinear conjugate-gradient method requires the cost function to be at least twice 

differentiable. The first derivative of the cost function is required for the gradient, and the 

second derivative, or its approximation, is required for the Hessian preconditioning.    

Unfortunately, the differentiability requirement is not necessarily satisfied in 

applications to realistic problems. In particular, the physical processes related to clouds 

and precipitation typically include non-differentiable operators. For example, it is known 

that cumulus convection parameterization in weather and climate introduces a significant 
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discontinuity in the first and higher-order derivatives (e.g., Verlinde and Cotton 1993; 

Zupanski 1993; Tsuyuki 1997; Xu and Gao 1999; Zhang et al. 2000).  A similar 

discontinuity problem can be identified for observation operators as well. In satellite 

radiance assimilation, for example, a forward model for all-weather conditions is a non-

differentiable observation operator. This follows from the fact that, depending on the 

value of the state vector (i.e. cloudy or clear), various forms of the forward operator will 

be chosen. For example, the cloud property model and the gas extinction model are only 

included in the presence of clouds, leading to different formulations of the forward 

operator in the presence of clouds and without clouds (Greenwald et al. 2002). Other non-

differentiable operator examples can be found whenever a weather regime defined by the 

state vector defines different forms of the observation operator.  

Common methods for solving non-differentiable (non-smooth) minimization are 

based on sub-differentials and bundle algorithms (Clarke 1983; Lemarechal and Zowe 

1994; Nesterov 2005). Bundle algorithms were tested in optimal control problems of flow 

with discontinuities (Homescu and Navon 2003) using the PVAR software (Luksan and 

Vlcek 2001), and also in variatonal data assimilation (Zhang et al. 2000) using the bundle 

algorithm of Lemarechal (1977). An explicit knowledge of the minimization space (e.g. 

its basis or span-vectors), known in ensemble data assimilation, creates an opportunity to 

exploit alternative means for non-differentiable minimization without the need to define 

gradients, sub-gradients, or their approximations. Such an approach will be pursued here.  

In this paper we address the differentiability requirement for the cost function by 

presenting an alternative derivation of the MLEF. For the first time the validity of the 

Taylor series expansion is not assumed, thus the differentiability of the cost function is 

not required. Since no limitation of using the first or second order Taylor formula 

approximation is imposed, the analysis and forecast ensemble perturbations are not 

restricted to be small. Under these relaxed conditions, the MLEF is formulated as a 

nonlinear filtering algorithm that allows non-differentiable models and observation 

operators. 

An important consequence of this derivation is that the optimization algorithm 

used within the MLEF can be now viewed as a non-differentiable minimization 
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algorithm. For differentiable functions the minimization reduces to standard gradient-

based algorithms, with an implicit Hessian preconditioning. In particular, the MLEF 

algorithm is presented as a non-differentiable generalization of the nonlinear conjugate-

gradient and the BFGS quasi-Newton algorithms (Luenberger 1984; Gill et al. 1981). In 

order to illustrate the potential of the non-differentiable minimization used in the MLEF, 

a one-dimensional Burgers model simulating a shock wave is employed. Unlike in 

previous MLEF applications, we include a challenging non-differentiable observation 

operator with discontinuities in the function and in all its derivatives.  

The paper is organized as follows. The new MLEF derivation under relaxed 

conditions is presented in Section 2. In Section 3 we describe the experimental design, 

model and observations. The results are presented in Section 4, and the conclusions are 

drawn in Section 5. 

 

2 Non-differentiable MLEF formulation 

 

Let the state space be denoted  S !"
NS , where NS denotes its dimension, and let 

  x !S  be a state vector. We refer to the set of state vectors 
  
x
i
!S  ;  (i = 1,…,N

E
){ }  as 

ensembles, and to the space  E !"
N
E of dimension NE as an ensemble space.  

In order to begin ensemble data assimilation, the initial state vector and its 

uncertainty need to be specified. Let the initial state vector be denoted x0 , and let the 

initial N
S
! N

E
square-root error covariance be denoted 

  
P
0

1/2
:E ! S  with 

columns
   

p
i

0
!S ;(i = 1,…,N

E
){ } . The initial state vector and the initial square-root error 

covariance define a set of initial conditions 

 
x
i

0
= x

0
+ p

i

0
; (i = 1,…,N

E
)   (1) 

 

2.1. Prediction 

The predictive step of the MLEF (and any other filter) addresses the means of 

transporting the uncertainty span-vectors from the current analysis time to the next 
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analysis time. A nonlinear dynamical model  M :S ! S  transports the state vector 

according to 

 
x
t
= M (x

t -1
)   (2) 

where t-1 and t refer to the current and the next analysis times, respectively. Note that the 

model error is neglected in Equation (2) to simplify the derivation. In order to keep the 

notation manageable, we omit the time index in the remainder of the paper, unless 

suggested otherwise. The forecast increment resulting from the i-th analysis increment is 

 
!ix

f
= xi

f
" x

f
= M (xi

a
) " M (x

a
) = M (x

a
+ pi

a
) " M (x

a
) .  (3) 

where the superscripts a and f refer to analysis and forecast, respectively. The vectors 

  
{p

i

a
!S;(i = 1,…,N

E
)} represent the columns of the square-root analysis error 

covariance. After defining 
 pi

f
= !ix

f , the square-root forecast error covariance is 

  
Pf

1/2
= p

1

f
p
2

f
! pNE

f!" #$ pi
f
= M (x

a
+ pi

a
) % M (xa

)  (4) 

where
  
Pf

1/2
:E ! S  is a N

S
! N

E
matrix with columns

  
{pi

f
!S ;(i = 1,…,NE )} .  

The Equation (3) represents the transport of uncertainty span-vectors in time by 

nonlinear model dynamics. The MLEF forecast step allows the nonlinear model operator 

and large analysis increments to be included without typical restrictions, such as linearity 

and differentiability.  For small analysis increments, however, the forecast error 

covariance formulation (4) reveals that the forecast step of the MLEF is closely related to 

the Kalman filters (e.g., Jazwinski 1970), and to the SEEK filter (Pham et al. 1998; 

Rozier et al. 2007).  

 

2.2. Analysis 

The analysis is corrected in the subspace defined by the forecast error covariance 

matrix (Jazwinski 1970). Using the Equation (4) one can define the analysis correction 

subspace 

  
A = span p

1

f
, p

2

f
,…, pNE

f{ } A ! S.   (5) 

Then, an arbitrary vector   x ! x
f
"A  can be expressed as a linear combination  
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x ! x

f
= w

1
p
1

f
+ w

2
p
2

f
+!+ wNE

pN E

f
= Pf

1/2
w w = w

1
,w

2
,…,wNE

( )
T

"E . (6) 

The transformation (6) links the analysis correction subspace with the ensemble space, 

and shows that 
  
Pf

1/2
:E ! A .  

Until now, the differentiability of the dynamical model M was not required, and 

no specific assumption about the probability distribution of the analysis or forecast 

increments was necessary. In the analysis, however, some assumptions will be required. 

Often assumed, as done here, is that probability distribution of the initial conditions 

errors and the observation errors are Gaussian. The novelty is that a commonly used 

differentiability assumption will be relaxed, thus a more general formulation of the 

MLEF analysis solution will be derived.  Note that it is possible to relax the Gaussian 

assumption and develop non-Gaussian data assimilation framework (e.g., van Leeuwen 

2003; Abramov and Majda 2004; Majda et al. 2004; Fletcher and Zupanski 2006a,b), but 

this will not be pursued here in order to simplify the presentation.  

 

2.3.1. Cost function 

In the MLEF, the optimal set of coefficients  ,N, iw
Ei
}1:{ …= is obtained by 

maximizing the posterior conditional probability.  In practice this is achieved by an 

iterative minimization of a cost function (e.g., Lorenc 1986)  

 
J(x) =

1

2
x ! x

f( )
T

Pf

!1
x ! x

f( ) +
1

2
y ! H (x)[ ]

T
R

-1
y ! H (x)[ ]  (7) 

where  R :O !O is the observation error covariance,  O !"
NO is the observation space, 

N
O

is the dimension of  O, 
 
y !O is the observation vector, and  H :S !O  is a 

nonlinear and/or non-differentiable observation operator. Since the matrix fP is defined 

using ensemble forecast increments, the minimization of the cost function will involve a 

search in the analysis correction subspace A.  

Let consider an increment of the cost function,
 
!J(x) = J(x + !x) " J(x) , for 

  !x "A . In principle, the minimization of !J(x)  is equivalent to minimizing 
 
J(x)  (e.g., 

Luenberger 1984). Direct substitution of  x + !x in the Equation (7) results in 
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J(x + !x) = J(x) + !x( )
T

Pf

"1
x " x

f( ) " H (x + !x) " H (x)[ ]
T

R
"1

y " H (x)[ ] +

+
1

2
!x( )

T
Pf

"1
!x( ) +

1

2
H (x + !x) " H (x)[ ]

T
R

"1
H (x + !x) " H (x)[ ] .

 (8) 

Note that for differentiable operator H, the expansion (8) reduces to 

 

J(x + !x) = J(x) + !x( )
T

Pf

"1
x " x

f( ) " !x( )
T #H

#x

$

%&
'

()

T

R
"1

y " H (x)[ ] +

+
1

2
!x( )

T
Pf

"1 !x( ) +
1

2
!x( )

T #H

#x

$

%&
'

()

T

R
"1 #H

#x

$

%&
'

()
!x( ) +O(|| !x ||3 )

 (9) 

which is equivalent to a second-order Taylor series expansion of 
 
J(x)  in the vicinity of 

x. One can note that the Taylor expansion (9) has a remainder )||(|| 3
x!O , due to 

neglecting the higher-order nonlinear terms (where ||.|| denotes a norm). On the other 

hand, the expansion (8) does not have a remainder since the use of total increments 

accounts for all higher-order nonlinear terms. Therefore, the formula (8) may be viewed 

as a generalization of the Taylor expansion of J. This apparent similarity can be used to 

define a generalization of the gradient vector and the Hessian matrix that could be used in 

minimization, to include nonlinear and non-differentiable operator H.  

Since the analysis correction subspace A is already defined (Equation (5)), the 

increments Δx in the direction of known span-vectors 
 
!ix

f
= pi

f
"A,i = 1,...,NE{ }  are 

considered. By comparing Equations (8) and (9), one can identify the i-th component of a 

generalized first derivative of J, denoted J
i

! ,  

 
!i J(x) = "ix

f( )
T

Pf

#1
x # x

f( ) # H (x + "ix
f
) # H (x)$% &'

T

R
#1

y # H (x)[ ]  (10) 

and the (i,j)-th element of a generalized second derivative of J, denoted Jji
2

,
! ,  

 
!i, j

2
J(x) = "ix

f( )
T

Pf

#1 " jx
f( ) + H (x + "ix

f
) # H (x)$% &'

T

R
#1

H (x + " jx
f
) # H (x)$% &'  (11) 

where !
i, j

2
= !

i
(!

j
) : i, j " N

E{ } . If we define an N
O
! N

E
observation perturbation 

matrix,  Z :S !O  

 
Z(x) = z1(x) z2 (x) ! ! zN E

(x)"# $% zi (x) = R
&1/2

H (x + pi
f
)-H (x)"# $%,  (12) 

the generalized first and second derivatives are  
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!GJ(x) = Pf

"1/2
x " x

f( ) " Z(x)( )
T

R
"1/2

y " H (x)[ ]  (13) 

 
!

G

2
J(x) = I + Z(x)( )

T

Z(x)   (14) 

Note that the generalized first derivative is a NE-dimensional vector, and the generalized 

second derivative is a 
EE

NN !  matrix, i.e. both are defined in ensemble space E. The 

Equations (13) and (14) are not approximations to the true derivatives since all nonlinear 

terms are included in the matrix 
 
Z(x) . In absence of better terminology, the term 

“derivative” is used only to indicate that for differentiable cost function and for small 

perturbations
 pi

f the Equations (13) and (14) would reduce to finite-difference 

approximations of directional derivatives.    

 The similarity of the generalized gradient (Equation (13)) with the generalized 

gradient in the subgradient method (e.g. Zhang et al. 2000), !J(x)[ ]
T
"ix

f , reveals that 

the formulation adopted here does satisfy the requirement for the subgradient, i.e. 

J(x + !ix
f
) " J(x) + #GJ(x)[ ]

i
 since !

G

2
J(x) " 0 for all 

 
!ix

f
"A . However, in our 

formulation the increments !ix
f are included in the nonlinear perturbation of the 

observation operator through Equation (12), and thus cannot be separated into the 

subgradient and the perturbation. In other words, our method includes the minimization 

space span (or basis) vectors as inseparable components of the generalized derivatives 

definition. 

 Since the MLEF formulation employs finite differences (i.e. increments), it is 

interesting to compare the MLEF derivatives (Eqs. (13) and (14)) with the finite-

difference approximations of derivatives. The finite-difference approximations to 

directional derivatives of the cost function (7) are !J / !x
i[ ]"i

x # J(x + "
i
x) $ J(x)  and 

!2J / !x
i
!x

j
"# $%&i

x&
j
x = J(x + &

i
x + &

j
x) ' J(x + &

i
x) ' J(x + &

j
x) + J(x) . Note that the 

finite-difference representation of the first derivative already includes all terms of Eq.(8), 

i.e. includes both the first and the second derivatives used by the MLEF. The finite-

difference approximation of the second derivative is also not resembling the MLEF 

formulation (e.g. Eq.(14)). Therefore, the MLEF is not a finite-difference approximation 
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to derivatives. The finite-difference approximation to derivatives has some advantages 

related to its simplicity, but it may require a control of positive-definiteness of the 

Hessian, and possibly additional computational time due to the term J(x + !
i
x + !

j
x) in 

the Hessian.  

 

2.3.2. Generalized Hessian preconditioning  

A common starting point of minimization is the state vector f
xx =  

(corresponding to w=0 in Equation (6)), since it represents the best knowledge of the 

dynamical state prior to taking into account the observations. Since the optimal 

preconditioning is defined as an inverse square-root Hessian matrix (e.g., Axelsson and 

Barker 1984), one can utilize Equation (14) to define Hessian preconditioning as a 

change of variable 

 

w = !G

2
J(x

f
)"# $%

&1/2
' = I + Z(x

f
)( )
T

Z(x
f
)"

#
$
%

&1/2

'  (15) 

where 
 
! "E  is the control vector of dimension NE, and Z(x f

)  is obtained by substituting 
f
xx = in Equation (12). As explained in Zupanski (2005), and equivalent to the 

procedure used in the ensemble transform Kalman filter (ETKF, Bishop et al. 2001), one 

can perform an eigenvalue decomposition of )(2 f

G J x!  to obtain 

!G

2
J(x

f
)"# $%

&1/2
= V I + '( )

&1/2
V

T , where V is the eigenvector matrix and Λ is the 

eigenvalue matrix of )(2 f

G J x! . Note that the MLEF transformation calculates a 

symmetric square-root matrix, corresponding to the ETKF transform with simplex 

improvement (Wang et al. 2004; Wei et al. 2006). 

By combining Equations (6) and (15), one obtains the generalized Hessian 

preconditioning in state space, in the form of the change of variable  

 

x ! x
f
= G

1/2" G
1/2

= Pf

1/2
I + Z(x

f
)( )
T

Z(x
f
)#

$
%
&

!1/2

.  (16) 

The matrix   G1/2
:E ! S  is a N

S
! N

E
matrix, and it represents the inverse of the square-

root generalized Hessian matrix estimated at the initial point of minimization.  
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Once the Hessian preconditioning is accomplished, one can begin with calculation 

of preconditioned generalized gradients. An iterative minimization produces !
k
 at 

iteration k according to !
k
= !

k"1 +# k"1dk"1 , where !
k"1

#$
1 and 

 
d
k!1

"E are the step-

length and the descent direction at the k-1-th iteration, respectively.  Using the change of 

variable (16), the state vector at k-th minimization iteration is related to the control vector 

as 

 
xk = x

f
+G

1/2!k   (17) 

The preconditioned generalized gradient at the k-th minimization iteration is obtained by 

employing the Hessian preconditioning formulation (16) and evaluating (13) at xk 

 
!GJ(xk ) = I + Z(x

f
)( )
T

Z(x
f
)"

#
$
%

-1

&k ' Z(xk )( )
T

R
'1/2

y ' H (xk )[ ]  (18) 

where Z(x
k
)  is obtained by substituting x = x

k
in Equation (12).  

 

2.3.3. Analysis error covariance 

 In order to complete the non-differentiable formulation of the MLEF, an analysis 

(e.g., posterior) error covariance matrix, quantifying the uncertainties of the analysis, is 

required. The equivalence between the inverse Hessian at the optimal point and the 

posterior error covariance (e.g., Fisher and Courtier 1995; Veerse 1999) is exploited in 

the MLEF algorithm. More detailed examination of the relation between the inverse 

Hessian and analysis error covariance in nonlinear problems can be found in Gejadze et 

al. (2007). Since the generalized Hessian in ensemble space is given by Equation (16), 

the analysis (posterior) error covariance in ensemble space is defined as 

 
(P

w
)
a
= !

G

2
J(x

a
)( )

"1

= I + Z(x
a
)( )
T

Z(x
a
)( )

-1

 (19) 

where Z(xa )  is obtained by substituting x = xa in Equation (12). The analysis error 

covariance in state space can be obtained by utilizing the change of variable (6) to define 

the true and optimal state vectors, t
x and a

x , as 
 
x
t
! x

f
= Pf

1/2
w
t  and 

 
x
a
! x

f
= Pf

1/2
w

a , 

where t
w and a

w  are the true and optimal control vectors in ensemble space, 
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respectively. Then, the error of state vector is related to the error of the control vector in 

ensemble space according to 

 
x
a
! x

t
= Pf

1/2
(w

a
! w

t
) .   (20) 

By taking the mathematical expectation of an outer product of (20), and utilizing (19), 

one obtains the analysis error covariance in state space  

 

Pa = Pf
1/2

I + Z(x
a
)( )
T

Z(x
a
)!

"
#
$

-1

Pf
T /2   (21) 

As suggested in section 2.2, the columns of the square-root analysis error covariance, 

denoted 1/2

a
P , are used to define the initial perturbations for the ensemble forecast. Then, 

the matrix 1/2

a
P can be written in a column form as 

  

Pa

1/2
= p

1

a
p
2

a
! pNE

a!" #$ pi
a
= Pf

1/2
I + Z(x

a
)( )
T

Z(x
a
)!

"
#
$

%1/2&
'(

)
*+
i

 (22) 

The matrix 1/2

a
P  is a N

S
! N

E
matrix. In principle, instead of the relation (19) for the 

inverse generalized Hessian in ensemble space, one could use the BFGS inverse Hessian 

update (e.g., Veerse 1999), or some other estimate of the inverse Hessian at the optimal 

point (e.g., Gejadze et al. 2007). The expression (19) is currently being used in the MLEF 

algorithm. 

  

3 Non-differentiable minimization algorithms 

 

 In this section, two non-differentiable minimization algorithms generalized using 

the derivation from Section 2 will be formulated. The first algorithm is the generalized 

nonlinear conjugate-gradient minimization algorithm, presented for both the Fletcher-

Reeves and the Polak-Ribiere formulations (e.g., Luenberger 1984).  

 

Algorithm 1. (Generalized nonlinear conjugate-gradient) 

Choose starting point
 
x

0
= x

f !"
0
= 0  and define 

 
d

0
= ! "

G
J( )

0
= !"

G
J(x

0
) ; 

 k ! 0 ; 

repeat  
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•Compute 
 
!

G
J( )

k+1
= !

G
J(x

k+1
)  

• Set d
k+1

= ! "
G
J( )

k+1
+ #

k
d
k
  

where !
k
=

"
G
J( )

k+1

T

"
G
J( )

k+1

"
G
J( )

k

T

"
G
J( )

k

 (Fletcher-Reeves), or 

 !
k
=

"
G
J( )

k+1
# "

G
J( )

k
$% &'

T

"
G
J( )

k+1

"
G
J( )

k

T

"
G
J( )

k

 (Polak-Ribiere) 

•Update !
k+1

= !
k
+"

k
d
k
 and 

 
xk+1 = x

f
+G

1/2!k+1 where !
k
 minimizes 

  
J (x

f
+G

1/2!k+1)  

until convergence.  

 

The second minimization algorithm is the generalized BFGS quasi-Newton 

algorithm developed from the differentiable form (Nocedal 1980; Liu and Nocedal 1989). 

The limited-memory formulation is a straightforward extension, obtained by discarding 

some terms in the inverse Hessian (e.g., Nocedal and Wright 1999).   

 

Algorithm 2. (Generalized quasi-Newton) 

Choose starting point 
 
x

0
= x

f !"
0
= 0  and define 

 
d

0
= ! "

G
J( )

0
= !"

G
J(x

0
) ; 

 k ! 0 ; 

repeat  

•Compute 
 
!

G
J( )

k+1
= !

G
J(x

k+1
)  

• Set 
 
s

k
= !

k+1
"!

k
and y

k
= !

G
J( )

k+1
" !

G
J( )

k
 

• Set 
 
!

k
= 1 / y

k

T
s
k
and !

k
= I " #

k
y
k
s
k

T( )  

•Compute 
  
H

k+1
= !

k

T!
k"1

T
!!

0

T!
0
!!

k"1!k
+!

k

T!
k"1

T
!!

1

T#
0
s
0
s
0

T!
1
!!

k"1!k
+!  

+!
k

T"
k#1sk#1sk#1

T !
k
+ "

k
s
k
s
k

T  

• Set  d
k+1

= !H
k+1

"
G
J( )

k+1
  

•Update !
k+1

= !
k
+"

k
d
k
 and 

 
xk+1 = x

f
+G

1/2!k+1 where !
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until convergence. 
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The above minimization algorithms show that the MLEF could be used as a 

stand-alone non-differentiable minimization algorithm in applications other than 

ensemble data assimilation. In principle, there are two possible means to perform 

minimization using the MLEF: (i) if relevant directions are known, the MLEF can be 

used as a reduced-rank minimization algorithm in the subspace spanned by relevant 

directions, and (ii) if relevant directions are not known, one can define a basis 

representing the full space and use it to perform a regular, full-rank minimization with 

MLEF. If there are means to define the set of relevant directions, computational savings 

due to the reduced-rank formulation would make this option advantageous. On the other 

hand, the full-rank option (ii) is a straightforward extension of the standard conjugate-

gradient and quasi-Newton algorithms, thus it may be easier to apply in principle. In this 

paper we chose the option (i), since the columns of the square-root forecast error 

covariance represent relevant directions.  

 In the above formulations we did not specify the line-search algorithm. Although 

this is an important aspect of non-differentiable minimization, in our current 

implementation a simple line-search method is used (e.g., Derber 1989), which involves 

one function evaluation per minimization iteration. The same line-search method was 

used in the GRAD and the MLEF experiments.  

The computational cost of the MLEF minimization is N
E
+ 2  function 

evaluations per minimization iteration. This estimate includes the gradient and the 

Hessian calculations. The computational cost increases almost linearly with the number 

of ensembles. As for other ensemble data assimilation algorithms, parallel processing can 

significantly increase the speed of the MLEF minimization since the communication 

between processors is almost negligible.  

On the other hand, the computational cost of the gradient-based minimization 

depends mostly on the cost of the gradient calculation. In our implementation of the 

gradient-based method the cost per iteration is 2N
E
+ 2 , i.e. about two times more than 

the MLEF cost. In meteorological applications the adjoint model (e.g., LeDimet and 

Talagrand 1986) is typically used to compute the gradient. Its cost per iteration is about 
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2-5 function evaluations, depending on the complexity of the operator. This means that 

the cost per iteration minimization is 4-7 function evaluations. In typical operational 

meteorological applications (without the Hessian calculation) there are about 60-80 

minimization iterations, making the cost of minimization about 300-500 function 

evaluations. For similar complexity of the problem the MLEF minimization requires only 

one minimization iteration. This approximate calculation makes the cost of the gradient-

based and MLEF minimization similar for the ensemble size of 300-500. With Hessian 

calculation included, the number of iterations would be smaller, but the total cost would 

likely increase. One should keep in mind, however, that the actual cost would strongly 

depend on the complexity of the problem and on the computational capabilities.  

 

4 Experimental design and results 

 

Two nonlinear observation operators will be tested, a quadratic and a cubic 

operator. In addition, each of the operators will have a differentiable and a non-

differentiable form. The differentiable observation operators are defined as  

  (a) H (x) = x
2 (b) H (x) = x

3  (23) 

 

while the corresponding non-differentiable observation operators are defined as 

  

(a) H (x) =
x2 for x ! 0.5

"x2 for x < 0.5

#
$
%&

(b) H (x) =
x3 for x ! 0.5

"x3 for x < 0.5

#
$
%&

 (24) 

 

The non-differentiable operators given by Equation (24) are shown in Figure 1. Although 

they may appear relatively simple, both observation operators do have discontinuities in 

the function and its derivatives. It is interesting to note that the quadratic non-

differentiable operator has a more pronounced discontinuity than the cubic operator. This 

makes the use of quadratic non-differentiable operator more challenging for 

minimization. The opposite is expected for differentiable operators, since the quadratic 

operator is less nonlinear than the cubic operator. 
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 The prediction model we use is the one-dimensional Burgers equation (Burgers 

1948) 

  

!u

!t
+ u

!u

!x
= "

!
2
u

!x
2

  (25) 

 

where ν is a viscosity coefficient and u is the velocity. This equation is often used in fluid 

dynamics for simulation of nonlinear waves, shock formation, and turbulence. The 

Equation (25) is solved numerically using centered space differences and Lax-Wendroff 

time integrating scheme (Fletcher 1991). In this paper we use the Burgers equation to 

simulate a propagating shock wave (Akella and Navon 2006).  The dimension of the state 

vector is 81.  

 We conduct a twin model experiment, in which the prediction from one set of 

initial conditions is defined as ‘truth’ (denoted TRUE), while the prediction from a 

different set of initial conditions is defined as ‘experimental’ (denoted EXP). In our case 

the EXP initial conditions are defined as a 40-time step old TRUE forecast. The TRUE 

and EXP initial conditions are shown in Figure 2. The figure indicates that the velocity 

values are typically between 0 and 1, and that the forecast lag is about 20 grid-points. 

Also, one can notice a steep velocity gradient that is simulating a shock wave. The 

observations are created by adding Gaussian random perturbation to the TRUE model 

first guess, H (x true ) , with zero mean and standard deviations of 8.0 !10"2 (when using 

the quadratic observation operator), and 7.0 !10"4 (when using the cubic observation 

operator). Random perturbations are added at each grid-point, implying that there are 81 

observations. The time frequency of observations is 20 model time steps, which also 

defines the length of data assimilation cycle. We create observations during 20 data 

assimilation cycles, but most relevant adjustments happen during the first 5-10 data 

assimilation cycles. 

 All data assimilation experiments are done with 4 ensemble members, without 

error covariance localization and/or inflation. The initial ensemble perturbations are 

defined using lagged (time-shifted) forecasts that correspond to the EXP model run, 

centered about the initial time of the data assimilation cycle No.1. This approach employs 
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the so-called ergodic hypothesis, in which the time differences are used to represent the 

spatial differences. This initial set-up creates dynamically balanced perturbations, thus 

less noisy initial error covariance. In all other data assimilation cycles the ensemble 

perturbations are updated using Equation (22). 

 In order to test the non-differentiable and/or nonlinear minimization performance, 

for each of the two observation operators we conduct two data assimilation experiments 

using the nonlinear conjugate-gradient algorithm described in previous section: (i) with 

generalized Hessian preconditioning and generalized gradient (Equations (16) and (18), 

respectively), and (ii) with regular derivatives.  The first experiment is denoted MLEF, 

since this is the standard form of the MLEF algorithm, and the second experiment is 

denoted GRAD to reflect its gradient-based characteristics. The regular derivatives are 

obtained by employing a linear approximation 
 

H (x + pi
f
)-H (x) !

"H
"x

#
$%

&
'(

pi
f  in the 

definition of the observation perturbation matrix (Equation (12)), i.e. by using 

 

zi (x) = R
!1/2 "H

"x
#
$%

&
'(

pi
f  in Equations (16) and (18).  

The difference between the observation operator gradients in the MLEF and the 

GRAD formulations comes from the higher-order terms in Taylor expansion, assuming 

that the function H(x) is differentiable.  Let consider the cubic observation operator 

(Eq.(23b)) as an example. By direct substitution, one can see that the difference between 

the MLEF and the GRAD formulations is 
 3x( pi

f
)
2
+ ( pi

f
)
3 . For nonlinear problems, the 

perturbation
 pi

f can be large, thus making the difference between the gradients large. The 

difference becomes even more relevant for non-differentiable operators near the 

discontinuous point. Let consider an example with x=0.4 and 
 pi

f
= 1.0  (such that the 

perturbed operator crosses the discontinuity), again using the cubic observation operator 

as an example. Following from the above considerations and from the Eq.(24b), the 

MLEF gradient at point x=0.4 is equal to 
 H (x + pi

f
)-H (x)=(0.4+1.0)

3
-(0.4)

3
= 2.68 , 
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while the GRAD gradient is equal to 
 

!H
!x

"
#$

%
&'

pi
f
= (3x2 pi

f
= ((0.4)2 )1.0 = (0.16 . This 

implies that the MLEF and the GRAD would have gradients in the opposite directions!  

The experimental results will indicate which of the two formulations has an 

advantage. Before we show the results, however, it should be noted that for the cubic 

observation operator the maximum allowed size of the control variable adjustment had to 

be restricted in the GRAD experiment, in order to prevent the minimization divergence. 

In the MLEF minimization this was not necessary, presumably because the algorithm is 

not relying on small perturbations of the Taylor expansion.  

 

4.1 Non-differentiable observation operator 

 The results of the two algorithms over all 20 data assimilation cycles, using non-

differentiable observation operators (Eq. (24)), are presented in terms of the analysis root-

mean-squared (RMS) errors in Fig. 3. Knowing the true state, x true , the analysis RMS 

error is calculated as 

  

RMS =
1

N
S

x
i

a
! x

i

true( )
i=1

N
S

"

2

  (26) 

For both observation operators the analysis RMS error in the MLEF experiment is 

smaller than in the GRAD experiment. For the quadratic observation operator this 

advantage is less obvious than for the cubic observation operator. This could be related to 

a more pronounced discontinuity noted for the quadratic non-differentiable observation 

operator (e.g., Fig.1). For the cubic observation operator, the MLEF analysis errors are 

smaller than GRAD errors 2-3 times during the first several cycles, eventually reaching 

7-times smaller value in later cycles. However, all experiments eventually achieve 

negligible errors when the shock wave exits the right boundary of the integration domain. 

An example of the difficulties of the GRAD estimation of the gradient is 

illustrated in Fig.4. The directional gradients for the cubic non-differentiable operator and 

for the ensemble member 2 are shown in the first minimization iteration of the first data 

assimilation cycle. A vertical dashed line, separating the two regions of the velocity U, 
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indicates the discontinuous point. In the region where U<0.5, the GRAD creates a 

gradient of the opposite sign to the MLEF gradient, as suggested in our discussion at the 

beginning of this section. In the region where U>0.5, gradients often change the sign, 

sometimes having an opposite sign as well, and the GRAD is generally of larger 

magnitude than the MLEF gradient. The linear approximation used in GRAD creates an 

apparent disadvantage of the gradient-based method, as implied from the larger analysis 

RMS errors (Fig.3). 

More details of the performance can be seen from Fig. 5, which shows the 

velocity analysis differences between the MLEF and GRAD experiments in the cubic 

non-differentiable observation operator experiment.  Only first four data assimilation 

cycles are shown, since most important velocity adjustment occurs during these cycles. 

One can see that the analysis errors are systematically smaller in the MLEF experiment. 

It is also interesting to note that analysis errors are becoming more localized as new 

observations are assimilated, indicating the self-localizing characteristic of the MLEF. By 

the cycle 4, the MLEF achieves five times smaller maximum analysis error than the 

GRAD experiment.  Since the only difference between the two experiments is in the 

minimization procedure, this indicates a superior performance of the MLEF non-

differentiable minimization.  

In order to further examine the impact of the MLEF non-differentiable 

minimization algorithm, the cost function and the gradient norm in first data assimilation 

cycle are shown in Figs. 6 and 7, for quadratic and for cubic non-differentiable operators, 

respectively. The gradient norm is defined as 
   

g = g
T
g( )

1/ 2

, where g denotes the 

gradient. Note that the gradient norm refers to the generalized gradient norm in the case 

of the MLEF.  The results are shown for the first 20 minimization iterations, since the 

later iterations did not bring any relevant change.  

For quadratic operator, the cost functions in the MLEF and the GRAD 

experiments become almost the same (Fig.6a). The gradient norm (Fig.6b), however, 

shows a better convergence of the MLEF minimization, with gradient norm decreasing 

by several orders of magnitude. One can note the irregular behavior of the cost function, 



19                                                           ZUPANSKI ET AL. 
  

 
 
 

with several jumps, as well as of the gradient norm.  One can see that the cost function 

jumps match with the gradient norm jumps, suggesting that GRAD minimization has 

difficulties due to the gradient estimation. For cubic operator, the GRAD cost function 

decreased by one order of magnitude, while the MLEF cost function decreased by more 

than three orders of magnitude (Fig.7a). The gradient norm indicates a serious problem in 

the GRAD minimization, without an obvious reduction, while in the MLEF minimization 

the gradient norm was reduced by almost five orders of magnitude (Fig.7b).  

 

4.2. Differentiable observation operator 

One would expect that both experiments, especially the GRAD minimization, would 

perform better if non-differentiability of the observation operator were removed. In order 

to test this assumption, and to further examine the differences between the MLEF and 

GRAD minimization algorithms, we repeated similar experiments as in the section 4.1, 

except using the cubic differentiable observation operator given by Eq. (23b). As in 

section 4.1, we concentrate on minimization performance in the first data assimilation 

cycle. The results of the MLEF and GRAD minimization algorithms are shown in Fig. 8, 

in terms of the cost function and the gradient norm. One can see somewhat similar 

differences as in the Fig. 7, again indicating a superior MLEF minimization performance. 

A closer inspection of the cost functions in Figs. 7a and 8a shows that indeed 

differentiability did help. The MLEF minimization did produce faster convergence than 

in the non-differentiable operator case, and the shape of the cost function decrease 

indicates a well-behaved minimization without the difficulties observed in the cycles 2-9 

of Fig. 7a. The cost function becomes flat after only 3-4 iterations, while in the non-

differentiable case 9-10 iterations were necessary. A careful inspection of Figs. 7 and 8 

indicates that the GRAD cost function shows a better performance compared to the non-

differentiable case, mostly by continuing to decrease throughout the iterations, rather than 

reaching saturation as in the non-differentiable case. The gradient norms are also showing 

some improvement compared to the non-differentiable case. In the GRAD minimization, 

there is a slight overall decrease of the gradient norm, compared with the gradient norm 

increase during iterations 10-16 in the non-differentiable case. In the MLEF 
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minimization, there is also a larger decrease of the gradient norm, almost one more order 

of magnitude.  

 

5 Summary and Conclusions 

 

A new derivation of the MLEF algorithm is presented. It is shown that the same 

final equations as in the original formulation can be obtained without assuming 

differentiability and linearity of the prediction model and observation operators, as it 

would be typically done using the Taylor expansion. In order to generalize the nonlinear 

conjugate-gradient and quasi-Newton minimization algorithms we introduced a 

generalized gradient and generalized Hessian as non-differentiable equivalents of the 

standard gradient and the Hessian. For linear and differentiable operator H, the 

generalized gradient and Hessian formulations reduce to directional first and second 

derivatives in the direction of 
 
!(xi

f
)  (e.g., Gill et al. 1981).  

An implicit inclusion of higher-order nonlinear terms in the non-differentiable 

MLEF algorithm is important for nonlinear observation operators, being more accurate, 

but also by allowing larger perturbations to be included in minimization. Therefore, the 

MLEF system has a potential to work with challenging prediction models and 

observation operators encountered in geophysical and related applications, in principle 

non-differentiable and/or nonlinear functions of the state vector.  

The data assimilation results with two minimization algorithms, one being the 

MLEF and the other being a gradient-based minimization, indicate a clear advantage of 

the MLEF algorithm. For both the differentiable and non-differentiable observation 

operators the MLEF was advantageous, showing a robust performance.  

Two minimization algorithms based on the MLEF are schematically presented, 

the generalized nonlinear conjugate-gradient and the generalized quasi-Newton 

minimization algorithm.  The algorithmic advantage of the generalized minimization 

methods is that no changes to the original unconstrained minimization algorithms are 

necessary. Only the calculation of the generalized gradient and of the generalized Hessian 
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preconditioning is changed to reflect the non-differentiable and nonlinear character of the 

new method.  

The presented MLEF minimization algorithm is directly applicable to ensemble 

data assimilation methods, and to medium size minimization problems with dimensions 

of up to O(104). For high-dimensional operational applications, for example within the 

variational data assimilation methods, there are possible extensions of the generalized 

minimization algorithm using the multi-grid methods and the decomposition into local 

domains. The particular strategy would depend on the actual minimization problem and 

the computational environment.  

 In future work we plan to examine the MLEF performance as a non-

differentiable minimization algorithm in more complex applications, such as the 

assimilation of cloud and microphysics observations, inherently nonlinear and potentially 

non-differentiable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22                                                           ZUPANSKI ET AL. 
  

 
 
 

Acknowledgments 

 

This work was supported by the National Science Foundation Collaboration in 

Mathematical Geosciences Grants ATM-0327651 and ATM-0327818, and by NASA 

Precipitation Measurement Mission Program under Grant NNX07AD75G. Our gratitude 

is also extended to National Center for Atmospheric Research, which is sponsored by the 

National Science Foundation, for the computing time used in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23                                                           ZUPANSKI ET AL. 
  

 
 
 

References 

 
Abramov, R. and A. J. Majda, 2004: Quantifying uncertainty for non-Gaussian ensembles  
 in complex systems. SIAM J. Sci. Stat. Comp., 26, 411-447. 
Akella, S., and Navon, I. M., 2006: A comparative study of the performance of high  

resolution advection schemes in the context of data assimilation. Int. J. Numer. 
Meth. Fluids, 51, 719-748. 

Anderson, J. L. 2003: A local least squares framework for ensemble filtering. Mon.  
Wea. Rev., 131, 634-642. 

Axelsson, O., and Barker, V. A., 1984: Finite-element solution of boundary value  
 problems: Theory and computation. Academic Press, 432 pp. 
Bishop, B., Etherton, J. and Majumdar, S. J. 2001: Adaptive sampling with the ensemble  

transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-
436. 

Burgers, J. M., 1948: A Mathematical Model Illustrating the Theory of Turbulence.  
Advances in Applied Mechanics, Vol. 1, Academic Press, New York, 171-199. 

Carrio, G.G., Cotton, W. R., Zupanski, D., and M. Zupanski, 2007: Development of an  
aerosol retrieval method: Description and preliminary tests. J. Appl. Meteor. Climate 
(submitted). 

Clarke, F. H., 1983: Optimization and Nonsmooth Analysis.  John Wiley & Sons, New  
York, 324 pp. 

Derber, J.C., 1989: A variational continuous assimilation technique. Mon.Wea.Rev., 117,  
2437-2446. 

Evensen, G. 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model  
using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 
10 143-10 162. 

Fisher, M., and P. Courtier, 1995: Estimating the covariance matrices of analysis and  
forecast errors in variational data assimilation. ECMWF Tech. Memo. 220, 28 pp. 

Fletcher, C. A. J., 1991: Computational Techniques for Fluid Dynamics: Fundamental  
and General Techniques. Springer, Berlin, 401 pp.  

Fletcher, S. J., and M. Zupanski, 2006a: A data assimilation method for lognormally  
distributed observation errors. Quart. J. Roy. Meteor. Soc., 132, 2505-2520. 

Fletcher, S. J., and M. Zupanski, 2006b: A hybrid multivariate normal and lognormal  
distribution for data assimilation. Atmos. Sci. Let., 7, 43-46. 

Gejadze, I., Le Dimet, F. X., and V. Shutyaev, 2007: On error covariances in variational  
data assimilation. Russian Journal of Numerical Analysis and Mathematical 
Modeling, 22, 163-175. 

Gill, P. E., W. Murray, and M. H. Wright, 1981: Practical Optimization. Academic Press,  
401 pp. 

Greenwald, T. J., R. Hertenstein, and T. Vukicevic, 2002: An all-weather observational  
operator for radiance data assimilation with mesoscale forecast models. Mon. 
Wea. Rev., 130, 1882-1897. 

Homescu, C., and I. M. Navon, 2003: Optimal control of flow with discontinuities. J.  
Comp. Phys., 187, 660-682. 

Houtekamer, P. L. and Mitchell, H. L. 1998: Data assimilation using ensemble  



24                                                           ZUPANSKI ET AL. 
  

 
 
 

Kalman filter technique. Mon. Wea. Rev., 126, 796-811. 
Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376  

pp.  
LeDimet, F.X., and O. Talagrand, 1986: Variational algorithms for analysis and  

assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 91-
110. 

Lemarechal, C., 1977: Bundle methods in nonsmooth optimization. Proceeding of the  
IIASA Series. C. Lemarechal and R. Mifflin, Eds., Pergamon Press, 79-103. 

Lemarechal, C., and J. Zowe, 1994: A condensed introduction to bundle methods in  
nonsmooth optimization. In Algorithms for Continuous Optimization (E. 
Spedicato, ed.), Kluwer Academic Publishers, Dordrecht, 357-382. 

Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale  
optimization. Math. Programming, 45, 503-528. 

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy.  
Meteor. Soc., 112, 1177-1194. 

Luenberger, D. L., 1984: Linear and Non-linear Programming. 2nd ed., Addison-Wesley,  
491 pp. 

Luksan, L., and J. Vlcek, 2001: Algorithm 811: NDA: Algorithms for nondifferentiable 
 Optimization. ACM Trans. Math. Software, 27, 193-213. 

Majda, A., K. Haven and R. Abramov, 2004: Quantifying Predictability Through  
Information Theory: Small Sample Estimation in a Non-Gaussian Framework. J. 
Comp. Physics, 206, 334–362. 

Nesterov, Y., 2005: Smooth minimization of non-smooth functions. Math. Program.,  
 103, 127-152. 
Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Math. Comput, 35,  

773–782. 
Nocedal, J., and S. J. Wright, 1999: Numerical optimization. Springer-Verlag, New York,  

636 pp. 
Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza,  M., Kalnay,  

E., Patil, D. J. and Yorke, J. A. 2004: A Local Ensemble Kalman Filter for 
Atmospheric Data Assimilation. Tellus, 56A, No. 4, 273-277. 

Pham, D. T., Verron, J. and Roubaud, M. C. 1998: A singular evolutive extended Kalman  
filter for data assimilation in oceanography. J. Marine Sys., 16, 323-340. 

Rozier, D., Birol, F., Cosme, E., Brasseur, P., Brankart, J. M., and J. Verron, 2007: A  
reduced-order Kalman filter for data assimilation in physical oceanography. SIAM 
Rev., 49, 449-465. 

Tsuyuki, T., 1997: Variational data assimilation in the tropics using precipitation data.  
Part III: Assimilation of SSM/I precipitation rates. Mon. Wea. Rev., 125, 1447-
1464. 

Uzunoglu, B., Fletcher, S. J., Zupanski, M., and I. M. Navon, 2007: Adaptive ensemble  
size inflation and reduction. Quart. J. Roy. Meteor. Soc., 133, 1281-1294. 

van Leeuwen, P.J., 2003: A variance-minimizing filter for large-scale applications. Mon.  
 Wea. Rev., 131, 2071–2084. 
Veerse, F., 1999: Variable-storage quasi-Newton operators as inverse forecast/analysis  



25                                                           ZUPANSKI ET AL. 
  

 
 
 

error covariance matrices in variational data assimilation. INRIA Research Report 
3685, p. 28. 

Verlinde, J., and W. R. Cotton, 1993: Fitting microphysical observations of non-steady  
convective clouds to a numerical model: An application of the adjoint technique of 
data assimilation to a kinematic model. Mon. Wea. Rev., 121, 2276–2793.  

Wang, X., Bishop, C. H., and S. J. Julier, 2004: Which is better, an ensemble of  
positive/negative pairs or a centered spherical simplex ensemble? Mon. Wea. 
Rev., 132, 1590-1605. 

Wei, M., Toth, Z., Wobus, R.,  Zhu, Y., Bishop, C. H., and X. Wang, 2006: Ensemble  
Transform Kalman Filter-based ensemble perturbations in an operational global 
prediction system at NCEP, Tellus, 58A, 28-44. 

Whitaker, J. S., and Hamill, T. M. 2002: Ensemble data assimilation without perturbed  
observations. Mon. Wea. Rev., 130,1913-1924. 

Xu, Q.,  and J. Gao. 1999: Generalized adjoint for physical processes with parameterized  
discontinuities. Part VI: Minimization problems in multidimensional space. J. 
Atmos. Sci., 56, 994–1002. 

Zhang, S., X. Zou, J. Ahlquist, I. M. Navon, and J. G. Sela, 2000: Use of differentiable  
and nondifferentiable optimization algorithms for variational data assimilation 
with discontinuous cost functions. Mon. Wea. Rev., 128, 4031-4044. 

Zupanski, D., 1993: The effects of discontinuities in the Betts-Miller cumulus convection  
scheme on four-dimensional variational data assimilation in a quasi-operational 
forecasting environment. Tellus, 45A, 511-524. 

Zupanski, D. and Zupanski, M. 2006: Model error estimation employing ensemble data  
assimilation approach. Mon. Wea. Rev., 134, 1337-1354. 

Zupanski, D. Denning, A. S., Uliasz, M., Zupanski, M., Schuh, A. E., Rayner, P. J.,  
Peters, W., and K. D. Corbin, 2007a: Carbon flux bias estimation employing 
Maximum Likelihood Ensemble Filter (MLEF). J. Geophys. Res., 112, D17107, 
doi:10.1029/2006JD008371. 

Zupanski, D., Hou, A. Y., Zhang, S.Q., Zupanski, M., Kummerow, and S. H. Cheung,  
2007b: Applications of information theory in ensemble data assimilation. Quart. 
J. Roy. Meteor. Soc., (in press).  

Zupanski, M. 2005: Maximum Likelihood Ensemble Filter: Theoretical Aspects.  
Mon. Wea. Rev., 133, 1710–1726.  

Zupanski, M., Fletcher, S. J., Navon, I. M., Uzunoglu, B., Heikes, R. P., Randall, D. A.,  
Ringler, T. D., and D. Daescu, 2006: Initiation of ensemble data assimilation. 
Tellus, 58A, 159-170. 

 

 

 

 

 

 



26                                                           ZUPANSKI ET AL. 
  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Non-differentiable observation operators: (a) quadratic (full line) and (b) cubic 

(dashed line). The discontinuous point at x=0.5 represent a discontinuity in the function 

and its first and second derivatives.  
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Figure 2. The ‘truth’ (TRUE) and the ‘experimental’ (EXP) initial conditions before data 

assimilation. The true state (dashed line) was used to initiate the true forecast from which 

the observations are created, while the initial conditions in the experiment are defined as 

a 20-point shift of the truth (solid line), obtained as a lagged forecast.  
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Figure 3. Analysis root-mean-squared (RMS) error in the non-differentiable observation 

operator examples: (a) quadratic, and (b) cubic. The MLEF results are represented by 

solid line, while the gradient-based method results (GRAD) are represented by dashed 

line.  

(a) 

(b) 
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Figure 4. Directional gradient in the GRAD (dashed line) and the MLEF (solid line) 

experiments. The discontinuous point at model value U=0.5 is denoted by a vertical 

dotted line. The encapsulated text boxes define the values of the model variable U. 
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Figure 5. The state vector analysis errors  xa
! x

t  in first four data assimilation cycles, for 

the MLEF (solid line) and the GRAD (dashed line) experiments: (a) after cycle No.1, (b) 

after cycle No.2, (c) after cycle No.3, and (d) after cycle No.4.  

  

(a) (b) 

(c) (d) 
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Figure 6. Minimization in the quadratic non-differentiable observation operator example: 

(a) cost-function, and (b) gradient norm. The MLEF results are represented by solid line, 

and the gradient-based method results (GRAD) are represented by dashed line.  

(a) 

(b) 
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Figure 7. Same as in Fig.6, except in the cubic non-differentiable observation operator 

example.  

(a) 

(b) 
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Figure 8. Same as in Figure 7, except for differentiable observation operator.   

(a) 

(b) 


