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Abstract

In this paper, a novel approach for quantifying the parametric uncertainty asso-
ciated with a stochastic problem output is presented. As with Monte-Carlo and
stochastic collocation methods, only point-wise evaluations of the stochastic output
response surface are required allowing the use of legacy deterministic codes and pre-
cluding the need for any dedicated stochastic code to solve the uncertain problem of
interest. The new approach differs from these standard methods in that it is based
on ideas directly linked to the recently developed compressed sensing theory. The
technique allows the retrieval of the modes that contribute most significantly to the
approximation of the solution using a minimal amount of information. The genera-
tion of this information, via many solver calls, is almost always the bottle-neck of an
uncertainty quantification procedure. If the stochastic model output has a reason-
ably compressible representation in the retained approximation basis, the proposed
method makes the best use of the available information and retrieves the dominant
modes. Uncertainty quantification of the solution of both a 2-D and 8-D stochas-
tic Shallow Water problem is used to demonstrate the significant performance im-
provement of the new method, requiring up to several orders of magnitude fewer
solver calls than the usual sparse grid-based Polynomial Chaos (Smolyak scheme)
to achieve comparable approximation accuracy.
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1 Introduction

Uncertainty quantification has become a major concern for a wide range of
communities. Indeed, in addition to providing accurate results, many sim-
ulation codes are now also expected to account for uncertainty in some of
the intrinsic parameters of the problem and to provide confidence intervals
and statistics of the outputs. Two basic types of uncertainty can be distin-
guished. Aleatory uncertainty may arise from the intrinsic variability of a
physical quantity, e.g., radioactive disintegration. The second type of uncer-
tainty, referred to as the epistemic uncertainty, arises from a lack of knowledge
of the considered quantity. In contrast to the aleatory uncertainty, the epis-
temic uncertainty may be reduced with additional knowledge on the quantity.
The uncertain parameters may be initial or boundary conditions, geometric
settings, constitutive material physical properties, etc., and their variability
is suitably modeled using random variables. Specific methods must be used
to infer the resulting uncertainty of the simulation outputs and provide sta-
tistical information such as mean, variance, quantiles, correlations, statistical
moments or probability density functions of some quantities of interest, usually
a functional of the simulation outputs. The probabilistic approach is a natural
framework to achieve these objectives. While the original uncertain problem
is sometimes of infinite dimension, reasonably accurate modeling often allows
approximating the uncertainty sources with a finite set of real-valued random
variables, for instance using a spectral decomposition technique, opening a
route for a tractable computational solution method.

Indisputably, the most widely used approach to quantify the uncertainty asso-
ciated with the solution of an uncertain problem is the Monte-Carlo approach.
The probabilistic space is sampled and the associated deterministic problem
is solved. From the collection of solutions arising from the NMC samples, sta-
tistical information is derived. Several specific features explain the success
of the Monte-Carlo approach. The main one is that the method relies only
on the solution of deterministic problems, each solved for a given set of de-
terministic input parameters, avoiding the need for a dedicated uncertainty
quantification-oriented code and allowing the use of legacy, well-validated and
certified, deterministic codes that are used as a black-box. Further, the sam-
ples being drawn independently, it is embarrassingly straightforward to carry
the NMC simulations in parallel. The method is very general and robust and
does not rely on assumptions on the solution. This robustness and simplicity
come with a price that is most apparent in the poor O

(
N

−1/2
MC

)
convergence

rate. Although numerous variants of the original Monte-Carlo method have
been proposed, modifying the functional evaluated (Importance Sampling)
or the way independent samples are generated (quasi-Monte-Carlo, Stratified
Sampling, etc.), the convergence rate remains unchanged, with only the as-
sociated constant improved. This low convergence rate leads to requiring an
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unacceptably large number of simulations to compute reasonably converged
statistics, precluding the use of Monte-Carlo methods in cases the determin-
istic simulation computational time is large. However, in contrast with other
methods, the O

(
N

−1/2
MC

)
convergence rate is insensitive to the stochastic di-

mension of the uncertainty sources, making the Monte-Carlo approach the
method of choice for uncertain problems involving a very large number of
independent uncertainty sources. Therefore, unless the uncertain problem of
interest involves uncertainty sources of very large stochastic dimensions, the
Monte-Carlo method is not usually suitable in practice and alternative uncer-
tainty quantification methods are more appropriate.

Among these alternative approaches to approximate finite variance quanti-
ties of interest such as those considered in this paper, the spectral stochastic
method approximates on a suitable functional expansion basis. This approach
dates back to the pioneering work of Wiener (Wiener, 1938) but has emerged as
a widely used tool since the book of Ghanem & Spanos was published, Ghanem
and Spanos (1991). Since we restrict ourselves to second order random vari-
ables, i.e., finite variance, it is suitable to consider the L2-space associated
with the random variables. The Polynomial Chaos approach exploits any reg-
ularity of the solution and consists of deriving a functional representation of a
quantity of interest on a stochastic basis spanned by Hermite polynomial func-
tionals. These polynomials are orthogonal w.r.t. the measure associated with
a Gaussian random variable and span the stochastic space of finite variance
random variables, thus defining a complete basis in the stochastic space. The
approximation was proved to converge for any finite variance random variable
(Cameron and Martin, 1947). An extension to bases generated by other poly-
nomial functionals has been proposed by Xiu and Karniadakis (2002, 2003).
For instance, Legendre polynomials, associated with uniformly distributed ran-
dom variables, can be used. In Soize and Ghanem (2004), a generalization to
bases spanned by functionals associated with random variables of arbitrary
measure was proposed. Improvements to the method have taken advantage
of the flexibility in choosing trial functionals to approximate the stochastic
solution. In particular, several approaches have relied on refinement of the
approximation by varying the support and/or the polynomial order of local-
ized bases, in direct relation with the well-known hp-spectral scheme in the
deterministic discretization framework, see for instance Wan and Karniadakis
(2005). Following similar ideas, Wiener-Haar wavelets (Le Mâıtre et al., 2004a)
and Multi-Resolution schemes (Le Mâıtre et al., 2004b) have been used while
Mathelin and Le Mâıtre (2007) have employed an a posteriori error analysis
strategy to adaptively refine the approximation in the stochastic space.

Beyond the choice of the trial functions, two classes of methods may be dis-
tinguished in the (generalized) Polynomial Chaos approach by the way the
deterministic coefficients of the resulting expansion are evaluated. Basically,
they may be computed through a direct evaluation, using techniques such as
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projection, regression or interpolation, or through a Galerkin procedure. In
the Galerkin approach, the residual of the model equation is required to lie
in a space orthogonal to the trial basis space. The problem then takes the
form of a Pξ-coupled-equation problem, Pξ being the number of unknown co-
efficients in the stochastic spectral expansion. This approach relies on solid
mathematical grounds and error estimators as well as proofs of well-posedness
exist. However, the coupled character of the resulting problem may constitute
a limitation for problems that are large at the deterministic level and requiring
a large number Pξ of stochastic modes for an acceptable approximation. Fur-
ther, deterministic codes may not be used as such and need be deeply reworked
for this formulation, hence the term “intrusive” to refer to the approach.

Alternatively, the coefficients may be evaluated by directly computing the in-
tegrals involved in their definition. Typical numerical techniques to achieve
this are based either on fully tensorized or sparse quadrature rules. As with
the Monte-Carlo approach, this allows the use of deterministic solvers only
and does not involve coupled problems. Further, aliasing effects are avoided
and only the approximation error is present. However, these nice properties
are somewhat counterbalanced by the large number of evaluation points re-
quired to compute the solution expansion coefficients due to the so-called curse
of dimensionality, even when sparse quadrature rules such as the Smolyak
scheme (Smolyak, 1963; Novak and Ritter, 1999) are employed. Just as for
the Galerkin flavor of the Polynomial Chaos method, different strategies have
been proposed to take advantage of anisotropy of the solution, if any. To
this end, anisotropic sparse grid schemes have been proposed and shown to
potentially significantly reduce the number of required deterministic solver
calls, Nobile et al. (2007); Ganapathysubramanian and Zabaras (2007). How-
ever, these approaches rely either on a priori estimates which are only known
in a limited number of specific cases, or on a posteriori estimates evaluated
through an incremental trial-and-error sequence. Such an incremental proce-
dure sequentially enriches the approximation space along the directions most
contributing to the decrease of the error but constitutes a bottom-up tech-
nique, where the solution is approximated on a basis whose spectrum usually
sequentially grows from low towards higher frequencies. If the solution is es-
sentially monochromatic at a high frequency, these solution techniques lead
to an unnecessarily large number of evaluation points, significantly increasing
the overall computational time.

In this paper, it is proposed that an approximation arising from any inherent
compressibility of the solution in the trial basis can be used as the foundation
for an effective and efficient method for uncertainty quantification. Relying
on the hypothesis that the unknown stochastic solution is reasonably com-
pressible, a method is presented, heavily relying on the compressed sensing
theory (Candès and Tao, 2004; Donoho, 2006), that determines the most sig-
nificant modes for the approximation and discards the others. The resulting
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required number of solver calls can be significantly reduced compared to the
usual sparse grid techniques.

During the final preparation of this manuscript, the authors came to know
about the very recent work by Doostan & Owhadi where similar ideas are
developed. Both works were presented at the 2010 SIAM Annual Meeting,
Doostan and Owhadi (2010) (and an article submitted to J. Comput. Phys.)
and Mathelin and Gallivan (2010).

The paper is organized as follows. In Section 2, the stochastic framework is
defined and some relevant issues emphasized. The core theoretical ingredients
of the compressed sensing (CS) methodology are given in Section 3 and ap-
plication of conceptually similar ideas to the uncertainty quantification (UQ)
framework is discussed and presented in Section 4. Then, the resulting UQ
method is demonstrated on a test case based on a Shallow Water problem.
Section 5 briefly presents the problem together with the solution method. Re-
sults are shown in Section 6 and are discussed for a 2-D and a 8-D stochastic
problem formulation, in particular in terms of approximation accuracy for a
given number of solver calls. Concluding remarks close the paper in Section 7.

2 Quantifying the parametric uncertainty

2.1 Stochastic problem framework

The essence of the parametric uncertainty propagation and quantification is-
sue is to infer the statistics of the solution u(θ) of a mathematical model
from those of its associated uncertain input parameters D(θ). The problem
is conveniently treated in a probabilistic framework. Specifically, defining a
probability space (Θ,BΘ, µΘ), where Θ is the space of elementary events θ,
BΘ ⊂ 2Θ an associated σ-algebra defined on Θ and µΘ a probability mea-
sure, the problem can conceptually be expressed in the form of the following
equation which holds µΘ-almost surely:

F (u(θ);D(θ)) = 0, µΘ − a.e., (1)

where, without loss of generality, the mathematical model F is deterministic
and all involved uncertainty sources have been gathered in the set of input
parameters D(θ).

The original problem is conveniently modeled in terms of random variables in a
finite dimensional image probability space (Ξ,BΞ, µΞ), where ξ (θ) ∈ Ξ ⊂ R

Nξ

is a vector-valued random variable, BΞ and µΞ the associated σ-algebra and
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probability measure of the image probabilistic space respectively. The problem
may be reformulated as:

F (u (ξ (θ)) ;D (ξ (θ))) = 0, µΞ − a.e.. (2)

The problem then takes the form of approximating the real-valued functional
u (ξ(θ)) of interest. Let us consider the problem involving finite variance
(i.e. second order) real-valued random quantities. This naturally leads us to
introduce the corresponding functional space VΞ ≡ L2 (Ξ, µΞ):

L2 (Ξ, µΞ) ≡
{
v : Ξ ∋ ξ(θ) 7→ v (ξ(θ)) ,

∫

Ξ
v2 (s) dµΞ(s) < +∞

}
. (3)

Let 〈·, ·〉L2(Ξ,µΞ) be the natural inner product associated with the stochastic
space:

〈v, v′〉L2(Ξ,µΞ) ≡
∫

Ξ
v (s) v′ (s) dµΞ(s), ∀ {v, v′} ∈ L2 (Ξ, µΞ) , (4)

and VΞ is thus a Hilbert space so that tools from the approximation theory
may be used. In particular, the quantity of interest u may be decomposed as:

u (ξ(θ)) ≈
∑

α∈J
Xαψα (ξ(θ)), (5)

where ψα (ξ(θ)) belongs to a complete set of orthogonal functions defining an
Hilbertian basis:

〈ψα, ψα′〉L2(Ξ,µΞ) = 〈ψα, ψα〉L2(Ξ,µΞ) δαα′ , ∀ {α,α′} ∈ J × J , (6)

〈u, ψα′〉L2(Ξ,µΞ) = 0, ∀u ∈ L2 (Ξ, µΞ) , ∀α′ ∈ J ⇒ u ≡ 0, (7)

with δαα′ the Kronecker delta, αT ≡
(
α1 . . . αNξ

)
and J the set of the N

Nξ -

valued multi-indexes α such that |α| ≤ No, |α| ≡ ∑Nξ

n=1 αn. Its cardinality is
|J | = Pξ. The set {ψα} is then a family of Nξ-D orthogonal polynomials of
total degree ≤ No.

To derive an approximated description of the solution, one is left with the
unknowns Xα, α ∈ J , to estimate. As briefly mentioned in Section 1, a
Galerkin technique may be utilized to derive a set of Pξ, possibly non-linear,
coupled equations to be solved for Xα. These equations are of the form:

〈
F

∑

α∈J
Xαψα (ξ(θ));

∑

α′′∈J
Dα′′ ψα′′ (ξ(θ))


 , ψα′

〉

L2(Ξ,µΞ)

= 0,

∀ψα′ ∈ Vξ, α′ ∈ J .
(8)

6



This approach allows us to rely on solid, demonstrated, mathematical results.
In particular, both a priori and a posteriori approximation error results are
available, Deb et al. (2001); Frauenfelder et al. (2005); Mathelin and Le Mâıtre
(2007). However, it often leads to large, non-linear, systems of equations whose
solution method may be a challenge. Further, it necessitates dedicated codes,
precluding the direct use of any legacy, well validated and certified, code solv-
ing the deterministic problem at hand.

Alternative approaches directly estimate the unknown coefficients Xα: from
Eq. (5) and making use of the basis functions orthonormality:

Xα = 〈u, ψα〉L2(Ξ,µΞ) , ∀ψα ∈ Vξ, α ∈ J , (9)

where, without loss of generality, the basis functions are hereafter normal-
ized: 〈ψα, ψα′〉L2(Ξ,µΞ) = δαα′ . Since u is not known in closed form, the inte-
gral involved in the projection is conveniently estimated through a discrete
quadrature strategy:

Xα =
∫

Ξ
u (s) ψα (s) dµΞ(s),

≈
∑

q∈Nq

u
(
ξ(q)

)
ψα

(
ξ(q)

)
w(q), (10)

where Nq is the set of quadrature points ξ(q) ∈ Ξ and w(q) ∈ R their associated
weights. This approach only requires the evaluation of the model output u at
the quadrature points, which is provided by the deterministic solver. How-
ever, while appealing, this approach suffers from the lack of rigorous error
estimator and from the curse of dimensionality which leads to an intractable
number of necessary quadrature points when the stochastic dimension and/or
the approximation order increases. While sparse grid schemes may help in re-
ducing the number of required points w.r.t. fully tensorized quadrature rules,
the unfavorable scaling with the dimension and the order precludes the use of
this so-called non-intrusive spectral projection (NISP) approach for large-scale
problems requiring a large computational time to evaluate u for a given point
ξ(q).

2.2 Motivation for a sparse approach

Let us examine the problem defined by Eq. (10) more closely and consider a
sparse grid scheme to evaluate the high-dimensional integral. Classical quadra-
ture rules are known to exactly integrate a polynomial integrand up to a
certain maximum degree. For instance, assuming u is a No-total degree poly-
nomial and that the test function ψα is also a No-total degree polynomial,
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Table 1 shows the maximum No that leads to an exact integration in a 2-
D (Nξ = 2) space using a Smolyak quadrature scheme of varying levels lS,
Smolyak (1963); Petras (2001).

lS 1 2 3 4 5 6 7 8 9 10 11 12

Nq 5 9 17 33 33 65 97 97 161 161 161 257

No 1 2 3 5 5 6 8 8 11 11 11 12

Table 1
Correspondence between Smolyak quadrature rule level lS , number of evaluation
points Nq = |Nq| and maximum polynomial total degree No. 2-D space: Nξ = 2.

As expected, the higher the polynomial order of the integrand, the more eval-
uation points required to compute the exact projection. This has connections
with the celebrated Shannon-Nyquist theorem. However, the key is to note
that this constitutes a worst-case scenario. For a given Smolyak level lS, the
projection computation defined by Eq. (10) is exact for every polynomial, pro-
vided its total order is lower or equal to No. For instance, if one is interested
in a projection of u, assumed a given monomial of degree No, over a specific
mode ψα of order No, properties of the monomial, e.g., (anti-)symmetry, may
be exploited to prevent unnecessary solution evaluations. There is thus no
need for as many points as expected from Table 1 and fewer evaluation points
are sufficient to get the exact projection. In a more general framework, if the
output at hand has some specific properties (monomial, symmetry, sparsity,
. . . ), they can be exploited to limit the amount of information one needs to
approximate it within a particular basis.

The concepts underlying this remark are at the root of the present work.
Indeed, most model outputs u of practical interest are not white signals and
can be considered to have some degree of sparsity in the orthogonal basis
used in the approximation. As a result, the amount of relevant information
one must capture to adequately approximate a signal, or model output, is
actually often lower than what would be expected from considerations based
simply on the cardinality of the trial basis.

A natural desire arises to use a number of evaluation points sufficient to esti-
mate the most significant modes of the approximation, and only them. For a
sparse output in the given trial basis, this could translate mathematically in
looking for the minimal set of modes J ⋆ ⊆ J such that the approximation
matches the output at the evaluation points when Nq is sufficiently large:

J ⋆ ≡ arg min
J

|J |, s.t. u
(
ξ(q)

)
=
∑

α∈J
Xαψα

(
ξ(q)

)
, ∀ q ∈ Nq. (11)

The minimal set condition may be conveniently reformulated as a requirement
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on the vector of coefficients X ≡ (Xα, |α| ≤ No)
T ∈ R

Pξ :

X⋆ ≡ arg min
X

‖X‖0, s.t. u
(
ξ(q)

)
= Ψ

(
ξ(q)

)
X, ∀ q ∈ Nq, (12)

with Ψ ≡ (ψα, |α| ≤ No) the retained trial basis and ‖·‖0 the “L0-norm”,
‖X‖0 ≡ {k : Xk 6= 0}. Thanks to the L0-norm, the above constrained opti-
mization problem tends to determine an approximation with as few non-zero
terms as possible in the vector of coefficients X .

Formulated as such, this UQ-problem is related to concepts which been ex-
tensively studied in the signal processing community, see, for example, Taylor
et al. (1979) or Chen et al. (1999), and we will build upon some of their results
to place the proposed uncertainty quantification approach in a Compressed
Sensing framework.

3 The compressed sensing approach

3.1 From L0 to L1

Finding the sparsest, yet accurate, approximation of a signal u from a formu-
lation similar to Eq. (12) has been a subject of interest for decades. Greedy
algorithms have been proposed to build-up a K-sparse solution, e.g., Match-
ing Pursuit, Mallat and Zhang (1993). However, problem (12) relies on a non-
convex objective function and the underlying optimization problem is NP-
hard, requiring exhaustive searches (in fact combinatorial) over all subsets of
X. Such an approach would suffer from the curse of dimensionality and is not
thought to be a computationally tractable route. Fortunately, some recent re-
sults have shown that the L0-norm can be replaced by the (convex) L1-norm in
Eq. (12), the solution of which then still tends to separate the most significant
elements of X from those that are negligible. Significant modes are strength-
ened while the others tend to be discarded and their magnitude set close to
zero. An example of a method relying on this approach is a reformulation of
the well known LASSO, Tibshirani (1996).

3.2 Core principles

In the last few years, so-called Compressed Sensing theory, Chen et al. (1999);
Candès and Tao (2004); Candès et al. (2005); Donoho (2006); Candès and
Romberg (2006), has attracted growing interest. It basically builds upon the
convexified L1-norm version of Eq. (12) and considers the projection of the
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constraint u = ΨX onto a basis Φ. Under appropriate choices, the sparsest X

giving rise to the observations is retrieved through a computationally tractable
algorithm. In a nutshell, the core principles are as follows. Let us consider the
redundant dictionary formed by both a {ψα} and {φm} set of functions and
suppose a discrete signal f ∈ R

N is sparse in {ψα} while it is dense in {φm}.
Let this non-zero energy signal have a support supp (f) = |T | in time and |W |
in frequency. From the Weyl-Heisenberg principle, |T | and |W | have to follow
the constraints:

|T | |W | ≥ N, |T | + |W | ≥ 2
√
N. (13)

More generally, it can be shown that

|T | + |W | ≥
√
|T | |W | ≥ 2

µ (Φ,Ψ)
, (14)

where µ (Φ,Ψ) ≡ maxi,j |〈Φi,Ψj〉| the coherence between the two considered
bases. The weaker the coherence, the stronger the uncertainty relation.

Suppose one now measures M coefficients, ym, of the unknown signal f ∈ R
N

in the basis {φm}. Let K be the cardinality of f in {ψα} and suppose that

2K |W | < N (15)

holds. Then, there exists no other signal f ′ such that the difference ∆ ≡
f − f ′ is in the nullspace of Φ with support such that Eq. (14) holds. Since
suppΨ (f) = K, then suppΨ (∆) ≤ 2K while suppΦ (∆) was assumed to be
|W |. It follows from Eq. (15) that suppΦ (∆) suppΨ (∆) ≤ 2K |W | < N . How-
ever, since Eq. (13) holds for all non-zero signals, ∆ must be identically zero,
establishing uniqueness of the recovery. Then, there exists an algorithm which
allows the stable recovery of the K unknown coefficients from the M mea-
surements. Among them, a L1-norm minimizing linear program was shown to
provide an efficient and tractable computational approach, Donoho and Stark
(1989).

The Compressed Sensing (CS) theory considers the projection of the residual
f − f̂ , f̂ ≡ Ψ X, onto M randomly chosen elements of the measurement basis
{φm}. Letting

ym ≡ 〈φm, f〉 , ŷm ≡
〈
φm, f̂

〉
= 〈φm,Ψ X〉 , ∀m ∈ J Φ, (16)

with J Φ ⊆ {1, . . . , N} ⊂ N, |J Φ| = M , the CS solution is given by

X⋆ = arg min
X∈RN

‖X‖1 , s.t. Y = AX, (17)

where Y ≡ (y1 . . . yM)T , A ≡ Φ Ψ ∈ R
M×N and φm the m-th row of Φ. In

this form, the problem is called basis pursuit and may be efficiently solved by
reformulating it as a linear program.
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Usually, the N unknowns {X1, . . . , XN} call for M ≥ N point evaluations.
However, if the signal is sparse in the orthonormal trial basis Ψ, the exact

signal can be recovered with far fewer evaluation points, M < N , hence the
term Compressed Sensing to refer to this technique.

Remark The set {ψα} need not define a basis and it is sufficient it defines a
frame for the Compressed Sensing results to apply, Donoho (2006). In partic-
ular, a redundant dictionary approach is handled well in the CS framework.
This is of interest since it is a popular choice to approximate a signal using an
overcomplete set of functions as it may provide both sparser and more accu-
rate representations, taking advantage of a large dictionary of approximating
functions.

3.3 Recovery

The conditions under which the problem formulated in Eq. (17) exactly re-
covers a K-sparse signal have been the subject of numerous papers in the last
few years. A popular set of results rely on the so-called Restricted Isometry
Property (RIP) that essentially measures the degree of orthonormality of the
columns of all submatrices AT built from |T | randomly selected columns of
A. The K-RIP constant δK is defined as the smallest quantity such as the
following holds:

(1 − δK) ‖v‖2
2 ≤ ‖AT v‖2

2 ≤ (1 + δK) ‖v‖2
2 , (18)

for all subsets T ⊆ {1, . . . , N}, |T | ≤ K, and vectors v ∈ R
|T |. This essentially

indicates how much every set of |T | arbitrarily chosen columns of A behaves
as an orthonormal basis. If

δ2K <
3

4 +
√

6
≃ 0.465, (19)

or

δK < 0.307, (20)

holds, the solution of problem (17) recovers any sparse signal provided its
support is such that |T | ≤ K, Cai et al. (2009a), Foucart (2010).

The recovery property of the algorithm stated in Eq. (17) may alternatively be
characterized using the concept of coherence of the sensing matrix A defined
as the maximal magnitude of the off-diagonal entries of the Gram matrix ATA
when A is unit-normed, see Donoho et al. (2006), Candès and Plan (2007),
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Cai et al. (2009b). More generally, letting

µ (A) ≡ max
1≤i6=j≤N

∣∣∣AT
i Aj

∣∣∣
‖Ai‖ ‖Aj‖

, (21)

it guarantees recovery ofK-sparse signals provided the following holds, Donoho
et al. (2006): 1

K ≤ 1 + µ (A)

4µ (A)
. (22)

Since the most dominant coefficients are retrieved using the CS approach,
one may think that it essentially tries to measure them and that an adaptive
procedure may improve the recovery performance. For instance, subsequent
measurements may take advantage of the information provided by former ones
in an adaptive procedure. In fact, this approach would hardly do better than
the non-adaptive CS technique with the resulting coefficient vector approxi-
mation L2-error being within a factor 2 of that of any adaptive algorithm, see
Theorem 2 in Donoho (2006).

3.4 Robustness

In practice, since the approximation basis is truncated to a finite number of
functions, the approximation Ŷ ≈ Y may not be exact. Further, the measure-
ment vector Y may be subjected to noise. These factors lead the relaxation
of the equality in Eq. (17) and reformulate the problem under the well-known
Basis Pursuit Denoising form:

X⋆ = arg min
X∈RN

‖X‖1 , s.t. ‖Y − AX‖2 ≤ ǫ, (23)

with ǫ the approximation residual norm.

Further, the signal is rarely exactly sparse but only compressible in the re-
tained approximation basis and it is crucial to have insights about the ro-
bustness of the recovery procedure in this framework. The CS theory provides
results for this formulation: assume that δK < 0.307, then the solution X⋆ to

1 A similar, albeit tighter, result holds for the L0-norm version of the problem:
K ≤ 1+µ(A)

2 µ(A) .
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Eq. (23) satisfies, Cai et al. (2009a): 2

‖X − X⋆‖2 ≤
1

0.307 − δK

(
ǫ+

‖X − XK‖1√
K

)
, (24)

where XK is the K-term approximation of the signal X obtained by retaining
the K most significant modes, i.e., it is the K-mode sparsest representation
if one was given full knowledge about the unknown signal X by an oracle.
This result shows that the L1-problem solution allows recovery of the K most
significant entries, in the L2-sense, of the unknown signal X from only M
measurements and establishes the compressed sensing technique as both a
tractable and robust solution method. In particular, it shows that the signal
recovery error is simply proportional to the measurement noise ǫ and to the
tail of the signal, ‖X − XK‖1.

In practice, most signals exhibit some degree of sparsity. For instance, a very
wide class of signals can be encompassed in the set of functions with a power-
law decay rate. In particular, smooth and bounded variation signals obey a
power-law decay and are then eligible for a compressed-sensing approach. More
specifically, consider the class of R

N -supported signals for which the ordered
coefficients in the trial basis, |X1| ≥ |X2| ≥ . . . ≥ |XN |, decay as

|Xk| . k−1/p, ∀ 1 ≤ k ≤ N, 0 < p ≤ 1. (25)

Suppose the ordered signal belongs to the weak-Lp ball of radius R:

|Xk| ≤ Rk−1/p, (26)

the best K-term approximation of a signal then obeys (Candès et al., 2005):

‖X − XK‖1 ≤ C1K
1−1/p. (27)

For compressible signals whose coefficients obey a power law decay, the result-
ing recovery error, Eq. (24), is then very small if the noise level is low.

4 Towards a CS-uncertainty quantification framework

4.1 Formulation

In this section, we build upon the compressed-sensing philosophy to define a
tractable approach to assess the uncertainty associated with the solution of

2 More precisely, ‖X − X⋆‖2 ≤ 2
√

2
√

1+δK
1−C0 δK

(
ǫ +

‖X−XK‖1√
K

)
with C0 = 1 + 23

2
√

26
.
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problems involving parametric uncertainty.

To characterize the unknown response surface of the quantity of interest u,
we rely on a linear information operator I : U 7→ R

M which acts on a class of
objects U . It provides the only piece of information one can access about the
signal u ∈ VΞ ⊆ U :

Iu ≡ (≪ I1, u≫ . . . ≪ IM , u≫)T , (28)

with Im, 1 ≤ m ≤ M , the sampling kernels and ≪ Im, · ≫ a linear functional.

Approximating the unknown response surface, hereafter also termed signal, in
a basis {ψα}, see Eq. (5), and upon application of the operator I, one writes:

Iu (ξ(θ))≈I
∑

α∈J
Xαψα (ξ(θ)),

⇔ Iu (ξ)≈
∑

α∈J
Xα Iψα (ξ). (29)

Stated this way, the uncertainty quantification problem reduces to the recov-
ering the R

Pξ -vector X, Pξ = |J |, from a limited number M of measurements.
In particular, if u has a reasonably compressible representation in the {ψα}
basis, it is expected that X may be recovered with M ≪ Pξ.

As mentioned above, given a particular choice of {ψα}, the trial basis on which
the signal is approximated, the choice of I is critical in order to maximize the
recovery property of the resulting sensing matrix A, see criteria in Eqs. (19) or
(20). However, we must also consider an important computational issue: the
evaluation of the measurement vector Iu involves the unknown quantity u over
its whole support, see Eq. (28), while the output of the model is not known
over the entire space. Hence, one would like to retain the nice properties of
the collocation-like UQ techniques where information on the solution is only
required for a given number of realizations of the stochastic germ ξ. Then,
deterministic codes can be used as such as their output is a point-wise quantity
in the stochastic domain. For sake of computational efficiency, it would also be
desirable that the information operator be such that it only involves point-wise
information from u. One possible choice is to consider the information operator
as a series of random linear convolutions with M Dirac distributions δm. The
resulting operator then requires only M point-wise evaluations uq ≡ u

(
ξ(q)

)

of u,
{
ξ(1) . . . ξ(M)

}
being chosen at random in Ξ: 3

3 with a slight abuse of notation with the indicator function 1Ξ.
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≪ Im, u≫≡
M∑

q=1

γ(q)
m

∫

R
Nξ
δξ(q) (−s) 1Ξ [u (s) µΞ (s)] ds,

=
M∑

q=1

γ(q)
m µΞ

(
ξ(q)

)
uq, 1 ≤ m ≤M, (30)

so that one may rewrite
Iu = Φ u ≡ Y , (31)

with Φ a R
M×M -matrix, Φm,l = γ(l)

m µΞ

(
ξ(l)

)
, γ(l)

m ∈ N (0, 1), 1 ≤ l,m ≤ M ,

and u = (u1 . . . uM)T . Similarly:

≪ Im, û≫≡
M∑

q=1

γ(q)
m

∫

R
Nξ
δξ(q) (−s) 1Ξ


∑

α∈J
Xαψα (s) µΞ (s)


 ds, (32)

leading to
Iû = Φ Ψ X ≡ Ŷ , (33)

with Ψ ∈ R
M×Pξ , Ψl,k ≡ ψk

(
ξ(l)

)
.

Letting A ≡ Φ Ψ ∈ R
M×Pξ , the problem may then be reformulated in a

form where one looks for the sparsest approximation vector X⋆ such that
the L2-norm error between the observations Y and the reconstructed solution
Ŷ ≡ AX is below ǫ:

X⋆ ≡ arg min
X∈R

Pξ

‖X‖1, s.t. ‖Y −AX‖2 ≤ ǫ, (34)

where the noise level ǫ characterizes the contribution of both the measurement
noise when probing uq, if any, and the energy of û⊤ /∈ V(Pξ)

Ξ with V(Pξ)
Ξ ⊂ VΞ

the space spanned by {ψα}, α ∈ J .

At first glance, one may think that choosing the sampling kernels such that
Imu =≪ ψm, u ≫, m ∈ [1, Pξ], may be a good strategy, reminiscent of a
Galerkin approach in variational methods where one tries to reduce the norm
of the residual in the same space span {φm} as the space span {ψα} in which
the unknown signal is approximated. The resulting formulation has close con-
nections with the standard least-squares interpolation. This choice is actually
a bad one and results in very poor performance as it requires M ≥ Pξ, in gen-
eral, and achieves a near-unit RIP constant. Letting ≪ f, g ≫= 〈f, g〉L2(Ξ,µΞ),
the kernel of the sensing matrix is then of dimension Pξ −M so that many
sparse signals cannot be recovered unless M ≥ Pξ, a far looser condition than
that motivating the present work, M ≪ Pξ.

We are now in a position of characterizing the solution u from its approxima-
tion ΨX. We assume the solution vector exhibits a decaying spectrum so that
the uncertainty quantification problem is amenable to a form such that the
CS tools and results apply.
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Remark Without loss of generality, the variables γ(l)
m may be substituted

with the Kronecker delta, δml. Any element of Φ can then be written Φml ≡
µΞ

(
ξ(m)

)
δml, so that Φ is diagonal. Further, in the example treated in Sec-

tion 6, the stochastic space Ξ is bounded and the measure µΞ is uniform. It
results that Φ is then simply within a multiplicative constant of the identity
matrix.

4.2 Recovery property

Given that computational efficiency has determined our choice of I, it is de-
sirable to assess the adequacy and performance of the resulting pair {Φ,Ψ}
of measurement and representation functions. The recovery property of the
sensing matrix A is first investigated in terms of its Restricted Isometry Prop-
erty (RIP) constant, see Eq. (18). The definition of the RIP is symmetric in
the sense that it involves both a lower and upper bound. However, while the
largest eigenvalue of AT

T AT has an impact on the stability of the recovery
algorithm, the smallest eigenvalue is of critical importance in the sense that
it allows us to distinguish any two K-sparse vectors X and X ′ from their
measurement by A and guarantees that no K-sparse vectors X 6= X ′ exist
such that AX = AX ′, Blanchard et al. (2010). The focus will therefore be
put on the lower inequality and we now define the RIP constant as

δK ≡ min
δK≥0

δK , s.t. (1 − δK) ‖X‖2
2 ≤ ‖AX‖2

2 , ∀K-sparse vectors X

(35)
and derive an estimate for our choice of sensing matrix A. The RIP constant
achieved by a matrix whose elements are sampled from a zero-mean, 1/M-
variance, Gaussian distribution is also plotted for comparison. This particular
sensing matrix is known to be near-optimal in the sense that it allows the best
recovery probability with a given number of measurements among all choices of
measurement/approximation pairs and thus defines a lower bound to the RIP
constant. The evaluation of the RIP constant of a matrix is not trivial. Since δK
is directly related to the smallest (and largest) eigenvalues of AT

T AT , |T | ≤ K,

it involves computing the minimal (and maximal) eigenvalues of all



Pξ

K




sub-matrices AT
T AT . This problem is combinatorial in nature and cannot be

computed in polynomial time. For the size of matrices considered in this work,
the exact numerical computation of the RIP constant is intractable. However,
to gain preliminary insights into the efficiency of the present approach, an
estimate δ̂ of the RIP constant is evaluated from over three million randomly
selected submatrices AT , both for the retained measurement/approximation
pair and for a Gaussian random matrix. Since not all submatrices AT can be
tested, this estimate only constitutes a lower bound of the actual RIP constant.
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Fig. 1. Indication δ̂ of the recovery property for various sizes M of the mea-
surement ensemble as a function of the signal sparsity K. The present measure-
ment/approximation pair, labelled ‘PC’, is compared with the reference Gaussian
sensing matrix, labelled ‘Gauss’. The recovery threshold 3

4+
√

6
, see Eq. (19), is also

plotted for completeness (solid horizontal line). When K grows, the number of sub-
matrices AT grows exponentially so that the indicator of the RIP is not expected
to be relevant enough and is thus not plotted.

As may be appreciated from Fig. 1, when the numberK of non-zero elements of
the signal X increases for a given number of measurements M , δ̂2K increases
to a point where the RIP criterion is not met, i.e., δ2K ≥ 3

4+
√

6
, consistent

with the fact that more measurements are necessary to recover a vector when
its sparsity decreases (K increases). As expected from its proven optimality
with an overwhelming probability, the Gaussian sensing matrix exhibits better
recovery properties than our current pair. For example, it would require about
five times less measurements to perfectly recover any 64-sparse signals.

As seen in section 3.3, the recovery of the unknown coefficient vector X from
M measurements may alternatively be guaranteed using the incoherence of
the resulting matrix A. Both the RIP- and the incoherence-based approaches
provide upper bounds on the cardinality of the signal one can recover and
constitute sufficient conditions. However, these bounds hold with an over-
whelming probability for any K-sparse signal and hence do not do justice to
the recovery ability of the method in practice. As an illustration of this ob-
servation, the indicator of the RIP constant plotted in Fig 1 show that the
recovery using M = 2177 measurements is not guaranteed for a signal which
cardinality exceeds about 10 using point-wise samples of the response surface.
Since the RIP constant is bounded from below by this indicator, the actual
situation may appear even worse. However, results presented in section 6 will
show that this bounds is far too pessimistic and that the present technique
performs very well in practice. Hence, instead of estimating bounds of limited
practical interest, one may instead rely on a k-fold cross-validation approach
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to evaluate the number M of required measurements to recover the signal
within a given accuracy. An approximation of the response surface is then de-
termined using M measurement points and its accuracy is evaluated in terms
of the L2-norm of the residual computed on a different set of M/k points. The
procedure is repeated k times so that each set of M/k points alternatively
serves for the approximation and the residual norm estimation. M is subse-
quently increased whenever the resulting average residual norm is deemed too
large.

4.3 Improving the recovery

In the situation where the sample points can be chosen at will, i.e., the un-
known response surface can be probed at any point within the domain of
interest, an opportunity for improving the efficiency of the present approach
arises in the form of a design of experiment. Indeed, once the approximation
basis {ψα} is chosen, the set of sampling points is the only degree of freedom
one has within the NISP framework to improve on the recovery of the un-
known output. By carefully choosing the information operator {I}, and hence
the associated set of samples, the efficiency of the recovery can be favorably
affected and the RIP improved in the sense that criteria stated in Eqs. (19)
and (20) are met for a larger K (less compressible signal).

In recent work, Rauhut (2010), Rauhut and Ward (2010) investigate the re-
covery properties of a strategy based on an approximation basis generated by
a system of polynomials {ψα} orthonormal with respect to a measure µξ(ξ)
satisfying (in 1-D)

(
1 − ξ2

)1/4
µξ(ξ)

1/2 |ψα(ξ)| ≤ c1, ∀α ∈ N, ξ ∈ [−1, 1] . (36)

Within this framework, theoretical results are proven for a CS strategy relying
on the orthonormal system {ψα} and point-wise samples drawn independently

according to a Chebyshev probability measure, dν(ξ) = π−1 (1 − ξ2)
−1/2

dξ.
In particular, it is shown that, provided M ≥ c2 δ

−2 c2∞K log3(K) log(Pξ),

then, with probability at least 1 − Pξ
−c3 log3(K), the associated sensing matrix

Ã obeys the RIP with constant δK ≤ δ, with c2 (depending only on µξ) and
c3 well-behaved constants and c∞ such that

sup
k∈[1,Pξ]

‖ψk‖∞ = sup
k∈[1,Pξ]

sup
ξ∈[−1,1]

|ψk (ξ)| ≤ c∞. (37)

Further, if M ≥ c2K log4(Pξ), consider the following L1-minimization prob-
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lem (in the 1-D case, Nξ = 1)

X⋆ ≡ arg min
X∈R

Pξ

‖X‖1, s.t.
∥∥∥Ỹ − ÃX

∥∥∥
2
≤ ǫ, (38)

where Ã ≡ Φ Ψ and Ỹ ≡ Φ Y with Φ a diagonal R
M×M matrix with entries

Φl,l ∼
(
1 −

(
ξ(l)
)2
)1/4

µξ

(
ξ(l)
)
/
√
M and Ψl,k ≡ ψk

(
ξ(l)
)
. The solution X⋆ of

this problem satisfies

‖X − X⋆‖2 ≤ c3 ǫ+ c4
‖X − XK‖1√

K
, (39)

with probability exceeding 1 − Pξ
−c5 log3(Pξ). This L1-minimization problem is

similar to that in Eq. (34). The above results constitute a theoretical basis for
a provably efficient point-wise orthonormal polynomials-based CS technique
and support the approach suggested in this paper. However, a good sample
set in the sense of the RIP (or equivalently the mutual coherence) is not
necessarily the most pertinent. Indeed, rather than extra precision on the
coefficient vector X, as guaranteed by a good RIP, one is often interested in
retrieving a good approximation of the signal u. From this perspective, a good
set is one that minimizes the error in the signal recovery, say:

{
ξ(q)⋆

}
= arg min

{ξ(q)}
‖u− û‖L2(Ξ,µΞ). (40)

One thereby favors good recovery of u to the detriment of finely distinguishing
between two, weakly contributing, coefficients of X. Of course, problem (40)
cannot be solved since u is not known. Observe now that the CS-UQ technique
proposed in this paper, Eq. (34), leads to finding the minimal L1-norm vector
X so that the reconstructed signal û is close to u at a given set of points{
ξ(q)

}
:

0 ≤
M∑

q=1

[∣∣∣u
(
ξ(q)

)
− û

(
ξ(q)

)∣∣∣
2
µΞ

(
ξ(q)

)2
]
≤ ǫ2 ≪

M∑

q=1

[∣∣∣u
(
ξ(q)

)∣∣∣
2
µΞ

(
ξ(q)

)2
]
.

(41)

To achieve good recovery of u in terms of L2-norm as stated in Eq. (40),{
ξ(q)

}
could be chosen so that the L2-norm is well-approximated by the M-

term sum, Eq. (41). One is then left with finding a set of points so that a
Nξ-dimensional integral is well-approximated with a finite sum of integrand
evaluations. While deriving the optimal set of points is difficult in general,
provably good candidates exist such as low-discrepancy sequences. Among
those, a Sobol sequence, Sobol (1967, 1977), presents interesting properties in
filling the R

Nξ -space at hand and was used in this work.
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The efficiency of the NISP CS-UQ technique based on a set of samples issued
from both a low-discrepancy Sobol sequence and from a Chebyshev probability
measure will be investigated in section 6.3.4.

Remark While not used in this work, the recovery could also be improved
by splitting the step of finding the subset of dominant modes from that of
evaluating their coefficients. Once the solution X⋆ of Eq. (34) has been deter-
mined, the subset {ψ⋆} of dominant modes is identified. Letting K⋆ ≤ M be
its cardinality, one can then reuse the available information from the measure-
ments, Y , to evaluate the coefficients X⋆ of the K⋆-best term approximation:
X⋆ = A†

⋆ Y , A⋆ ≡ Φ Ψ⋆ ∈ R
M×K⋆ with A† the Moore-Penrose pseudo-inverse

of A. This second step then concentrates the information from the observa-
tions in order to recover the coefficients X⋆, de facto discarding those not
belonging to {ψ⋆} found negligible at the first step. Focusing the information
on the set of modes found to be dominant then provides superior performance.
A similar procedure was proposed in Candès and Plan (2007).

4.4 Solution method

4.4.1 Formulation of the optimization problem

As seen above, the problem takes the form of an inequality constrained opti-
mization problem which is solved for X ∈ R

Pξ . Approximation of the random
output u on a Polynomial Chaos requires to determine a number of terms Pξ

which grows with the polynomial order No and the stochastic space dimension
Nξ as:

Pξ =



Nξ +No

Nξ


 =

(Nξ +No) !

Nξ !No !
. (42)

When the stochastic space dimensionality and/or the polynomial order in-
creases, the number of terms grows exponentially, as a symptom of the curse
of dimensionality. For reasonably large stochastic problems, the number of re-
quired terms quickly becomes large as well and solving the problem in Eq. (34)
may become difficult. A great deal of work has been devoted to solving this
class of problem or closely related formulations such as an alternative convex
constrained version:

X⋆ ≡ arg min
X

‖Y −AX‖2, s.t. ‖X‖1 ≤ ǫX, (43)
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or a (convex) unconstrained optimization:

X⋆ ≡ arg min
X

‖X‖1 + τ ‖Y −AX‖2, (44)

where τ is a non-negative real parameter.

Algorithms vary depending on the formulation of the problem used. For in-
stance, ideas from the Least Angle Regression (LARS) procedure (Efron et al.,
2004) may be used to solve formulation (43) while formulation (34) may be
recast as a second order cone program for which efficient algorithms exist, see
for instance Becker et al. (2009).

In the present work, the formulation (44) is used together with a memory-
limited second-order quasi-Newton approach, Gilbert and Lemaréchal (1989).
The maximum size of the problem considered below is about Pξ ≃ 105 and
the optimization step computational time remains much lower than that re-
quired to generate the M deterministic solver outputs, even though the de-
terministic code calls were performed in parallel. Alternative approaches are
available to solve Eq. (44) such as projected gradient techniques, Figueiredo
et al. (2007); van den Berg and Friedlander (2008), Interior Points methods
(IP), Wright (1997), or iterative-shrinkage techniques, see Zibulevsky and Elad
(2010). With very large scale problems in mind, where both Pξ and M are
large, the dense matrix A ∈ R

M×Pξ is not stored and one only computes the
R

M -vector resulting from AX. Further, while not used here, as the CPU cost
essentially comes from this matrix-vector multiplication AX, and since X is
compressible, one may make use of sparse multiplication techniques to lower
the computational burden.

4.4.2 Choosing τ

As also used for determining the required number of measurements, see sec-
tion 4.2, a cross-validation technique is used to determine the balance between
reconstructed signal norm ‖X‖1 and the approximation error ‖Y − AX‖2

due to the presence of noise and the incompleteness of the approximation ba-
sis {ψα}. For a given M , the Pareto front is explored by varying τ in Eq. (44).
A weakly penalized observation constraints (low τ) would lead to an approx-
imation lying on a too low-dimensional subspace; on the contrary, a large
τ may lead to overfitting on the available observations. An example of the
Pareto front is given in Fig. (2). The retained τ ⋆ is estimated with a k-fold
cross-validation technique as that which minimizes the mean reconstruction
error over the k folds: τ ⋆ = arg minτ

∑k
l=1

∥∥∥u(l) − Ψ(l) X
∥∥∥
2

with u(l) the l-th

set of samplings independent of that used in Y = Φ u, k = 3 being retained in
this work. More sophisticated cross-validation techniques such as the Leave-
One-Out or the .632+ bootstrap method (Efron and Tibshirani, 1997) may
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lead to lower variance error estimation but are deemed too costly.
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Fig. 2. Example of Pareto front. M = 2177.

4.4.3 Modified L1-norm

Since the L1-norm is not smooth, a modified L1-norm was used to ease the
optimization procedure. For a real-valued quantity f , the smoothed L1-norm
is taken as, Becker et al. (2009):

‖f‖1 = |f | − 1

2
ǫs if |f | ≥ ǫs, f ∈ R,

=
f 2

2 ǫs
otherwise, (45)

with ǫs ≪ 1 a non-negative smoothing parameter taken as 10−7Xmax with
Xmax the estimated maximum magnitude coefficient.

As mentioned above, shifting from a L0- to a L1-formulation makes the result-
ing problem convex and computationally tractable at the expense of a factor
2 in the sparsity bound. From a most efficient recovery perspective, an ad-hoc

weight is then introduced in the definition to mimic a L0-norm:

‖X‖1 −→ ‖W X‖1 , (46)

where W is a diagonal matrix which elements are Wk = 1
|Xk|+εW

, 1 ≤ k ≤ Pξ,

εW > 0. The iterative scheme suggested in Candès et al. (2007) is used and
the W matrix is updated as a new solution estimate X is available. In this
work, εW = 10−7 maxk |Xk| was retained as a sparsity threshold.
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5 Model problem

5.1 General motivation

To investigate the efficiency and effectiveness of the method presented above,
it is applied to the simulation of an underwater seismic event. Uncertainty
is assumed in the location, intensity and physical extent of the event as well
as in the ocean depth field. The quantity of interest is the maximum height
of the resulting ocean surface perturbation at a specific location next to the
shore within a given time window after the event has occurred. The length of
the time window is related to the time necessary for the seaquake detection,
broadcast of the alert and evacuation of the population located close to the
shore.

5.2 Governing equations

The shallow water flow is described by the following set of equations

D vx

D t
= f vy − g

∂h

∂x
− b vx + Svx , (47)

D vy

D t
=−f vx − g

∂h

∂y
− b vy + Svy , (48)

∂h

∂t
=−∂ (vx (H + h))

∂x
− ∂ (vy (H + h))

∂y
+ Sh, (49)

where it is implicitly assumed that the fluid density and the free surface pres-
sure are constant. Here, f is the term corresponding to the Coriolis force, b the
viscous drag coefficient, v ≡ (vx vy)

T the fluid velocity vector, h the deviation
of the ocean surface from its position at rest, g the gravity constant and H the
ocean depth field. Svx , Svy and Sh are the source terms reflecting the effect of
the unknown displacement field. Without loss of generality, it is assumed that
the source field acts on the h variable solely

(
Svx = 0, Svy = 0

)
and that the

drag and the Coriolis forces can be neglected, f = 0, b = 0. No-slip boundary
conditions are prescribed along the edge Γ of the domain Ωx.

5.3 Discretization in the deterministic space

Consider a partition of the 2-D physical domain Ωx into a set of Nb = Nx×Ny

non-overlapping spectral elements (SE) with respective support Ωl
x for l =
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1, . . . , Nb:

Ωx =
Nb⋃

l=1

Ωl
x. (50)

The continuous Galerkin spectral elements approximation of the solution over
the element Ωl

x for vx (·, t) ∈ Vx is given by:

vl
x

(
x ∈ Ωl

x, t; θ
)

=
Px∑

i=1

Py∑

j=1

vl
xi,j(t; θ) Li(x) Lj(y), (51)

where Li are the physical space basis functions, Px and Py the spectral orders
and V l

x is a suitable Hilbert space of Ωl
x.

The unknowns are interpolated with Legendre cardinal functions collocated
at the Gauss-Lobatto points. The surface height hl ∈ V l

h is discretized with
a lower order polynomial to avoid spurious pressure modes to occur (QN −
QN−2 scheme), see Iskandarani et al. (1995). At the deterministic level, the
discretized quantities are then:

vl
s(x ∈ Ωl

x, t; θ) =
Px∑

i=1

Py∑

j=1

vl
si,j(t; θ) Li(x) Lj(y), (52)

hl(x ∈ Ωl
x, t; θ) =

Px−2∑

i=1

Py−2∑

j=1

hl
i,j(t; θ) Li(x) Lj(y), (53)

where subscript s stands either for x or y.

Integrating the divergence term by parts the governing equations (47–49),
yields the variational form of the shallow water equations (SWE), ∀ϕl

v ∈
V l

x, ∀ϕl
h ∈ V l

h:

∫

Ωl
x

∂ vl
x

∂ t
ϕl

v dΩ
l
x +

∫

Ωl
x

g
∂hl

∂x
ϕl

h dΩ
l
x =

∫

Ωl
x

f l
x ϕ

l
v dΩ

l
x, (54)

∫

Ωl
x

∂ vl
y

∂ t
ϕl

v dΩ
l
x +

∫

Ωl
x

g
∂hl

∂y
ϕl

h dΩ
l
x =

∫

Ωl
x

f l
y ϕ

l
v dΩ

l
x, (55)

∫

Ωl
x

∂ hl

∂ t
ϕl

h dΩ
l
x −

∫

Ωl
x

(
∂ ϕl

h

∂ x
vl

x +
∂ ϕl

h

∂ y
vl

y

) (
H l + hl

)
dΩl

x

=
∫

Ωl
x

(fh + Sh) ϕ
l
h dΩ

l
x,

(56)

where ϕl
v and ϕl

h respectively denote the velocity and surface height test func-
tions and fx, fy and fh are the generalized forcing terms including the non-
linear advection term. The pressure (since h acts as the pressure) gradient
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term ∇h in the momentum equation and the divergence term in the conti-
nuity equation ∇ · (h v) drive the gravity waves and are integrated implicitly
in time. The gravity terms are thus discretized with a Crank-Nicholson time
scheme while the remaining terms are treated with a semi-implicit third order
Adams-Bashforth scheme. Rearranging, the discretized SWE may be put in
the following form:

κMv vx +
1

2
g Gvx h=B, (57)

κMv vy +
1

2
g Gvy h=C, (58)

−1

2

(
Evx vx + Evy vy

)
+ κ Mh =D, (59)

with κ ≡ 1/∆t, ∆t the retained time step. Mv and Mh are the mass matrices
for the velocity and pressure respectively. The matrices Gvx and Gvy are the
discrete gradient operators along x and y for the velocity vector while Evx and
Evy are the discrete gradient operators for the pressure along x and y. The
matrices B, C and D appearing on the right sides of the equations contain
the explicit terms together with the sources. Rearranging the system (57–
59), a Schur complement formulation is derived and the problem is solved
with a matrix-free conjugate gradient method taking advantage of a Schwarz
preconditionner. More details about a similar formulation may be found in
Douglas et al. (2003).

5.4 Discretization in the stochastic space

A Polynomial Chaos spectral expansion is used to approximate the uncertain
output of the model. Without loss of generality, we rely on uniform random iid

variables ξ =
(
ξ1 . . . ξNξ

)T
associated with normalized Legendre polynomials,

Abramowitz and Stegun (1970), ψk(ξ), k = 1, . . . , Pξ, on the stochastic space

L2 (Ξ, µΞ), Ξ = [−1, 1]Nξ .

These polynomials form an orthonormal basis under the measure µΞ:

∫

Ξ
ψi(s)ψj(s) dµΞ(s) ≡ 〈ψi, ψj〉L2(Ξ,µΞ) = δij, ∀ {i, j} ∈ {1, . . . , Pξ} , (60)

and u (ξ) is approximated by:

u (ξ) ≈ û (ξ) =
Pξ∑

k=1

Xk ψk (ξ). (61)
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5.5 Models of the uncertain quantities

The uncertain depth field H(x) is modeled as a NH-term expansion of the
form:

H
(
x, ξ̂(θ)

)
= H (x) +

NH∑

i=1

√
λi ξ̂i (θ) ϕ

H
i (x), (62)

with ξ̂ ≡
(
ξ̂1 . . . ξ̂NH

)T
, and ξ̂i, i = 1, . . . , NH , iid uniform random variables.

The expansion modes ϕH
i (x) are eigenvectors of the auto-correlation operator

based on the following kernel:

C (x,x′) ≡ exp

(
− 1

lC
[(x−x′)T (x−x′)]

1/2
)

, (63)

with λi the associated eigenvalues and lC the correlation length. The physical
domain extent is x ∈ [0, 106]

2
and the correlation length is taken as lC =

2 × 105.

The location of the seaquake source Sh is also unknown by nature. While
insights may be gained from past seaquakes and geological considerations, the
precise description of the sea bottom displacement field during a seismic event
cannot be predicted and it is conveniently modeled as a random field indexed
by Ξ × T , with T the time domain. The source model is of the form:

Sh

(
x, t, ξ̃

)
≡ASh

(t)N (x; xSh
, σSh

) ,

ASh
(t) =

t2

1 + t4
exp−20 t, (64)

where the temporal envelope ASh
(t) is assumed known. The source physical

extent N (x; xSh
, σSh

) is assumed isotropic and Gaussian-shaped while its lo-
cation xSh

, physical extent σSh
and strength AN are random:

xSh

(
ξ̃
)
≡
((

0.5 + 0.1 ξ̃1
)
xSh

ySh

)T
,

N (x; xSh
, σSh

) =AN
(
ξ̃2
)

exp

[
− 1

σ2
Sh

(ξ̃3)
(x−xSh)

T
(x−xSh)

]

, (65)

with
(
xSh

ySh

)T
a reference source location. The amplitude and variance of

the source express as

AN
(
ξ̃2
)

= 1.01 + ξ̃2,

σ2
Sh

(
ξ̃3
)

= 5 103
(
1.25 + ξ̃3

)
. (66)
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6 Results

6.1 Solution method

Salient results of the SWE UQ problem are presented in this section. First,
a low-dimensional stochastic solution is investigated both with the proposed
CS-like approach and a sparse grid-based (Smolyak scheme) NISP Polynomial
Chaos technique. This low dimensional problem allows relatively high polyno-
mial orders for the approximation of the solution. In a second step, a higher
dimensional problem is considered, arising from a more realistic modeling in-
volving additional sources of uncertainty. For this particular case study, both
a sparse grid-based Polynomial Chaos (PC) approach and a Stochastic Col-
location (SC) approach are considered, together with their CS counterparts
(CS-PC and CS-SC). In the PC method, the required coefficients in Eq. (10)
are approximated using discrete quadrature. The SC method essentially con-
sists of approximating the output response surface by interpolating Lagrange
polynomials and no integrals need be evaluated to determine its coefficients.
Both the CS-based PC and CS-based SC use the CS-like approach but they
differ in their respective measurement matrices, A, due to the use of different
trial bases {ψα}.

Throughout the section, the sensing matrix A is never explicitly formed and
only its action on a vector X is evaluated, Ŷ = AX.

6.2 Low dimensional problem

In this section, a 1-term series expansion is considered for the approximation
of the ocean depth stochastic field, NH = 1, Eq. (62). Further, it is assumed
that there is no uncertainty in the source field extent σSh

and intensity AN .

The problem expresses in terms of ξT =
(
ξ̂

T
ξ̃

T
)

which here reduces to ξT =
(
ξ̂1 ξ̃1

)
= (ξ1 ξ2) so that the problem then lies in a 2-D stochastic domain.

Since a major concern of any computational method is the balance between
accuracy of the solution and required computational effort, let us first exam-
ine the error in the solution as more measurements M are considered. The
reconstruction error is defined as:

ε̃2
ex ≡ ‖u (x⋆, t⋆, ξ) − û (x⋆, t⋆, ξ)‖2

L2(Ξ,µΞ) , (67)

where u is the exact stochastic quantity of interest evaluated at a specific time
t⋆ and specific location x⋆. û is the solution obtained from the uncertainty
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lS 1 2 3 4 5 6 7 8 9 10 11 12

M 5 9 17 33 33 65 97 97 161 161 161 257

No 1 2 3 5 5 6 8 8 11 11 11 12

Pξ 3 6 10 15 21 28 36 45 55 66 78 91

Table 2
Correspondence between Smolyak level lS , number of evaluation points M = |Nq|,
maximum Polynomial Chaos order No and related number of stochastic modes Pξ.
2-D stochastic space.

quantification using either the Smolyak scheme-based PC or the CS-like PC
strategy.

In the sequel, since the exact solution u is not known, a NMC-sample Monte-
Carlo approximation is considered instead, with NMC = 1.2 × 106 sufficiently
large so that the norm ‖·‖2

L2(Ξ,µΞ) may be reasonably approximated by its
Monte-Carlo estimation:

ε̃2
ex ≃ ε̃2 ≡ 1

NMC

NMC∑

q=1


u

(
x⋆, t⋆, ξ(q)

)
−

Pξ∑

k=1

Xk (x⋆, t⋆) ψk

(
ξ(q)

)



2

, (68)

where the ξ(q) are sampled according to the µΞ measure.

Finally, the relative error norm is defined as:

ε2 ≡ ε̃2 ×

 1

NMC

NMC∑

q=1

(
u
(
x⋆, t⋆, ξ(q)

))2



−1

. (69)

The evolution of the approximation error ε is investigated in terms of the
number of deterministic solver calls M . The number of solver calls corresponds
to the required number of points for the different levels of the Smolyak rule.
For a given level lS of the Smolyak quadrature, the quadrature is exact for
a polynomial integrand of a given total order. One wants the integration to
be exact if the model output was a polynomial of the same order as the test
function. Under this view, the correspondence between the Smolyak level, lS,
number of evaluation points, M , and maximum achievable Polynomial Chaos
order is provided in Table 2.

It should be noted that, while the performance of the two approaches (stan-
dard PC and CS-PC) is evaluated for a similar number of evaluation points,
those points are not the same for the two methods: the Smolyak-based PC ap-
proach relies on points issued from a partially tensorized 1-dimensional Gauss-
Patterson quadrature (nested) rule while the points for the CS-like strategy
are sampled at random in [−1, 1]2 following a uniform joint-probability law.
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Remark While the approximation basis can grow (increasing No and Pξ)
when M increases for the PC approach as the Smolyak scheme allows to
exactly integrate integrands of growing order, see Table 2, in the CS-PC ap-
proach, the approximation basis is fixed for all M , No = 12, Pξ = 91.
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ε
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CS-PC

Fig. 3. Convergence analysis of the CS-like (CS-PC) and the Smolyak quadrature
(PC) solution strategies in terms of the relative error norm ε.

The evolution of the approximation error ε as a function of the number of
deterministic solver calls M is plotted in Fig. 3. The error norm is seen to
decrease as M increases, both approaches roughly achieving a 2-order of mag-
nitude error reduction from a 1-point to a 257-point evaluation. The CS-like
approach is seen to perform no better than Smolyak-based PC when the num-
ber of evaluation points is low. This poor behavior when a limited number of
points is available results from the recovery properties as it was seen that a
minimum of points was necessary for the RIP constant to drop sufficiently low
to achieve recovery of a signal with given sparsity.

Conversely, when the number of evaluation points becomes sufficiently large,
the error norm from the CS-like strategy drops dramatically, achieving a more
accurate approximation than Smolyak-PC beyond M ≃ 40 evaluation points.
A remarkable result is that a 65-point CS-like approach achieves almost the
same accuracy as a 161-point Smolyak strategy. It must be emphasized that
this is achieved without requiring any prior knowledge of the solution, nor
making use of a trial-and-error refinement strategy. The underlying compress-
ibility in the solution representation in the given trial basis is intrinsically cap-
tured by the procedure which makes the best use of the available M points
information in a non-adaptive way. The global behavior is consistent with
what was expected from Section 3: relatively poor performance compared to
the Smolyak-PC approach for a low number of available measurements but a
better convergence rate once the ensemble of solution evaluations gets suffi-
ciently large. It is interesting to note that, when M = 257, the Smolyak level
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is lS = 12 so that the two methods use the same trial basis (Pξ = 91) and their
performances are seen to be roughly similar while they rely on the solution of
different problems.

The “exact” response surface is plotted in Fig. 4 both from extensive Monte-
Carlo simulations and from using the CS-PC approach. The agreement is
satisfying but the “exact” response surface (Monte-Carlo) is seen to exhibit a
slope discontinuity near ξ2 ≃ 0.55: the solution is not smooth in the stochastic
domain and is then poorly approximated with polynomials. This is responsible
for the rather slow convergence of the L2-error observed in Fig. 3. A plot
similar to that from the CS-PC strategy is obtained with the standard PC
(not shown).
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Fig. 4. Exact (left, extensive MC-based simulations) and CS-like approximation
(right) of the response surface of the stochastic problem output.
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Fig. 5. 257-evaluation point solution approximation spectrum for the PC and CS-PC
strategies.

To appreciate the recovery of the coefficients vector X, its spectrum from both
the Smolyak- and the CS-like approach with M = 257 is plotted in Fig. 5.
As expected, the major contribution to the solution arises from a small set
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of modes while a significant part of the spectrum exhibits a much weaker
magnitude. Interestingly, the CS-like spectrum closely matches that of the
Smolyak-based solution for the most significant modes, say those with mag-
nitude larger than 10−7. No such match is achieved for the lower magnitude
modes and the CS-like solution exhibits more vanishing or negligible modes,
in particular in the upper part of the spectrum. This is a clear demonstra-
tion of the philosophy of the CS-like approach: concentrate on a few modes
that contribute most to the solution approximation and discard or ignore the
others unless additional information is provided.

6.3 Higher dimensional stochastic problem

6.3.1 Settings

We now consider a more realistic case where additional sources of uncertainty
are present, calling for a higher dimensional Polynomial Chaos basis for a good
approximation of the stochastic output and inducing a large computational
cost for evaluating the solution at the resulting large number of necessary
sampling points.

The problem of interest is basically the same as in the previous section but
the sources of uncertainty are more precisely modeled, giving rise to additional
stochastic dimensions that must be taken into account. In particular, the depth
field is now modeled with a NH = 5-mode expansion instead of NH = 1 as
previously considered. This allows not-so-small contributing eigenmodes of
the correlation kernel to be taken into account. Further, the seaquake source
model is also improved with respect to its intensity AN as well as its width σSh

which are now modeled as uncertain quantities in addition to the location xSh

as previously considered. This leads to a source model lying in a 3-dimensional
stochastic space: ξ̃ ∈ Ω

Ξ̃
⊂ R

3. The resulting uncertain problem therefore

is an 8-D stochastic problem: ξT =
(
ξ̂

T
ξ̃

T
)

∈ Ξ ⊂ R
8. This moderately

large dimensionality framework is routinely encountered in practice and thus
constitutes a test case of stronger practical interest than the previous 2-D case
which only serves as a didactic example.

The correspondence between the Smolyak scheme level and the maximum
polynomial order that can correspondingly be considered for the output and
the test function, within the assumption that the output is a polynomial of
the same order as the test function, is given in Table 3. For a polynomial
approximation order No = 8, the required number of quadrature points isM =
|Nq| = 97153 and will result in a large computational burden for evaluating
the corresponding model outputs.
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lS 1 2 3 4 5 6 7 8

M 17 129 609 2177 6657 17921 43137 97153

No 1 2 3 4 5 6 7 8

Pξ 9 45 165 495 1287 3003 6435 12870

Table 3
Correspondence between Smolyak level lS , number of evaluation points M = |Nq|,
maximum Polynomial Chaos order No and related number of stochastic modes Pξ.
8-D stochastic space.

6.3.2 Convergence properties

As mentioned in section 4.4.2, the compromise between overfitting and mis-
match with the measurements is essentially driven by the τ parameter and its
value is adjusted through a cross-validation approach whenever new observa-
tions become available. This step takes advantage of warm-start capabilities of
the optimization technique and results in an efficient procedure. An illustration
of the evolution of the cross-validation error εCV ≡ ∑

l
1

card(u(l))

∥∥∥u(l) − Ψ(l) X
∥∥∥
2

is given in Fig. 6 for various values of τ . When τ is low, the constraint of
matching the observations Y is weak and a very sparse coefficient vector X is
promoted, leading to a large cross-validation error. On the contrary, when τ is
large, the recovery algorithm tends to match the measurements disregarding
the resulting sparsity of X, leading to overfitting and a large cross-validation
error as well. There thus exists a compromise τ ⋆ between these two extremes
leading to a minimal εCV and the model output approximation is then given
by the solution of Eq. (44) with τ = τ ⋆.
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Fig. 6. Evolution of the cross-validation error εCV when τ varies. 8-dimensional
case, M = 17921.

A similar investigation of the approximation convergence as for the two-
dimensional case is now carried-out. As before, the error norm of the approx-
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imation is monitored when the number of the available measurements varies,
Fig. 7. Beyond a minimal number of solution evaluation points, M & 30, the
CS-like PC approach is again seen to achieve a better approximation of the
stochastic solution than the Smolyak-based PC. In this case, the CS-like ap-
proach requires about 103 points to approximate the solution within a 10−4

relative error L2-norm while the sparse grid technique needs 105 points to
reach the same accuracy, roughly achieving a two order of magnitude im-
provement in terms of computational burden. Note that the physical location
x⋆ ∈ Ωx used in the definition of the output, see Eq. (67), is different in the
8-D case from the 2-D case. The location considered in the 8-D case leads to a
smoother response surface, hence a higher convergence rate of the polynomial
approximations.
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Fig. 7. Convergence analysis of the Polynomial Chaos CS-like (CS-PC) and the
Smolyak quadrature (PC) solution strategies together with the Stochastic Colloca-
tion (SC) and CS-SC in terms of L2-error norm. 8-dimensional problem.

Remark The number of samples M reported in the plots corresponds to
that used to form the sensing matrix A and the measurement vector Y . The
actual cost of the CS-UQ method also includes the additional samples used for
the cross-validation step. With the 3-fold cross-validation strategy used here,
the actual cost is then 33 % higher than M .

In addition to the comparison with the Smolyak scheme-based PC, it is of
interest to appreciate the performance of the present CS strategy with a least-
squares regression whose resulting approximation error is also plotted in Fig. 7.
The regression problem admits a unique solution whenever M ≥ Pξ (other-
wise the Fisher information matrix is not invertible) so the plot is given for
M ≥ 12870. The approximation error is seen to be large when the number
of measurements is only a little larger than the number of unknowns. When
M further increases, the approximation gets much better and eventually gives
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a similar accuracy as the CS approach when M approaches 105. Hence, the
L2-regression approach cannot provide a solution with less than M measure-
ments and, when a solution can be determined (M ≥ Pξ), its accuracy is
quite poor unless M gets really large. This observation illustrates the remark
made in section 4.1 about the poor recovery property of choosing I such that
Imu =≪ u, ψm ≫.

To complete the picture, an alternative trial basis is also considered here: the
so-called Stochastic Collocation (SC) approach, (Mathelin et al., 2005; Xiu and
Hesthaven, 2005; Babus̆ka et al., 2007), essentially consists of approximating
the response surface with a linear combination of point values belonging to
a given set S. More specifically, the stochastic output is approximated under
the form

u (ξ) ≈
∑

q∈S
u
(
ξ(q)

)
ψ̂q (ξ), (70)

where the functions ψ̂q are typically taken as Lagrange polynomials. Instead
of a full tensorization of one-dimensional Lagrange polynomials that would re-
quire a prohibitive number of evaluation points ξ(q), the stochastic collocation
approach makes use of successive partial tensorizations based on the Smolyak
scheme points, here chosen to be nested. It results in linear combinations of hi-
erarchical approximations involving a reasonable number of evaluation points.
For a detailed presentation of the method, one can refer to Xiu and Hesthaven
(2005) and Nobile et al. (2007).

Since the SC method is essentially an interpolation technique, it does not in-
volve a projection step and, for a given number of point-wise evaluations of the
response surface, it allows for approximating the output with a higher polyno-
mial order as compared with the Smolyak-Polynomial Chaos, which is usually
used within the assumption that the output surface to approximate is of the
same polynomial order, No, as the retained trial basis. The SC approach is not
affected by such a hypothesis. In the present case, it allows for polynomials of
total order 14 as opposed to 8 for the Polynomial Chaos approach.

The hierarchical stochastic collocation method used builds up an approxi-
mation by successively adding details to the approximation at the preceding
level, see for instance Ganapathysubramanian and Zabaras (2007). The SC-
based CS approach used here then tends to select the dominant terms in this
normalized hierarchical Lagrange basis.

In Fig. 7, the stochastic collocation approach is seen, in particular, to provide a
better approximation than PC for a given number of evaluations M thanks to
the higher affordable polynomial order. For a large M , the higher polynomial
approximation leads to a dramatic improvement in the approximation quality
as the resulting error norm is about 30 times lower with SC than with PC.
The CS-counterpart of the stochastic collocation (CS-SC) again achieves a
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significant improvement over the regular SC approach for M & 100, reaching
up to an order of magnitude improvement in the approximation error for a
given evaluation cost (∝M). Just as with the PC approach, the approximation
accuracy of the regular and the CS-like stochastic collocation approaches are
similar when M is maximum, i.e., the SC-approach can use the trial basis
with maximum order.

For M & 2000, the approximation error is seen to reach a plateau and further
measurements essentially do not improve the recovery accuracy. This comes
from the fact that the identified coefficient vector X is already very close to(
〈u, ψ1〉L2(Ξ,µΞ) , . . . ,

〈
u, ψPξ

〉
L2(Ξ,µΞ)

)T

for M ≃ 2000. To further improve the

approximation, an enhanced trial basis {ψα} would be necessary, for instance,
increasing the polynomial order No. However, the recovery property of the
sensing matrix A deteriorates as the cardinality Pξ of the approximation basis
grows (albeit slowly, not shown). In a nutshell, the maximum correlation of a
set S of vectors defining a frame in a given R

K increases when |S| increases.
One should then exercise moderation when choosing the trial basis and refrain
from using an unnecessary large one.

6.3.3 Solution spectrum
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Fig. 8. Sorted spectrum of the approximation. The 97153-point Smolyak-scheme
solution is compared with CS-PC approximations determined with various M . The
k−1 decay is also plotted for comparison.

The spectrum of the approximation coefficient vector X , sorted by magnitude,
is plotted in Fig. 8 both for the Smolyak-scheme-based approximation (with
M = 97153) and the present CS-PC approach with various M . While none is
ground truth in the sense they all are approximations, their sorted spectra are
however seen to exhibit a decay which rate is essentially bounded from above
by k−1, therefore a posteriori giving confidence that the CS results apply, see
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section 3.4. As an illustration of the strongly compressible character of the
signal in the {ψα} basis, the top two decades of the sorted spectrum only
involves about 20 modes.

While the approximations derived from all the cases plotted in the figure allow
accurate retrieval of the dominant modes, the M = 129 CS-PC spectrum is
seen to “diverge” from the other spectra for k & 7. Similarly, the M = 609
CS-PC spectrum diverges for k & 23. This is a clear illustration of the CS-
UQ approach: focus all the available information, no matter how little, to
retrieve the most significant modes and disregard the others. While using a
set of M = 97153 points, the Smolyak-scheme approximation spectrum is
seen to diverge for k & 58 from the M = 17921 CS-PC case, taken here as
the reference thanks to its approximation accuracy, see Fig. 7. This difference
clearly indicates that the signal to approximate is not aNo-th order polynomial
and that its projection in the {ψα} basis is only approximately evaluated by
the quadrature, Eq. (10).

As already mentioned, the evaluation points ξ(q) are not the same for the
Smolyak scheme and the CS approach. This brings considerable flexibility in
the applicability of the CS-UQ method as it can be applied to situations where
one has little control on how the realizations of the uncertain parameters are
sampled: as long as the output evaluations at one’s disposal are such that the
resulting recovery properties defined in Eqs. (19, 20, 22) are satisfied, the CS
results are valid. This is a distinguishing feature compared to the standard PC
or SC approach where evaluation points are a priori defined. Further, it also
brings flexibility in the number of points: while the Smolyak-based approach
is restricted to a given set of points for each level, cf. Table 3, the CS-based
UQ can accommodate with any number of points and improves the recovery
whenever M increases.

6.3.4 Improved recovery

When the unknown response surface is probed with a numerical solver, one of-
ten has the ability of choosing the set of samples. In this last section, the focus
is on the alternative sets of samples discussed in section 4.3. The accuracy of
the reconstructed surface based on five independent sets of points chosen uni-
formly at random, as considered so far in this work, and the set resulting from
a Sobol sequence are compared in terms of approximation residual L2-norm.
Further, since the Legendre polynomials generating the approximation basis
considered in this work belong to the, partially tensorized, Jacobi polynomials
family, P

(α,β)
No

(ξ) with α = β = 0, theoretical results presented in section 4.3
apply and provide a framework with provable recovery performance. Three
sets of samples drawn according to the Chebyshev probability measure on
[−1, 1]8 are considered.

36



 0.0001

 0.001

 0.01

 100  1000

ε

M

Smolyak
CS-uniform

CS-Sobol
CS-Chebyshev

Fig. 9. Convergence of the unknown response function recovery for randomly chosen
(uniform and Chebyshev probability measure-) and a Sobol sequence-based samples.
8-dimensional problem.

Figure 9 gathers recovery results for different size M of the sets. As already
discussed in previous sections, the recovery is poor for low M but strongly
improves when the number of available observations increases. When M gets
large enough, M & 4000, the recovery saturates (in the sense that no better
approximation can be derived in the retained approximation basis) and both
the uniform and Chebyshev measure-based sampling strategies lead to an
excellent recovery. They are seen to exhibit a similar behavior and achieve
comparable recovery accuracy for a given M . However, they rely on a random
sampling and their performances are subjected to a large variability and hence
low reliability. For instance, for M = 500, the L2-norm of the residual with
samples drawn uniformly at random varies from 3×10−4 to more than 1×10−3

for the five sets considered here.

Similarly to the uniform and Chebyshev, the Sobol sampling scheme achieves
poor recovery when the number of observations is low. However, when M
gets larger, in addition to the direct improvement due to the larger set of
available observations, the 8-D integral underlying in the residual L2-norm is
better approximated with the finite sum, see Eq. (41), and the Sobol sequence
strategy almost always exhibits a better accuracy in the approximation than
that achieved by the randomly sampled points. Again, when M becomes large
enough, all strategies achieve excellent recovery. There thus exists a range of
sample set size within which the response surface recovery can be improved by
carefully chosen samples over a naive random sampling strategy. This range
precisely corresponds to the range of interest where the resulting approxima-
tion is already decently accurate while not requiring a prohibitive number of
response surface probings.
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Beyond its brute recovery performance, the crucial point is that a low-discrepancy
sequence such as Sobol relies on a deterministic set so that its good recovery
properties are not subjected to variability, in contrast to both the uniform- and
Chebyshev-measure sampling. Further, it is important to note that these nice
properties come at no additional cost for a given M since the L1-minimization
problem remains of the same size, simply relying on a different set of samples.

7 Concluding remarks and perspectives

In this paper, we proposed a novel technique for quantifying the uncertainty
associated with the solution of a mathematical model involving stochastic pa-
rameters. This approach makes use of a deterministic solver and allows for
the direct reuse of any existing legacy code that is run with different sets of
input parameters. It heavily relies on concepts borrowed from the technique
of compressed sensing and essentially consists of retrieving the most signif-
icant modes of the approximated solution from a minimal number of code
calls. Since solving the deterministic problem is almost always the bottle-neck
of any uncertainty quantification method, reducing the number of required
calls to the solver is the route to higher computational efficiency. Rigorous
results exist in the literature that prove that this methodology succeeds, with
an overwhelming probability, in deriving a good approximation of the solu-
tion, provided it has a compressible enough representation in the trial basis
considered. The core principles of this approach have been shown to immedi-
ately apply to the stochastic framework and ways of achieving good recovery
performance were proposed.

The methodology was applied to the uncertainty quantification of an uncertain
Shallow Water problem. The response surface of the uncertain surface height
at a specific time and location was approximated with Polynomial Chaos.
The proposed approach was shown to perform well, both in a 2-D and 8-D
stochastic framework as compared to the usual sparse grid projection tech-
nique (Smolyak cubature). In particular, the proposed approach may achieve
several orders of magnitude improvement in the approximation error L2-norm
over the Smolyak scheme PC for a comparable CPU cost. It was also shown
to compare favorably to a hierarchical Stochastic Collocation strategy on the
8-D problem. In fact, this non-adaptive approach takes advantage of the weak
dependence of the solution on certain modes of the representation basis and
uses every bit of available information to estimate the dominant modes, and

only them. This philosophy is at the root of the method’s efficiency.

The benefit of carefully chosen samples over a naive sampling strategy was also
shown. A low-discrepancy Sobol sequence was compared to samples drawn
from a uniform and a Chebyshev probability measure. The Sobol sequence
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achieves performances often at least as good as the random sampling while
being deterministic. This, sample-wise, zero-variability brings reliability to the
recovery procedure and, based on the present results, an information opera-
tor associated to a low discrepancy Sobol sequence is the suggested strategy,
whenever possible.

Another key to the method’s efficiency is that it allows the use of a large ap-
proximation basis even when very little information is available, while more
standard methods, like PC, are limited in the sense that the number of avail-
able constraints strongly drives the basis one can rigorously use to generate
an approximation. In the 8-D example we considered, about 600 deterministic
solves where sufficient to lead to good accuracy in the CS-PC case with a
No = 8-basis while a Smolyak-scheme approach was then reasonably limited
to an approximation in a No = 3-basis.

With the CS-UQ approach, one may then want to enhance the trial basis by
incorporating as many modes as possible. In particular, in addition to the usual
Polynomial Chaos, compact support and/or non-smooth functions may also be
included to improve the approximation when the solution is poorly represented
by polynomials, e.g., when it exhibits discontinuities in the stochastic space. To
some extent, the mild, about log4 (Pξ), dependence of the RIP constant or the
mutual coherence of the sensing matrix on the size Pξ of the trial basis seems
to encourage such an approach while moderation should however be exercised.
In addition to an over-complete dictionary, specific reconstruction properties
may be desirable such as minimal total variation of the approximated solution
for noisy and/or discontinuous response surface. Finally, the conclusions drawn
in this work rely on a specific UQ configuration (8-D uncertain Shallow Water
Equations). Supplementary testing with different application problems are
desirable to assess their universality. Further, a detailed theoretical analysis
of the performance of low-discrepancy sequences for CS-based UQ should be
carried-out to reveal crucial properties and help designing better sampling
strategies. These developments are the subject of ongoing efforts.
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Gilbert, J., Lemaréchal, C., 1989. Some numerical experiments with variable-
storage quasi-newton algorithms. Math. Program. 45, 407–435.

Iskandarani, M., Haidvogel, D., Boyd, J., 1995. A staggered spectral element
model with application to the oceanic shallow water equations. Int. J. Num.
Meth. Fluids 20 (5), 393–414.
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Le Mâıtre, O., Najm, H., Ghanem, R., Knio, O., 2004b. Multi-resolution anal-
ysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys.
197 (2), 502–531.

Mallat, S., Zhang, Z., 1993. Matching pursuit in a time-frequency dictionary.
IEEE Trans. Signal Proc. 41 (12), 3397–3415.

Mathelin, L., Gallivan, K., July 2010. Uncertainty quantification for sparse so-
lution of random pdes, presented at the SIAM Annual Meeting, Pittsburgh,
PA, USA.

Mathelin, L., Hussaini, M., Zang, T., 2005. Stochastic approaches to uncer-
tainty quantification in CFD simulations. Num. Algo. 38 (1), 209–239.
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