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Abstract

The classical theorem of Bombieri and Vinogradov is generalized to a non-abelian, non-Galois setting.
This leads to a prime number theorem of “mixed-type” for arithmetic progressions “twisted” by splitting
conditions in number fields. One can view this as an extension of earlier work of M. R. Murty and V.
K. Murty on a variant of the Bombieri-Vinogradov theorem. We develop this theory with a view to
applications in the study of the Euclidean algorithm in number fields and arithmetic orbifolds.

Dirichlet’s density theorem gives an asymptotic estimate for the density of primes in arithmetic progres-
sions. Let π(x) denote the number of primes p ≤ x, and for positive integers a ≤ q such that (a, q) = 1,
denote by π(x, q, a) the number of primes p ≤ x which satisfy the congruence p ≡ a (mod q). Dirichlet’s
theorem indicates that as x→∞

π(x, q, a) ∼ π(x)
φ(q)

where φ is Euler’s totient function, and f ∼ g means that f/g → 1. The Riemann hypothesis for all Dirichlet
L-functions implies that the error term satisfies the estimate∣∣∣∣π(x, q, a)− π(x)

φ(q)

∣∣∣∣� x
1
2 log qx,

where f � g (equivalently f = O(g)) means that |f/g| is bounded, and will be referred to by saying that f
is of order g. The celebrated theorem of Bombieri [3] and Vinogradov [24] shows that this estimate holds on
the average.

Theorem 0.1 (Bombieri, Vinogradov). Let A > 0 be given. Then there is a B = B(A) > 0 so that for
Q = x

1
2 (log x)−B ∑

q≤Q

max
(a,q)=1

max
y≤x

∣∣∣π(y, q, a)− π(y)
φ(q)

∣∣∣� x

(log x)A
.

In [17], a variant of Theorem 0.1 is proven for K/Q a Galois extension of number fields. The goal of this
paper is to prove an analogous theorem without the Galois assumption. Specifically, let K be a number field
and M a subfield of K (possibly M = K) such that K/M is Galois. Let G = Gal(K/M) and let C be a
conjugacy class in G. Let p be a prime ideal of M unramified in K and let σp denote the conjugacy class
of Frobenius automorphisms corresponding to prime ideals q of K lying over p. Define π(x,C) to be the
number of prime ideals p of M unramified in K with σp = C and Np ≤ x where N = NM/Q. With a, q as
above let π(x,C, q, a) denote the number of primes ideals p of M unramified in K with σp = C, Np ≤ x and
Np ≡ a (mod q). By the Chebotarev density theorem [23]

π(x,C, q, a) ∼ d(C, q, a)π(x)

for a density d(C, q, a) ≥ 0. If K ∩Q(ζq) = Q where ζq is a primitive q-th root of unity, then

d(C, q, a) =
|C|
|G|

1
φ(q)

.

We prove the following theorem, which is equivalent to Theorem 4.1 proven in §4.
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Theorem 0.2. Let K/M be a Galois extension of number fields, with group G and let C be a conjugacy
class in G. Let H be the largest abelian subgroup of G such that H ∩C 6= ∅ and let E be the fixed field of H.
Let η = max{[E : Q]− 2, 2} and for any ε > 0 let Q = x

1
η−ε. Then for any A > 0,∑′

q≤Q

max
(a,q)=1

max
y≤x
|π(y, C, q, a)− d(C, q, a)π(y)| � x

(log x)A

where the decoration ′ indicates that the summation is over only those q such that K ∩Q(ζq) = Q.

In comparison with Theorem 0.1, a value of η = 2 would be ideal, but is not within the grasp of current
methods. The coarsest interpretation of our results yields an η value of max{[K : Q]− 2, 2}.

There are several motivations for deriving this theorem. One of them is to the study of the Euclidean
algorithm in number fields as developed in [12]. Another is to the study of arithmetic orbifolds dealing with
the structure of quotients of PSL2(OK) as in [18]. In many applications we have in mind, this theorem will
be used in conjunction with the lower bound sieve, where it is often required to produce infinitely many
primes p with a certain splitting type in a fixed (not necessarily Galois) extension with some restriction on
the prime divisors of p − 1. We will not pursue any of these applications in this paper. Our purpose here
is to derive the result with all of the technical details clearly presented. As is well-known, the celebrated
theorem of Bombieri-Vinogradov has had an immense number of applications in analytic number theory and
we foresee a similar role for our theorem. The desirable goal of course would be to have our theorem with
the value η = 2 but this seems to be far into the future.

0.1 Outline of Proof

Let K be a number field with nK = [K : Q], ring of integers OK , and let dK be the absolute value of the
discriminant of K. Chebyshev’s ψ function for the number field K is, in its simplest incarnation

ψ(x) =
∑

Npm≤x

logNp

where the sum is over all powers of unramified prime ideals p of K which satisfy the bound Npm ≤ x where
N = NK/Q. It is well known that an estimate of ψ(x) can be translated to an estimate of π(x), the number
of prime ideals in K of norm at most x. We will indicate the inclusion of ramified primes in a summation
by the decoration ∼ over the function. We write

ψ̃(x) =
∑
Nc≤x

Λ(c)

where Λ(c) is the von Mangoldt function. That is,

Λ(c) =
{

logNp if c is a power of the prime ideal p
0 otherwise.

We write ψ(x, q, a) for the sum ψ(x) restricted to those pm which satisfy Npm ≡ a (mod q). For ease of
exposition, we will omit possible conjugacy class restrictions in this overview. Precise definitions will be
given in subsequent sections. In particular, §0.6 contains definitions of the various Chebyshev functions.
The aim of this paper is to prove a statement of the form∑′

q≤Q

max
(a,q)=1

max
y≤x
|ψ(y, q, a)− y

φ(q)
| � x

(log x)A
(∗)

which is equivalent to the statement in the introduction.

To refine the summation, we rewrite the average as a sum over twisted Chebyshev functions, ψ(x, χ). In
the simplest manifestation, χ is a Hecke character. We reserve the notation χ0 for the trivial character. The
twisted Chebyshev function is

ψ̃(x, χ) =
∑
Nc≤x

Λ(c)χ(c)
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and is the partial coefficient sum of the logarithmic derivative, −L
′

L (s, χ), of the L-series

L(s, χ) =
∑

c⊂OK

χ(c)
Ncs

.

This connection with L-functions will be used extensively. We first convert the average on the left hand side
of (∗) to one of the form

1
Q

∑
q≤Q

∑
∗

χ

max
y≤x
|ψk(y, χ)|

where the decoration ∗ indicates that the summation is over primitive characters only. That is, to prove (∗)
we show that it is sufficient to prove that this new summation is O(x(log x)−A). We then reinterpret this
summation so that we can reduce to the case where the associated L-functions are all abelian, and estimate
this new summation. We break the estimate into two cases, depending on the size of Q. We estimate the
initial range

Q ≤ (log x)γ

for any positive constant γ using classical techniques in §2. In §3 we estimate the terminal range, for Q in
the range

(log x)γ ≤ Q ≤ min{x 1
2−ε, x

1
d−2−ε}

(with d = nE for E ⊂ K as described in Proposition 1.8 and γ defined in Proposition 3.1) using the large
sieve. To do so we will smooth the Chebyshev functions with an inverse Mellin transform. Specifically, for
f : R≥1 → R define f0 = f and for k ∈ N recursively define the inverse Mellin transforms fk of f as

fk(x) =
∫ x

1

fk−1(t)
dt

t
. (0.1.1)

We will use the notation exp(x) = ex.

0.2 Class Functions

If f : G → C is a C-valued function on a group G and σ ∈ G we define fσ : G → C by fσ(g) = f(σ−1gσ).
We say that f is a class function if fσ = f for all σ ∈ G. We use class functions to impose conditions on the
primes in our summation using the Frobenius, which we now define.

Let L/M be Galois with group G and N = NM/Q. For each prime ideal p of M and prime ideal q of L
lying over p the decomposition group, Dq, is the stabilizer of q in G, {g ∈ G : g(q) = q}. The decomposition
group is isomorphic to Gal(Lq/Mp) where Lq (resp. Mp) is the completion of L (resp. M) at q (resp. p).
Let mp denote the residue field OM/p and `q the residue field OL/q. By Hensel’s lemma there is a surjective
map from Dq to Gal(`q/mp), giving the exact sequence

1→ Iq → Dq → Gal(`q/mp)→ 1

where Iq is the kernel of this map. The group Gal(`q/mp) is cyclic with generator x 7→ xNp and Np is the
cardinality of mp. The element of Dq whose image in Gal(`q/mp) is a generator is well defined modulo Iq.
Denote this element of Dq/Iq by σq. If p is unramified in L, then Iq = 1 and we can consider σq as an
element of G, the Frobenius element. This element is characterized by

σq(x) = xNp (mod q)

for all x ∈ L. For another choice q′ above p, Iq′ and Dq′ are conjugates of Iq and Dq respectively in G. We
let σp denote this conjugacy class in G.

If p is ramified, and f is a class function then we define f(σmp ) by extending f to powers of the ramified
primes by setting the value to be the average

f(σmp ) =
1
|Iq|

∑
f(g)
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where the sum is over all g ∈ Dq whose image in Dq/Iq is σmq .

For a subgroup H of G, and a class function f : H → C we define the induced class function

IndGHf : G→ C

as follows. First, we extend f to a function on G by setting f to be trivial outside of H. Let g1, . . . , gR be
coset representatives for H in G. We define

(
IndGHf

)
(g) =

R∑
r=1

fgr (g) =
1
|H|

∑
s∈G

fs(g).

For a finite group G and f1, f2 : G→ C two C-valued functions on G, we define their inner product

〈f1, f2〉 =
1
|G|

∑
g∈G

f1(g)f2(g).

0.3 Artin L-series

Our references for Artin L-series are [15] and [6]. Let L/M be Galois with group G. (We suppress the field
extension in the notation unless there is need for clarification.) Consider a representation, ρ : G→ GLn(C)
with character χ. For Re(s) > 1 we define the unramified L-series associated to ρ (or χ), Lu(s, χ), to be
a product of local Euler factors, where the product is taken over the primes ideals of M unramified in L.
Specifically,

Lu(s, χ) =
∏
′

p

Lp(s, χ)

where the decoration ′ indicates that the product is over those p in M which are unramified in L. The Euler
factors are

Lp(s, χ) = det(I − ρ(σq)Np−s)−1

where N = NM/Q. We extend this L-series to ramified primes as follows. Let p be a prime ideal of M
ramified in L and q a prime ideal in L above p. Let V be the underlying complex vector space on which ρ
acts. Restricting this action to the decomposition group Dq, the quotient Dq/Iq acts on the subspace V Iq

of V on which Iq acts trivially. All σq have identical characteristic polynomials on this subspace, and we
define the Euler product at the ramified prime ideals p to be

Lp(s, χ) = det(I − ρ(σq)|V IqNp−s)−1.

For all primes ideals p, each factor Lp depends only on p and has degree χ(1), the dimension of ρ. For each
factor Lp(s, χ),

logLp(s, χ) =
∞∑
m=1

χ(σmp )m−1Np−ms

where χ(σmp ) is the trace of ρ(σmp ) if p is unramified in L, and we extend χ to the ramified prime ideals as
discussed in §0.2. The (full) Artin L-series is

L(s, χ) =
∏
p

Lp(s, χ)

where the product is over all primes ideals p in M . We can rewrite this product as

L(s, χ) =
∏
p

Lp(s, χ)
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where this product is over rational primes p, and Lp(s, χ) =
∏

p|p Lp(s, χ). Each Lp is a polynomial in p−s

of degree, say mp. Note that mp ≤ nM for all p and mp = nM for p unramified in M . The Euler factors can
be written as

Lp(s, χ) =
mp∏
j=1

(
1− πp,j

ps

)−1

(0.3.1)

where |πp,j | = 1. From the logarithms of the Euler factors it is apparent that the logarithmic derivative of
L(s, χ) is

L′

L
(s, χ) = −

∑
p

∞∑
m=1

(logNp)χ(σmp )Np−ms. (0.3.2)

With the induced function defined in §0.2, if H is a subgroup of G and LH is the subfield of L fixed by
H then for a character χ of H

L(s, IndGHχ,L/M) = L(s, χ, L/LH). (0.3.3)

0.4 Functional Equations

Our reference for this material is [15]. For L/M Galois we now define an enlarged L-function, Λ, from which
a functional equation will follow. First, we define the gamma factors. Let γ(s) = π−

s
2 Γ
(
s
2

)
. For each infinite

complex place ν of M , define the local factor γν(s, χ) = [γ(s)γ(s+ 1)]χ(1). Now assume that ν is real. To a
place ω of L above ν there corresponds a decomposition group G(ω) = {g ∈ G : g(ω) = ω} which is of order
one or two. The generator σω is well defined up to conjugation by ν. Let V be the underlying representation
space for ρ. The vector space V decomposes as a direct sum, V = V +

ν ⊕ V −ν corresponding to the +1 and
−1 eigenvalues of ρ(σω). We define the local factor

γν(s, χ) = γ(s)dimV +
ν γ(s+ 1)dimV −ν

and define γ(s, χ) =
∏
ν γν(s, χ). We can write γ(s, χ) = γ(s)a(χ)γ(s + 1)b(χ) for integers a(χ) + b(χ) =

nMχ(1). Before we define Λ we need to introduce the notion of a conductor.

The Artin conductor f(χ) associated to χ is an ideal of OM defined as follows. Let p be a prime ideal
of M and q a prime ideal of L lying over p. Let G0 denote the inertia group Iq at q. There is a descending
filtration of higher ramification groups G0 ⊇ G1 ⊃ . . . . The quantity

n(χ, p) =
∞∑
i=0

|Gi|
|G0|

codim(V Gi)

is an integer which is independent of the choice of q above p. It is equal to zero for all prime ideals p unramified
in L, and therefore vanishes for all but finitely many p. The Artin conductor is the ideal f(χ) =

∏
p pn(χ,p)

and the conductor is the constant
A(χ) = d

χ(1)
M NM/Qf(χ).

If χ is an Artin character induced by a Dirichlet character of modulus q, with A = A(χ0) it follows that
A(χ)� AqnM . In this case, χ(1) = 1 and the Artin conductor is q, so A(χ) ≤ dMNM/Qq ≤ dMqnM � qnM .
If L = K(ζq), χ1 is a character induced by Gal(K/Q), and χ2 is induced by a Dirichlet character modulo
q, then in this case A(χ1 ⊗ χ2) = A(χ1)A(χ2). Therefore, A(χ1 ⊗ χ2) � A(χ1)qnM . A simple case of the
conductor discriminant formula is the relation

dL = d
[L:M ]
M NM/Q(dL/M ) (0.4.1)

where dL/M is the relative discriminant,

dL/M =
∏
χ

f(χ)χ(1)

and the product is over all irreducible characters χ of Gal(L/M). (See [19] Proposition 4.8.)
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We now define Λ(s, χ) = A(χ)
s
2 γ(s, χ)L(s, χ) for Re(s) > 1, which has a meromorphic continuation to

the whole complex plane and functional equation

Λ(s, χ) = W (χ)Λ(1− s, χ)

where W (χ), the Artin number, is a complex number of absolute value 1. The character χ is the complex
conjugate of χ. That is, if χ is the character of the representation ρ : G → GL(V ), then χ is the character
of the contragradient representation ρ : G→ GL(V ∗) where V ∗ is the dual of V and ρ is defined by

〈ρg(f), v∗〉 = 〈f, ρ−1
g (v)〉

for all g ∈ G, v ∈ V and v∗ ∈ V ∗.
It will be convenient to set

Θ(s, χ) = W (χ)A(χ)
1
2−sγ(1− s, χ)γ(s, χ)−1. (0.4.2)

With this notation we can rewrite the functional equation as

L(s, χ) = Θ(s, χ)L(1− s, χ) (0.4.3)

since A(χ) = A(χ).

We will use Stirling’s inequality in various forms. For σ fixed, as |t| → ∞, (see [16] ex. 6.3.15)

Γ(σ + it) ∼ e− 1
2π|t||t|σ− 1

2
√

2π. (0.4.4)

For s = σ + it,
Θ(s, χ)� [A(χ)(|t|+ 2)nM ]

1
2−σ. (0.4.5)

Logarithmically differentiating (0.4.2) and applying Stirling’s formula, we also have

Θ′

Θ
(s, χ)� nM (log(|t|+ 2) + 1

|s| ). (0.4.6)

0.5 Congruences and Characteristic Functions

Let K/M be Galois with group G. In the average, we wish to estimate the number of prime ideals p in M
which are unramified in K such that σp = C for a fixed conjugacy class C of G. We extend class functions
to the ramified primes as in §0.2. Let δC : G → {0, 1} denote the characteristic function of C. By the
orthogonality relations of characters, for a fixed element g of C,

δC = |C|
|G|

∑
η

η(g)η (0.5.1)

where the sum is over irreducible characters η of G. An alternate decomposition is as follows. Let H be a
subgroup of G such that H ∩ C 6= ∅. Let h ∈ H ∩ C and let CH be the conjugacy class of h in H. With
λ = |C||H|

|G||CH | , and the induced character as defined in §0.2,

δC = λIndGHδCH .

We wish to count only those prime powers pm so that NM/Qpm ≡ a (mod q), and σmp = C. If K∩Q(ζq) =
Q, with Gq = Gal(K(ζq)/M),

Gq ∼= G×Gal(Q(ζq)/Q) ∼= G× (Z/qZ)×.

Fixing this isomorphism, let the conjugacy class C ′ be the class associated to (C,C2) where C is the preferred
class in G and C2 is a class in (Z/qZ)× corresponding to the congruence condition. Let δC and δa,q = δC2

be characteristic functions on Gq. (For an element (g, t) ∈ Gq, define δC(g, t) = 1 if g ∈ C and 0 otherwise.
The function δa,q is defined in a similar manner.)
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Definition 0.1. Let ξ = ξ(C, a, q) = δC′ = δC ⊗ δa,q.

For a subgroup H of G with H ∩ C 6= ∅ set Hq = H × Gal(Q(ζq)/Q). If χ is a Dirichlet character of
modulus q, then χ induces an Artin character by defining χ(σmp ) = χ(Npm) since as M ∩Q(ζq) = Q in the
extension M(ζq)/M , the conjugacy class of Np determines the Frobenius element. By Mackey’s induction
theorem,

δC ⊗ χ = λIndGqHq (δCH ⊗ χ)

where we have used χ for the character on both Gq and Hq induced by the character χ modulo q.

As in (0.3.3),

L(s, δC ⊗ χ,L/M) = L(s, IndGqHq (δCH ⊗ χ), L/M)λ = L(s, δCH ⊗ χ,L/LH)λ (0.5.2)

where LH is the fixed field of H.

0.6 Chebyshev ψ functions

For L/M Galois and a class function f of Gal(L/M) we define

ψ(x, f, L/M) =
∑

Npm≤x

(logNp)f(σmp )

where the sum is over powers of those prime ideals p of M unramified in L, and N = NM/Q. We suppress
the field extension unless there is need for clarification. When f is trivial this is ψ(x). After smoothing with
the inverse Mellin transform (0.1.1)

ψk(x, f) =
1
k!

∑
Npm≤x

(logNp)(log
x

Npm
)kf(σmp ). (0.6.1)

To make the connection with L-functions precise, we include ramified primes in our summation. We do so
by extending the class function f to the ramified primes as in §0.2. We denote the inclusion of ramified
primes by the decoration ∼ over the function.

For an Artin character χ, if Re(s) > 1, by examining the logarithmic derivative of L(s, χ) (see (0.3.2))
ψ̃(x, χ) is the partial sum of the coefficients, and

ψ̃k(x, χ) = − 1
2πi

∫
(2)

L′

L
(s, χ)

xs

sk+1
ds (0.6.2)

where the integration is on the line Re(s) = 2.

We will begin estimating an average involving the error term ψ(x,C, q, a)−d(C, q, a)x, and show that it is
equivalent to one which includes ramified primes, corresponding to the function ψ̃(x,C, q, a) = ψ̃(x, ξ,K(ζq)/M),
where ξ is as in Definition 0.1. In turn, we will rewrite this average as one with functions of the form

ψ̃(x, δC ⊗ χ,K(ζq)/M) =
∑

Npm≤x

(logNp)δC(σmp )χ(Npm)

where χ is induced by a Dirichlet character of modulus q and the sum is over powers of prime ideals p in M .
These functions can be smoothed by the inverse Mellin transform. Taking coefficient sums of (0.5.2) with
the notation from §0.5

ψ̃k(x, δC ⊗ χ,L/M) = ψ̃k(x, IndGqHq (δCH ⊗ χ), L/M)λ = ψ̃k(x, δCH ⊗ χ,L/LH)λ. (0.6.3)

Writing the characteristic function ξ = |C|
|G|

∑
η

η(g)η (see §0.5), for Re(s) > 1, using (0.3.2)

−L
′

L
(s, ξ) = − |C||G|

∑
η

η(g)
L′

L
(s, η).
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By (0.6.2)

ψ̃k(x, ξ, L/M) = − 1
2πi

∫
(2)

L′

L
(s, ξ)

xs

sk+1
ds = − 1

2πi
|C|
|G|

∑
η

η(g)
∫

(2)

L′

L
(s, η)

xs

sk+1
ds (0.6.4)

where the integration is on the line Re(s) = 2.

0.7 Abelian L-functions

In our previous definitions, the Artin characters are, in general, non-abelian characters of Gal(L/M). We
now rewrite the L-functions in terms of abelian L-functions. We follow [13], using the methods of Deuring
[8] and MacCluer [14]. In (0.6.4) we rewrote ξ as a sum over irreducible characters using a preferred element
g of G = Gal(K/M). Let H = 〈g〉, the cyclic group generated by g and let E be the fixed field of H. Since
H is cyclic, the irreducible characters of H are one-dimensional.

From (0.6.3)
ψ̃(x, δC ⊗ χ,L/M) = λψ̃(x, δCH ⊗ χ,L/E)

where the characters on the right are one-dimensional by construction. We can further write the character
δCH as the sum over irreducible characters from (0.5.1)

δCH = |CH |
|H|

∑
η

η(g)η

with g ∈ H ∩ C. We conclude that

ψ̃k(x, δC ⊗ χ,L/M) = λψ̃k(x, δCH ⊗ χ,L/E) = |C|
|G|

∑
η

η(g)ψ̃k(x, η ⊗ χ,L/E).

By (0.6.4)

ψ̃k(x, δC ⊗ χ,L/M) = − 1
2πi

|C|
|G|

∑
η

η(g)
∫

(2)

L′

L
(s, η ⊗ χ,L/E)

xs

sk+1
ds. (0.7.1)

The motivation behind rewriting our functions in terms of abelian characters is the following, which are
known to hold only in the abelian case. In the following, L(s, η) is an abelian L-function and η is assumed
not to be the trivial character. (See [13] 432-434.) The Hadamard factorization, for constants B1(η) and
B(η) is

Λ(s, η) = eB1(η)+B(η)s
∏
ρ

(1− s
ρ )e

s
ρ

where ρ runs through all of the zeros of Λ(s, η). These are the non-trivial zeros of L(s, η), those for which
0 < Re(ρ) < 1. By logarithmic differentiation, using the above,

L′

L
(s, η) = B(η) +

∑
ρ

( 1
s− ρ

+
1
ρ

)
− 1

2
logA(η)− γ′

γ
(s, η). (0.7.2)

From [13] Lemma 5.1, Re
(
B(η)

)
= −

∑
ρ Re

(
1
ρ

)
. Therefore,

L′

L
(s, η) +

L′

L
(s, η) =

∑
ρ

( 1
s− ρ

+
1

s− ρ

)
− 1

2
logA(η)− γ′

γ
(s, η) (0.7.3)

where the sum runs through all non-trivial zeros ρ of L(s, η).
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1 Rewriting the Average

We continue to consider K/M Galois with group G, and let L = K(ζq). If 1 ≤ a < q and (a, q) = 1 and
K ∩ Q(ζq) = Q, then L/M is also Galois with group isomorphic to Gq = Gal(K/M) × (Z/qZ)×. We let
ξ = ξ(C, q, a) = δC ⊗ δa,q be the class function from Definition 0.1. Therefore, ψ̃(x,C, q, a) = ψ̃(x, ξ, L/M).
We wish to estimate the average (for a suitable choice of Q1)∑′

q≤Q1

max
(a,q)=1

max
y≤x

∣∣∣ψ(y, C, q, a)− d(C, q, a)y
∣∣∣

where the decoration ′ on the summation indicates that the sum is over those q so that K ∩Q(ζq) = Q. For
these q, d(C, q, a) = |C|

|G|
1

φ(q) . To simplify expressions, we will let rk(x,C, q, a) = ψk(x,C, q, a) − d(C, q, a)x
and decorate r to mirror the corresponding ψ function. The goal of this section is to prove Proposition 1.8,
which states that in order to show that the above average is O(x(log x)−A) it suffices to show that for all
values Q ≤ Q1 there is a k ≥ 0 so that the average

1
Q

∑′

q≤Q

∑
∗

χ

max
y≤x
|ψ̃k(y, χ,K(ζq)/E)| � x

(log x)A

where K/E is abelian.

First, we show that the contribution of the ramified primes is negligible.

Lemma 1.1. Assume that 1 ≤ a < q and (a, q) = 1 with K ∩Q(ζq) = Q. Then with

E1 = E1(x, k) =
1
k!

(log x)k+1(log dK + nMx
1
2 )

the following hold.

1. ψk(x,C, q, a)− ψ̃k(x, ξ)� E1.

2.
∑
q≤Q1

max
(a,q)=1

max
y≤x
|rk(y, C, q, a)| −

∑
q≤Q1

max
(a,q)=1

max
y≤x
|r̃k(y, ξ)| � Q1E1.

Proof. First we prove 1. The number of prime ideals p of M ramified in K is at most∑
p|dK/M

logNp

log 2
≤

logN(dK/M )
log 2

,

with N = NM/Q and dK/M the relative discriminant of K/M . By the conductor discriminant formula (0.4.1),
dK = d

[K:M ]
M N(dK/M ). We conclude that the number of ramified primes is at most log dK .

Using definition (0.6.1) the difference in part 1 is the following sum over ramified prime powers

1
k!

∑
Npm≤x

(logNp)
(

log
x

Np

)k
ξ(σmp ) ≤ 1

k!
(log x)k+1‖ξ‖

( ∑
Np≤x

1 +
∑

Npm≤x
m>1

1
)

≤ 1
k!

(log x)k+1
(

log dK + nMx
1
2
)
,

where ‖ξ‖ = maxp,m |ξ(σmp )| ≤ 1 since ξ is a characteristic function. This proves part 1.

For part 2, from 1, the triangle inequality implies that |ψk(y, C, q, a)−d(C, q, a)y|−|ψ̃k(y, ξ)−d(C, q, a)y| =
|rk(y, C, q, a)| − |r̃k(y, ξ)| � E1. Hence, it suffices to estimate∑

q≤Q1

max
(a,q)=1

max
y≤x

E1(y, k)� Q1E1(x, k).
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We now show that the difference between iterations of the Mellin transform, even incorporating ramified
primes is negligible.

Lemma 1.2. Assume that 1 ≤ a < q and (a, q) = 1 with K ∩Q(ζq) = Q. Let A > 1 and a positive integer
n be given. Then with

E2 = E2(x, k, n,A,Q1) =
1

(k + n)!
(log x)

1
2n(n+1)A+k+n+1Q1(logQ1 + nMx

1
2 ) +

x|C|(logQ1)(log logQ1)
|G|(log x)A

the following hold.

1. rk(x,C, q, a)� d(C, q, a)x
(log x)A

+ (log x)
1
2n(n+1)A max

y≤xen(log x)−A
|rk+1(y, C, q, a)|.

2.
∑′

q≤Q1

max
(a,q)=1

max
y≤x
|rk(y, C, q, a)| � (log x)

1
2n(n+1)A

∑′

q≤Q1

max
(a,q)=1

max
y≤xen(log x)−A

|r̃k+n(y, ξ)|+ E2.

Proof. Let ψ∗k(x) = ψk(x,C, q, a). For the first part of the proof we will let d∗ = d(C, q, a). Since ψ∗k is
increasing, for any 0 < α ≤ 1, using the mean value thoerem one can show the following identity

1
α

∫ x

e−αx

ψ∗k(t)
dt

t
≤ ψ∗k(x) ≤ 1

α

∫ eαx

x

ψ∗k(t)
dt

t
.

We can rewrite this as

1
α

(ψ∗k+1(x)− ψ∗k+1(e−αx)) ≤ ψ∗k(x) ≤ 1
α

(ψ∗k+1(eαx)− ψ∗k+1(x)). (∗)

First, we will show

r∗k(x)� αd∗x+
1
α

max
y=x,xe±α

|r∗k+1(y)|. (∗∗)

Substituting the remainder terms into (∗) we have

αψ∗k(x) ≤ ψ∗k+1(eαx)− ψ∗k+1(x)
= d∗eαx+ r∗k+1(eαx)− d∗x− r∗k+1(x)
= (r∗k+1(eαx)− r∗k+1(x)) + d∗x(eα − 1)

= (r∗k+1(eαx)− r∗k+1(x)) + αd∗x+O(α2d∗x).

The last equality can be verified using the Taylor series expansion of eα. We conclude that r∗k(x) ≤
1
α (r∗k+1(eαx) − r∗k+1(x)) + O(αd∗x). Similarly, r∗k(x) ≥ 1

α (r∗k+1(x) − r∗k+1(eαx)) + O(αd∗x). Together these
imply (3.1.1).

Iteratively applying (3.1.1) with α, α2, . . . , αn we have r∗k(x)� α1d
∗x+ α2 max

y≤xeα3
|r∗k+1(y)| where

α1 = α+ αeα + αeα+α2
+ · · ·+ αeα+···+αn−1

� α(nen−1)� α

α2 = α−
1
2n(n+1)

α3 = α+ α2 + · · ·+ αn ≤ nα.

This implies that r∗k(x) � αd∗x + α−
1
2n(n+1) max

y≤xenα
|r∗k+n(y)|. Choosing α = (log x)−A completes the proof

of 1.

Summing 1 implies that∑′

q≤Q1

max
(a,q)=1

max
y≤x
|r∗k(y)| � (log x)

1
2n(n+1)A

∑′

q≤Q1

max
(a,q)=1

max
y≤xen(log x)−A

|r∗k+n(y)|+
∑′

q≤Q1

d(C, q, a)x
(log x)A

.
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Focusing on the error term, since∑′

q≤Q1

d(C, q, a) =
|C|
|G|

∑′

q≤Q1

1
φ(q)

and
∑
q≤Q1

1
φ(q)

� (logQ1)(log logQ1)

(see [11] §18.4) we conclude that∑′

q≤Q1

d(C, q, a)x
(log x)A

� |C|x(logQ1)(log logQ1)
|G|(log x)A

.

Therefore∑′

q≤Q1

max
(a,q)=1

max
y≤x
|r∗k(y)| � (log x)

1
2n(n+1)A

∑′

q≤Q1

max
(a,q)=1

max
y≤xen(log x)−A

|r∗k+n(y)|+ |C|x(logQ1)(log logQ1)
|G|(log x)A

.

With Lemma 1.1 part 2 this directly proves part 2 as e(log x)−A is bounded when A > 1.

Using the following identity for Dirichlet characters χ modulo q,∑
χ

χ(a)χ(n) =
{
φ(q) if n ≡ a (mod q)

0 otherwise,

it follows that
ψ̃k(x, ξ) =

1
φ(q)

∑
χ(q)

χ(a)ψ̃k(x, δC ⊗ χ).

The trivial character contributes the term ψ̃k(x, δC) and

r̃k(x, ξ) = ψ̃k(x, ξ)− d(C, q, a)x =
1

φ(q)

∑
χ 6=χ0

χ(a)ψ̃k(x, δC ⊗ χ) +
1

φ(q)

(
ψ̃k(x, δC)− |C||G|x

)
. (1.0.4)

We bound the second term on the right by the effective Chebotarev density theorem in the form of Lemma
1.5 part 1. The first term is estimated in Lemma 1.5 part 2. The Chebotarev density theorem we require is
a combination of a slight modification of Theorem 1.3 of [13] and Theorem 1′ of [22] (as mentioned in [13]).
We state these results below.

Theorem 1.3 ([13] Theorem 1.3). Assume K 6= Q. There is at most one zero of ζK(s) in the region defined
by s = σ + it with

1− (4 log dK)−1 ≤ σ ≤ 1, |t| ≤ (4 log dK)−1.

If such a zero exists, it is real and simple. Let β denote this zero if it exists. If x ≥ exp(10nK(log dK)2) then

r(x, δC)� E3(x) =
|C|
|G|

xβ + x exp(−cn−
1
2

K (log x)
1
2 ),

where the β term in E3 is present only if such an exceptional zero exists, and the implied constant is effective
and absolute.

We will combine this with a result of Stark’s to bound such a β. These two theorems give an effective
bound on the error term.

Theorem 1.4 ([22] Theorem 1’). There is an effective constant c3 such that

β < max{1− (4nK !(log dK))−1, 1− (c3d
1
nK

K )−1}.

Lemma 1.5. With E4 = E4(x, k) = (logQ1)(log logQ1)(E1(x, k) +E3(x)), (with E1 and E3 as in Lemma
1.1 and Theorem 1.3 respectively) the following hold.
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1. r̃k(x, δC)� E1(x, k) + E3(x).

2.
∑′

q≤Q1

max
(a,q)=1

max
y≤x
|r̃k(y, ξ)| �

∑′

q≤Q1

1
φ(q)

∑
χ 6=χ0

max
y≤x
|ψ̃k(y, δC⊗χ)|+E4, where the final summation is over

characters χ modulo q.

Proof. First we prove part 1. From Theorem 1.3, r(x, δC ,K/M)� E3. This implies that∫ x

1

r(t, δC)
dt

t
=
∫ x

1

(
ψ(t, δC)− |C||G| t

)dt
t
�
∫ x

1

(
|C|
|G| t

β + t exp(−cn−
1
2

K (log t)
1
2 )
)dt
t
.

Since the left hand side is r1(x, δC), upon evaluating the integral, and using L’Hospital’s rule on the quotient

of
∫

exp(−cn−
1
2

K (log t)
1
2 )dt by x exp(−cn−

1
2

K (log x)
1
2 ) for the last estimate,

r1(x, δC)� |C|
|G|x

β + x exp(−cn−
1
2

K (log x)
1
2 ) = E3(x).

Repeating the inverse Mellin transform implies that for any k, rk(x, δC) � E3(x). By Lemma 1.1 part 1,
r̃k(x, δC)� E1 + E3.

Now we prove part 2. Combining the estimate in part 1 and (1.0.4),

r̃k(x, ξ)� 1
φ(q)

∑
χ 6=χ0

χ(a)ψ̃k(x, δC ⊗ χ) +
1

φ(q)
(E1 + E3).

Let S =
∑′

q≤Q1

max
(a,q)=1

max
y≤x
|r̃k(y, ξ)|. Therefore

S �
∑′

q≤Q1

1
φ(q)

∑
χ 6=χ0

max
y≤x
|ψ̃k(y, δC ⊗ χ)|+

∑′

q≤Q1

1
φ(q)

(E1 + E3).

Since E1 and E3 are independent of q, with the estimate
∑
q≤Q1

φ(q)−1 � (logQ1)(log logQ1) (see [11]
§18.4), we conclude that

S �
∑′

q≤Q1

1
φ(q)

∑
χ6=χ0

max
y≤x
|ψ̃k(y, δC ⊗ χ)|+ (logQ1)(log logQ1)(E1 + E3).

Now it suffices to estimate
∑′

q≤Q1

1
φ(q)

∑
χ6=χ0

max
y≤x
|ψ̃k(y, δC ⊗ χ)|. The next step in our refinement is to

replace the character sum by the sum over primitive, non-trivial characters. We indicate this restriction on
a summation by the decoration ∗.

Lemma 1.6. With E5 = E5(x, k,Q1) =
1
k!
Q1 logQ1(log x)k+1,

∑′

q≤Q1

1
φ(q)

∑
χ 6=χ0

max
y≤x
|ψ̃k(y, δC ⊗ χ)| � (logQ1)

∑′

q≤Q1

1
φ(q)

∑
∗

χ

max
y≤x
|ψ̃k(y, δC ⊗ χ)|+ E5.

Proof. By definition (0.6.1), since χ(σmp ) = χ(Npm) when considered as a Dirichlet character,

ψ̃k(x, δC ⊗ χ) =
1
k!

∑
Npm≤x

(logNp)(log
x

Npm
)kδC(σmp )χ(Npm).

If χ is a character modulo q induced by the character χ∗ modulo q∗ with q∗|q and q 6= q∗ then

ψ̃k(x, δC ⊗ χ)− ψ̃k(x, δC ⊗ χ∗) =
1
k!

∑
Npm≤x

(logNp)(log
x

Npm
)kδC(σmp )(χ(Npm)− χ∗(Npm)).
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The characters χ(Npm) = χ∗(Npm) unless Npm divides q/q∗. Here χ(q) = 0 (by the definition of non-
primitive character). Therefore

ψ̃k(x, δC ⊗ χ)− ψ̃k(x, δC ⊗ χ∗) =
1
k!

∑
Npm| q

q∗

(logNp)(log
x

Npm
)kδC(σmp )(χ(Npm)− χ∗(Npm))

� 1
k!

(log x)k
(

log
q

q∗
)
� 1

k!
(log x)k+1.

For a fixed modulus q,

1
φ(q)

∑
χ 6=χ0

max
y≤x
|ψ̃k(y, δC ⊗ χ)| =

∑
χ 6=χ0

1
φ(q)

max
y≤x
|ψ̃k(y, δC ⊗ χ∗)|+O

( 1
k!

(log x)k+1
∑

◦

χ

1
φ(q)

)
where χ∗ is the primitive character of modulus q∗ which induces χ and the decoration ◦ on the second
summation indicates that the summation is over only those characters not primitive to the modulus q. Let

S =
∑′

q≤Q1

∑
χ 6=χ0

1
φ(q)

max
y≤x
|ψ̃k(y, δC ⊗ χ)|. Then, it follows that

S =
∑′

q≤Q1

∑
χ 6=χ0

1
φ(q)

max
y≤x
|ψ̃k(y, δC ⊗ χ∗)|+O

( 1
k!

(log x)k+1
∑′

q≤Q1

∑
◦

χ(q)

1
φ(q)

)
.

Rewriting this as a sum over the conductors, (instead over the moduli of the non-primitive characters),

S =
∑′

q∗≤Q1

∑
∗

χ∗(q∗)

max
y≤x
|ψ̃k(y, δC ⊗ χ∗)|

∑
q∗|q
q≤Q1

1
φ(q)

+O
( 1
k!

(log x)k+1
∑′

q∗≤Q1

∑
∗

χ∗(q∗)

∑
q∗|q
q≤Q1

1
φ(q)

)

and since
∑
q∗|q
q≤Q1

1
φ(q)

� logQ1

φ(q∗)
(see [7] Chapter 28 page 163),

S � logQ1

∑′

q∗≤Q1

∑
∗

χ∗(q∗)

1
φ(q∗)

max
y≤x
|ψ̃k(y, δC ⊗ χ∗)|+

1
k!

(log x)k+1 logQ1

∑
q∗≤Q1

∑
∗

χ(q∗)

1
φ(q∗)

.

Since there are φ(q∗) characters modulo q∗, the right hand term is of the order

1
k!

(log x)k+1 logQ1

∑
q∗≤Q1

1� 1
k!

(log x)k+1Q1 logQ1 � E5.

We sum over dyadic intervals and use a standard estimate to replace the φ(q) in the summation in Lemma
1.6 with a Q, before at last combining the estimates of this section.

Lemma 1.7.∑′

q≤Q1

1
φ(q)

∑
∗

χ

max
y≤x
|ψ̃k(y, δC ⊗ χ)| � (logQ1)(log logQ1) max

1≤Q≤Q1

1
Q

∑
q≤Q

∑
∗

χ

max
y≤x
|ψ̃k(y, δC ⊗ χ)|.

Proof. Let S be the double summation on the left side of the asymptotic in the statement of the lemma.
Break 1 ≤ q ≤ Q1 into intervals of the form (Q2 , Q], so

S =
∑
n

∑
q∈(Q2 ,Q]

1
φ(q)

max
y≤x

∑
∗

χ

|ψ̃k(y, δC ⊗ χ)|

13



where n ranges from 0 to [log2Q1] and Q = 2n+1. Since there are logQ1 of these intervals

S � logQ1 max
1≤Q≤Q1

∑
q∈(Q2 ,Q]

1
φ(q)

max
y≤x

∑
∗

χ

|ψ̃k(y, δC ⊗ χ)|.

The bound
1

φ(q)
� log log q

q
(see [11] §18.4) gives the new estimate

S � logQ1 max
1≤Q≤Q1

∑
q∈(Q2 ,Q]

log log q
q

max
y≤x

∑
∗

χ

|ψ̃k(y, δC ⊗ χ)|.

Since
Q

2
< q ≤ Q and Q ≤ Q1,

S � (logQ1)(log logQ1) max
1≤Q≤Q1

1
Q

∑
q∈(Q2 ,Q]

max
y≤x

∑
∗

χ

|ψ̃k(y, δC ⊗ χ)|

which is clearly less than the summation over the expanded range q ≤ Q.

We combine Lemmas 1.2, 1.5 part 2, 1.6, and 1.7 to transform the average into a more usable form.

Proposition 1.8. Let K/M be a Galois extension of number fields, with group G and let C be a conjugacy
class in G. Let H be an abelian subgroup of G such that H ∩ C 6= ∅ and let E be the fixed field of H. For
any ε > 0 and Q1 ≤ x

1
2−ε in order to prove that for any D > 0∑′

q≤Q1

max
(a,q)=1

max
y≤x
|r0(y, C, q, a)| � x

(log x)D

it suffices to prove either of the following

1. For all 1 ≤ Q ≤ Q1 and any F > 0, there is a k ≥ 0 such that

1
Q

∑′

q≤Q

∑
∗

χ

max
y≤x
|ψ̃k(y, δC ⊗ χ,K(ζq)/M)| � x

(log x)F

where the second summation is over all primitive non-trivial Dirichlet characters of modulus q.

2. For all 1 ≤ Q ≤ Q1 and any F > 0, there is a k ≥ 0 such that

1
Q

∑′

q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω,K(ζq)/E)| � x

(log x)F

where the second summation is over irreducible non-trivial characters ω of Gal(K(ζq)/E) such that
A(ω) � AqnE where A is the conductor of L(s,K/M). Moreover, one may assume that there are
O(φ(q)) characters ω in the second summation.

Proof. First, we prove part 1. Let E2 = E2(x, k, 0, A),(as in Lemma 1.2) f = exp(k(log x)−A), A′ =
1
2k(k + 1)A, and S =

∑′

1≤Q1

max
(a,q)=1

max
y≤x
|r0(y, C, q, a)|. We will show that for every B > 0

S � (log x)A
′+3 max

1≤Q≤Q1

1
Q

∑′

q≤Q

∑
∗

χ

max
y≤xf

|ψ̃k(y, δC ⊗ χ)|+ x

(log x)B
.

This proves the proposition as we can replace xf with x in the maximum since 1 ≤ f ≤ (ek!) when x ≥ 2.
It then suffices to choose F > D +A′ + 3.
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We now estimate S.

S � (log x)A
′∑′

q≤Q1

max
(a,q)=1

max
y≤xf

|r̃k(y, ξ)|+ E2 Lemma 1.2 part 2

� (log x)A
′∑′

q≤Q1

1
φ(q)

∑
∗

χ

max
y≤xf

|ψ̃k(y, δC ⊗ χ)|+ E4(xf) + E2 Lemma 1.5 part 2

� (log x)A
′
logQ1

∑′

q≤Q1

1
φ(q)

∑
∗

χ

max
y≤xf

|ψ̃k(y, δC ⊗ χ)|+ E5(xf) + E4(xf) + E2 Lemma 1.6

� (log x)A
′
(logQ1)2(log logQ1) max

1≤Q≤Q1

1
Q

∑′

q≤Q

∑
∗

χ

max
y≤xf

|ψ̃k(y, δC ⊗ χ)|

+ E5(xf) + E4(xf) + E2. Lemma 1.7

Let A′′ = ( 1
2kA + 1)(k + 1)A. Since Q1 ≤ x

1
2−ε, f is bounded, and from Theorem 1.4, β < {1 −

(4nK !(log dK))−1, 1− (c3d
1
nK

K )−1}, by direct analysis the error

E5(xf) + E4(xf) + E2 � x1−ε(log x)A
′′

+ x(log x)2−A + xβ(log x)2 + x(log x)2 exp(−cn−
1
2

K (log xf)
1
2 )

� x(log x)−D

choosing A− 2 ≤ D. (Note that exp(−cn−
1
2

K (log xf)
1
2 )� (log x)B for any B > 0.) This proves part 1.

Now we prove part 2. By the equation before (0.7.1)

ψ̃k(x, δC ⊗ χ,K(ζq)/M) = |C|
|G|

∑
η

η(g)ψ̃k(x, η ⊗ χ,K(ζq)/E)

where the summation is over irreducible characters η of G. Since η is irreducible, for χ a primitive character
of modulus q, η⊗χ is also irreducible. By §0.4, if ω = η⊗χ then A(ω) = A(η⊗χ) = A(η)A(χ)� A(η)AqnE ,
which is O(AqnE ) with the implied constant depending only on K. Therefore,

ψ̃k(x, δC ⊗ χ,K(ζq)/M)� |C|
|G|

∑
ω

|ψ̃k(x, ω,K(ζq)/E)|

where the sum is over irreducible ω of Gal(K(ζq)/E) such that A(ω)� AqnE . Since this is a finite sum over
the ω by part 1 it suffices to bound the maximum.

Definition 1.1. For K/M Galois and C a conjugacy class of G = Gal(K/M), let H be an abelian subgroup
of G so that H ∩ C 6= ∅ and let E be the fixed field of H. Letting H be the largest such subgroup, define
d = nE .

We will prove the above estimate for small values of Q, those at most (log x)γ , in Proposition 2.1 and for
large values of Q, those between (log x)γ and min{x 1

2−ε, x
1
d−2−ε}, in Proposition 3.1.

2 The Initial Range

By Proposition 1.8 part 2 we can reduce to the case ofK/E abelian, and consider the functions ψ̃(x, ω,K(ζq)/E)
where ω is a non-trivial irreducible Hecke character of Gal(K(ζq)/E) and ψ = ψ0. We will assume that K/E
is abelian for the remainder of the section and that A(ω)� AqnE where A is the conductor of L(s,K/M),
which we can do without loss of generality by Proposition 1.8 part 2. We let L = K(ζq). We will suppress
the notation of K(ζq)/E in writing ψ functions and associated L-functions unless needed for clarity.

This section will be devoted to the proof of the following proposition.
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Proposition 2.1 (Initial Range). Let K/E be an abelian Galois extension, and let D and γ be any positive
constants. For all Q ≤ (log x)γ we have

1
Q

∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃(y, ω)| � x

(log x)D

where the inner summation is over all irreducible, non-trivial characters ω of K(ζq)/E such that A(ω)� Aqd.

Proposition 2.1 follows from the following proposition.

Proposition 2.2. For K/E abelian, there is a positive constant c = c(K,E) so that for any non-trivial
irreducible character ω of Gal(K(ζq)/E)

|ψ̃(x, ω)| � (logA(ω))x exp(−c(log x)
1
2 ).

Before proving Proposition 2.2, we show that it implies Proposition 2.1.

Proof of Proposition 2.1. Let D > 0 be fixed. By Proposition 2.2, there is a c > 0 so that

|ψ̃(x, ω)| � (logAqnE )x exp(−c(log x)
1
2 ).

Assume that Q ≤ (log x)γ , then for some positive N , A(ω)� AqnE � (log x)N . We have,

1
Q

∑
q≤Q

∑
∗

χ

max
y≤x
|ψ̃(y, ω)| � 1

Q

∑
q≤Q

φ(q)(logA(ω))x exp(−c(log x)
1
2 )

� Q(log x)Nx exp(−c(log x)
1
2 )

� (log x)γ+Nx exp(−c(log x)
1
2 )

� x(log x)−D.

Therefore it suffices to prove Proposition 2.2.

The remainder of the section will be devoted to the proof of Proposition 2.2. In §2.1 we prove preliminary
results about zero free regions and Siegel zeros. In the following section, §2.2, we provide the framework to
prove Proposition 2.2 by connecting ψ̃(x, ω) with the zeros of L(s, ω) using the method of contour integration.
Finally, in §2.3, we prove Proposition 2.2.

2.1 Zero Free Regions

We wish to bound ψ̃(x, ω,K(ζq)/E), With (0.6.2) we will do so by showing the existence of a region with at
most one zero for L(s, ω) and provide bounds for this possible zero. This closely follows the bounds in [17]
and [22]. In what follows, we use the notation s = σ + it.

Definition 2.1. For K/E abelian and parameter t, let L(t) = 1
2 logA(ω) + nE log(|t|+ 2).

Since A(ω) � Aqd, L(t) � 1
2 log(Aqd) + nE log(|t| + 2). We now compile some facts, mainly from [13]

(pages 432-434) and §0.7. We will assume that ω is an irreducible non-trivial Artin character. First, we
prove the following lemma.

Lemma 2.3. Let s = σ + it. For a constant C1 with 1 < σ < C1 and non-trivial irreducible ω there is a
positive absolute constant C2 such that

−Re
L′

L
(s, ω) < C2L(t)−

∑
ρ

Re
( 1
s− ρ

)
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Proof. By (0.7.3)

2Re
L′

L
(s, ω) =

∑
ρ

( 1
s− ρ

+
1

s− ρ

)
+ Re(−1

2
logA(ω)− γ′

γ
(s, ω)).

Stirling’s formula, for σ > 1 (see [13] Lemma 5.3) implies that Re
γ′

γ
(s, ω) � nE log(|t| + 2) which proves

the result.

The following proposition gives a region with at most one zero, which must be real and simple. Proposition
2.8 gives more precise bounds for such zero. Propositions 2.4 and 2.8 will be used in the proof of Proposition
2.2.

Proposition 2.4. There is an absolute positive constant C such that L(s, ω) has at most one zero σ+ it in
the region

1− C

L(t)
≤ σ ≤ 1.

If such a zero exists, then it is real and simple and ω is a character of order 1 or 2. (That is, ω is a quadratic
Hecke character, since ω is assumed not to be the trivial character.)

We will call this zero β if it exists, and refer to β as a Siegel zero of L(s, ω). By the functional equation
(0.4.3) this implies that there is at most one zero of L(s, ω) in the region 0 ≤ σ ≤ C/L(t) as well. This zero,
1− β, must be simple as well. If the constant C is large enough that 1− C/L(0) ≤ 1

2 , then Proposition 2.4
implies that there can be no zeros in the range 1 − C/L(t) ≤ σ ≤ 1. If D < C the region 1 − D/L(t) is
contained in the region 1− C/L(t). Therefore, we can assume that C < 1

2L(0) = 1
2 ( 1

2 logA(ω) + nE log 2).

Proof. We will use the notation ρ = β + iγ for zeros and s = σ + it for a complex parameter. First, we will
collect some useful facts. Recall that (if we extend ω multiplicatively) from (0.3.2)

−L
′

L
(s, ω) =

∑
p

∞∑
m=1

(logNp)ω(σmp )
Npms

=
∑

a

Λ(Na)ω(a)
Nas

=
∑

a

Λ(Na)ω(a)(Na)−σe−it(logNa)

where the first sum is over prime ideals, p of E, N = NE/Q and the last sum is over ideals a of E. We can
rewrite the trigonometric inequality (which holds for θ ∈ R)

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0

with cos θ = Reω(a)e−it logNa. With ω0 denoting the principal character of conductor f(ω) we have (See [7]
§14 page 88, [2] page 195.)[

− 3Re
L′

L
(σ, ω0)− 4Re

L′

L
(σ + it, ω)− Re

L′

L
(σ + 2it, ω2)

]
≥ 0. (2.1.1)

By Lemma 3 of [22], for a number field F with r1 real and r2 complex places and s = σ + it with σ > 1

−Re
ζ ′F
ζF

(s) < Re
1
s

+ Re
1

s− 1
+

1
2

log
( dF

22r2πnF

)
+
r1

2
Re

Γ′

Γ

(s
2

)
+ r2Re

Γ′

Γ
(s). (2.1.2)

Also, from Lemma 1 of [22] (with f(s) = s(s− 1)ζF (s))∑
ρ

1
s− ρ

=
1

s− 1
+

1
2

log dF +
(1
s
− nF

2
log π

)
+
r1

2
Γ′

Γ

(s
2

)
+ r2

(Γ′

Γ
(s)− log 2

)
+
ζ ′F
ζF

(s).

If s = σ with 1 < σ < 2 then all terms after 1
2 log dF are negative, and the left hand side is positive.

Therefore,

−ζ
′
F

ζF
(σ) ≤ 1

σ − 1
+

1
2

log dF . (2.1.3)
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The proof will be based on estimates for the terms in (2.1.1), heavily relying on (2.1.2) and (2.1.3). We
will now estimate the first two terms of (2.1.1). Writing out the summation for σ > 1 by direct comparison
of terms,

−L
′

L
(σ, ω0) ≤ −ζ

′
E

ζE
(σ).

By this and (2.1.3),

−L
′

L
(σ, ω0) <

1
σ − 1

+ C1L(0) (2.1.4)

for some positive constant C1. For any s = σ + it and zero ρ = β + iγ in the range 0 < β < 1 < σ we have

Re
( 1
s− ρ

)
=

σ − β
|s− ρ|2

≥ 0.

Due to this positivity, Lemma 2.3 implies that for such a ρ, there is a positive absolute constant C2 so that

−Re
L′

L
(s, ω) < C2L(t)− Re

( 1
s− ρ

)
. (2.1.5)

Choose t = γ, so that Re 1/(s− ρ) = 1/(σ− β). Combining this and (2.1.4) into inequality (2.1.1) there is a
positive C3 so that

4
σ − β

< C3L(t) +
3

σ − 1
− Re

L′

L
(σ + 2it, ω2). (2.1.6)

It remains to estimate this remaining −L′/L term.

Many of the auxiliary results we will use require ω2 to be irreducible. If ω2 is induced by ω∗, the difference
between the corresponding L′/L factors is small. This difference is

Re
∣∣∣L′
L

(s, ω2)− L′

L
(s, ω∗)

∣∣∣ = Re
∣∣∣ ∑

p|f(ω)

∞∑
m=1

(logNp)ω(σmp )
Npms

∣∣∣
≤ logN f(ω)

∑
p|f(ω)

∞∑
m=1

Np−mσ

≤ logA(ω)
∑

p|f(ω)

(
1 +Np−σ

)
≤ logA(ω)

∑
p|dK

2 ≤ 2dK/E logA(ω)� L(t).

Therefore, replacing ω2 by ω∗ in (2.1.6) only changes the positive constant in the equality.

The argument now breaks into two cases, depending on whether or not ω2 is a principal character.
First, assume that ω2 is not a principal character. We may assume that ω2 is irreducible. By (2.1.5)

−Re
L′

L
(s, ω2) < C3L(t). Inequality (2.1.6) now becomes, for 1 < σ < 2, and a positive C4,

4
σ − β

< C4L(t) +
3

σ − 1
.

Writing σ = 1 +D/L(t), this is

β < 1 +
D

L(t)
− 4D

(3 +DC4)L(t)
= 1− 1

L(t)

(D(C4D − 1)
C4D + 3

)
.

Therefore, if D < C−1
4 we conclude that there is an absolute constant C > 0 such that

β < 1− C

L(t)
.
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This concludes the proof in the case where ω2 is not principal, as this is not in the prescribed range.

We now consider the case where ω2 is a principal character. As we can reduce to considering irreducible
characters, we may assume that ω2 is the trivial character. Inequality (2.1.4) with the fact that 1 < σ < 2
implies that there is a positive constant D1 so that

−Re
L′

L
(σ + 2it, ω2) < Re

( 1
σ − 1 + 2it

)
+D1L(0).

Substituting this into (2.1.6), there is a positive D2 so that

4
σ − β

< Re
( 1
σ − 1 + 2it

)
+D2L(t) +

3
σ − 1

.

With σ = 1 +D/L(t), if t = γ > D/L(t) we conclude that

4
σ − β

<
16
5
L(t)
D

+D2L(t),

and therefore
β < 1− D

L(t)

( 4− 5D2D

16 + 5D2D

)
.

For a sufficiently small D depending on D2, the value D(4 − 5D2D)/(16 + 5D2D) is bounded below by a
constant. Choosing t = γ > D/ 1

2 logA(ω) satisfies the bound γ > D/L(t).

We have shown that there are positive absolute constants C, and D′ such that if ω is a non-trivial
irreducible character, then any zero β + iγ of L(s, ω) with γ ≥ D′/ 1

2 logA(ω) satisfies β < 1− C/L(t).

It now remains to assume that ω2 is non-principal and

|t| = |γ| < D
1
2 logA(ω)

for a small constant D. We wish to show that there is a positive constant F such that there is at most one
zero β+ iγ with β > 1−F/L(t). It suffices to show that there is at most one zero with β > 1−F/ 1

2 logA(ω)
since 1

2 logA(ω) < L(t). Such a zero must be real, as otherwise there would be a pair of conjugate zeros.

By Lemma 2.3, for σ > 1 there is a positive constant F1 such that

−L
′

L
(σ, ω) < F1 logA(ω)−

∑
ρ

1
σ − ρ

where the last summation is real as the zeros occur in complex conjugate pairs. We have,

−L
′

L
(σ, ω) =

∑
a

ω(σa)Λ(Na)Na−σ ≥ −
∑

a

Λ(Na)Na−σ ≥ ζ ′E
ζE

(σ).

Combining this with (2.1.3),

−L
′

L
(σ, ω) ≥ − 1

σ − 1
− 1

2 log dE .

Therefore, there is a positive constant F2 so that

− 1
σ − 1

≤ F2 logA(ω)−
∑
ρ

1
σ − ρ

. (2.1.7)

Now we consider a few cases, depending on the type of possible zeros. Specifically, we will first assume that
there is a complex zero (and hence its conjugate is also a zero) and then assume that there are at least two
(possibly identical) real zeros. In each case, we will conclude that there is a positive constant F such that
the real parts of the zeros are less than 1−F/L(t). Therefore, there is a positive constant C such that there
can be at most one zero with real part between 1− C/L(t) and 1.
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Assume that there are zeros β ± iγ with γ 6= 0. Inequality (2.1.7) implies that

− 1
σ − 1

≤ F2 logA(ω)− 2(σ − β)
(σ − β)2 + γ2

.

With σ = 1 + 2D/ 1
2 logA(ω) we have

|γ| < D
1
2 logA(ω)

= 1
2 (σ − 1) < 1

2 (σ − β).

Therefore there is a constant F3 > 0 so that

− 1
σ − 1

< F3 logA(ω)− 8
5(σ − β)

.

This is equivalent to

β < σ − 8
5

σ − 1
1 + F3

1
2 logA(ω)(σ − 1)

= 1− 2D
1
2 logA(ω)

(3− 10DF3

1 + 2DF3

)
we conclude that there is a positive constant F so that β < 1 − F/L(t) if 3 − 10DF3 is positive. Choosing
D < 3/10F3 suffices.

It remains to consider the case where there are at least two real zeros, β1 ≤ β2. Inequality (2.1.7) implies
that

− 1
σ − 1

≤ F2 logA(ω)− 2
σ − β2

.

With σ = 1 + 2D/ 1
2 logA(ω) as before

β < 1− 2D
1
2 logA(ω)

(1− 2F2D

1 + 2F2D

)
and if D < 1/2F2 we conclude that there is a positive constant F so that β < 1− F/L(t).

The following lemma is a refinement of the Brauer-Siegel theorem, which gives a bound for β. We require
a bound for β that has minimal dependence on the field L = K(ζq). The following facilitates such a bound,
with only a logarithm term depending on q. This is a refinement of Lemma 10 in [22].

Lemma 2.5. Let
Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft = F

be a sequence of number fields such that for 2 ≤ i ≤ t, Fi/Fi−1 is Galois. If there is a real β in the range

1− 1
4(2nF1)! log dF

≤ β < 1

such that ζF (β) = 0, then there is a quadratic field S ⊆ F with ζS(β) = 0.

This proof will make use of Theorem 3, Lemma 3, and Lemma 8 of [22], which we summarize in the
following theorem.

Theorem 2.6 (Stark).

a) If K4/K1 is a Galois extension of number fields and α is a simple zero of ζK4 then there is a field K2

cyclic over K1 and contained in K4 such that for any field K3 between K1 and K4, ζK3(α) = 0 if and
only if K2 ⊂ K3. If α is real then K2 = K1 or is quadratic over K1.

b) If K is a number field then ζK has at most one zero σ + it in the region σ ≥ 1 − (4 log dK)−1,
|t| ≤ (4 log dK)−1. If such a zero exists, it is real and simple.
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c) Let K be a number field. If there is a real α in the range 1 − (4nK ! log dK)−1 ≤ α < 1 such that
ζK(α) = 0, then there is a quadratic field S contained in K so that ζS(α) = 0.

Proof of Lemma 2.5. We will first prove the following claim.
Claim 2.7. Let A ⊂ B ⊂ C with C/B and B/A Galois. Assume that there is a real β such that 1 −
(4 log dC)−1 ≤ β < 1 and ζC(β) = 0. Either ζA(β) = 0 or there is a quadratic extension A1 of A with
A1 ⊂ C such that ζA1(β) = 0.

First, we show that Claim 2.7 implies Lemma 2.5. Since 1 − (4(2n1)! log dF )−1 ≤ β and 4 log dF ≤
4(2n1)! log dF , 1 − (4 log dF )−1 ≤ β. By Claim 2.7 ζFt−2(β) = 0 or there is a quadratic extension, Qt−1 of
Ft−2 such that ζQt−1(β) = 0. Since both 4 log dQt−1 and 4 log dFt−2 are less than 4 log dF we can proceed
inductively and conclude that ζF1(β) = 0 or there is a quadratic extension Q2 of F1 such that ζQ2(β) = 0.
Let S′ be this field. Therefore, nS′ ≤ 2n1. Discriminant relations imply that dS′ ≤ dF so that 4nS′ ! log dS′ ≤
4(2n1)! log dS′ ≤ 4(2n1)! log dF . Therefore 1−(4nS′ ! log dS′)−1 ≤ 1−(4(2n1)! log dF )−1 ≤ β and by Theorem
2.6 c) there is a quadratic field S ⊂ F such that ζs(β) = 0.

Proof of Claim 2.7. By Theorem 2.6 b), β is simple. By Theorem 2.6 a) either ζB(β) = 0 or there is a
quadratic extension B1 of B contained in C such that ζB1(β) = 0. If ζB(β) = 0 we can apply Theorem 2.6 b)
and a) again and conclude that either ζA(β) = 0 or that there is a quadratic extension A1 of A contained in
B ⊂ C such that ζA1(β) = 0. Otherwise, assume that ζB1(β) = 0 and ζB(β) 6= 0. If B1 is Galois over A we
can reapply Theorem 2.6 b) and a) to again conclude that either ζA(β) = 0 or there is a quadratic extension
A1 of A contained in B1 ⊂ C such that ζA1(β) = 0. Therefore, it suffices to show that B1 is Galois over A.

We will assume that B1 is not Galois over A. By Theorem 2.6 a), for any field E between B1 and
C, ζE(β) = 0. Let B′1 be the conjugate of B1 over A, so [B′1 : B] = 2 as B/A is Galois. Both B1 and
B′1 are Galois over B, so the composite B2 = B1B

′
1 is Galois and degree 4 over B. Since B′1 is the A

conjugate of B1, ζB′1(β) = ζB1(β) = 0. By the Aramata Brauer theorem [1, 5] ζB2(β) = 0. In fact (see
[22] Theorem 3, or Lemma 12) the multiplicity of the zero is at least two. Since B2 ⊂ C, dB2 ≤ dC and
1− (4 log dB2)−1 ≤ 1− (4 log dC)−1 ≤ β, which contradicts Theorem 2.6 b).

We have L(β, ω,K(ζq)/E) = 0. By Proposition 2.4, ω is a real quadratic character. Since ω2 is a principal
character, ω must evaluate to ±1 on all elements g ∈ G = Gal(K(ζq)/E). Let H < G consisting of all g ∈ G
such that ω(g) = 1, so G/H ∼= Z/2Z. Let N ⊂ K(ζq) be the fixed field of H. By the Galois correspondence,
[N : E] = 2. By construction, L(β, ω,N/E) = 0. Since [N : E] = 2, if σp is the identity, ω(σp) = 1 and
otherwise, ω(σp) = −1.

The splitting type of the non-ramified prime ideal p in E is easily determined by the Frobenius elements σp.
Let q be a prime ideal of N lying over p. The unramified prime ideal p splits exactly when NN/Qq = NE/Qp,
and is inert when NN/Qq = NE/Qp2. Therefore, since σp is defined as σp(x) = xNE/Qp (mod q), we see that
σp is the identity exactly when p is split in N and σp is not the identity when p is inert.

The unramified Euler product for L(s, ω,N/E) (indicated with a subscript u) is

Lu(s, ω,N/E) =
∏
p

(
1− ω(σp)NE/Qp−s

)−1 =
∏

p split

(1−NE/Qp−s)−1
∏

p inert

(1 +NE/Qp−s)−1.

The unramified Euler product for ζN (s) is

(ζN )u(s) =
∏
q

(1−NN/Qq−s)−1 =
∏

q|p split

(1−NN/Qq−s)−1
∏

q|p inert

(1−NN/Qq−s)−1

=
∏

p split

(1−NE/Qp−s)−1
∏

p inert

(1−NE/Qp−2s)−1

= Lu(s, ω,N/E)
∏

p inert

(1−NE/Qp−s)−1.
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Therefore, L(s, ω,N/E) divides ζN (s) and β is a zero of ζN as well. Similarly, by Aramata Brauer [1, 5] one
can see that ζN (s) divides ζKN (s), so β is a zero of ζKN as well.

We may also view ω as a (real) quadratic Hecke character of E. The next proposition is an analog of
Siegel’s theorem giving a bound for the possible real Siegel zero in Proposition 2.4, and is an adaptation of
Stark’s [22] method. The purpose of this proposition is to get a bound for β which only depends on K and
E.

Proposition 2.8. Let ε > 0 be given, and let ω be a non-trivial irreducible character of K(ζq)/E such that
A(ω)� AqnE . There is a positive constant C = C(ε) so that if β is a Siegel zero of L(s, ω,K(ζq)/E) then

β ≤ max
{

1− C

(d2
EA)2ε

, 1− 1
4(2nE)!nK log(d2

EA)

}
.

Proof. We will assume that 1− (4(2nE)!nK log(d2
EA))−1 ≤ β < 1 and prove that β ≤ 1− C(d2

EA)−2ε.

By the conductor discriminant formula (0.4.1) dKN ≤ dnKN . Moreover, since [N : E] = 2, dN/E = A,
the conductor of ζE , (since the only irreducible character is the principal character) and dN = d2

EA. We
conclude that dKN ≤ (d2

EA)nK , removing the dependence on N .

Therefore, if β ≥ 1 − (4(2nE)!nK log(d2
EA))−1 then β ≥ 1 − (4(2nE)! log dKN )−1. Applying Lemma 2.5

to the fields Q ⊂ E ⊂ N ⊂ KN , we conclude that there is a quadratic subfield S of KN with ζS(β) = 0.
By the classical Siegel theorem (cf. [7] §21) there is a constant C = C(ε) > 0 so that β ≤ 1 − Cd−εS . (The
conductor discriminant formula implies that dS = dS/Q = f, the Artin conductor, since S is quadratic.)
Since dnK/2S ≤ dKN we conclude that β ≤ 1 − Cd−2ε/nK

KN ≤ 1 − C(d2
EA)−2ε using the above discriminant

relations.

We will need to estimate the contribution from the zeros close to the real line, and so require the following
corollary to Proposition 2.4 and Proposition 2.8.

Corollary 2.9. Let ω be a non-trivial irreducible character of K(ζq)/E such that A(ω) � AqnE . If q ≤
(log x)γ ∑

|ρ|< 1
2

1
|ρ|
� (log log x)2

where the sum is over all non-trivial zeros of L(s, ω).

Proof. By [13] Lemma 5.4 the number of zeros in the region |ρ| < 1
2 is O(logA(ω) + nE log 2). Since

A(ω) � AqnE and q ≤ (log x)γ , the number of zeros is O(log log x), where the implied constant depends
only on K,E and γ. By Proposition 2.4 and the functional equation for L(s, ω), there is at most one zero, 1−β
in the region defined by Re(s) ≤ C/L(t) and by Proposition 2.8, 1/|1− β| is absolutely bounded. Therefore
the summation is bounded by the number of zeros in the region |ρ| < 1

2 multiplied by the maximum of |ρ|−1

over the zeros in the region. It suffices to show that |ρ|−1 � log log x for |ρ| ≤ 1
2 and Re(ρ) > C/L(Im(ρ)).

For such a ρ, |ρ| > |s| where s = σ + it is on the curve C/L(t) when 0 ≤ t ≤ 1
2 . The modulus

|s| ≥ max{t, C/L(t)} where 0 ≤ t ≤ 1
2 . As L(t) = 1

2 logA(ω) + nE log(|t| + 2), we conclude that when
0 ≤ t ≤ 1

2 , there is a positive constant D depending on K,E and γ so that L(t) ≤ D log log x. Therefore,
|ρ| > |s| ≥ C/L(t) ≥ C/(D log log x) and so |ρ|−1 � log log x.

2.2 Contour Integration

We closely follow the proof of Theorem 7.1 in [13]. We sketch the ideas here as we need a slight modification of
their work. Note that we are assuming that ω is an irreducible non-trivial character of Gal(K(ζq)/E)
and will leave off any terms which are only present when ω is the trivial character.

22



We will first obtain estimates by contour integration. Recall that from (0.3.2)

ψ̃(x, ω) =
1

2πi

∫
(2)

−L
′

L
(s, ω)

xs

s
ds.

This differs from a truncated inverse Mellin transform

I(T ) =
1

2πi

∫ σ0+iT

σ0−iT
−L
′

L
(s, ω)

xs

s
ds

for σ0 > 1 by a sufficiently small error term, E1 for 1 ≤ T ≤ x. We will let σ0 = 1 + (log x)−1. This
truncated integral can be evaluated by contour integration and Cauchy’s theorem. Specifically, we evaluate
the contour integral

I(B) =
1

2πi

∫
B

−L
′

L
(s, ω)

xs

s
ds

where B is the positively oriented box with vertices at σ0 ± iT , and −U ± iT where U = j + 1
2 for some

non-negative integer j. (We eventually let U →∞.) As in [13], we estimate

I(T )− I(B) = E2.

By Cauchy’s theorem I(B) equals the sum of the residues of the integrand at poles inside B. Therefore,
the main terms of ψ̃(x, ω) correspond to the residues of L′/L(s, ω) inside B. Since ω is not the trivial
character, L(s, ω) is analytic in B. As such, the main terms come from the zeros of L in B. Let S1 denote
the contribution of the non-trivial zeros and S2 the contribution of the trivial zeros. We have

|ψ̃(x, ω)| = I(T ) + E1 = I(B) + E1 + E2 = S1 + S2 + E1 + E2.

The estimate of E1 is very similar to the results in §3 of [13]. Therefore we only sketch the proof of this
estimate. We use the following, which is Lemma 3.1 in [13].

Lemma 2.10. Let y > 0, σ > 0, and T > 0 and let I =
1

2πi

∫ σ+iT

σ−iT

ys

s
ds. Then

1. |I − 1| ≤ yσ min{1, T−1| log y|−1} if y > 1.

2. |I − 1
2 | ≤ σT

−1 if y = 1.

3. |I| ≤ yσ min{1, T−1| log y|−1} if y < 1.

The estimates of E1, E2, S1, and S2 are summarized in the following, which is the main result of this
section.

Proposition 2.11. Let ω be a non-trivial irreducible character of K(ζq)/E such that A(ω) � AqnE . If
q ≤ (log x)γ then for 1 ≤ T ≤ x

ψ̃(x, ω)−
∑
ρ

xρ

ρ
−
∑
ρ

|ρ|< 1
2

1
ρ
� nE‖ω‖x(log x)2

T

where the summations are over the non-trivial zeros, ρ, of L(s, ω), and with G = Gal(K(ζq)/E), ‖ω‖ =
max
g∈G
|ω(g)|.

Proof. Using the definition of ψ̃ from (0.6.1) and writing out the summation for −L′/L as in (0.3.2) we can
write the error −E1 = I(T )− ψ̃(x, ω) as

1
2πi

∫ σ0+iT

σ0−iT

(∑
p,m

(logNp)ω(σmp )(Np)−ms
xs

s
ds
)
−

∑
Npm≤x

(logNp)ω(σmp ).
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Switching the summation and integration, and grouping the three sums for Npm < x, Npm = x, and
Npm > x, allows us to use Lemma 2.10 and conclude that this error is bounded by the sum of the contribution
of Npm 6= x and the contribution of Npm = x. Specifically, it is bounded by∑

Npm 6=x

(logNp)ω(σpm)
( x

Npm

)σ0

min{1, T−1| log
x

Npm
|−1}+

∑
Npm=x

(logNp)ω(σpm)
(
σ0T

−1 − 1
2

)
.

The second summation is over at most nE elements pm, so the sum is O(nE‖ω‖ log x(σ0T
−1 − 1

2 )). With
σ0 = 1 + (log x)−1 this term is O(nE‖ω‖(log x)) since 1 ≤ T ≤ x. Substituting σ0 = 1 + (log x)−1 into the
first term, by [13](§3 pages 425-428) we conclude that it is O(‖ω‖nE log x(1 + xT−1 log x)) for x ≥ 2, and
T ≥ 1. Since T ≤ x, we conclude that

E1 � nE‖ω‖xT−1(log x)2.

To estimate E2, we estimate the integral I(B) over the other three sides of the box, B. To do so, we will
assume that T does not coincide with any ordinate zero of L(s, ω). The integral I(B) defined on the box
with vertices σ0±T and −U ±T . We choose U = j+ 1

2 for some non-negative integer j. We are in the exact
situation as [13] §6. From [13] (page 446 equation (6.13))

E2 � x(log x)T−1
(

logA(ω) + nE log T
)

+ TU−1x−U
(

logA(ω) + nE log(T + U)
)
.

As U →∞,
E2 � x(log x)T−1

(
logA(ω) + nE log T

)
.

Therefore, as U →∞, since T ≤ x

E1 + E2 � x(log x)T−1
(

logA(ω) + ‖ω‖nE log x
)
. (∗)

It now suffices to estimate S1 and S2. By Cauchy’s theorem, I(B) equals the sum of the residues of the
integrand at the poles of L′/L(s, ω) inside B. Since ω is not the trivial character (or a principal character,
as ω is irreducible) the only poles are the first order poles, which have residue +1, at the non-trivial zeros of
L(s, ω) and the trivial zeros of L(s, ω). These are dealt with separately in the terms S1 and S2, respectively.

The term S2 is the contribution from the trivial zeros. These correspond to the first order poles of L′/L
at s = −(2m − 1) for m = 1, 2, . . . with residue a(ω) and at s = −2m for m = 0, 1, . . . with residue b(ω).
(See [13] page 442 equation (6.7).) The residues corresponding to the zeros contribute

−b(ω)
[U+1

2 ]∑
m=1

x−(2m−1)

2m− 1
− a(ω)

[U2 ]∑
m=1

x−2m

2m
.

Taking the limit as U →∞ this equals 1
2

(
a(ω) + b(ω)

)
log(1− x−1) + 1

2

(
b(ω)− a(ω)

)
log(1 + x−1). We can

simplify this, since (see §0.4) a(ω) + b(ω) = nE . The residue at s = 0 contributes (see [13] pages 447-448)
r(ω) + a(ω) log x where

r(ω) = B(ω)− 1
2 logA(ω) + 1

2nE log π − b(ω)
Γ′

Γ
(

1
2

)
− 1

2a(ω)
Γ′

Γ
(1)

with A(ω) (the conductor) and B(ω) as in (0.7.2). Putting these together, the contribution of the trivial
zeros is

S2 = r(ω) + a(ω) log x+ 1
2nE log(1− x−1) + 1

2

(
b(ω)− a(ω)

)
log(1 + x−1). (†)

From [13] (Proof of Theorem 7.1, using (5.5) and (5.4)) we see that

r(ω)−
∑
ρ

|ρ|< 1
2

1
ρ
� logA(ω) + nE . (††)
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The term S2 is the contribution from the non-trivial zeros. Each non-trivial zero, ρ, has residue +1 and
therefore the contribution is

∑
ρ x

ρρ−1. Since A(ω)� Aqd and q ≤ (log x)γ , by (†) and (††)

S1 + S2 �
∑
ρ

xρ

ρ
+
∑
|ρ|< 1

2

1
ρ

+ logA(ω) + nE(log x). (∗∗)

Hence, ψ̃(x, ω)� S1 + S2 + E1 + E2 can be rewritten as

ψ̃(x, ω)−
∑
ρ

xρ

ρ
−
∑
ρ

|ρ|< 1
2

1
ρ
� E.

Since T ≤ x, by (∗) and (∗∗)

E = x(log x)T−1
(

logA(ω) + ‖ω‖nE log x
)

+ logA(ω) + nE(log x)� nE‖ω‖x(log x)2T−1.

As stated, T cannot equal the ordinate of any non-trivial zero. If T does, as discussed in [13] (page 451 proof
of Theorem 7.1) we can extend this estimate to such T with an error term absorbed in our term.

2.3 Estimates of zeros of L(s, ω)

This section is devoted to the proof of Proposition 2.2. From Proposition 2.11, we have

ψ̃(x, ω)−
∑
ρ

xρ

ρ
−
∑
ρ

|ρ|< 1
2

1
ρ
� nE‖ω‖x(log x)2

T

where the sums are over non-trivial zeros ρ of L(s, ω), 2 ≤ T ≤ x and the first sum is over all ρ such that
|Im(ρ)| < T .

Let
T = exp

(
1
nE

(
(log x)

1
2 − 1

2 logA(ω)
))
− 2,

so that L(T ) = (log x)
1
2 . Since A(ω)� AqnE , q ≤ (log x)γ and T ≤ x, the error term, nE‖ω‖x(log x)2T−1,

satisfies the desired bound when c < 1/nE .

Let N(t, ω) be the number of zeros of L(s, ω) in the region defined by |t− Im(ρ)| ≤ 1 and 0 < Re(ρ) < 1.
The second summand,

∑
|ρ|< 1

2
|ρ|−1 � (log log x)

1
2 , by Corollary 2.9.

It remains to estimate ∑
|Im(ρ)|<T

∣∣∣xρ
ρ

∣∣∣ =
∑

0≤|Im(ρ)|<2

∣∣∣xρ
ρ

∣∣∣+
∑

2≤|Im(ρ)|<T

∣∣∣xρ
ρ

∣∣∣.
The summation over 2 ≤ |Im(ρ)| < T , can be treated as follows.∑

2≤|Im(ρ)|<T

1
|ρ|
�

∑
2≤t<T

N(t, ω) max
|t−Im(ρ)|≤1

1
|ρ|
�

∑
2≤t<T

N(t, ω)
t

� log T (logA(ω) + nE log T ),

by the standard estimate for N(t, ω) (as in Lemma 5.4 of [13] or p. 267 of [17]). Therefore, the second term
has the bound ∑

2≤|Im(ρ)|<T

∣∣∣xρ
ρ

∣∣∣� xg log x(logA(ω) + nE log x)

where g is the largest possible |Re(ρ)| in the range. By Proposition 2.4 and the symmetry of L(s, ω) about
the 1/2 line, there is a positive absolute constant C so that these zeros are bounded by 1 − C/L(T ), so
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g ≤ 1 − C/L(T ). Choosing T as above, L(T ) = (log x)
1
2 . Therefore, x−C/L(T ) = exp(−C(log x)

1
2 ) and

the contribution of this portion of the sum is x log x(logA(ω) +nE log x) exp(−C(log x)
1
2 ). This satisfies the

desired bound if c < C.

By Proposition 2.4 there is one possible Siegel zero s = σ+it in the region defined by 1−C/L(t) ≤ σ ≤ 1.
Let β denote this zero, if it exists. By symmetry, there is one possible Siegel zero, 1−β in the region defined
by 0 ≤ 1−σ ≤ C/L(t). First, we will bound the sum for the non-Siegel zeros, ρ, in the region 0 ≤ |Im(ρ)| ≤ 2.
By Proposition 2.4 these ρ satisfy

|Re(ρ)| < 1− C

L(Im(ρ))
< 1− C

L(2)
= 1− C

1
2 logA(ω) + nE log 4

.

Therefore, for such a zero ∣∣∣xρ
ρ

∣∣∣� xx−C( 1
2 logA(ω)+nE log 4)−1

|ρ|−1

where

|ρ|−1 ≤ L(Im(ρ))
C

≤ L(2)
C

=
(

1
2 logA(ω) + nE log 4

)
C−1 � logA(ω)

where the implied constant depends only on K and C. There are only finitely many such zeros in this region,
bounded by N(1, ω) +N(2, ω)� nE + logA(ω) by [13] Lemma 5.4. Therefore the total summation over the
non-Siegel zeros is bounded by

(nE + logA(ω)) logA(ω)xx−C( 1
2 logA(ω)+nE log 4)−1

.

A straightforward computation shows that this satisfies the desired bound if c < C.

It remains to show the bound for the possible Siegel zeros. That is, it suffices to bound xβ/β and
x1−β/(1 − β) where β is the (real) Siegel zero in the range 1

2 ≤ β < 1. These are both majorized by
xβ/(1− β). By Proposition 2.8

β ≤ max
{

1− C(ε)
(dEA)2ε

, 1− 1
4(2nE)!nK log(d2

KA)

}
= 1−D

for some constant D = D(ε, E,A,K). Therefore,

xβ

1− β
� xx−DD−1.

It is elementary to verify that x−D � exp(−c(log x)
1
2 ) if c < C.

3 The Terminal Range

Proposition 2.1 allows us to estimate the average for Q ≤ (log x)γ . The following proposition estimates the
portion of the range greater than (log x)γ . We will let d = nE as defined in Definition 1.1.

Proposition 3.1 (Terminal Range). Let K/E be an abelian Galois extension, and let D and γ be any positive
constants with γ > 4d+ 3 +D. For ε > 0, (log x)γ ≤ Q ≤ min{x 1

2−ε, x
1
d−2−ε} and k > max{2, d2 (1 + d

ε )},

1
Q

∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω,K(ζq)/E)| � x

(log x)D

where the inner summation is over all irreducible, non-trivial characters ω of K(ζq)/E such that A(ω)� Aqd.
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We will prove this using an adaptation of a method of Gallagher[10] as modified by Bombieri ([4] §7.2).
First, we establish some notation. As the characters ω in Proposition 3.1 are abelian, we will now adopt the
notation of Dirichlet characters. We write

L(s, ω) =
∞∑
n=1

anω(n)n−s

1
L

(s, ω) =
∞∑
n=1

bnω(n)n−s

−L
′

L
(s, ω) =

∞∑
n=1

cnΛ(n)ω(n)n−s.

Letting 0 < z ≤ x be a parameter to be specified later, we start with the identity [10, 3]

−L
′

L
(s, ω) = G(1− LM) + F (1− LM)− L′M (3.0.1)

where L = L(s, ω), L′ = L′(s, ω) and

M = Mz(s, ω) =
∑
n≤z

bnω(n)n−s

F = Fz(s, ω) =
∑
n≤z

cnΛ(n)ω(n)n−s

G = Gz(s, ω) =
∑
n>z

cnΛ(n)ω(n)n−s.

From (0.6.4)

ψ̃k(x, ω) =
1

2πi

∫
(2)

−L
′

L
(s, ω)

xs

sk+1
ds,

and in fact, we can move the line of integration to any C > 1. Integrating (3.0.1),

ψ̃k(x, ω) =
1

2πi

∫
(C)

G(1− LM)
xs

sk+1
ds+

1
2πi

∫
(C)

F (1− LM)
xs

sk+1
ds− 1

2πi

∫
(C)

L′M
xs

sk+1
ds.

Since F and M are Dirichlet polynomials and L, L′ are analytic for all s, we can move the line of
integration in the second and third terms of the above expression to <(s) = 1/2.

Therefore,∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω)| �

∑
q≤Q

∑
∗

ω

max
y≤x

∫
(C)

|G(1− LM)| |y
s|

|sk+1|
|ds|

+
∑
q≤Q

∑
∗

ω

max
y≤x

∫
(1/2)

(|F (1− LM)|+ |L′M |) |y
s|

|sk+1|
|ds|.

Repeatedly using the inequality 2|ab| ≤ |a|2 + |b|2,∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω)| �

∑
q≤Q

∑
∗

ω

max
y≤x

∫
(C)

(|G|2 + |1− LM |2)
|ys|
|sk+1|

|ds|

+
∑
q≤Q

∑
∗

ω

max
y≤x

∫
(1/2)

(1 + |F |2 + |M |2 + |FM |2 + |L|2 + |L′|2)
|ys|
|sk+1|

|ds|.

For the first integral, we move the line of integration to C = 1 + (log x)−1 so that |ys| � yx1/ log x � y. For
the second integral, as F , M are Dirichlet polynomials and L and L′ are analytic for all s we can move the
line of integration onto the critical line, so |ys| ≤ y 1

2 . We obtain the bound∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω)| � xS1 + xS2 + x

1
2S3 + x

1
2S4, (3.0.2)
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where

S1 =
∑
q≤Q

∑
∗

ω

∫
(C)

|G|2 |ds|
|s|k+1

S2 =
∑
q≤Q

∑
∗

ω

∫
(C)

|1− LM |2 |ds|
|s|k+1

S3 =
∑
q≤Q

∑
∗

ω

∫
( 1
2 )

(1 + |F |2 + |M |2 + |FM |2)
|ds|
|s|k+1

S4 =
∑
q≤Q

∑
∗

ω

∫
( 1
2 )

(|L|2 + |L′|2)
|ds|
|s|k+1

.

In §3.1, we estimate S2, S2 and S3 using Gallagher’s large sieve identity. After making some initial
estimates in §3.2 we use mean value estimates to handle S4 in §3.3. These estimates are summarized in
Propositions 3.5 and 3.10, respectively. In §3.4 these estimates are combined to prove Proposition 3.1.

3.1 Gallagher’s Large Sieve Inequality

We use the following form of the large sieve ([4] Théorème 10).

Theorem 3.2. Let
∞∑
n=1

|An| <∞ and T ≥ 1. Then

∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∞∑
n=1

Anω(n)nit
∣∣∣2dt� ∞∑

n=1

|An|2(n+Q2T ).

We will often use Theorem 3.2 in the following form.

Corollary 3.3. Let
∞∑
n=1

|An| <∞ and C 6= 0. Then for k ≥ 2 and T ≥ 1 the sums

∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∞∑
n=1

Anω(n)
nC+it

∣∣∣2 dt

(C + |t|)k+1
, and

∑
q≤Q

∑
∗

ω

∫
(C)

∣∣∣ ∞∑
n=1

Anω(n)
ns

∣∣∣2 |ds||s|k+1

are both O((|C|−k−1 + 1)
∑∞
n=1 |An|2n−2C(n+Q2)).

Proof. We rewrite the second integral as the real valued integral

∑
q≤Q

∑
∗

ω

∫ ∞
−∞

∣∣∣ ∞∑
n=1

Bnω(n)nit
∣∣∣2|C − it|−k−1dt (3.1.1)

where Bn = Ann
−C . We evaluate this over the interval [−1, 1], and proceed radially out, over the intevals

[−(j + 1),−j] and [j, j + 1] where 1 < j ≤ T , and then take the limit as T →∞. By Theorem 3.2,

∑
q≤Q

∑
∗

ω

∫ 1

−1

∣∣∣ ∞∑
n=1

Bnω(n)nit
∣∣∣2|C − it|−k−1dt�

∞∑
n=1

|An|2

|C|k+1n2C
(n+Q2).

When t ∈ [−(j+ 1),−j]∪ [j, j+ 1] the quantity |C− it| ≥ j so the contribution of (3.1.1) when t is restricted
this range is bounded by

j−k−1
∑
q≤Q

∑
∗

ω

(∫ −j
−(j+1)

∣∣∣ ∞∑
n=1

Bnω(n)nit
∣∣∣2dt+∫ j+1

j

∣∣∣ ∞∑
n=1

Bnω(n)nit
∣∣∣2dt)� 1

jk+1

∞∑
n=1

|An|2

n2C
(n+(j+1)Q2).

28



The estimate of the truncated integral from −T to T is of the order

∞∑
n=1

|An|2

|C|k+1n2C
(n+Q2) +

[T ]∑
j=2

1
jk+1

∞∑
n=1

|An|2

n2C
(n+ (j + 1)Q2). (3.1.2)

Summing over j, the second summation is of the order
∞∑
n=1

|An|2

n2C

(T−k + 2−k

k
n+

T−k+1 + 2−k+1

1− k
Q2
)

(|C|−k−1 + 1).

Taking the limit as T →∞ and choosing k ≥ 2 to ensure convergence, we find (3.1.2) is of the order
∞∑
n=1

|An|2

n2C
(n+Q2)(|C|−k−1 + 1).

We now estimate the coefficients an, bn, and cn.

Lemma 3.4. Let τd(n) be the number of ways of writing n as a product of d natural numbers. Let an
be the coefficients of L(s, ω), bn the coefficients of 1

L (s, ω), and cn the coefficients of −L
′

L (s, ω). Then
0 ≤ |an| ≤ d!τd(n), |bn| ≤ d!τ2(n), max

r|n,r≤z
|br| ≤ d!τ2(n), and 0 ≤ |cn| ≤ |an|τ2(n).

Proof. For a rational prime p, if there are l prime ideals in E above p, label these prime ideals by positive
integers up to l. Let 1 correspond to the last d − l labels. Given an ordered product n = n1n2 . . . nd write
the ideal corresponding to ni as follows. Factor ni into rational primes and take all ideals with the ith label
which lie over each prime divisor of ni. Since there are d! orderings, and an is bounded by the number of
ideals of norm n, an ≤ d!τd(n) where τj(n) is the number of ways of writing n as an unordered product of j
positive integers.

For the coefficients bn, we have the relation that b1 = 1 and for n > 1∑
n1n2=n

an1bn2 = 0.

The coefficient bn is multiplicative, but not totally multiplicative. For any additive partition ρ of m given by
m1 + · · ·+mt = m consider the product aρ = apm1 . . . apmt . Then, −bpm =

∑
ρ µ(ρ)aρ where the weight µ(ρ)

is zero if ρ has any repeated summands. Otherwise, it is 1 if the length of ρ is odd and −1 if the length is
even. If p is a prime, −bp = ap and and more generally, if m < d = nE , bpm ≤

(
d
m

)
. If m > d it follows that

bpm = 0. Therefore maxr|n,r≤z |br| ≤ 2τ2(n) maxpm|n |bpm | ≤ 2τ2(n)
(
d
b d2 c
)
≤ d!τ2(n), and also |bn| ≤ d!τ2(n).

For the coefficients cn we need only consider values of n which are prime powers. From the relation

apM =
M∑
m=1

cpmapM−m

we deduce that
cpm =

∑
m1m2=m

m1(pm1)m2

where pm1 is the number of prime ideals of norm pm1 . The estimate follows directly.

We remark that the precision of the inequalities for an, bn, cn derived in the above lemma are not essential
for our estimates below. What is essential is that they are bounded by divisor functions. One knows, for
instance that

∞∑
n=1

τd(n)
ns

= ζ(s)d,
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and standard methods of estimation (see for example, Exercise 4.4.17 on p. 67 of [16]) lead to the bounds∑
n≤x

τd(n)� x(log x)d−1

and ∑
n≤x

τd(n)2 � x(log x)d(d+1),

and these will be used repeatedly below as in [17].

We will now prove the following estimates for S1, S2 and S3. We will estimate S4 in several parts, in
§3.2 and §3.3.

Proposition 3.5. For k ≥ 2, S1 = O
(
(d!)2(log x)(d+2)2

(
1 + Q2

z

))
, S2 = O

(
(d!)2(log x)(d+2)2

(
1 + Q2

z

))
and

S3 = O
(
(d!)4(log z)(d+3)2(z2 +Q2)

)
.

Proof. We begin with S1. With C = 1 + (log x)−1,

S1 =
∑
q≤Q

∑
∗

ω

∫
(C)

∣∣∣∑
n>z

cnΛ(n)ω(n)

|s| k+1
2 ns

∣∣∣2|ds|.
By Corollary 3.3, since C > 1

S1 �
∑
n>z

c2nΛ(n)2

n2C
(n+Q2)� (d!)2

∑
n>z

τd+1(n)2

n2+2(log x)−1 (n+Q2).

Estimating the dominant integral,

S1 � (d!)2(log x)(d+2)2z−2(log x)−1(
1 +

Q2

z

)
� (d!)2(log x)(d+2)2

(
1 +

Q2

z

)
.

By definition

S2 =
∑
q≤Q

∑
∗

ω

∫
(C)

|1− LM |2 |ds|
|s|k+1

,

and
1− LM = −

∑
n>z

∑
r|n
r≤z

brµ(r)an/rω(n)n−s =:
∑
n>z

tnω(n)n−s.

By Lemma 3.4
tn =

∣∣∣∑
r|n
r≤z

bran/rµ(r)
∣∣∣ ≤ d!τd(n)

∑
r|n
r≤z

|br| ≤ (d!)2τd+1(n).

By Corollary 3.3, since C = 1 + (log x)−1,

S2 �
∑
n>z

|tn|2

n2+2(log x)−1 (n+Q2)� (d!)4
∑
n>z

τd+1(n)2

n2+2(log x)−1 (n+Q2)� (d!)4(log x)(d+2)2
(
1 +

Q2

z

)
.

Now we estimate

S3 =
∑
q≤Q

∑
∗

ω

∫
( 1
2 )

(1 + |F |2 + |M |2 + |FM |2)
|ds|
|s|k+1

.

We take each summand in the integrand separately. To compute the first integral (with integrand 1), we
write the integral as a real valued integral and compute it on intervals as in the proof of Corollary 3.3,
proceeding radially out. This gives∑

q≤Q

∑
∗

ω

(
2k+2 +

∞∑
k=2

j−(k+1)
)
�
∑
q≤Q

∑
∗

ω

1�
∑
q≤Q

φ(q)� Q2.
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We use Corollary 3.3 for the rest of the terms. Since F =
∑
n≤z cnΛ(n)ω(n)n−s and the integration is along

the line ( 1
2 ), the second term is of the order

(d!)2
∑
n≤z

τd+1(n)2

n
(n+Q2)� (d!)2(log z)(d+2)2(z + (log z)Q2)� (d!)2(log z)(d+3)2(z +Q2).

Since M =
∑
n≤z bnω(n)n−s, the third term is of the order

(d!)2
∑
n≤z

τ2(n)2

n
(n+Q2)� (d!)2(log z)6(z +Q2).

Finally, since FM =
∑

n1,n2≤z
n1n2=n

ω(n)(cn1Λ(n1)bn2)n−s, the last term is of the order

(d!)4
∑
n≤z2

τd+2(n)2

n
(n+Q2)� (d!)4(log z)(d+3)2(z2 +Q2).

3.2 Phragmén-Lindelöf Estimates

Write S4 = S′4 + S′′4 where

S′4 =
∑
q≤Q

∑
∗

ω

∫
( 1
2 )

|L(s, ω)|2|ds|
|s|k+1

and S′′4 =
∑
q≤Q

∑
∗

ω

∫
( 1
2 )

|L′(s, ω)|2|ds|
|s|k+1

.

Rewrite the integral over the line 1
2 + it as a real valued integral over t,

S′4 =
∑
q≤Q

∑
∗

ω

∫ ∞
−∞

|L( 1
2 + it, ω)|2dt

( 1
2 + |t|)k+1

and S′′4 =
∑
q≤Q

∑
∗

ω

∫ ∞
−∞

|L′( 1
2 + it, ω)|2dt

( 1
2 + |t|)k+1

.

In this section we will estimate the tail ends of the integral, and we estimate the portion of the integral over
[−T, T ] in §3.3. First, we prove an estimate for L and L′.

Proposition 3.6. For 0 ≤ σ ≤ 1, if d ≥ 2 then

|L(σ + it, ω)| � [A(ω)(|t|+ 2)d]
1−σ

2 [log(A(ω)(|t|+ 2)d)]d

and
|L′(σ + it, ω)| � dd[A(ω)(|t|+ 2)d]

1−σ
2 [log(A(ω)(|t|+ 2)d)]d+1.

This follows from the following sharp form of the Phragmén-Lindelöf theorem by Rademacher ([20]
Theorem 2).

Theorem 3.7 (Rademacher). Let s = σ+it. Let f(s) be a regular function on the vertical strip c1 ≤ σ ≤ c2.
For positive constants δ, C1, C2, α1, and α2 and a constant Q assume that

1. |f(s)| � e|s|
δ

on the strip c1 ≤ σ ≤ c2.

2. |f(c1 + it)| ≤ C1|Q+ c1 + it|α1 .

3. |f(c2 + it)| ≤ C2|Q+ c2 + it|α2 .
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Then we have the following estimate for f(s) in the strip c1 ≤ σ ≤ c2

|f(s)| ≤ (C1|Q+ s|α1)
c2−σ
c2−c1 (C2|Q+ s|α2)

σ−c1
c2−c1 .

Proof of Proposition 3.6. We begin with the estimate for L(σ+ it). For σ > 0 the Euler product for L(s, ω)
can be written as L(s, ω) =

∏
p Lp(s, ω) where Lp is a polynomial in p−s of degree mp ≤ d and the product

is over all rational primes (see (0.3.1)). For some |πp,j | = 1 we have

Lp(s, ω) =
mp∏
j=1

(
1− πp,j

ps

)−1

.

Since |1− πp,jp−(1+ε+it)| ≥ |1− p−(1+ε)| we conclude that

|L(1 + ε+ it, ω)| ≤ ζ(1 + ε)d (∗)

where ζ(s) is the Riemann zeta function.

By the functional equation (0.4.3) for L(s, ω) evaluated at s = −ε+ it,

L(−ε+ it, ω) = Θ(−ε+ it, ω)L(1 + ε− it, ω)

and by the estimate for Θ in (0.4.5),

L(−ε+ it, ω)� [A(ω)(|t|+ 2)d]
1
2 +εL(1 + ε− it, ω).

With (∗) we conclude that
L(−ε+ it, ω)� [A(ω)(|t|+ 2)d]

1
2 +εζ(1 + ε)d.

Let c1 = −ε, c2 = 1 + ε, C1 = A(ω)
1
2 +εζ(1 + ε)d, C2 = ζ(1 + ε)d, α1 = d( 1

2 + ε), and α2 = 0. Replacing
|Q+ c1 + it| with (|t|+ 2) in Theorem 3.7, we have the estimate

|L(σ + it, ω)| ≤ ζ(1 + ε)d[A(ω)(|t|+ 2)d]
1−σ+ε

2

which is valid for − 1
2 ≤ −ε ≤ σ ≤ 1 + ε ≤ 3

2 .

Setting ε = (log[A(ω)(|t| + 2)d])−1 satisfies 0 < ε ≤ 1
2 if d ≥ 2. From the Laurent series expansion of

ζ(s) at s = 1 we see that ζ(1 + ε) � ε−1. The estimate follows since [A(ω)(|t| + 2)d]
1
2 (log[A(ω)(|t|+2)d])−1

is
bounded.

For the L′ estimate, we use the maximum modulus theorem. Since L is holomorphic in the disk of radius
ε about s, (Since σ ≤ 1 + ε, the ball of radius ε about s is contained in the strip 0 < σ < 1 if s is in this
strip.)

L′(s, ω) ≤ ε−1M(ε)

where M(ε) is the maximum of L(s, ω) on a ball of radius ε about s. If s is on the boundary, the estimate holds
by continuity. Using the above L bounds results in an additional multiplicative factor of dd log(A(ω)(|t|+2)d).

We now prove the first portion of the estimate for S′4 and S′′4 .

Lemma 3.8. For 0 < ε < 1
4 , with I = (−∞,−T ] ∪ [T,∞) for any T ≥ 1,

∑
q≤Q

∑
∗

ω

∫
I

|L( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

� A
1
2Q

d
2 +2 log(AQd)2dd2d (log T )2d

(k − d
2 )T k−

d
2

and ∑
q≤Q

∑
∗

ω

∫
I

|L′( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

� A
1
2Q

d
2 +2 log(AQd)2d+2d2d+1 (log T )2d+2

(k − d
2 )T k−

d
2
.
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Proof. The Phragmén-Lindelöf estimate in the form of Proposition 3.6 implies that∫ ∞
T

|L( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

�
∫ ∞
T

[A(ω)(|t|+ 2)d]
1
2 [log(A(ω)[|t|+ 2]d)]2d

dt

( 1
2 + |t|)k+1

�
∫ ∞
T

[AtdQd]
1
2 [log(AtdQd)]2d

dt

( 1
2 + |t|)k+1

� (AQd)
1
2 log(AQd)2dd2d

∫ ∞
T

t
d
2−k−1(log t)2ddt

� (AQd)
1
2 log(AQd)2dd2d (log T )2d

(k − d
2 )T k−

d
2
.

Therefore,

∑
q≤Q

∑
∗

ω

∫ ∞
T

|L( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

�
∑
q≤Q

∑
∗

ω

(AQd)
1
2 log(AQd)2dd2d (log T )2d

(k − d
2 )T k−

d
2

� A
1
2Q

d
2 +2 log(AQd)2dd2d (log T )2d

(k − d
2 )T k−

d
2
.

The proof is similar for the integral in the range (−∞,−T ].

For the estimate of ∑
q≤Q

∑
∗

ω

∫ ∞
T

|L′( 1
2 + it, ω)|2 dt

(|t|+ 2)k+1

Proposition 3.6 implies that∫ ∞
T

|L( 1
2 + it, ω)|2 dt

(|t|+ 2)k+1
�
∫ ∞
T

2d[A(ω)(|t|+ 2)d]
1
2 [log(A(ω)[|t|+ 2]d)]2d+2 dt

( 1
2 + |t|)k+1

which is two factors of log(A(ω)[|t|+ 2]d) more than in the estimate for L. As such,

∑
q≤Q

∑
∗

ω

∫ ∞
T

|L′( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

� A
1
2Q

d
2 +2 log(AQd)2d+2d2d+1 (log T )2d+2

(k − d
2 )T k−

d
2
.

The proof is similar for the integral in the range (−∞,−T ].

3.3 Mean Value Estimates

We now estimate the remainder of the S′4 and S′′4 summations.

Lemma 3.9. With U = (AQdT d)
1
2 , when T > 1,

1.
∑
q≤Q

∑
∗

ω

∫ T

−T

|L( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

� (d!)2T (logU)3d−1(U +Q2).

2.
∑
q≤Q

∑
∗

ω

∫ T

−T

|L′( 1
2 + it, ω)|2 dt

( 1
2 + |t|)k+1

� (d!)2T (1 + log T )(logU)3d+1(U +Q2).

This combined with Lemma 3.8, upon taking T = Q
ε
d (which implies that T > 1 as Q > 1) results in the

following estimate for S4.
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Proposition 3.10. If 0 < ε < 1
4 , Q > 1, and k > d

2 (1 + d
ε ), with

F1 = d2dQ2(logQ)4d(εd logA)2dA
1
2

and
F2 = (d!)2(A

1
2Q

d
2 +ε( 1

2 + 1
d ) +Q2+ ε

d )(logAQε+d)3d−1,

1. S′4 � F1 + F2.

2. S′′4 � d(logQ)2(εd logA)2F1 + (1 + ε
2 logQ)(logAQε+d)2F2.

We begin with the estimate of L(s, ω), and then estimate L′(s, ω) in a similar manner. We use the following
lemma in both proofs.

Lemma 3.11. For any positive parameters U and V , with C1 = − 1
2 −

1
log V ,

L(s, ω) =
∞∑
n=1

anω(n)n−s =
∞∑
n=1

anω(n)e−
n
U n−s − 1

2πi

∫
(C1)

L(s+ w,ω)UwΓ(w)dw.

We devote §3.3.1 to the proof of Lemma 3.9 part 1, and §3.3.2 to the proof of Lemma 3.9 part 2.

3.3.1 Mean Value Estimates for L

In this section we prove Lemma 3.9 part 1. From Lemma 3.11 and the functional equation (0.4.3) for
L(s+ w,ω), with C1 = − 1

2 −
1

log V ,

L(s, ω) =
∞∑
n=1

anω(n)e−
n
U n−s − 1

2πi

∫
(C1)

Θ(s+ w,ω)L(1− s− w,ω)UwΓ(w)dw

=
∞∑
n=1

anω(n)e−
n
U n−s − 1

2πi

∫
(C1)

Θ(s+ w,ω)
∑
n>U

anω(n)n−1+s+wUwΓ(w)dw

− 1
2πi

∫
(C2)

Θ(s+ w,ω)
∑
n≤U

anω(n)n−1+s+wUwΓ(w)dw

= A1(s, ω) +A2(s, ω) +A3(s, ω)

where we have moved the final integral to the line C2 = −(log V )−1. By the Cauchy-Schwarz inequality,∑
q≤Q

∑
∗

ω

∫ T

−T

|L( 1
2 + it)|2 dt

( 1
2 + |t|)k+1

� B1 +B2 +B3

where Bi =
∑
q≤Q

∑∗
ω

∫ T
−T |Ai(

1
2 + it, ω)|2dt.

We will estimate each of the three summands separately, achieving the following estimates with U = V =
(AQdT d)

1
2 .

Claim 3.12. B1 � (d!)2(logU)2d−1(U +Q2).
Claim 3.13. B2 � (d!)2(logU)3d−1(U +Q2T ).
Claim 3.14. B3 � (d!)2(logU)2d−1(1 +Q2U−1T ).

First we will prove Claim 3.13, then Claim 3.12, and finally Claim 3.14.

Proof of Claim 3.13. Let I(U) =
∑
n>U

anω(n)n−
1
2 +C1+i(t+y). Break up the integral into two parts, B2 �

B′2 +B′′2 where

B′2 =
∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∫
|y|≤logU

Θ( 1
2 + C1 + i(t+ y), ω)I(U)UC1+iyΓ(C1 + iy)dy

∣∣∣2dt
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and B′′2 is identical, except that the inner integral is over |y| > logU .

We first show that B′2 � (d!)2U(logU)3d−1(1 + Q2TU−1). In the region |y| ≤ logU , Γ(C1 + iy) has no

poles, so is bounded by (0.4.4). By (0.4.5), Θ(− 1
logU + i(t+ y), ω)� U(logU)

d
2 . By Theorem 3.2

B′2 � U(logU)d
∫
|y|≤logU

∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∑
n>U

anω(n)n−1− 1
logU +i(t+y)

∣∣∣2dt dy
� U(logU)d+1

∑
n>U

|an|2n−2− 2
logU (n+Q2T )

� (d!)2U(logU)d+1
∑
n>U

(log n)2d−2n−2− 2
logU (n+Q2T )

� (d!)2U(logU)3d−1(1 +Q2TU−1).

We now show that B′′2 � (d!)2TU
3
2−π(logU)2d−2(1 +Q2U−1), which is smaller than the desired bound

as U > 1. We concentrate on the integral over |y| > logU , with C1 = − 1
2 − (logU)−1; here Γ(C1 + iy) �

U−
π
2 (logU)−1 by (0.4.4). This integral is∫

|y|>logU

Θ(− 1
logU + i(t+ y), ω)I(U)U−

1
2−

1
logU +iyΓ(− 1

2 −
1

logU + iy)dy

� U
− 1

2−
1

logU

∫
|y|>logU

[A(ω)(|t+ y|+ 2)d]1+
1

logU

e
1
2π|y||y|1+

1
logU

|I(U)|dy

� U−
1
2

∫
|y|>logU

(
[AQdT d]1+

1
logU + y

d(
1
2 +

1
logU ))

e
1
2π|y||y|1+

1
logU

|I(U)|dy

� U−
1
2

∫
|y|>logU

(
U2 + y

d(
1
2 +

1
logU ))

e
1
2π|y||y|1+

1
logU

|I(U)|dy

where we have used Stirling’s approximation of Θ as in (0.4.5). Letting

α1 = U
3
2

∫
|y|>logU

e−
1
2π|y||y|−1− 1

logU |I(U)|dy and α2 = U−
1
2

∫
|y|>logU

y
d(

1
2 +

1
logU )

e
1
2π|y||y|1+

1
logU

|I(U)|dy,

B′′2 � β1 + β2 where βi =
∑
q≤Q

∑∗
ω

∫ T
−T αidt.

By the Cauchy-Schwarz inequality,

β1 � U
3
2

∑
q≤Q

∑
∗

ω

∫ T

−T

(∫
|y|>logU

e−π|y|dy
)(∫

|y|>logU

∣∣∣|y|−1− 1
logU I(U)

∣∣∣2dy)dt.
The first integral with respect to y is O(U−π). So,

β1 � U
3
2−π

∫ T

−T

∑
q≤Q

∑
∗

ω

(∫
|y|>logU

∣∣∣ ∑
n>U

anω(n)|y|−1− 1
logU n

−1− 1
logU +i(t+y)

∣∣∣2dy)dt.

35



We now apply Theorem 3.2 to the integral with respect to y, mimicking the proof of Corollary 3.3.

β1 � U
3
2−π

∫ T

−T

∑
j>logU

∑
q≤Q

∑
∗

ω

(∫ −j
−(j+1)

∣∣∣ ∑
n>U

anω(n)|y|−1− 1
logU n

−1− 1
logU +i(t+y)

∣∣∣2dy
+
∫ j+1

j

∣∣∣ ∑
n>U

anω(n)|y|−1− 1
logU n

−1− 1
logU +i(t+y)

∣∣∣2dy)dt
� U

3
2−π

∫ T

−T

∞∑
j>logU

1

j2+ 2
logU

∑
n>U

|an|2

n2+ 2
logU

(n+Q2(j + 1))dt

� (d!)2TU
3
2−π

∑
n>U

(log n)2d−2
(
n−1− 2

logU + n−2− 2
logUQ2

)
� (d!)2TU

3
2−π(logU)2d−2(1 +Q2U−1).

The estimate of β2 is similar. By the Cauchy-Schwarz inequality,

β2 � U−
1
2
∑
q≤Q

∑
∗

ω

∫ T

−T

(∫
|y|>logU

y
d(

1
2 +

1
logU )

eπ|y|
dy
)(∫

|y|>logU

∣∣∣|y|−1− 1
logU I(U)

∣∣∣2dy)dt.
The first integral with respect to y is O((logU)

d
2U−π). The remainder of the calculation is exactly as above.

We get

β2 � (logU)
d
2U−π−

1
2
∑
q≤Q

∑
∗

ω

∫ T

−T

(∫
|y|>logU

∣∣∣|y|−1− 1
logU I(U)

∣∣∣2dy)dt
� (d!)2TU−π−

1
2 (logU)

3
2d−2(1 +Q2U−1).

Proof of Claim 3.12. By definition,

B1 =
∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∞∑
n=1

anω(n)e−
n
U n−

1
2−it

∣∣∣2dt,
and by Corollary 3.3

B1 �
∞∑
n=1

|an|2e−
2n
U n−1(n+Q2)� (d!)2

∞∑
n=1

(log n)2d−2e−
2n
U n−1(n+Q2).

We break this sum up into the sum over n ≤ U and then the sum n > U . In the first range the summation
is of the order

(d!)2(logU)2d−2
∑
n≤U

e−
2n
U (1 +

Q2

n
)� (d!)2(logU)2d−2(U +Q2

∑
n≤U

1
n

)

� (d!)2(logU)2d−1(U +Q2).

In the range n > U , e−
2n
U � n−1− 2

logU , so the bound (d!)2(logU)2d−2(U + Q2)U−1 for the summations in
B2 suffices. Since U > 1,

B1 � (d!)2(logU)2d−1(U +Q2)(1 + (logU)−1U−1)� (d!)2(logU)2d−1(U +Q2).
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Proof of Claim 3.14. Let I(U) =
∑
n≤U

anω(n)n−
1
2 +C2+i(t+y). We have B3 � B′3 +B′′3 where

B′3 =
∑
q≤Q

∑
∗

ω

∫ T

−T

∣∣∣ ∫
|y|<logU

Θ( 1
2 + C2 + i(t+ y), ω)I(U)UC2+iyΓ(C2 + iy)dy

∣∣∣2dt
where B′′3 is the sum with the y integral restricted to the range |y| > logU . With C2 = −(logU)−1

using (0.4.5), Θ( 1
2 −

1
logU + i(t + y), ω) � [A(w)(|t + y| + 2)d]

1
logU is bounded. Also, (0.4.4) implies that

Γ(− 1
logU + iy) � U−

π
2 (logU)−

1
2 when |y| > logU . Therefore, using the estimate derived from Stirling’s

formula for Γ(C2 + iy), we get

B′′3 �
∑
q≤Q

∑
∗

ω

∫ T

−T

∫
|y|>logU

e−π|y||y|−1− 2
logU |I(U)|2dy dt.

After switching the order of integration and using Theorem 3.2 to estimate the sums and the inner integral
with respect to t, as the remaining integral with respect to y is O(U−π logU),

B′′3 � U−π
∑
n≤U

|an|2n−1− 2
logU (n+Q2T )� (d!)2U−π(logU)2d−2(1 +Q2U−1T ).

In the region |y| ≤ logU , Θ( 1
2 −

1
logU + i(t+ y), ω) is bounded, and by (0.4.4), Γ(− 1

logU + iy) is bounded
as well. Therefore

B′3 �
∫
|y|≤logU

∑
q≤Q

∑
∗

ω

∫ T

−T
|I(U)|2dt dy.

Using Theorem 3.2

B′3 � (logU)
∑
n≤U

|an|2n−1− 2
logU (n+Q2T )� (d!)2(logU)2d−1(1 +Q2U−1T ).

3.3.2 Mean Value Estimates for L′

In this section we prove Lemma 3.9 part 2. We begin with Lemma 3.11

L(s, ω) =
∞∑
n=1

anω(n)e−
n
U n−s − 1

2πi

∫
(C1)

L(s+ w,ω)UwΓ(w)dw

and differentiate with respect to s to get

L′(s, ω) = −
∞∑
n=1

an(log n)ω(n)e−
n
U n−s − 1

2πi

∫
(C1)

L′(s+ w,ω)UwΓ(w)dw.

Differentiating the functional equation (0.4.3) for L, L′(s, ω) = −Θ(s, ω)L′(1 − s, ω) + Θ′(s, ω)L(1 − s, ω).
We have L′(s, ω) =

∑5
i=1Di(s, ω) where
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D1 =
∞∑
n=1

an(log n)ω(n)e−
n
U n−s

D2 = − 1
2πi

∫
(C1)

Θ(s, ω)
∑
n>U

an(log n)ω(n)n−1+s+wUwΓ(w)dw

D3 = − 1
2πi

∫
(C1)

Θ′(s, ω)
∑
n>U

anω(n)n−1+s+wUwΓ(w)dw

D4 = − 1
2πi

∫
(C2)

Θ(s, ω)
∑
n≤U

an(log n)ω(n)n−1+s+wUwΓ(w)dw

D5 = − 1
2πi

∫
(C2)

Θ′(s, ω)
∑
n≤U

anω(n)n−1+s+wUwΓ(w)dw

with C1 = − 1
2 −

1
log V and C2 = − 1

log V are as in the L estimates. By the Cauchy-Schwarz inequality,

∑
q≤Q

∑
∗

ω

∫ T

−T

|L′( 1
2 + it, ω)|2 dt

(|t|+ 2)k+1
� E1 + E2 + E3 + E4 + E5

where Ei =
∑
q≤Q

∑∗
ω

∫ T
−T |Di( 1

2 + it, ω)2|(|t|+ 2)−k−1dt for 1 ≤ i ≤ 5. After using the large sieve, the sums
E1 and E2 are a magnification of B1 and B2, each by a factor of (logU)2. For E4, as n ≤ U there is an
additional factor of (logU) multiplied by the estimate of B3. It remains to consider E3 and E5. By (0.4.6)
Θ
Θ

′
(s + w,ω) � d[log(|y + t| + 2) + 1

|s+w| ]. Since Θ′(s + w,ω) = Θ(s + w,ω)Θ
Θ

′
(s + w,ω), this results in an

additional factor of d[log(|y+ t|+ 2) + 1
|s+w| ] in the estimates of B2 and B3. In E3, s+w = − 1

logU + i(t+ y).
For the portion of the integral where |y| > logU , (corresponding to the B′′2 estimate) the second summand
is bounded by d(logU) and the first logarithm term is O(d log T + d log y) = O(d(log Ty)) which results in a
magnification of the integral B′′2 by a factor of O(d logU), since T ≤ U . For the portion of the integral with
|y| ≤ logU (corresponding to the B′2 estimate) the additional term is easily seen to be O(d logU). Therefore,
E3 is a magnification of the estimate for B2 by a factor of O(d logU).

For E5, s + w = 1
2 −

1
logU + i(t + y) and the estimates have an additional factor of d[log(|y + t| + 2) +

(| 12 −
1

logU + i(t + y)|)−1]. Since U > 1 this second term is bounded. For the portion of the integral where
|y| ≤ logU , (corresponding to the B′3 estimate) the first summand is bounded by d(log T + log logU). For
the portion of the integral where |y| > logU , (corresponding to the B′′3 estimate) there is an additional factor
of d log(|t + y| + 2) in the summation. Upon integrating, since |t| ≤ T ≤ U , this results in a magnification
of O(d logU) over the B3 estimate for the E5 estimate.

3.4 Combining the estimates

We now prove Proposition 3.1. From Propositions 3.5 and 3.10 and equation (3.0.2) for 0 < ε < 1
4∑

q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω)| � x(S1 + S2) + x

1
2 (S3 + S4)

� x(log x)(d+4)2(1 +Q2z−1) + x
1
2 (log z)(d+4)2(z2 +Q2)

+ x
1
2 (Q2(logQ)4d+2 +Q

d
2 +ε( 1

2 + 1
d )(logQ)3d+2 +Q2+ ε

d (logQ)3d+2)

� (log x)(d+4)2
(
x(1 +Q2z−1) + x

1
2 (z2 +Q2) + x

1
2 (Q2+ε′ +Q

d
2 +ε′)

)
with ε′ = ( 1

2 + 1
d )ε, since z ≤ x and 1 < Q ≤ x.

Choosing z = Q(log x)γ this is of the order

(log x)(d+4)2
(
x+ xQ(log x)−γ + x

1
2Q2(log x)2γ + x

1
2Q2+ε′ + x

1
2Q

d
2 +ε′

)
.
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Therefore, if γ > (d+ 4)2 +D, then for all Q in the range

(log x)γ ≤ Q ≤ min{x 1
2 (log x)−(2γ+((d+4)2)+D), x

1
2−ε

′
, x

1
d−2−ε

′
}

it follows that
1
Q

∑
q≤Q

∑
∗

ω

max
y≤x
|ψ̃k(y, ω)| � x

(log x)D
.

This proves Proposition 3.1.

4 Conclusion

Propositions 2.1 and 3.1 imply the following.

Theorem 4.1. Let K/M be a Galois extension of number fields, with group G and let C be a conjugacy
class in G. Let H be the largest abelian subgroup of G such that H ∩C 6= ∅ and let E be the fixed field of H.
Let η = max{[E : Q]− 2, 2} and for any ε > 0 let Q = x

1
η−ε. Then for any A > 0,∑′

q≤Q

max
(a,q)=1

max
y≤x
|ψ(y, C, q, a)− |C|

|G|
y

φ(q)
| � x

(log x)A
.

This is equivalent to Theorem 0.2. An immediate corollary is

Corollary 4.2. Let K be a number field and let η = max{[K : Q]− 2, 2} and for any ε > 0 let Q = x
1
η−ε.

Then for any A > 0, ∑′

q≤Q

max
(a,q)=1

max
y≤x
|ψ(y, q, a)− y

φ(q)
| � x

(log x)A
.

4.1 Refinements of the main theorem

Writing η = max{d − 2, 2} with d = nE , it is possible to replace η by a smaller value by replacing d by d∗

where
d∗ = min

H
max
$

[G : H]$(1)

where the maximum is over irreducible characters $ of H and the minimum is over all subgroups H of G
such that

1. H ∩ C 6= ∅.

2. For every irreducible character $ of H and any non-trivial Dirichlet character χ the Artin L-function
L(s,$ ⊗ χ) is entire. (Here, if q is the modulus of χ we consider $ ⊗ χ as an element of G× Z/qZ as
before.)

If the Artin Conjecture that the L-functions associated to all abelian twists of the non-trivial irreducible
characters of G = Gal(K/M) are entire, then we can set η = max{δ, 2} where δ = max |χ(1)− 2| where the
maximum is over χ 6= χ0. A value of δ ≤ 2 results in the optimal bound of Q

1
2−ε. The groups G which

satisfy δ ≤ 2 can be classified (cf. [9] Theorem 24.6).

Acknowledgement. We thank the referee for the helpful and detailed remarks on an earlier version of this
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[1] Hideo Aramata. Über die Teilbarkeit der Dedekindschen Zetafunktionen. Proc. Imp. Acad., 9(2):31–34, 1933.

[2] Paul T. Bateman and Harold G. Diamond. Analytic number theory. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2004. An introductory course.

[3] E. Bombieri. On the large sieve. Mathematika, 12:201–225, 1965.
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