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Abstract

We propose a machine learning framework to capture the dynamics of high-
frequency limit order books in financial equity markets and automate real-time
prediction of metrics such as mid-price movement and price spread crossing. By
characterizing each entry in a limit order book with a vector of attributes such as
price and volume at different levels, the proposed framework builds a learning
model for each metric with the help of multi-class support vector machines
(SVMs). Experiments with real data establish that features selected by the
proposed framework are effective for short term price movement forecasts.
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1 Introduction

Electronic trading systems have been widely adopted by many established ex-

changes including NYSE, NASDAQ, and the London Stock Exchange [9, 10, 30].

As a result, the traditional quote-driven markets have been increasingly replaced by

order-driven trading platforms. The rapid decrease in order processing time has lead

to high volume, high frequency trading as a growing fraction of total stock trading.
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For instance, among the trading transactions of US in 2012, high-frequency trading

accounted for 84% in stock trades and 51% in equity value [32]. Clearly, the char-

acteristics of order-driven trading systems change the dynamics of the markets and

demand new trading strategies that can capture short-term behavior of underlying

assets [5, 7, 16, 29].

Research on modeling limit order book dynamics can generally be grouped into

two main categories: statistical modeling and machine learning based methods. In

the former approach, statistical properties of the limit order book for the target fi-

nancial asset are developed and conditional quantities are then derived and mod-

eled [8, 10, 20, 33, 35]. On the other hand, machine learning methods represent data

from the limit order book in a systematic manner, then generalize the data so that

unseen data can be recognized and classified based on the generalization [22, 24].

Statistical methods usually impose strict and typically unvalidated mathematical as-

sumptions on models, parameters may be unobservable, and the intensive computa-

tion required by statistical methods makes them difficult to be deployed in real world

environments [1, 4, 17, 29]. On the other hand, machine learning methods, owing to

their data driven characteristics and light-weight computation, have been applied to

a variety of financial markets such as liquidity and volatility in bonds and index trad-

ing [18, 13, 25, 36]. In particular, support vector machines (SVMs – described below)

have been used in tracking the dynamics of foreign exchange markets [14]. However,

the application of machine learning techniques in financial markets, especially SVMs,

is still in its infancy.

In this paper, we employ “multi-class SVM” methods in a new way to capture

the dynamics in high-frequency limit order book data and forecast movements of the

mid-price and the direction of bid-ask spread crossings over short time intervals. Ex-

periments with real data from NASDAQ show that the multi-class SVM models built

in this paper not only predict various metrics with high accuracy, but also deliver

predictions efficiently. In addition, experiments with simple trading strategies using

these signals are observed to produce positive payoffs with controlled risk.
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The paper is organized as follows: Section 2 describes the general approach

of machine learning via Support Vector Machines. Section 3 describes the limit or-

der book data we wish to model and the specific construction and validation of the

SVM model we employ. Section 4 presents our experiment results and analyzes their

performance, with Section 5 concluding.

2 Support Vector Machines

Machine learning techniques fall into two main categories unsupervised learning and

supervised learning. In the former, unlabeled training data are categorized by the

model into different groups that are not known a priori, and new data is assigned to

the closest group according to certain similarity measures. Popular examples of unsu-

pervised learning includes artificial neural networks [34], k-nearest neighbor methods

[3], and self-organizing maps [2]. In supervised learning, training data is labeled by

class in advance, and a model is used to assign new data to those classes. This in-

cludes the methods of logistic regression [37] and SVMs [11, 21].

The SVM method is the core of the model in [14] to predict the EUR/USD price

evolution, which has been the inspiration for our work here. Before we describe our

approach to SVM price forecasting, we need to describe the general SVM approach

and introduce the needed concepts and vocabulary.

2.1 The SVM framework

The SVM is a well-established technique in machine learning, which we briefly outline

in this section. For further details on the material of this section, see [6], [11], [14],

and [28].

The basic support vector machine is a kind of binary classifier. Imagine each

trial of some experiment produces a vector x ∈ Rn of output data, the components of

which are the “attributes” of the data, and we wish to classify each trial output into

one of two classes (yes vs. no, good vs. bad, etc). The SVM is an algorithm which,
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after some training, will automatically carry out the classification of new trial output

without user intervention.

The training data is a sequence of prior trials, x(1), . . . , x(m) that have already

been classified. Without loss of generality, we suppose that classification means that

each x(i) has been assigned a class value (or label) y(i) ∈ {−1, 1}, i = 1, . . . ,m. After

training, the SVM will then assign a label y ∈ {−1, 1} to each new trial output x.

Conceptually, the method is as follows:

1. Choose a “feature mapping” φ : Rn → H, where H is some higher dimensional

Euclidean space (or an infinite dimensional Hilbert space – for simplicity we

suppose H is finite dimensional in this paper) called the “feature space”. For a

data instance x ∈ Rn, the components of φ(x) are the “features” of the data to

be used to determine the correct label to be assigned.

2. Given the training data x(1), . . . , x(m), we consider the collection

F = {z(i) = φ(x(i)) : i = 1, . . . ,m} ⊂ H,

and we expect that the feature mapping has been chosen so that the set of points

F (+1) of F with label +1 are spatially separated in H from the set of points F (−1)

with label -1. “Spatially separated” means that there is a separating hyperplane

in H such that F (+1) lies entirely on one side and F (−1) on the other.

3. The SVM algorithm selects the optimal separating hyperplane L ⊂ H, in the

sense that distance from the hyperplane to F is maximized among all possible

separating hyperplanes.

4. New data x is then labeled according to which side of L the feature vector φ(x)

lies.

We now briefly describe, without full derivations, the SVM algorithm in terms

of the optimization problem mentioned above.

A hyperplane in H is described by an equation of the form wT z + b = 0, where

w ∈ H, b ∈ R are parameters, z ∈ H is our independent variable and wT denotes the
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transpose of w. If this is a separating hyperplane for our training data set, we may

reverse the sign of (w, b) if needed so that wT z(i) + b > 0 if y(i) = +1 and otherwise

wT z(i) + b < 0.

It is not difficult to show that the distance in H between the feature vector z(i)

and the plane is

γi = y(i)

((
w

||w||

)T
z(i) +

b

||w||

)
.

We can then define the “geometric margin” of the plane (w, b) with respect to

the training set S = {(z(i), y(i)), i = 1, . . . ,m} to be the smallest of these individual

distances (or “margins”):

γ = min
i=1,...,m

γi.

The optimal separating hyperplane is then obtained as the solution to the fol-

lowing optimization problem that identifies the hyperplane maximizing the geometric

margin:

max
γ,w,b

γ (2.1)

s.t. y(i)(wT z(i) + b) ≥ γ||w||, i = 1, . . . ,m. (2.2)

or equivalently, letting γ̂ = γ||w||,

max
γ̂,w,b

γ̂

||w||
(2.3)

s.t. y(i)(wT z(i) + b) ≥ γ̂, i = 1, . . . ,m. (2.4)

A better equivalent formulation of the problem is obtained when we take account

of the fact that the parameters (w, b) can be scaled by an arbitrary positive constant

without changing the hyperplane they determine, and hence without changing the

problem. We therefore select a scaling constraint so that γ̂ = 1 in the above problem,

which is then equivalent to

max
w,b

1

||w||
(2.5)

s.t. y(i)(wT z(i) + b) ≥ 1, i = 1, . . . ,m. (2.6)
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or, equivalently,

min
w,b

1

2
||w||2 (2.7)

s.t. y(i)(wT z(i) + b) ≥ 1, i = 1, . . . ,m, (2.8)

which is now in the form of a convex quadratic objective with linear constraints.

While this is a tractable form of the problem, we still have a high dimensional

problem (the dimension of H) and a large number (m) of constraints. The SVM

approach improves this situation dramatically by considering the corresponding dual

optimization problem (see, e.g., [28]):

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjy
(i)y(j)〈z(i), z(j)〉 (2.9)

s.t. αi ≥ 0, i = 1, . . . ,m (2.10)
m∑
i=1

αiy
(i) = 0. (2.11)

Since the original (primal) problem 2.7 has a convex objective and convex constraints,

the so-called Slater condition says that this dual problem gives the same solution as

the primal problem if the constraints are strictly feasible, which will generically be

the case if the training data can be separated by any hyperplane. It can be shown

that the optimal hyperplane parameters are then given by

w =
m∑
i=1

αiy
(i)z(i)

and

b = −1

2
( max
{i:y(i)=−1}

wT z(i) + min
{i:y(i)=1}

wT z(i)).

This dual formulation has the convenient property that the optimal αi’s are

all equal to zero except for the feature vectors z(i) whose distance to the optimal

hyperplane (w, b) is exactly equal to the geometric margin – these are called the

“support vectors”, giving the SVM approach its name. Once the optimal parameters

are found and z is a new feature vector that needs to be classified, we need only
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compute the sign of

wT z + b =
m∑
i=1

αiy
(i)〈z(i), z〉+ b.

Since αi = 0 unless it corresponds to a support vector, many of the terms in this sum

are zero and we need only calculate inner products between z and the (typically small

number of) support vectors z(i) of the optimal hyperplane.

In the remainder of this section, we describe how the SVM positively answers the

following two remaining questions: (a) the dimension of H might still be inconveniently

large; can the dimension of the computation be reduced?, and (b) can the algorithm

be modified to be less sensitive to spurious data in the training set?

2.2 Kernels

The feature mapping φ : Rn → H from the space of data attributes to the feature

space may need to have a high-dimensional range in order to allow the data to be

linearly separable.

As an example, suppose we take n = 3, choose c > 0, and define φ : R3 → R13

by

φ(x1, x2, x3) = [x1x1, x1x2, x1x3, x2x1, . . . , x3x3,
√

2cx1,
√

2cx2,
√

2cx3, c]
T

That is, the features are all monomials in the attributes of degree 2 or less. This

feature mapping will be effective if the data can be separated by quadratic functions

of the attributes. Here, c is a parameter controlling the relative weighting between

the first and second order terms. It is straightforward to verify for general n and for

x, x̂ ∈ Rn, that

〈φ(x), φ(x̂)〉 =
n∑

i,j=1

(xixj)(x̂ix̂j) +
n∑
i=1

(
√

2cxi)(
√

2cx̂i) + c2

= (xT x̂+ c)2.

In other words, the inner product of feature vectors z = φ(x) can be computed in terms

of the much lower dimensional inner product xT x̂ on Rn via the “kernel function”

K(x, x̂) = (xT x̂+ c)2.
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Similarly, it can be verified that the kernel

K(x, x̂) = (xT x̂+ c)d

corresponds to a feature mapping that includes all monomials up to degree d. In this

case, the SVM classifier will be effective if the data can be separated by polynomial

hypersurfaces of degree d or less, which is a very general situation.

There is a general fact known as Mercer’s Theorem ([26]) stating that whenever

K : Rn × Rn → R is symmetric positive semi-definite, there is a feature mapping φ

such that

〈z, ẑ〉 ≡ 〈φ(x), φ(x̂)〉 = K(x, x̂).

The great advantage of this is that our classification problem now becomes

computing the sign of

wT z + b =
m∑
i=1

αiy
(i)〈z(i), z〉+ b (2.12)

=
m∑
i=1

αiy
(i)K(x(i), x) + b, (2.13)

which, for the kernels above, only requires computation of an n-dimensional inner

product.

2.3 Regularization

We may need to take account of a small number of spurious training data instances

that are labeled incorrectly, which could have a large unwanted effect on the optimal

separating hyperplane. To handle this, the standard method is to relax the constraint

and introduce a compensating term in the objective function to penalize data on the

wrong side of the hyperplane, leading to this reformulated problem:

min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi (2.14)

s.t. y(i)(wT z(i) + b) ≥ 1− ξi, i = 1, . . . ,m (2.15)

ξi ≥ 0, i = 1, . . . ,m. (2.16)
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The constant C > 0 controls the relative weight between the competing goals

of making the total margin large, and ensuring as many examples as possible are on

the correct side of the hyperplane.

From this, the dual version can be formulated as

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjy
(i)y(j)〈z(i), z(j)〉 (2.17)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m (2.18)
m∑
i=1

αiy
(i) = 0. (2.19)

In terms of the quadratic kernel K(x, x̂) = (xT x̂ + c)2 described above, we get

our final version of the optimization problem1 :

max
α

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjy
(i)y(j)K(x(i), x(j)) (2.20)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m (2.21)
m∑
i=1

αiy
(i) = 0. (2.22)

Using the solutions αi, and letting S = {s1, s2, . . . } be the set of support vectors

(corresponding to α > 0), the label for a new example x is assigned as +1 if

|S|∑
i=1

αiyiK(si, x) + b (2.23)

is positive, and −1 otherwise. The kernel functions used in this paper are the polyno-

mial kernels K(xi, xj) = (xi · xj + 1)d with d = 2. (We use the constraint parameter

C = 0.25, though in experiments this choice does not affect results much.)

3 Model Architecture

In this section, we first describe the limit order book and key metrics to characterize

price evolution, then present the rationale behind our SVM design framework for price

1This optimization problem is solved experimentally using a JAVA implementation of the Sequen-
tial Minimal Optimization algorithm [31].
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movement forecasting. We also introduce various aspects of multi-class SVM – the

workhorse of the proposed framework, and delineate our tactics to validate models

built with SVMs and methods to evaluate their performance.

3.1 Limit Order Book Dynamics and Metrics

Records of high-frequency trading activity are organized into a database with two

major components: the message book and the order book. The former stores basic

information on each trading event, such as time of occurrence and transaction type,

while the latter keeps unexecuted limit orders for both bid and ask. A sample mes-

sage book and order book extracted from the NASDAQ stock AAPL are depicted in

Table 1. In the table, each row of the message book represents a trading event that

could be either a limit order submission, limit order cancellation, or market order

execution as shown in column “Event Type”. The arrival time of an event given in

column “Time”, measured from midnight, is in seconds and nanoseconds; the order

price is in US dollars, and the Volume is in number of shares. The “Direction” col-

umn indicates the type of limit order that is executed via an incoming market order

of the opposite type – e.g. an incoming market sell order executes against an existing

limit bid order, etc. On the other hand, each entry of the order book, also shown in

Table 1, groups ask and bid events on n different price levels (we take n = 10) along

with their volume sizes. The best ask and best bid are listed first, and the next best

second, etc.

Message book
Time(sec) Price($) Volume Event Type Direction

k − 1 34203.011926972 585.68 18 execution ask
k 34203.011926973 585.69 16 execution ask
... ... ... ... ... ...
k + 4 34203.011988208 585.74 18 cancellation ask
k + 5 34203.011990228 585.75 4 cancellation ask
... ... ... ... ... ...
k + 8 34203.012050158 585.70 66 execution bid
k + 9 34203.012287906 585.45 18 submission bid
k+10 34203.089491920 586.68 18 submission ask
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Order book
Ask1 Bid1 Ask2 Bid2 Ask3 Bid3 ...

Price Vol. Price Vol. Price Vol. Price Vol. Price Vol. Price Vol. ...
k − 1 585.69 16 585.44 167 585.71 118 585.40 50 585.72 2 585.38 22 ...
k 585.71 118 585.44 167 585.72 2 585.40 50 585.74 18 585.38 22 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ...
k + 4 585.71 118 585.70 66 585.72 2 585.44 167 585.75 4 585.40 50 ...
k + 5 585.71 118 585.70 66 585.72 2 585.44 167 585.80 100 585.40 50 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ...
k + 8 585.71 100 585.44 167 585.80 100 585.40 50 585.81 100 585.38 22 ...
k + 9 585.71 100 585.45 18 585.80 100 585.44 167 585.81 100 585.40 50 ...
k+10 585.68 18 585.45 18 585.71 100 585.44 167 585.80 100 585.40 50 ...

Table 1: sample: AAPL order book & message book

It is evident from Table 1 that a new entry in the message book typically causes

one fresh record to be added into the order book. For instance, the transaction event

at the k-th row of the message book of Table 1, execution of an ask order at the

price $585.69 with 16 shares, exactly cancels out the best ask price and its volume in

Row k − 1 of the order book, making the next best ask price, $585.71, become the

new best ask price as shown in Row k of the order book. It can also be observed

from the message book that multiple trading events could arrive within milliseconds

as demonstrated from Row k − 1 to k + 10, leading to drastic fluctuation of prices

and volumes in the order book. Although a variety of “metrics” have been designed

to capture the price fluctuation, in this paper we select as metrics (a) the occurrence

and direction of mid-price movement, and (b) the occurrence and direction of bid-ask

spread crossing, described below.

The mid-price is defined as the mean of the best ask price P ask
t and best bid price

P bid
t at time t, Pmid

t = 1
2
(P ask

t +P bid
t ). The three possible scenarios of mid-price move-

ments — upward, downward and stationary – are illustrated in Table 1. For example,

compared to Row k− 1, the mid-price at Row k+ 4 increases to ($585.71+$585.70)/2

= $585.705 from ($585.69+$585.44)/2 = $585.565 due to upward movement of both

the best ask price and the best bid price. While the mid-price is stationary as time

advances from Row k+4 to k+5 owing to the motionless best ask/bid prices, it moves

downward to ($585.68 + $585.45)/2 = $585.565 when transactions further proceed to
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Row k + 10.

Mid-price movement is a statistical indicator (though not a guarantee) of poten-

tial trading profits. In contrast, bid-ask spread crossing is a less-frequent occurrence

that however does assure a profit if correctly identified in advance. There are three

scenarios: 1) an upward price spread crossing occurs when the best bid price at t+∆t

exceeds the best ask price at time t (P bid
t+∆t > P ask

t ); 2) a downward price spread

crossing happens when the best ask price at t + ∆t is less than the best bid price at

time t, (P ask
t+∆t < P bid

t ); and 3) no price spread crossing takes place if P ask
t+∆t ≥ P bid

t and

P bid
t+∆t ≤ P ask

t . For example, an upward price spread crossing appears as indicated by

Row k − 1 and k + 4 of the order book in Table 1, — P ask
tk−1

< P bid
tk+4

— the trader

makes a profit with a long position on the asset with best ask price $585.69 at time

k − 1 and then selling with a higher best bid price $585.70 at time k + 4.

These two metrics can work independently or together to provide guidance for

trading strategies depending on particular scenarios. Of course, the premise for the

arbitrage opportunities described above is that the directions of mid-price movement

and price spread crossing can be predicted accurately, which is the main task ad-

dressed in this paper.

3.2 Proposed Design Framework

As the trading day progresses, the limit order book contains a massive amount of

rapidly evolving data, with the possibility of important patterns forming and dissolv-

ing at a frequency too high for a human observer – hence the motivation for machine

learning.

To build a learning model for a given metric, such as mid-price movement, a

set of labeled samples, termed training data, should be prepared, in which each data

point is characterized with a vector of attributes, an SVM model is constructed, and

then subject to a validation procedure to verify soundness and robustness. To keep

up with the rapidly changed dynamics of the limit order book, the training data are

frequently updated so that models can be refreshed to learn and subsume any new
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characteristics appearing in the data.

Generally speaking, separate learning models should be built for different metrics

depicting limit order book dynamics. To build a machine learning model for a specific

metric, the following four-phase process is employed.

• Features representation: the data in the order book and message book is

converted into a format suitable for machine learning methods to manipulate.

• Learning model construction: an SVM model is constructed.

• Learning model validation: the model is evaluated and validated using par-

ticular performance measurements.

• Unseen-data classification: the constructed learning model automates the

forecasting of the chosen metric in real time.

Figure 3.1: Architecture of framework for forecasting order book dynamics.

In this four-phase process, the first three phases are conducted offline while the

last phase works online to provide predictions for real time trading events. Details of
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the main modules in Figure 3.1 will be provided in subsequent sections.

3.3 Feature Extraction and Training Data Preparation

The “feature representation” module is designed to convert the order book and mes-

sage book data into suitable inputs to the SVM. Each data point, which we take to be

the data recorded in a single row of the order book along with the corresponding row

in the message book, must be represented as a “feature vector” of specific attributes,

lying in a Euclidean space Rn, where n is the total number of attributes selected.

(These feature vectors will then be mapped to the feature space by the feature map-

ping, according to the previous discussion of the SVM.) With well-formatted feature

vectors for data points in place, the module “feature representation” further randomly

samples some data points to construct the training data set for each metric used to

characterize the dynamics of the limit order book.

We denote the set of training data as T = {~xi, yi}, (i = 1, ...,m), where

~xi ∈ Rn is the feature vector for the ith data point and yi ∈ Y = {l1, ..., lk}
is its true label identifying the category this data point belongs to. For exam-

ple, in the case of predicting the direction of mid-price movement, the label set is

Y = { upward, downward, stationary }.

To better profile the original data and fully represent all label categories of the

metric in question, the population in the training data set, although randomly sam-

pled, should follow the distribution of metric labels in the entire collection of data.

For example, assuming that the ratio of labels for metric mid-price (i.e., up, down,

and stationary) of stock AAPL shown in Tables 1 is 1:1:2 and a set of training data

with size 4000 is constructed, then ideally the numbers of samples in the training

data set with label upward, downward and stationary should be 1000, 1000, and

2000, respectively. It is typical that each metric has its own unique label set and

label distribution, making it necessary to build different training data sets for distinct

metrics. Meanwhile, the size of the training data set for different metrics may vary

as well depending on the characteristics of the data and the metrics. In this regard,
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the size of a training data set for a metric is determined in the proposed framework

by a cross-validation process that monitors the relationship between size of training

data and the performance of the model built on the corresponding training data to

avoid overfitting. Moreover, the module frequently reconstructs the training data by

replace the oldest data points with the most up-to-date ones to ensure freshness of

the training data.

In Table 2 we identify a collection of proposed attributes that are divided into

three categories: basic, time-insensitive, and time-sensitive, all of which can be directly

computed from the data. Attributes in the basic set are the prices and volumes at

both ask and bid sides up to n = 10 different levels (that is, price levels in the order

book at a given moment), which can be directly fetched from the order book shown

in Table 1. Attributes in the time-insensitive set are easily computed from the basic

set at a single point in time. Of this, bid-ask spread and mid-price, price ranges, as

well as average price and volume at different price levels are calculated in feature sets

v2, v3, and v5, respectively; while v5 is designed to track the accumulated differences

of price and volume between ask and bid sides. By further taking the recent history

of current data into consideration, we devise the features in the time-sensitive set

presented in Table 2.
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Basic Set Description(i = level index, n = 10)

v1 = {P aski , V aski , P bidi , V bidi }ni=1, price and volume (n levels)

Time-insensitive Set Description(i = level index )

v2 = {(P aski − P bidi ), (P aski + P bidi )/2}ni=1, bid-ask spreads and mid-prices

v3 = {P askn − P ask1 , P bid1 − P bidn , |P aski+1 − P aski |, |P bidi+1 − P bidi |}ni=1, price differences

v4 = { 1
n

∑n
i=1 P

ask
i , 1

n

∑n
i=1 P

bid
i , 1

n

∑n
i=1 V

ask
i , 1

n

∑n
i=1 V

bid
i }, mean prices and volumes

v5 = {
∑n
i=1(P aski − P bidi ),

∑n
i=1(V aski − V bidi )}, accumulated differences

Time-sensitive Set Description(i = level index )

v6 = {dP aski /dt, dP bidi /dt, dV aski /dt, dV bidi /dt}ni=1, price and volume derivatives

v7 = {λla∆t, λlb∆t, λma∆t , λ
mb
∆t , λ

ca
∆t, λ

cb
∆t } average intensity of each type

v8 = {1{λla
∆t>λ

la
∆T }

, 1{λlb
∆t>λ

lb
∆T }

, 1{λma
∆t >λ

ma
∆T }, 1{λmb

∆t>λ
mb
∆T }
}, relative intensity indicators

v9 = {dλma/dt, dλlb/dt, dλmb/dt, dλla/dt}, accelerations(market/limit)

Table 2: Feature vector sets

In feature set v6, average time derivatives of price and volume are computed

over the most recent 1 second. The average intensity – defined as the recent short-

term average arrival rate of a certain trading type – is calculated in feature set v7

for limit ask/bid orders (denoted as λla∆t and λlb∆t), market ask/bid orders (denoted

as λma∆t and λmb∆t ), as well as cancellation ask/bid orders (denoted as λca∆t and λcb∆t).

We choose ∆t = 1 second. Features in v8 focus on the discrepancy between short

term and long term intensities for different trading type denoted as λtype∆t and λtype∆T ,

respectively, where type can be limit ask/bid orders as well as market ask/bid or-

ders (denoted as la, lb,ma, and mb). The indicator function 1{λtype∆t >λtype∆T }
determines

whether the trading type in question has intensified in the most recent past. In our

experiments, we select ∆t = 10 seconds, and ∆T = 900 seconds. The acceleration of

a trading type presented as the derivative of its intensity is captured in feature set

v9, computed as an average rate of change over the previous 1 second. For instance,

if both dλma/dt and dλlb/dt have positive sign, then market ask orders and limit bid

orders are arriving faster, which could drive up the bid-ask spread and may lead to

an upward spread crossing.
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Armed with the attributes described in Table 2, the feature vector ~xi for the

i-th data point in the training data set can be formed by simply selecting one or

more feature sets and then concatenating them together. However, we need to resist

the temptation to simply include as many attributes as possible: some features may

depict similar characteristics of the underlying data, making them redundant; some

features may not capture the intrinsic hidden patterns in the data and therefore only

introduce noise into model training; and the computation time required to carry out

the SVM model is sensitive to the size of the feature vectors. Therefore, we select a

smaller set of attributes in the feature space, which we can call an “economized fea-

ture set”, selected according to their contributions to the performance of the resulting

model as measured in terms of information gain [12],[15].

Entropy is a measure of uncertainty or unpredictability of a system, which is

defined as H(Y ) = −
∑

y∈Y p(y) log2(p(y)) for a given variable Y with various values

(y ∈ Y ), where p(y) represents the probability that a data point in the sample (e.g. a

training data set T ) has value y ∈ Y . If all data points are equally likely, p(y) is the

total proportion |T (y)|/|T | of the data in the training set having label y, where T (y)

is the subset of data in T having label y.

If X is an attribute with values x ∈ X, then the conditional probability p(y|x)

is defined to be the proportion |T (x, y)|/|T (x)| of data with label y among all data

with attribute x. In this case the conditional entropy of Y , after observing feature X,

is defined as

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2(p(y|x)).

The information gain of Y contributed by X is then defined as

IG(X) = H(Y )−H(Y |X),

and is a measure of the reduction of uncertainty about Y resulting from knowledge

of attribute X. We can then order all the attributes according to their information

gain, and select the attributes with the largest IG such that the performance of the

model built with these attributes is comparable to that obtained from the full original

17



feature set. (See Appendix.)

3.4 Learning Model Construction and Validation

In the proposed framework, we use Support Vector Machine techniques as described

in Section 2.

When the label set Y = {l1, ..., lk} has more than two members (k > 2), the clas-

sification problem is no longer binary. Instead, a multi-class categorization problem

should be solved. In this paper, we reduce the multi-class learning problem into a set

of binary classification tasks and build a binary classifier independently for each label

lk with a one-against-all method [19, 23]. In the one-against-all training method,

k binary SVM models are constructed, one for each class in Y ; to this end, when

training the ith SVM (i = 1, ..., k), examples in the ith class are treated as positive

while samples in other classes as negative. After k binary SVMs are built, an unseen

data point is assigned to the class with the largest value (equation (2.23)) generated

by these k binary models.

Before a newly built learning model for a metric is actually applied to predict

out-of-sample data, it is subject to evaluation and validation. We use the concepts

of precision (P), recall (R), and Fβ as measures of quality of the prediction process,

defined as follows. Consider a set T training data samples and we are trying to assign

the label y of a particular class. Say Y is the subset of T of examples that have the

true label y, and Z is the subset of examples that our SVM assigns to label y. Then

1. precision P is #(Y ∩ Z)/#(Z)

2. recall R is #(Y ∩ Z)/#(Y )

3. Fβ = (1 + β2)PR/(β2P + R), the weighted harmonic mean of P and R. When

β = 1, meaning that both precision and recall are equally important, we obtain

the F1-measure F1 = 2PR/(P +R).
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We use an n-fold cross validation process that works as follows: the training

data set T is first divided into n equally-sized subsets {Ti, i = 1, ..., n}, each of which

has the same distribution as T with respect to the metric in question, and then the

following steps are repeated n times guided by iteration index i = 1, ..., n:

• Training: Set Ti is set aside as validation (test) set while the remaining n − 1

sets are combined to form a new training set T ′i = ∪j 6=iTj, which is used to build

learning model Li.

• Predicting: Model Li is employed to label samples in validation set Ti and a

sample is predicted correctly if its assigned label by Li agrees with its true label.

• Measuring: Performance measures such as accuracy, precision, recall and Fβ-

measure are computed for model Li.

In this n-fold cross validation process, the average of the P,R, F1 measures from

n iterations are used as the overall measurements for the learning model.

4 Experiments and Results

This section summarizes our experimental results. Model efficiency as measured by

training and prediction time are demonstrated in 4.1. The model performance for

different feature sets and the analysis of feature selection are shown in 4.2. Illustrated

by the tables of corresponding p-values, the model’s performance is further justified

by the results of paired t-tests in 4.3. Finally, results of a test of a simple trading

strategy built on the spread crossing model is given in 4.4. With a full trading day

length, real data of 5 stocks from NASDAQ are used in the experiments. The pre-

diction time horizon, which specifies how long ahead of current time for the model

to project forecasting, is denoted by the notation ∆t and measured as the number of

events. All experiments are performed using Linux, with a 2.9GHz Intel Core i7 CPU

and 8GB 1600MHz memory.
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4.1 Model Performance on Processing Time

Using training data equipped with all the features (basic, time-insensitive, time-

sensitive) from Table 2, the training and prediction times for the two metrics are

outlined in Table 3. Several random sets of 1500 training data points are constructed

by replicating the distribution of each metric in the original data. The numbers illus-

trated are the average time that models use for identifying each unseen example. Data

in “Training time” and “Testing time” columns are given in seconds and milliseconds

respectively. Table 3 indicates that, for the same ticker, the time used to train a

model as well as the time for predicting new data vary by metric. This difference may

be due to the number of support vectors of the models trained, which directly relates

to computation workload. For instance, the mid-price movement model of INTC has

171 support vectors and spread crossing has 291, which results in the training and

prediction times for mid-price (3.884s and 0.0250ms respectively), less than that of

spread crossing (5.020s and 0.0366ms).

Training time(s) Prediction time(ms)

Ticker mid-price spread crossing mid-price spread crossing
MSFT 1.116 2.960 0.0250 0.0180
INTC 3.884 5.020 0.0250 0.0366
AMZN 5.199 5.920 0.0683 0.0210
AAPL 4.246 5.390 0.0567 0.0311
GOOG 3.255 3.640 0.0783 0.0237
Mean 3.540 4.586 0.0507 0.0260

Table 3: Models’ average processing time with different tickers: all features are used for
training, training set size = 1500, ∆t = 5 (events)

Similarly, the time used for training and prediction varies for different tickers.

For example, there were 211 support vectors in the spread crossing model of MSFT,

so the 291 support vectors make the training and prediction time for INTC (5.020s

and 0.0366ms) slightly longer than for MSFT (2.960s and 0.0180ms). In the last row

“Mean”, the data indicate the efficiency of the models in an overall view.

The computation time for prediction is sufficiently fast for certain simple ap-
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plications. For example, since the prediction time of AAPL, 0.0311ms, is less than

0.0612ms, which is the time difference between the upward spread crossing events

from the Row k−1 to Row k+4 in Table 1, the model could in principle perform fast

enough to influence corresponding trading decisions. A commercial implementation

would likely need to be faster to fully capture such spread crossing events — however,

our experiments with unoptimized code and equipment are only intended to illustrate

the concept.

4.2 Feature Selection

For each metric and ticker, we rank our original set of attributes by information gain.

A subset of attributes called the “economical set” is determined by sequentially includ-

ing one attribute at a time, beginning with the attribute with the highest information

gain, until the F1 measure of performance reaches 95% or more of the F1 measure of

the original set of attributes.

Original Set Economical Set

Ticker Label P(%) R(%) F1(%) P(%) R(%) F1(%)

AAPL
U (↑) 77.8 74.7 76.2 75.1 74.2 74.6
D (↓) 80.4 83.3 81.8 80.5 82.3 81.4
S (–) 99.1 98.8 99.0 99.3 98.6 99.0

GOOG
U (↑) 85.4 86.8 86.1 85.5 82.6 84.0
D (↓) 83.0 79.3 81.2 79.5 80.5 80.0
S (–) 98.6 99.5 99.0 98.6 99.5 99.0

Table 4: Performance measurement before and after feature selection: the original set is the
training set before feature selection (82 features), and the economical set is the training set
after feature selection (53 attributes for GOOG, 60 attributes for AAPL). Metric = spread
crossing; Training set size = 2000. ∆t = 5 (events).

Table 4 shows the spread crossing model training performance of the original

and economical feature sets for AAPL and GOOG. Among 82 original attributes,

53 and 60 attributes are selected for GOOG and AAPL, respectively. To illustrate

the distribution of attributes chosen as having highest information gain, a graphical
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description is shown in Figure 4.1 for AAPL, with the top row for the mid-price metric

and the bottom row for spread-crossing.

More detailed information about the attributes selected via information gain is

given in the Appendix. In the remainder of this paper, we always limit ourselves to

the “economical” subset of attributes, a proper subset of the full original set of 82

attributes that varies by ticker and metric.

Figure 4.1: Economical training data set feature distribution selected by information gain.
The upper pie charts (grey and red) are the distribution of mid-price prediction features,
and the lower pie charts (blue and green) is the distribution of spread-crossing prediction
features. Basic = basic feature set; T-insen = time-insensitive feature set; T-sen = time-
sensitive feature set; Ask side = features only related to ask side; Bid side = features only
related to bid side; Price = features only related to price; Volume = features only related
to volume.Ticker = AAPL.

To compare the performance with different feature set configurations, we exam-

ine the SVM performance for the mid-price metric for AAPL in Table 5. The first

column outlines the precision (P), recall (R) and F1-measure (F1). The columns ∆(i,j)

denotes the difference Fi−Fj of entries in the prior columns, while the column “Avg.”

is the average of the last three columns.
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AAPL: Mid-price
Label F0 F1 F2 F3 ∆(1,2) ∆(0,1) ∆(0,2) ∆(0,3) Avg.

P(%)
U (↑) 83.6 89.5 85.3 84.7 -4.2 5.9 1.7 1.1 2.9
D (↓) 75.2 88.0 84.9 84.3 -3.1 12.8 9.7 9.1 10.5
S (–) 79.8 90.0 80.1 81.9 -9.9 10.2 0.3 2.1 4.2

R(%)
U (↑) 76.5 89.5 77.4 76.5 -12.1 13.0 0.9 0.0 4.6
D (↓) 80.5 88.0 82.9 83.2 -5.1 7.5 2.4 2.7 4.2
S (–) 81.0 90.0 83.8 82.4 -6.2 9.0 2.8 1.4 4.4

F1(%)
U (↑) 79.9 89.5 81.4 80.6 -8.1 9.6 1.5 0.7 3.9
D (↓) 77.8 88.0 83.9 83.4 -4.1 10.2 6.1 5.6 7.3
S (–) 80.4 90.0 82.0 82.2 -8.0 9.6 1.6 1.8 4.3

Table 5: AAPL model mid-price prediction measurements with different feature
sets, F0 = {Basic features}, F1 = {Basic and time-insensitive features}, F2 =
{Basic and time-sensitive features}, and F3 = {All features}. ∆(i,j) = value of column
Fj − value of column Fi. U = upward; D = downward; S = stationary. Training set size =
1500; ∆t = 5 (events)

From Table 5 we see that training data with the extended feature sets generally

outperform the basic feature set. However, more is not necessarily better: the perfor-

mance of feature set F3 is generally lower than those of either F1 or F2. For AAPL,

F1 tends to perform better than F2 or F3, but this depends on the stock.

4.3 Model Performance with Tests of Significance

The model’s task is to forecast which of three possible classes the state of the order

book will be in at a time ∆t in the future. The possibilities are: the mid-price will

be higher, lower, or the same (mid-price metric), or there will be an upward spread

crossing, a downward spread crossing, or no spread crossing (spread crossing metric).

We measure the look-ahead interval ∆t in number of events, with possible values 5,

10, 15, or 20 events ahead of the current time. At each new event, the model will

make a new forecast.

Figures 4.2 and 4.3 report the prediction accuracy (percentage of correct pre-

dictions) for feature set F3 for a sample of 1200 data points. Generally, accuracy

declines with ∆t. However, we can see that the spread crossing accuracy for INTC
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is higher for ∆t = 10 or 15 than for ∆t = 5, suggesting that the modeler will need

to investigate the natural time scales of each ticker’s price movements to choose the

optimal prediction horizon.
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Figure 4.2: Correct prediction percentage for different prediction horizons. Training data
set size = 1200, metric = mid-price movement; ∆t = 5, 10, 15, 20 (events)
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Figure 4.3: Correct prediction percentage for different prediction horizons. Training data
set size = 1200, metric = spread crossing; ∆t = 5, 10, 15, 20 (events)

To investigate the question of whether our positive results are merely due to

luck we use the paired t-test to examine the statistical significance of our performance

measurements. The benchmark for our t-test is the ZeroR classifier. As the sim-

plest classification method, the ZeroR classifier predicts all the data points to be the
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majority class of the training data set. Maintaining the correctness of the major-

ity class, the performance of ZeroR therefore outperforms a random classifier, which

predicts data points in each class with equal probability. Hence, although there is

no prediction power in ZeroR, it is useful for determining a baseline performance for

other classification methods.

The paired t-test is performed between the multi-class SVM model and the

ZeroR using repeated 10-fold cross-validation, as explained below. The null hypothesis

is that the P,C and F1 measures of our SVM model have the same mean as those

of the ZeroR classifier. The paired t-test tells us the probability of obtaining the

observed average measurements conditional on the null hypothesis.

For our 10-fold cross-validation, we select 2000 data points from our total sample

and divide this into 10 segments of n2 = 200 data points. For each of 10 trials, we take

one of the 200 point segments as the test data, and the remaining n1 = 1800 points as

training data. We compute the performance (P,C, F1) on the test data. Doing this

for each 200 point segment in turn completes a 10-fold cross-validation experiment.

We then repeat this experiment J = 10 times, each with a new independent sample

of 2000 points drawn from the original total sample (about 400,000 rows of the order

book, in our case). For each performance measure X ∈ (P,C, F1), we compute, for

the ith test, i = 1, . . . , 100, di = X(SVM(i))−X(ZeroR(i)). The mean and standard

deviation of {d1, . . . , d100} are µd and sd, and our null hypothesis is H0 : µd = 0.

The t-test we use is the “corrected resampled t-test” from [27] to account for

the fact that the cross-validation trials are not completely independent. We use

t =
µd

sd
√

1
J

+ n2

n1

.

To reject the null hypothesis at confidence level α, we compute this t-statistic and use

p-values for the t(k) distribution, with k = 99 degrees of freedom.

Results are reported in Tables 6 and 7, which shows the p-values well below

typical significance levels α = 0.05 or 0.01. We deduce that the P, C, and F1 measures

are all statistically significantly better than the performance of our baseline classifier.
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ZeroR Multi-class SVMs

Ticker P(%) C(%) F1(%) P(%) C(%) F1(%)

AAPL 36.22 59.14 44.21 91.03 (1E-08) 90.25 (8E-07) 90.01 (7E-08)

GOOG 34.11 56.43 43.01 92.00 (5E-09) 91.33 (1E-07) 91.51 (4E-08)

Table 6: Results of paired t-test of spread crossing prediction, ∆t = 5 (events), training
data size = 2000. The measurements are weighted precision (P%), percentage of correct
prediction (C%) and weighted F1-measure (F1%). Cross-validation n = 10, Trials = 10; The
values in parentheses are the p-values obtained from the paired t-test in scientific notation.
Values less than 0.01 represent significance to the 99% confidence level.

ZeroR Multi-class SVMs

Ticker P(%) C(%) F1(%) P(%) C(%) F1(%)

MSFT 36.00 52.73 41.50 74.34 (1E-07) 74.65 (1E-04) 72.00 (1E-06)

INTC 41.00 51.63 43.00 75.00 (7E-07) 73.54 (1E-04) 71.20 (2E-06)

Table 7: Results of paired t-test of mid-price prediction, ∆t = 5 (events), training data size
= 4000. Notation as in Table 6.

4.4 Testing a Simple Trading Strategy

As a final test of the effectiveness of the SVM model, we test it with a simple-minded

trading strategy against our data. The strategy below is not meant to represent a

realistic trading implementation, but rather a simple sanity test to illustrate whether

the model produces useful information in the context of sample market data.

For a window of time ∆T = 300, 600, 900, 1800 or 3600 seconds, we run the

spread-crossing model for a prediction horizon of ∆t = 5 events, using four hours of

AAPL order book data on June 21, 2012. At each event, if the model predicts no

spread crossing, we do nothing. If it predicts an upward spread crossing at horizon

∆t, we submit a market buy order for a nominal $100 at best ask and after ∆t = 5

events, no matter what happens, sell it back for the current best bid. Similarly for a

prediction of downward spread crossing. We assume no transaction costs and collect

all our profit and loss at the end of the trading window. The model is retrained using

the most recent 2000 events once per hour. Table 8 shows the results averaged over

30 overlapping windows of each size across the four hour testing period.
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AAPL

Duration (s) Mean (Tick) Std. Dev. (Tick) Avg. # of Trades

300 1.5390 1.4352 13.0
600 1.7781 1.1113 22.0
900 1.9781 1.5113 31.0
1800 2.8658 1.8491 68.0
3600 3.5862 1.1083 126.0

Table 8: Trading test by using various length of sliding windows based on the prediction of
spread crossing, ∆t = 5 (events). In each trading window, the simulated trader goes long
$100.00 on upward spread crossing and short back 5 events later; goes short with $100.00
if downward spread crossing occurs; no moves if stationary prediction occurs. After the
window duration ends, the accumulated profits/loss is computed. In total, 30 windows are
included in the test. The mean and standard deviation of the profit of different window
lengths are shown in the table. 1 tick = $0.01; Ticker = AAPL.

Figure 4.4 illustrates this further for the case of a window of 1800 seconds for

AAPL. Most events are correctly labelled as stationary, and indicated by the purple

curve on the graph. Every so often there is an up or down spread crossing event;

these are labeled according to whether the model correctly predicted them. In the

picture is also the size of the bid-ask spread for reference, with scale on the right

axis. Profit and loss for our simple trading strategy is reported in Figure 4.5. In

this trial, we can see a realized profit of about 3 basis points over this 30 minute

window. In the places where the profit-loss curve drops down, there are events that

are mis-predicted by the model. For example, the profit-loss curve drops around the

time 600s in Figure 4.5, which is due to an incorrect upward prediction when there

actually follows a down event. For similar reasons, upward movements in the profit

curve indicate where correct predictions are made.

27



583

583.5

584

584.5

585

585.5

586

586.5

587

587.5

588

588.5

589

589.5

590

P
ri
c
e
 (

$
)

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

B
id

−
A

s
k
 S

p
re

a
d
 (

$
)

Time Elapsed (s)

correct stationary label (mid−price)

correct up label

correct down label

down labelled as up

stationary labelled as down

up labelled as stationary

down labelled as stationary

bid−ask spread

Figure 4.4: Example: prediction with labelled signals and bid-ask spread evolution. Left
y-axis is the stock price in US dollar; the right y-axis is the bid-ask spread in US dollar.
Time duration = 1800 seconds. The purple box contains a time period and the prediction,
which will be zoomed in the Figure 4.6. ∆t = 5 (events); Ticker = AAPL.
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Figure 4.5: Example: prediction with labelled signals and profit-loss curve. Left y-axis
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Figure 4.6: Zoom in: upward crossing prediction with the best ask and best bid prices
in the purple box of Figure 4.4. The y-axis is the stock price in US dollars; the x-axis is
the event time stamps (to the nanosecond); the green arrow indicates an upward prediction
occurs at that moment. ∆t = 5 (events); Ticker = AAPL.

Figure 4.6 shows a close-up view of the region of the purple box in Figure 4.4.

We see that at time t = 1013.2594782s, the model gives an upward prediction denoted

by a green arrow, so a long position is taken at the best ask price $586.59. At 5 events

later, t = 1013.2594787s, the prediction turns out to be correct, and the asset is sold

at the best bid price $586.67 to earn a profit.

5 Conclusions

The machine learning modeling method described in this paper provides a framework

to automate the prediction process for limit order book dynamics in real time. Treat-

ing prediction of various metrics as a supervised learning problem, our method first

reduces the problem at hand into a set of binary classification tasks and then builds

multi-class models by using SVMs for each binary task.

To improve the efficiency in training models and labeling unseen samples, fea-

tures are selected according to information gain so that only those attributes sig-
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nificantly contributing to the performance of the resulting model are retained. The

validity and robustness of models are verified with a n-fold cross-validation process

that evaluates model performance in terms of precision, recall and F1-measure.

Our experiments with real-world data show that the feature sets designed in the

proposed framework are effective. For instance, the models built for mid-price move-

ment by using only the basic features can attain on average 79.6%, 82.6%, and 80.3%

for precision, recall and F1-measure, respectively; the performance can be further im-

proved by about 6.3% and 3.2% when time-insensitive and time-sensitive features are

included.

Experiments presented in this paper also demonstrate the efficiency of the frame-

work, as the time spent on classifying an unseen data point is less than a tenth of

a millisecond using unoptimized code on and a single CPU implementation. Our

comparison study with a baseline ZeroR predictor indicates that our framework sig-

nificantly outperforms the latter, and the improvement in performance is statistically

significant. Moreover, simple trading strategies based on the model’s forecasts can

achieve profitable returns tested against historical data, with low risk.

A related multi-class SVM approach has been used successfully in [14] to fore-

cast high frequency foreign exchange prices, but ours is the first work we know to

demonstrate that this approach is effective also for equity limit order book forecast-

ing.

We conclude with a few comments comparing our approach with [14]. A multi-

kernel SVM modeling method in [14] forecasts the EUR/USD price evolution and tags

a given transactional event with respect to spread crossing direction based on three

SVM models. Each of these three models is trained with a weighted sum of multi-

ple kernels and recognizes one of the three labels: up, down or stationary. There, a

prediction for a given data sample is not made unless the three independent SVMs

unanimously agree on the classification. As a result, the prediction coverage – pro-

portion of labeled data – of the model could be low, which may represent a loss of

trading information.
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In contrast, the models in the present paper label every input data sample by

assigning the label corresponding to the hyperplane with the largest positive distance,

which means there is complete prediction coverage. In addition, extensive compara-

tive experiments show that the multi-class SVM modeling techniques proposed in this

paper reduce the training cost compared to the three multi-kernel SVMs in [14], but

still attain robust performance in terms of precision and recall.

Acknowledgments: The authors would like to thank the Chair of Economet-
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paper.

6 Appendix

As described in section 4.2, the attributes used in this study are those in the “eco-

nomical set” selected according to those having the largest information gain, a subset

of the original set of attributes described in Table 2. For reference, we report more

detail here on the specific features selected by this method.

In Tables 9 and 10 we show the top ten features selected for GOOG for each of

the two metrics, along with the Information Gain (IG) values.

In Table 11 we define an enumeration of the original set of attributes, so that we

may specify in Table 12 the complete set of economical features used our experiments

for AAPL and GOOG.
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Spread crossing
Rank IG Type Description

1 0.3711 Basic volume at best ask
2 0.3186 Basic volume at best bid
3 0.2512 T-insen mid-price at best ask and bid
4 0.2490 T-insen mid-price at level 4
5 0.2098 T-insen bid-ask spread at best ask and bid
6 0.2008 T-insen mid-price at level 2
7 0.1957 T-insen bid-ask spread at level 4
8 0.1916 T-insen mid-price at level 7
9 0.1675 T-sen acceleration of limit bid order arrival
10 0.1639 T-insen bid-ask spread at level 8
... ... ... ...

Table 9: Examples: features selected with top 10 information gain for spread crossing, along
with the feature type and descriptions. Basic = basic feature; T-insen = time-insensitive
feature; T-sen = time-sensitive feature; ∆t = 5 (events), Ticker = GOOG.

Mid-price
Rank IG Type Description

1 0.3356 T-insen mid-price at level 10
2 0.2944 T-insen mid-price at level 4
3 0.2032 T-insen average price on ask side
4 0.1907 Basic ask price at level 3
5 0.1871 T-insen bid-ask spread at best ask and bid
6 0.1593 Basic ask price at level 2
7 0.1568 T-sen average intensity of bid cancellation
8 0.1566 T-sen average intensity of market bid order
9 0.1565 T-sen average intensity of limit bid order
10 0.1559 T-insen average volume at bid side
... ... ... ...

Table 10: Examples: features selected with top 10 information gain for mid-price movement,
along with the feature type and descriptions. ∆t = 5 (events), Ticker = GOOG.
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Basic Set Description(i = level index )

v1 = {ak1}4nk=1 = {Paski , V aski , P bidi , V bidi }ni=1, price and volume(n levels)

Time-insensitive Set Description(i = level index )

v2 = {ak2}2nk=1 = {(Paski − P bidi ), (Paski + P bidi )/2}ni=1, bid-ask spreads and mid-prices

v3 = {ak3}2nk=1 = {|Paski+1 − Paski |, |P bidi+1 − P bidi |}ni=1, price differences

v4 = {ak4}4k=1 = { 1
n

∑n
i=1 P

ask
i , 1

n

∑n
i=1 P

bid
i , 1

n

∑n
i=1 V

ask
i , 1

n

∑n
i=1 V

bid
i }, mean prices and volumes

v5 = {ak5}2k=1 = {
∑n
i=1(Paski − P bidi ),

∑n
i=1(V aski − V bidi )}, accumulated differences

Time-sensitive Set Description(i = level index )

v6 = {ak6}4nk=1 = {dPaski /dt, dP bidi /dt, dV aski /dt, dV bidi /dt}ni=1, price and volume derivatives

v7 = {ak7}6k=1 = {λla∆t, λ
lb
∆t, λ

ma
∆t , λ

mb
∆t , λ

ca
∆t, λ

cb
∆t } average intensity of each type

v8 = {ak8}4k=1 = {1{λla
∆t>λ

la
∆T
}, 1{λlb

∆t>λ
lb
∆T
}, 1{λma

∆t >λ
ma
∆T
}, 1{λmb

∆t>λ
mb
∆T
}}, relative intensity indicators

v9 = {ak9}4k=1 = {dλma/dt, dλlb/dt, dλmb/dt, dλla/dt}, accelerations(market/limit)

Remarks:

∗ ak1 (k = 4i− j) denotes the ask price, volume; bid price, volume at level i for j = 3, 2, 1, 0, respectively.

∗ ak2 (k = 2i− j) denotes the bid-ask spread and mid-price at level i for j = 1, 0, respectively.

∗ ak3 (k = 2i− j) denotes the price differences for ask and bid at level i for j = 1, 0, respectively. (Pn+1 = P1)

∗ ak6 (k = 4i− j) denotes derivative of ask price, volume; bid price, volume at level i for j = 3, 2, 1, 0, respectively.

Table 11: Feature vector sets enumerated.

Ticker List of Attributes akl in Economical Set (Mid-price)

AAPL
a4

1, a2
1, a3

2, a15
2 , a4

2, a2
2, a8

2, a32
1 , a13

2 , a1
7, a3

9, a14
1 , a12

1 , a34
1 , a28

1 , a4
9, a10

1 , a40
1 , a8

1, a24
1

a18
1 , a5

1, a13
1 , a9

1, a25
1 , a33

1 , a2
4, a17

1 , a21
1 , a1

1, a20
2 , a2

3, a2
8, a2

6, a4
6, a2

9, a2
5, a7

2, a14
2 , a39

1

GOOG
a20

2 , a8
2, a1

4, a10
1 , a1

2, a5
1, a6

7, a4
7, a2

7, a4
4, a2

1, a13
2 , a15

2 , a4
9, a28

1 , a27
1 , a30

1 , a25
1 , a1

5, a29
1

a31
1 , a7

2, a3
7, a3

6, a1
6, a1

8, a24
1 , a4

8, a1
7, a5

7, a1
3, a19

2 , a20
1 , a40

1 , a8
1, a6

1, a2
4, a16

1

Ticker List of Attributes akl in Economical Set (Spread Crossing)

AAPL
a20

2 , a2
1, a3

4, a1
4, a1

6, a1
2, a3

6, a2
2, a1

9, a4
9, a1

7, a29
1 , a9

1, a13
1 , a25

1 , a37
1 , a5

1, a1
1, a2

6, a2
9, a14

2

a17
1 , a33

1 , a7
2, a20

2 , a6
7, a21

1 , a2
5, a2

3, a31
1 , a35

1 , a39
1 , a4

7, a2
7, a1

8, a2
8, a4

6, a3
9, a27

1 , a11
1 , a19

1

a23
1 , a15

1 , a3
1, a7

1, a4
8, a11

2 , a8
2, a20

1 , a10
2 , a15

2 , a9
2, a6

1, a3
2, a13

2 , a4
1, a34

1 , a4
2, a5

2, a30
1

GOOG
a2

1, a4
1, a2

2, a8
2, a1

2, a4
2, a7

2, a14
2 , a2

9, a15
2 , a19

2 , a9
2, a1

3, a9
1, a17

2 , a5
1, a6

7, a4
7, a2

7, a2
3, a2

6

a1
1, a13

1 , a1
2, a19

1 , a2
5, a27

1 , a15
1 , a1

5, a2
8, a3

1, a1
9, a39

1 , a3
9, a7

1, a4
6, a3

2, a15
2 , a13

2 , a6
1, a8

2

a16
2 , a22

1 , a1
4, a35

1 , a23
1 , a11

2 , a10
2 , a11

1 , a17
1 , a3

4, a29
1 , a21

1 , a20
2 , a4

9, a1
6

Table 12: Complete list of the selected attributes for the economical sets. akl denotes the
k-th attribute from the vector vl in Table 11, l = 1, 2, ..., 9.
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