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Abstract. We construct a variety of complete plane cubics by a sequence of five blow-
ups over P9. This enables us to translate the problem of computing characteristic

numbers for a family of plane cubics into one of computing five Segre classes, and to

recover classic enumerative results of Zeuthen and Maillard.

§0 Introduction. This paper is devoted to the computation of the characteristic
numbers for the 9-dimensional family of smooth plane cubics, i.e. the number of
non-singular plane cubics which are tangent to n` lines and contain 9−n` points in
general position in the plane. We plan to complement this result with the compu-
tation of the characteristic numbers for nodal and cuspidal cubics, in a forthcoming
paper.

Classically, the enumerative geometry of plane cubics was studied independently
by S. Maillard and H.S. Zeuthen around 1870 ([M], [Z]); their results also appear
in [Sc], Chapter 4, §24. However, as with many other accomplishments of the
great enumerative geometers of the XIX century, the rigor of the methods used in
[M], [Z] was soon questioned. In the past few years interest in enumerative ge-
ometry has revived, partially as a consequence of a new and deeper understanding
of intersection theory, and in many cases the old results and methods have been
verified, improved, or corrected. In the case of plane cubics, there are already sev-
eral modern approaches partially verifying Maillard and Zeuthen’s results (see [Sa],
[KS], [XM]). In general, these approaches work in the vein of the classic “degen-
eration method”: by specializing the families to more degenerate ones, and using
previously obtained results. Kleiman and Speiser, in particular, have developed an
efficient procedure of “partially” compactifying the family under examination. They
normalize part of the graph of the dual map, in such a way that the elementary
systems (the basic tool for relating the characteristic numbers of different families)
are incorporated as complete subschemes.

We present here an approach with a different flavor. We dominate the graph
of the dual map with a non-singular variety Ṽ , which is obtained from the P9

parametrizing plane cubics by a sequence of blow-ups, in the spirit of (for example)
Veinsencher’s spaces of ‘complete quadrics’ ([V]). Also, rather than employing the
method of degeneration, we reduce the computation of the numbers for a family of
reduced cubics to the computation of certain Segre classes related to the behavior
of the family in the blow-up process. This choice, which has its roots in Fulton-
Mac Pherson’s ‘static’ intersection theory, forces us to an extensive analysis of the
blow-ups —indeed, this choice forces us to desingularize the whole graph; its net
advantage is that a specific family can be studied without dependence on other re-
sults. The characteristic numbers for smooth cubics, for example, are an immediate
by-product of our construction of Ṽ , while their computation via the degeneration
method relies on sophisticated information about families of singular cubics.

The compactification we construct here can be used to compute characteristic
numbers for families of singular cubics as well; generally speaking, the difficulty of



the task increases with the codimension of the family, in contrast with the degen-
eration method.

We give a sequence of 5 blow-ups V1, . . . , V5 over P9 = V0, with non-singular
centers Bi ↪→ Vi; if F ⊂ P9 is a family of reduced cubics, and F1, . . . F5 are the
proper transforms in the blow-ups of its closure F0 in P9, we basically translate
the problem of computing the characteristic numbers for F into one of computing
the five Segre classes s(Bi ∩ Fi, Fi), i = 0, . . . , 4. Now, in general these are easier
to compute when the codimension of F is low; for F the family of smooth cubics,
Fi = Vi and s(Bi, Vi) are the inverse Chern classes of the normal bundles to Bi in
Vi, which are obtained in the blow-up construction. The classes needed when F
parametrizes other families (e.g. nodal cubics, or cuspidal cubics, or cubics tangent
to a line at a given point) will require some more work.

In the P9 parametrizing plane cubic curves, call ‘point-conditions’ and ‘line-
conditions’ respectively the hypersurfaces consisting of the cubics respectively con-
taining a given point and tangent to a given line. The intersection of all line-
conditions in P9 is supported on a four-dimensional irreducible variety S parametriz-
ing all non-reduced cubics —i.e., cubics decomposing into a line and a ‘double line’.
For any family of reduced cubics F ⊂ P9 − S, consider the number N of elements
(counted with multiplicity) in the intersection of F with given general point- and
line-conditions. For example, if F is the set of all smooth cubics, N is a character-
istic number for smooth cubics.

Now, for any variety mapping to P9, isomorphically over P9−S, call ‘point-’ and
‘line-conditions’ the proper transforms of the conditions in P9; we say that such
a variety Ṽ is a ‘variety of complete plane cubics’ if the intersection of its line-
conditions is empty. In §1 we prove (Theorem I) that the number N is precisely
the degree of the intersection of the point- and line-conditions in such a Ṽ with the
proper transform F̃ ⊂ Ṽ of the closure of F .

In §3 we construct a smooth variety Ṽ of complete cubics. This is obtained by a
sequence of five blow-ups along non-singular centers, starting with the blow-up of the
P9 of cubics along the Veronese of ‘triple lines’. The same sequence was considered
by U. Sterz, who also obtains some enumerative results (see in particular [St] IV),
and to which we address the reader for a different point of view. The general aim
is to separate the proper transforms of the line-conditions above S; we accomplish
this by systematically blowing up the largest component of their intersection. In
doing so, we also collect (Theorem III) the information required to compute in
Ṽ the intersection degrees we need: i.e., a description of the intersection rings of
the centers of the blow-ups, the total Chern classes of their normal bundles, and
information consisting essentially of the multiplicities of the conditions along the
centers.

The computation of the intersection degrees is performed by using a formula
(Theorem II in §2) which relates intersections under blow-ups. For Xν subschemes
of a scheme V , and Ṽ the blow-up of V along a regularly imbedded subscheme B,
the formula gives the difference between the intersection number of the Xν in V

and the intersection number of their proper transforms in Ṽ explicitly, in terms of
information essentially equivalent to the Segre classes s(B∩Xν , Xν). We can apply
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this formula to climb the sequence of blow-ups defining our variety of complete
cubics.

In view of Theorems I, II, and III, the key information for computing the char-
acteristic numbers for any family F of cubics amounts to five Segre classes s(Bi ∩
Fi, Fi), where Fi are the proper transforms of the closure of F in P9. In fact, this
result is best expressed in terms of equivalent data, i.e. the ‘full intersection classes’

Bi ◦ Fi = c(NBi
Vi) ∩ s(Bi ∩ Fi, Fi) .

Theorem IV gives the numbers for a family F of reduced cubics explicitly in terms
of the classes Bi ◦ Fi. For the family F of all smooth cubics we have Fi = Vi, thus
Bi ◦ Fi = Bi (since, for B, V smooth, the Segre class s(B, V ) equals the inverse
total Chern class c(NBV )−1). This allows us to get the characteristic numbers for
smooth cubics by simply evaluating coefficients of certain power series (Corollary
IV).

For F the family of nodal cubics, or of cuspidal cubics, etc., the computation of
the classes Bi ◦ Fi is a more challenging task. We will devote to it a second note.

A good example of a less trivial application of Theorem IV to smooth cubics
is the computation of the characteristic numbers obtained by considering also the
codimension-2 condition expressing the tangency to a line at a given point. To apply
Theorem IV to this question, we have to compute the five classes for the family of
cubics satisfying one of these conditions. This computation is sketched in §5; the
characteristic numbers (agreeing with Maillard and Zeuthen’s results) are listed
in Corollary IV′. In fact, we show that the information we need to compute the
numbers with respect to codimention-1 conditions for any family of cubics (i.e. the
five classes) is enough to obtain the results involving these codimension-2 conditions
as well (Theorem IV′ in §5). This result will also be applied to families of singular
cubics in the future note.

In this paper we work over an algebraically closed field of characteristic 6= 2, 3.
The blow-up formula in §2 is characteristic-free, and the preliminary results (in
particular Corollary I) hold in characteristic 6= 2; however, the blow-up construction
for the space of cubics needs characteristic 6= 2, 3.

Some of the material in this paper appears in the author’s doctoral thesis written
under the guidance of W. Fulton at Brown (May 1987), and (in a sketchier version)
in [A].

Aknowledgements. It is a pleasure to thank A. Collino and W. Fulton for propos-
ing the problem and for constant advice and encouragement. I also want to thank
Joe Harris for several enlightening comments on the subject.

§1 Preliminaries: varieties of complete plane curves. We will discuss here
some facts and notations we will use in the rest of the note. The facts hold for any
degree and any family of reduced curves, so we will not restrict ourselves to smooth
cubics.

In the PN parametrizing plane curves of degree d, call point-conditions and line-
conditions respectively the hypersurfaces consisting of the plane curves respectively
containing a given point and tangent to a given line. By ‘tangent to a line’ we will
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always mean ‘intersecting a line with multiplicity at least 2 at a point’. We will
say that a curve c and a line ` are ‘properly tangent’ if ` is simply tangent to c
at a single non-singular point –i.e., if the tangency point is smooth on c and c is a
smooth point of the line-condition corresponding to `.

For any variety Ṽ mapping birationally to PN , biregularly over the set PN − S
consisting of reduced curves, call the proper transforms of the point- and the line-
conditions of PN point- and line-conditions of Ṽ .

Definition. We shall say that Ṽ is a variety of complete plane curves of degree d
if, moreover, the intersection of all its line-conditions is empty.

The general point- and line-conditions of Ṽ define divisors P̃ , L̃ in Ṽ . Although in
general these need not be Cartier divisors on Ṽ , notice that they restrict to Cartier
divisors on the inverse image of PN−S: thus if their intersection with a subvariety F̃
of Ṽ is proper and doesn’t have components lying over S, then intersection products
P̃ · F̃ and L̃ · F̃ are defined. When writing such products, we will imply that this is
the case.

Our aim in this section is to show:

Theorem I. Let Ṽ be a variety of complete plane curves of degree d, F an r-
dimensional (maybe non-complete) subvariety in PN parametrizing a family of re-

duced curves, and let F̃ be the proper transform in Ṽ of the closure of F . Then the
number of elements (counted with multiplicities) of F containing np given points

and tangent to n` given lines in general position, with np + n` = r, is P̃np · L̃n` · F̃ .
Furthermore, the elements containing the given points and properly tangent to the
given lines are counted with multiplicity 1.

Note that the statement implies that this number doesn’t change when F is
replaced with any dense open subset of F . I.e., ‘special’ curves in the family can be
discarded.

In this note, our main application of this result is to the computation of the
characteristic numbers for the family of smooth plane cubics. Since in characteristic
6= 2 the general smooth curve is reflexive (so that for general lines all tangencies
will be proper), Theorem I gives

Corollary I. The characteristic numbers for the family of smooth plane curves

of degree d are given by P̃np · L̃n` , for all np, n` with np + n` = d(d+3)
2 .

In section 3 we will construct a ‘variety of complete plane cubics’; Corollary I will
then allow us to explicitly perform the computation for smooth plane cubics. More
generally, Theorem I and the construction in section 3 will give a tool (Theorem
IV in §4) to compute the numbers for any family of reduced cubics, on the basis of
geometric information.

Let Q be a 3-dimensional vector space over an algebraically closed field of char-
acteristic 6= 2. The curves of degree d in the projective plane P2 = P(Q) form a
projective space PN = P(SymdQ̌), of dimension N = d(d+3)

2 . In this projective
space, the curves that contain a given point form a hyperplane; while those that
are tangent to a given line form a hypersurface of degree 2d− 2. We will call these
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divisors point-conditions and line-conditions respectively. As a point varies in P2,
the corresponding point-condition traces a subset of P̌N . In fact, if (x0 : x1 : x2)
are coordinates in P2, the point-condition corresponding to the point (x̄0 : x̄1 : x̄2)
is the hyperplane in PN whose equation has the monomials of degree d in x̄0, x̄1, x̄2

for coefficients. In other words:

Remark 1. The set of point-conditions of PN is the d-Veronese imbedding of P̌2

in P̌N .

In particular, the set of point-conditions is non-degenerate and irreducible, and
in particular it is not contained in any finite union of hyperplanes: for example, it
follows that a point-condition can always be chosen to cut properly finitely many
arbitrary subvarieties of PN .

On the open subset of PN formed by the smooth curves, an injective morphism is
defined to the space PM = P(Symd(d−1)Q̌) parametrizing degree-d(d−1) curves, by
associating to each curve its dual. Note that a curve is tangent to a line ` ⊂ P2 if
and only if its dual contains ` ∈ P̌2: thus the line-conditions in PN are the pull-backs
of the point-conditions in the PM parametrizing all degree-d(d − 1) plane curves,
and it follows (by Remark 1)

Remark 2. The set of line-conditions of PN is the d(d− 1)-th Veronese imbedding
of P̌2 into P̌M .

This also makes it clear that the rational map ψ : PN · · · >PM determined by the
morphism above is defined by the linear system generated by the line-conditions in
PN .

We want to resolve the indeterminacies of ψ. These occur on the intersection
of all line-conditions, supported on the variety S ⊂ PN parametrizing non-reduced

curves; ψ is an injective morphism on PN −S. We will call any variety Ṽ filling the
commutative diagram

Ṽ
ψ̃−−−−→ PM

π

y ∥∥∥
PN

ψ
· · · · · · > PM

with ψ̃ a morphism, and isomorphic to PN outside π−1(S), a ‘variety of complete
plane curves of degree d’. For example, the blow-up of PN along the scheme-
intersection of all its line-conditions is a variety of complete curves of degree d. An
instance is the classical ‘variety of complete conics’ (cf. [CX, §2]). In a different
contest, Vainsencher’s varieties of complete quadrics (inspired by Schubert’s work)
give another example of a similar situation.

Note that the first condition (ψ lifting to a morphism Ṽ −→ PM ) amounts to just
requiring that the intersection in Ṽ of the proper transforms of all line-conditions
be empty. We will construct a smooth variety of complete cubics by blowing-up P9

five times along suitable centers, and use this variety to compute the characteristic
numbers of certain families of plane cubics.
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The proper transforms of general point-conditions and line-conditions determine
classes P̃ , L̃ of divisors on Ṽ . If Ṽ is smooth, then for any F̃ ⊂ Ṽ we have intersec-
tion products P̃ · F̃ and L̃ · F̃ . Even if Ṽ is not smooth, however, P̃ and L̃ restrict to
Cartier divisors on π−1(PN −S) (since this is smooth): thus P̃ · F̃ , L̃ · F̃ are defined
as long as π(F ) * S and the proper transforms of general choices of conditions cut
F̃ ∩ π−1S properly. This will always be the case for F as below (see Proposition 1
(1) and Lemma 1).

Computing characteristic numbers for families of reduced plane curves amounts
to computing the number of intersections of certain subsets of PN with assortments
of point- and line-conditions in general position.

Let’s first consider line-conditions. Let F be a pure r-dimensional locally closed
(maybe non-compact) subset of PN , parametrizing a family of reduced curves: i.e.,
we assume F ∩S = ∅. For example, F could be the set of all smooth curves, or the
set of all nodal curves, or the set of all nodal curves containing a given point, and so
on. The number of elements of F tangent to r lines in general position in the plane
is the number of points of intersection of F with r general line-conditions of PM ; but
since all line-conditions contain the set of non-reduced curves, often non-reduced
curves will appear in the intersection of r (general) line-conditions with the closure
F of F . For example, if F is the set of non-singular conics, the intersection of 5
general line-conditions with F (= the whole of P5) consists of one isolated point
and of the 2-dimensional set of ‘double lines’.

Let then Ṽ be a variety of complete plane curves of degree d, F̃ the proper
transform of F in Ṽ , and call ‘line-conditions in Ṽ ’ the proper transforms in Ṽ of
the line-conditions of PN ; call L̃ the class of the general line-condition in Ṽ .

Proposition 1.

(1) A line-condition in Ṽ can always be chosen to cut properly any finite collec-

tion of subvarieties of Ṽ ;

(2) With F as above, r line-conditions in Ṽ can be chosen to cut F̃ in finitely
many points, mapping to points of F ;

(3) the number of elements of F that are tangent to r lines in general position

is the number of intersections of F̃ with r general line-conditions in Ṽ .

Proof: (1) follows from Remark 2: the set of line-conditions is not contained in
any finite union of hyperplanes of P̌M .

For (2), let πF be the restriction of π to F̃ , and set E = F̃ − π−1
F F : dimE ≤ r−1,

so (2) follows by applying (1) r times.
(3) follows from (2).

Working in a variety of complete curves Ṽ , the number we are after is the number
of points of intersections of complete subsets of Ṽ : counting multiplicities, the
number is given by the degree of L̃r · F̃ .

Now for the point-conditions. As above, let Ṽ be a variety of complete plane
curves of degree d, mapping to PN by π, F a locally closed subset of PN , r = dimF
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and F̃ the proper transform in Ṽ of the closure F of F . In general, ˜ denotes
proper transform via π.

Lemma 1. There exists a point-condition P such that P ∩ F = P ∩ F , ˜P ∩ F =
P̃ ∩ F̃ , and dim(P̃ ∩ F̃ ) = r − 1.

Proof: Let πF be the restriction of π to F̃ . P ∩ F = P ∩F and dim(P̃ ∩F̃ ) = r−1

are forced by requiring that P cut properly F and F − F . Next, certainly ˜P ∩ F
coincides with P̃ ∩ F̃ outside π−1

F (S) for any point-condition P ; we have to show
that we can choose P so that none of the components of P̃ ∩ F̃ lies in π−1

F (S). Let
then Fi ⊂ F be the supports of the components of π−1

F (S), and choose the point-
condition P so that it cuts properly all the Fi’s. Since π−1

F (S) itself has dimension
(at most) r − 1, this will force dimπ−1

F (S) ∩ P̃ < r − 1, and we will be done. That
a point-condition can be chosen to cut properly any finite choice of subvarieties of
PN is once more a consequence of the non-degeneracy of the set of point-conditions
(Remark 1).

Following our line of notations, call now point-conditions in Ṽ the proper trans-
forms in Ṽ of the point-conditions in PN ; the general ones determine a divisor class
P̃ of Ṽ .

From Proposition 1 and Lemma 1, the first part of our basic tool follows:

Theorem I. (1) Let Ṽ be a variety of complete plane curves of degree d, F an
r-dimensional subvariety of PN parametrizing a family of reduced curves, and let

F̃ be the proper transform of F in Ṽ . Then the number of elements (counted with
multiplicities) of F containing np points and tangent to n` lines in general position,

with np + n` = r, is given by P̃np · L̃n` · F̃ .

Proof: By repeated applications of Lemma 1, np point-conditions P1, . . . , Pnp can
be chosen so that

[(∩iPi) ∩ F ] ˜ = [(∩iPi) ∩ F ] ˜ = (∩iP̃i) ∩ F̃ .

To conclude, it suffices to apply Proposition 1 to (∩iPi) ∩ F .
The last part of Theorem I concerns intersection multiplicities. It can be proven

by induction on n`; the start and the induction step are consequences of:

Lemma 2. Let C be an irreducible curve in PN , such that C ∩ S = ∅ and that the
curves in C do not have a common component. Let c be a general point of C; then

(1) there exist at most finitely many points p ∈ P2 such that p ∈ c and the
point-condition corresponding to p is tangent to C at c;

(2) there exist at most finitely many lines ` ⊂ P2 such that c is properly tangent
to ` and the line-condition corresponding to ` is tangent to C at c.

Proof: We can assume c is a smooth point of C; if c is reducible as a plane curve,
we can in fact assume that all components of c are moving smoothly as c moves on
C.

(1) By definition, the point-condition P corresponding to p ∈ P2 contains c if and
only if p ∈ c. P is tangent to C at c if it contains the tangent line to C at c: let
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c′ 6= c be a point of this line. P contains the line through c and c′ 6= c if and only if
p ∈ c∩ c′: since all components of c are moving smoothly, this intersection is finite.

(2) Since c and ` are properly tangent, then c is a smooth point of the line-
condition L` corresponding to `: therefore, C is tangent to L` at c if and only if
ψ(C) is tangent at ψ(c) to the point-condition corresponding to ` (since C ∩S = ∅,
ψ(c) is defined for all c ∈ C). Also, ` belongs to a reduced component of ψ(c), since
the tangency point is smooth on c. Since c is general in C, we can assume this
component is moving smoothly at ψ(c). (2) is then simply the dual of (1): i.e., (1)
applied to ψ(c) ∈ ψ(C) ⊂ PM .

Theorem I. (2) In the same hypotheses of Theorem I (1), the elements containing
the given points and properly tangent to the given lines appear with multiplicity 1.

Proof: We can assume that the curves in F don’t have a common component: if
they do, factoring it out reduces the statement to the same for lower degree curves.

We will prove that: (a) the statement is true for np = r, n` = 0; (b) the statement
for np = r − k, n` = k, k < r implies the statement for np = r − k − 1, n` = k + 1.
The assertion will then follow by induction.

(a) It is enough to show that there exists a point-condition P such that P ∩ F
is reduced, and to apply this fact r times. Now, suppose that is not the case: i.e.,
suppose that for each point-condition P , P ∩ F has some non-reduced component,
of dimension r − 1. These components would cover a component of F , and the set
of point-conditions is 2-dimensional: thus for a general point c in a component of
F there would be infinitely many point-conditions tangent to F at c. In particular,
they would all be tangent to some curve through c, contradicting Lemma 2 (1).

(b) For np = r − k, n` = k, the statement says that for general line-conditions
L1, . . . , Lk and point-conditions P1, . . . , Pr−k, the intersection F ∩ L1 ∩ · · · ∩ Lk ∩
P1 ∩ · · · ∩ Pr−k is transversal at all points corresponding to proper tangency to
the lines. Consequently, the components Ci of the curve F ∩ L1 ∩ · · · ∩ Lk ∩
P1 ∩ · · · ∩ Pr−k−1 that contain these points are reduced and cut transversally by
Pr−k: to prove the induction step, we must show that there exists a line ` in the
plane, such that the corresponding line-condition Lk+1 cuts the Ci transversally at
points corresponding to proper tangency to `. By Lemma 2 (2), the set of line-
conditions which fail to cut transversally the Ci’s at points corresponding to proper
tangencies is at most 1-dimensional, in the 2-dimensional set of line-conditions.
Therefore, an ` as above must exist.

§2 Preliminaries: an intersection formula. In §3 we will construct a ‘variety
of complete plane cubics’ Ṽ by a stack of blow-ups at non-singular centers over P9.
Corollary I in §1 expresses the characteristic numbers as degrees of intersection of
the proper transforms in Ṽ of suitable hypersurfaces of P9; we introduce here the
formula we will use in §4 to compute these intersection degrees.

Let V be a non-singular variety of dimension n over an arbitrary field, and B
a non-singular closed subvariety of codimension d in V . For X ↪→ V any pure-
dimensional subscheme of V , we set

B ◦X = c(NBV ) ∩ s(B ∩X,X)
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in the Chow group A∗(B ∩X) of B ∩X. We call this the ‘full intersection class’ of
X by B in V .

Lemma. Denote by {·}r the r-dimensional component of the class between braces.

(1) Let N be the pull-back of NBV to B ∩ X, C = CB∩XX ↪→ N the cone of
B ∩X in X, Q the universal quotient bundle of rank d of P(N ⊕ 1), p the
projection P(N ⊕ 1) −→ B ∩X. Then

B ◦X = p∗(c(Q) ∩ [P(C ⊕ 1)]) ;

(2) {B ◦X}dimX−d = B ·X = j![X];
(3) {B ◦X}ν = 0 for ν < dimX − d, ν > dimB ∩X.

Proof: (1) Denote by O(−1) the universal line bundle on P(N ⊕ 1); then Q =
p∗N ⊕ 1/O(−1), and therefore

p∗(c(Q) ∩ [P(C ⊕ 1)]) = p∗(c(p∗N) ∩ (1− c1(O(1))−1 ∩ [P(C ⊕ 1)]))

= p∗(c(p∗N) ∩ (
∑
i≥0

c1(O(1))i ∩ [P(C ⊕ 1)]))

= c(N) ∩ s(C)
= g∗c(NBV ) ∩ s(B ∩X,X).

(2) See [F], Proposition 6.1(a) and §6.2 (j! is the ‘Gysin homomorphism’).
(3) {B ◦X}ν = 0 for ν > dimB ∩X is obvious; {B ◦X}ν = 0 for ν < dimX − d

follows from (1).

Let Ṽ be the blow-up of V along B, suppose X1, . . . , Xr are pure-dimensional
subschemes of V , and let X̃ν ⊂ Ṽ be their proper transforms: i.e., the blow-ups of
Xν along B ∩Xν .

Theorem II. Suppose that the codimensions of the Xν add to the dimension of
V , and that the intersection ∩Xν is a proper scheme. With the notation above∫

Ṽ

X̃1 · . . . · X̃r =
∫
V

X1 · . . . ·Xr −
∫
B

∏r
ν=1(B ◦Xν)
c(NBV )

.

Here the first product is taken in Ṽ , the second in V and the third in B.
In §4 this formula will be applied to each blow-up in the sequence.

Proof: Let E = P(NBV ) be the exceptional divisor of the blow-up, and write the
maps involved as follows:

E
i−−−−→ Ṽ

ρ

y yπ
B

j−−−−→ V

.

Theorem II follows from:
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Claim. Let X1, . . . , Xr be pure-dimensional subschemes of V , and write m =
dimV − codimVX1 − · · · − codimVXr. Then

(*) π∗(X1 · . . . ·Xr) = X̃1 · . . . · X̃r + i∗

{
ρ∗((B ◦X1) · . . . · (B ◦Xr))

c(NE Ṽ )

}
m

in Am(
⋂
i π

−1Xi).

By [F], Proposition 6.7 (d), to prove (*) one must show that the equality holds
after (1) pushing it forward on V by π, and (2) pulling it back on E by i. We will
show (1) here (which is enough to imply Theorem II), and leave (2) to the interested
reader.

By the the projection formula, (1) amounts to

X1 · . . . ·Xr = π∗(X̃1 · . . . · X̃r) + j∗

{∏r
ν=1(B ◦Xν)
c(NBV )

}
m

.

Example 12.4.4 in [F] gives

X1 · . . . ·Xr = π∗(X̃1 · . . . · X̃r) + j∗p∗(P(C1 ⊕ 1) · . . . · P(Cr ⊕ 1)),

where p denotes the projection P(NBV ⊕1) −→ B and Ci = CB∩XiXi are the normal
cones of the imbeddings B ∩Xi ↪→ Xi. Thus to prove (1) we may show that

(1’) p∗(P(C1 ⊕ 1) · . . . · P(Cr ⊕ 1)) =
{

(B ◦X1) · . . . · (B ◦Xr)
c(NBV )

}
m

,

where p is the projection P(N ⊕ 1) −→ B.
To this effect, let d = codimVB, ζ = c1(OP(N⊕1)(1)), and Q be the universal

quotient bundle of rank d over P(N ⊕ 1). Any element A in Ak(P(N ⊕ 1)) can be
expressed uniquely in the form

A =
d∑
ν=0

ζν ∩ p∗αk−d+ν ,

where αj ∈ Aj(B). Setting α = ⊕dν=0αk−d+ν ∈ A∗(B), we say that A corresponds
to α.

Claim 1. [P(Ci ⊕ 1)] corresponds to B ◦Xi, i = 1, . . . , r.

Indeed, for any αj ∈ AjB and any ν ≤ d, by Example 3.3.3 in [F]

p∗(c(Q) ∩ ζν ∩ p∗αj) = αj ;

thus the [P(Ci ⊕ 1)] must correspond to p∗(c(Q) ∩ [P(Ci ⊕ 1)]). This equals B ◦Xi

by (1) of the Lemma.
Next, we relate in the above terminology intersections in P(N ⊕ 1) and B. With

n = dimV = dim P(N ⊕ 1):

10



Claim 2. Suppose Ai ∈ Aki
(P(N ⊕ 1)) correspond to α(i), i = 1, . . . , r, and let

m = k1 + · · ·+ kr − (r − 1)n. Then

p∗(A1 · . . . ·Ar) =
{
α(1) · . . . · α(r)

c(N)

}
m

.

Indeed, by linearity we may assume Ai = ζqi ∩ p∗α(i), with α(i) ∈ Aki−d+qi
B.

Setting q =
∑
qi and applying the projection formula, the Claim reduces to

p∗(ζq ∩ p∗α(r)) = sq−d(N) ∩ α(r) ,

which amounts to the definition of s(N) = c(N)−1 ([F], §3.1).
Claims 1 and 2 give (1’), concluding the proof of (1).

We remark that (*) above (and therefore Theorem II) holds for possibly singular
V and B, if B is regularly imbedded in V and under conditions that guarantee the
intersection products are defined.

One advantage in writing the formula in Theorem II in terms of full intersection
classes is that these are often easy to express ‘concretely’. In particular:

(i) if Xν = V , then B ◦Xν = B. Indeed, in this case s(B ∩Xi, Xi) = s(B, V ) is
the inverse total Chern class c(NBV )−1.

(ii) If Xν is a divisor then B ◦Xν = eBXν [B] + j∗[Xν ], where eBX denotes the
multiplicity of X along B and j is the imbedding B ↪→ V .

(iii) Similarly, if Xν has codimension 2 and meets B in an irreducible W , with
dimW = dimB − 1, then B ◦Xν = eWXν [W ] + j∗[Xν ].

(These statement follow from (2), (3) in the Lemma.)
By use of Theorem II, the characteristic numbers for a family F ⊂ P9 will be

expressed in terms of certain full intersection classes related to F (Theorem IV,
§4). For F the family of smooth cubics, we will just have to apply (i). To build up
Theorem IV, we will need to compute full intersection classes related to point- and
line- conditions, using (ii) (see §3); and (iii) will be needed for further computations
in §5.

§3 A smooth variety of complete cubics. Assume hereafter that the character-
istic of the ground field is 6= 2, 3. In this section we will construct a smooth variety of
complete plane cubics, by means of a stack of blow-ups over P9. The same sequence
of blow-ups was obtained independently by U. Sterz (cf. [St]); he gives a detailed
description in coordinates of each of them, and computes their homology bases and
several relations. Our point of view differs from Sterz’s in the sense that we need
to obtain ‘geometric’ information regarding the blow-ups, to apply the intersection
formula of §2. More precisely, we need for each blow-up Vi+1 = B`BiVi a description
of the intersection ring of each center Bi and the total chern class c(NBiVi) of its
normal bundle; also, we need the full intersection classes of the proper transforms
of point- and line-conditions in each blow-up with respect to the center. The result
is
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Theorem III. A smooth variety Ṽ = V5 of complete cubics can be obtained by a
sequence of 5 blow-ups Vi = B`Bi−1Vi−1, i = 1, . . . , 5, with V0 = P9, and where

(1) B0
∼= P2 is the locus of ‘triple lines’ in the space V0 = P9 of plane cubics;

the intersection ring of B0 is generated by the hyperplane class h, and∫
h2 = 1;

c(NB0V0) =
(1 + 3h)10

(1 + h)3
.

(2) B1 is a rank-2 projective bundle over B0;
the intersection ring of B1 is generated by the pull-back h of h and by the

class ε of the universal line bundle, and∫
B1

h4 = 0,
∫
B1

h3ε = 0,
∫
B1

h2ε2 = 1∫
B1

hε3 = 9,
∫
B1

ε4 = 51;

c(NB1V1) = (1 + ε)
(1 + 3h− ε)10

(1 + 2h− ε)6
.

(3) B2 is a rank-3 projective bundle over B1;
the intersection ring of B2 is generated by the pull-backs h, ε of h, ε and

by the class ϕ of the universal line bundle, and∫
B2

ϕ7 = −210
∫
B2

ϕ6h = −90
∫
B2

ϕ6ε = −240∫
B2

ϕ5h2 = −10
∫
B2

ϕ5hε = 0
∫
B2

ϕ5ε2 = 105∫
B2

ϕ4h2ε = 4
∫
B2

ϕ4hε2 = 18
∫
B2

ϕ4ε3 = 42∫
B2

ϕ3h2ε2 = −1
∫
B2

ϕ3hε3 = −9
∫
B2

ϕ3ε4 = −51

(all other codimension-7 terms have degree 0);
c(NB2V2) = (1 + ϕ)(1 + ε− ϕ).

(4) B3 is isomorphic to the blow-up B`∆P2 × P2 of P2 × P2 along the diagonal;
the intersection ring of B3 is generated by the pull-backs `,m of the hyper-

plane classes in the factors of P2 × P2, and by the class e of the exceptional
divisor, and em = e`, `3 = m3 = 0,∫

B3

`2m2 = 1,
∫
B3

e2`2 = −1,∫
B3

e3` = −3,
∫
B3

e4 = −6 ;
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c(NB3V3) = 1 + 7`+ 17m− 16e+ 126m2 + 99`m+ 21`2 − 315e`+ 105e2 +
582`m2 + 237`2m − 2517e`2 + 1611e2` − 358e3 + 1026`2m2 + 9174e2`2 −
3912e3`+ 652e4.

(5) B4 is isomorphic to B3;
the intersection ring of B4 is therefore generated by `,m, e as above;
c(NB4V4) = 1 − 5` + 5m + 18m2 − 27`m + 3`2 + 21e` − 7e2 − 30`m2 +

75`2m− 225e`2 + 135e2`− 30e3 + 75`2m2.

Also, in these notations:

Full intersection classes. The full intersection classes with respect to the Bi’s
of the proper transforms Pi, Li in Vi of point- and line-conditions are

B0 ◦ P0 = 3h , B0 ◦ L0 = 2 + 12h
B1 ◦ P1 = 3h , B1 ◦ L1 = 1 + 12h− 2ε
B2 ◦ P2 = 3h , B2 ◦ L2 = 1 + 12h− 2ε− ϕ
B3 ◦ P3 = `+ 2m , B3 ◦ L3 = 1 + 4`+ 8m− 6e
B4 ◦ P4 = `+ 2m , B4 ◦ L4 = 1 + `+ 5m− 2e.

The rest of this §3 is devoted to the proof of Theorem III. Most of the notations
employed here appear in the following diagram:

Ṽ = V5yπ5

V4
j4←−−−− B4 = P(L)yπ4

y
V3

j3←−−−− B3 = S3
φ3←−−−−
∼

B`∆P̌2 × P̌2yπ3

y ∥∥∥
B2

j2−−−−→ V2 ←−−−− S2
φ2←−−−−
∼

B`∆P̌2 × P̌2

P3−bundle
y yπ2

y ∥∥∥
B1

j1−−−−→ V1 ←−−−− S1
φ1←−−−−
∼

B`∆P̌2 × P̌2

P2−bundle
y yπ1

y y
v3(P̌2) = B0

j0−−−−→ P9 = V0 ←−−−− S0
φ0←−−−− P̌2 × P̌2

.

Here S0 is the locus of non-reduced cubics, and B0 = v3(P̌2) ↪→ P9 is the Veronese
of triple lines. Each Bi is the center of the blow-up Vi+1 = B`BiVi; Si+1 denotes
the proper transform of Si under this blow-up.
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Also, L is a certain sub-line bundle of the normal bundle NB3V3 of B3 in V3. ∆
is the diagonal in P̌2 × P̌2.

Finally, P0, L0 will respectively be point- and line-conditions in P9; Pi, Li will be
the proper transforms of Pi−1, Li−1, and Ei will be the exceptional divisor of the
i-th blow-up. The Pi’s and Li’s will be called ‘point-conditions’ and ‘line-conditions’
in Vi. We will also say that point- and line-conditions are ‘in general position’ if
the corresponding points and lines are.

Sections 3.0-3.5 describe the sequence of blow-ups in some detail. The aim is to
‘separate’ the line-conditions by blowing-up non-singular subvarieties; thus, we will
generally choose as centers the ‘biggest’ non-singular components of the intersection
of the line-conditions. In P9 the intersection of the line-condition is supported on
the 4-dimensional variety S0 parametrizing non-reduced curves. This is the image
of a bijective map φ0 : P̌2 × P̌2 −→ P9; φ0 ramifies along the diagonal, mapping to
the 2-dimensional locus B0 of ‘triple lines’. This latter is our choice for the first
blow-up.

Each of sections 3.0-3.5 is organized as follows: we find on each Vi the intersection
of all line-conditions, and we choose a center Bi for the next blow-up (a non-singular
subvariety or component of the intersection of the line-conditions); then we obtain
the information collected in Theorem III. In particular, we describe the intersection
rings of the Bi’s, and we compute the total Chern class c(NBiVi) of the normal
bundle to Bi in Vi. Next, we examine the geometry of the situation in more detail,
to obtain the information we will need in the following stages. Also, we compute
the multiplicities eBi

Pi, eBi
Li of the conditions along the centers (in fact, eBi

Pi
will always be 0), and the pull-backs j∗i Pi, j

∗
i Li: this is the information contained

in the full intersection classes of the conditions with respect to the centers.
To prove that V5 is a ‘variety of complete cubics’ amounts to proving that the

intersection of its line-conditions is empty; this will be shown in §3.5. Equivalently,
one can show that V5 dominates the graph of the rational map ψ of §1; a proof in
these terms can be found in [St, II, §4].

§3.0 The P9 of plane cubics. Let Q be a 3-dimensional vector space over an
algebraically closed field of characteristic 6= 2, 3, and consider P9 = P(Sym3Q̌),
the projective space parametrizing cubic curves in the plane P2 = PQ. x0, x1, x2

(resp., a0, . . . , a9) will be homogeneous coordinates in P2 (resp., in P9): the point
(a0 : · · · : a9) ∈ P9 is associated with the cubic of equation

a0x
3
0 + a1x

2
0x1 + a2x

2
0x2 + a3x0x

2
1 + a4x0x1x2+

+ a5x0x
2
2 + a6x

3
1 + a7x

2
1x2 + a8x1x

2
2 + a9x

3
2 = 0.

We will write K simultaneously for the cubic K in P2, a cubic polynomial giving
K in terms of the coordinates (x0 : x1 : x2), and the corresponding point K ∈ P9.
Similarly, λ ∈ P̌2 will stand for both the line λ in P2 and a corresponding linear
function in terms of (x0 : x1 : x2).

We observed already (see §1) that the point-conditions P0 in P9 are hyperplanes,
while the line-conditions L0 form hypersurfaces of degree 4. Explicitly, the line-
condition corresponding to the line x0 = 0 is the discriminant of the polynomial in

14



x1, x2

a6x
3
1 + a7x

2
1x2 + a8x1x

2
2 + a9x

3
2,

hence has equation

(*) a2
7a

2
8 + 18a6a7a8a9 − 4a6a

3
8 − 4a3

7a9 − 27a2
6a

2
9 = 0.

The following facts about line-conditions are independent of the corresponding
line, therefore can be checked on (*):

Lemma 0.1. Let L be the line-condition in P9 corresponding to λ ∈ P̌2. Then:

(1) IfK ∈ L, then L is smooth atK if and only ifK intersects λ with multiplicity
exactly 2 at a point. In particular, the line-conditions are generically smooth
along the locus S0 of non-reduced cubics.

(2) If K intersects λ with multiplicity 3 at a point, then L has multiplicity 2 at
K. In particular, the line-conditions have multiplicity 2 along the locus B0

of triple lines.
(3) The tangent hyperplane to L at a smooth point K consists of the cubics

containing the point of tangency of K to λ. The tangent cone in V0 = P9

to L at a cubic K intersecting λ in a triple point p is supported on the
hyperplane in V0 consisting of the cubics containing p.

The intersection of all line-conditions consists of the locus of non-reduced cubics,
which we denote S0. S0 is the image of the 1-1 morphism

P̌2 × P̌2 φ0−→ P9

(λ, µ) 7→ λµ2

which maps the pair of lines with equations {λ = 0}, {µ = 0} to the cubic of
equation {λµ2 = 0}. If ∆ is the diagonal in P̌2× P̌2, φ0(∆) is the locus B0 of triple
lines.

Lemma 0.2. The restriction of φ0 : P̌2 × P̌2 −∆ −→ S0 −B0 is an isomorphism. In
particular, S0 −B0 is non-singular.

Proof: The locus where dφ0 is an isomorphism is clearly invariant under projective
transformations of P2, and the group of projective transformations acts transitively
on P̌2 × P̌2 −∆.

In fact, S0 is singular along B0 (see Remarks 1.4); we choose B0 as the center of
the first blow-up.

Lemma 0.3. B0 is the third Veronese imbedding of P̌2 in P9, thus a non-singular
2-dimensional subvariety of V0. The tangent space to B0 in V0 at a point λ3 ∈ B0

consists of the cubics vanishing twice along λ.

Proof: φ0 restricts on P̌2 ∼= ∆ −→ B0 to λ 7→ λ3, the 3rd Veronese imbedding v3.
The last assertion is checked by differentiating λ 7→ λ3.

We can get now the information needed for Theorem III (1):
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Theorem III (1).

(i) the intersection ring of B0
∼= P2 is generated by the hyperplane class h;

(ii) c(NB0V0) =
(1 + 3h)10

(1 + h)3
.

Proof: (i) is just setting the notation;
(ii) the class of the hyperplane in V0

∼= P9 pulls-back to 3h on B0, and c(NB0) =
j∗0c(TP9)/c(TB0).

We also find:

Lemma 0.4. j∗0P0 = 3h, j∗0L0 = 12h; the full intersection classes of a point-
conditions and line-conditions with respect to B0 are

B0 ◦ P0 = 3h , B0 ◦ L0 = 2 + 12h.

Proof: The pull-back of the hyperplane class from V0 to B0 is 3h. B0 is not
contained in any point-condition, and the line-conditions have multiplicity 2 along
B0 by 0.1.

§3.1 The first blow-up. Let V1 = B`B0V0, write π1 : V1 −→ V0 for the blow-up
map, E1 for the exceptional divisor, and denote by S1, P1, L1 the proper transforms
of S0, P0, L0. Then P1 = π∗1P0, L1 = π∗1L0 − 2E1 as divisor classes.

We will see here that the line-conditions in V1 intersect along the smooth 4-
dimensional proper transform S1 of S0 and along a smooth 4-dimensional subvariety
B1 of the exceptional divisor E1 (Proposition 1.2). We will choose B1 as the center
for the second blow-up.

We determine now the intersection of the line-conditions in V1. Since V1 − E1
∼=

V0−B0, S1 must be a component of the intersection. To find components contained
in E1, identify E1 with the projective bundle P(NB0V0) over B0; the key observation
is

Lemma 1.1. There is an imbedding Nv2(P̌2)P5 ↪→ Nv3(P̌2)P9 of vector bundles over

P̌2.

Proof: We have the exact sequences on B0
∼= P̌2 = P(Q̌)

0 −→ OP̌2 −→ Q̌⊗OP̌2(1) −→ T P̌2 −→ 0 ,

0 −→ OP̌2 −→ Sym2Q̌⊗OP̌2(2) −→ TP5 −→ 0 ,

0 −→ OP̌2 −→ Sym3Q̌⊗OP̌2(3) −→ TP9 −→ 0 :

the first is the standard Euler sequence on PQ̌; the second and third are the pull-
backs of the Euler sequences on P(Sym2Q̌) and P(Sym3Q̌) via the Veronese imbed-
dings v2 : P̌2 −→ P5 and v3 : P̌2 −→ P9. From these we get

Nv2(P̌2)P
5 =

Sym2Q̌⊗O(2)
Q̌⊗O(1)

, Nv3(P̌2)P
9 =

Sym3Q̌⊗O(3)
Q̌⊗O(1)

.
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The claimed imbedding Nv2(P̌2)P5 ↪→ Nv3(P̌2)P9 is induced by the map

Sym2Q̌⊗O(−1) −→ Sym2Q̌⊗ Q̌ −→ Sym3Q̌ :

this gives an imbedding

Sym2Q̌⊗O(2) = Sym2Q̌⊗O(−1)⊗O(3) ↪→ Sym3Q̌⊗O(3),

that induces an imbedding on the quotients.

We can then define a 4-dimensional smooth subvariety B1 of E1, i.e.

B1 = P(Nv2(P̌2)P
5) ↪→ P(Nv3(P̌2)P

9) = E1.

Notice that the fiber of Sym2Q̌⊗O(−1) ↪→ Sym3Q̌ over λ ∈ P(Q̌) consists of the
cubic polynomials over Q divisible by λ. The fiber of B1 = P(Nv2(P̌2)P5) is then
P(TRλ/TB0),where Rλ ∼= P5 is the subspace of V0 consisting of the cubics vanishing
along (i.e. containing) the line λ. Also recall (Lemma 0.3) that the tangent space
to B0 in P9 consists of the cubics vanishing twice along λ. The information carried
by a point of B1 consists then of a line λ and of the web of conics with given
proper intersection with λ: i.e., of λ and of two points on λ. Of course these are
the ‘complete conics’ supported on a double line: P(Nv2(P̌2)P5) is the exceptional
divisor in the space of complete conics (cf. [CX, 2.2]). We will refer to points of
B1 as to ‘lines with distinguished pairs of points’.

Proposition 1.2. The set-intersection of all line-conditions in V1 is contained in
the union of the smooth 4-folds S1 and B1.

Proof: B1 is a projective bundle over P2, therefore it is smooth; the smoothness
of S1 is proved in Lemma 1.3 below.

We have to show that the line-conditions intersect along B1 over B0, and this can
be checked fiberwise. As observed above, the fiber of B1 over a triple line µ3 ∈ B0

is P(Tµ3Rµ/Tµ3B0), where Rµ ∼= P5 is the subspace of V0 consisting of the cubics
containing µ; on the other hand, by Lemma 0.1 the intersection of the tangent cones
to the line-conditions (in P9) at µ3 ∈ B0 is precisely Rµ, so the assertion follows.

B1 will be the center for the next blow-up.

Theorem III (2). B1 is a P2-bundle over B0.

(i) The intersection ring of B1 is generated by the pull-back h of h via B1 −→ B0

and the pull-back ε of E1 via j1 : B1 ↪→ V1, and∫
B1

h4 = 0,
∫
B1

h3ε = 0,
∫
B1

h2ε2 = 1,
∫
B1

hε3 = 9,
∫
B1

ε4 = 51

(ii) c(NB1V1) = (1 + ε)
(1 + 3h− ε)10

(1 + 2h− ε)6
.
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Proof: (i) The universal line bundle on P(Nv2(P̌2)P5) = B1 is the restriction of the
one on P(Nv3(P̌2)P9) = E1, i.e. ε (Lemma 1.1). The first assertion follows then from
[F, Example 8.3.4]. Moreover, via B1 −→ B0, 1− ε+ ε2 − ε3 + ε4 pushes forward to

s(Nv2(P̌2)P
5) =

(1 + h)3

(1 + 2h)6
= 1− 9h+ 51h2

by [F, Chapter 4], so that the relations follow from the projection formula.
(ii) The normal bundle to B1 in V1 is an extension of NB1E1 and NE1V1. By

Lemma 1.1, there is a commutative diagram

0 −−−−→ OB1 −−−−→ Nv2(P̌2)P5 ⊗O(1) −−−−→ TB1|B0 −−−−→ 0y y y
0 −−−−→ OE1 −−−−→ Nv3(P̌2)P9 ⊗O(1) −−−−→ TE1|B0 −−−−→ 0

,

so that

c(NB1E1) =
c(Nv3(P̌2)P9 ⊗O(1))

c(Nv2(P̌2)P5 ⊗O(1)
=

(1 + 3h− ε)10

(1 + 2h− ε)6
.

On the other hand, c(NE1V1) = 1 + ε; thus (ii) follows from the Whitney product
formula.

We proceed next to a closer analysis of the varieties involved at this stage.
Consider the triple line x3

0 ∈ B0 ↪→ V0 = P9. Setting a0 = 1, affine coordinates
for V0 at x3

0 are (a1, . . . , a9), and

3a3 − a2
1 = 0 3a4 − 2a1a2 = 0 3a5 − a2

2 = 0
9a6 − a1a3 = 0 3a7 − a2a3 = 0 3a8 − a1a5 = 0
9a9 − a2a5 = 0

are equations for B0 in a neighborhood of x3
0. Thus we can choose coordinates

(b1, . . . , b9) in an open in V1 = B`B0V0 so that

b1 = a1 b2 = a2 b3 = 3a3 − a2
1

b4b3 = 3a4 − 2a1a2 b5b3 = 3a5 − a2
2 b6b3 = 9a6 − a1a3

b7b3 = 3a7 − a2a3 b8b3 = 3a8 − a1a5 b9b3 = 9a9 − a2a5 .

With this choice, b3 = 0 is the equation for the exceptional divisor E1, and
(b4, . . . , b9) are coordinates for the fiber of E1 over a point of B0.

Recall (§3.0) that S0 is the image of a 1-1 morphism φ0 : P̌2 × P̌2 −→ P9, which
restricts to an isomorphism on P̌2 × P̌2 −∆, where ∆ is the diagonal in P̌2 × P̌2.

18



Lemma 1.3. The proper transform S1 of S0 is non-singular, in fact isomorphic to
B`∆P̌2 × P̌2.

Proof: We will show that φ0 lifts to an isomorphism φ1 : B`∆P̌2 × P̌2 −→ S1

compatible with φ0; that is, such that the following diagram commutes:

(*)

B`∆P̌2 × P̌2 φ1−−−−→
∼

S1 ↪→ V1y y
P̌2 × P̌2 φ0−−−−→ S0 ↪→ V0

.

Let e be the exceptional divisor of B`∆P̌2 × P̌2. A morphism φ1 exists by the
universal property of blow-ups, and restricts to an isomorphism on B`∆P̌2 × P̌2 − e
by Lemma 0.2 (2); so we only need to check that (dφ1)p is injective for p ∈ e.
This matter is local and invariant under projective transformations of P2, so we can
assume p is in the fiber of (x0, x0) ∈ ∆. Choose local coordinates (α1, α2;u1, u2) at
(x0, x0) so that (α1, α2;u1, u2) corresponds to

(x0 + (α1 + u1)x1 + (α2 + u2)x2, x0 + α1x1 + α2x2) ∈ P̌2 × P̌2.

Equations for ∆ are then u1 = 0, u2 = 0. Therefore, we can choose coordinates
(α1, α2;u, t) in an open set (that we can assume contains p) in B`∆P̌2 × P̌2 so that

α1 = a1, α2 = a2, u = u1, ut = u2;

the equation for e is u = 0.
By the commutativity of (*), in terms of the coordinates given for V1 and these

coordinates for B`∆P̌2 × P̌2, φ1 is given explicitly by

(**) (α1, α2;u, t) 7→ (3α1 + u, 3α2 + ut,−u2, 2t, t2, 2α1, 2α1t, 2α2t, 2α2t
2),

with non-degenerate jacobian, as needed.

Remarks 1.4.

(1) We will let e denote the exceptional divisor in B`∆P̌2 × P̌2 (and its divisor
class).

(2) φ∗1E1 = 2e: S1 is tangent to E1 along e. Consequently, S0 has multiplicity 2
along B0: it is indeed singular along it.

(3) A point in e can be visualized as a ‘double line with distinguished point’.
As a pair of lines (λ, µ) ∈ P̌2 × P̌2 approaches an element (ν, ν) ∈ ∆ along
some curve, their intersection λ ∩ µ approaches a specific point on ν. Ele-
ments in e record this information. If (α1, α2, u, t) /∈ e (i.e. if u 6= 0), then
the corresponding pair of lines intersects in the point (α1t− α2 : −t : 1); if
(α1, α2, 0, t) ∈ e, then (α1t− α2 : −t : 1) are the coordinates of the ‘distin-
guished point’ on the line x0 + α1x1 + α2x2 = 0.

Lemma 1.5.

(1) B1 intersects S1 along e.
(2) The line conditions in V1 are generically smooth and tangent to E1 along

B1.
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Proof: (1) This is easily checked using the explicit expression (**) for φ1 in the
proof of Lemma 1.3. By invariance under projective transformations, we can assume
λ = x0; equations for Rλ are then a6 = a7 = a8 = a9 = 0, and the check is
immediate.

(2) By the invariance under projective transformations, it is enough to verify the
claim for the line-condition corresponding to x2 = 0, and we can restrict to the
open set on which our local coordinates for V1 hold. In terms of these coordinates,
the proper transform to the line-condition has equation

4b3 + (3b6 − 2b1)2 = 0,

and the assertion is easily checked.

Lemma 1.6. j∗1P1 = 3h, j∗1L1 = 12h − 2ε. The full intersection classes of point-
and line-conditions with respect to B1 are

B1 ◦ P1 = 3h , B1 ◦ L1 = 1 + 12h− 2ε.

Proof: P1 = π∗1P0, L1 = π∗1L0 − 2E1; P1 doesn’t contain B1, and eB1L1 = 1
follows from Lemma 1.5 (2).

Remarks 1.7.

(1) In terms of the descriptions of e and B1, φ1 acts on e by mapping the line
λ with the distinguished point p into the triple line λ with the distinguished
double point p. Therefore, φ1 maps the fiber of e over λ to a non-singular
conic in the fiber of B1 over λ3.

(2) Using the last remark and (**) in the proof of 1.3, one gets equations for B1

in terms of the local coordinates in V1:

b3 = 0, 3b6 − 2b1 = 0, 3b7 − b1b4 = 0,
3b8 − b2b4 = 0, 3b9 − 2b2b5 = 0.

(3) Lemma 1.5 (2) can be stated more precisely:
consider a point λ̃ ∈ B1, i.e. a line λ with distinguished points p1, p2.

Then the line-condition in V1corresponding to a line µ is non-singular at λ̃
if p1 /∈ µ and p2 /∈ µ.

The check is again immediate, for the equation of the proper transform of
the line-condition corresponding to x2 = 0.

§3.2. The second blow-up. Let V2 = B`B1V1, write π2 : V2 −→ V1 for the blow-
up map, E2 for the exceptional divisor, and denote by Ẽ1, S2, P2, L2 the proper
transforms of E1, S1, P1, L1. Then P2 = π∗2P1, and L2 = π∗2L1 − E2 (Lemma 1.5
(2)).

In V2, we will see that the line-conditions intersect in the proper transform S2

of S1 and in a smooth 7-dimensional subvariety B2 of the exceptional divisor E2

(Proposition 2.1). B2 will be the new center of blow-up.
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Set B2 = Ẽ1 ∩ E2. B2 is the exceptional divisor of the blow-up of E1 at B1,
therefore (see §3.1)

B2 = P(NB1E1) = P
(

Sym3Q̌⊗O(3)
Sym2Q̌⊗O(2)

⊗OB1(1)
)

is a P3-bundle over B1. In particular, B2 is smooth.

Proposition 2.1. The set-intersection of all line-conditions in V2 is contained in
the union of S2 and the 7-dimensional smooth variety B2 = Ẽ1 ∩ E2.

Proof: V2−E2
∼= V1−B1, thus S2 is a component of the intersection. By Lemma

1.5 (2), the line-conditions in V1 are generically tangent to E1, so their proper
transforms all intersect E2 along Ẽ1 ∩ E2 = B2.

The center for the next blow-up will be B2.

Theorem III (3). B2 is a P3-bundle on B1.

(i) The intersection ring of B2 is generated by the pull-backs h, ε of h, ε via the
projection B2 −→ B1, and the pull-back ϕ = j∗2E2 of E2 via j2 : B2 −→ V2.
Also,

∫
B2

ϕ7 = −210
∫
B2

ϕ6h = −90
∫
B2

ϕ6ε = −240∫
B2

ϕ5h2 = −10
∫
B2

ϕ5hε = 0
∫
B2

ϕ5ε2 = 105∫
B2

ϕ4h2ε = 4
∫
B2

ϕ4hε2 = 18
∫
B2

ϕ4ε3 = 42∫
B2

ϕ3h2ε2 = −1
∫
B2

ϕ3hε3 = −9
∫
B2

ϕ3ε4 = −51

hold (all other codimension-7 terms have degree 0).
(ii) c(NB2V2) = (1 + ϕ)(1 + ε− ϕ).

Proof: (i) B2 = P(NB1E1), with universal line bundle induced from P(NB1V1)
= E2, so the first assertion follows. Moreover, 1−ϕ+ϕ2 −ϕ3 +ϕ4 −ϕ5 +ϕ6 −ϕ7

pushes forward to

s(NB1E1) =
(1 + 2h− ε)6

(1 + 3h− ε)10
,

and the relations follow directly by Lemma 1.7 and the projection formula.
(ii) B2 = E2 ∩ Ẽ1, so that c(NB2V2) = c(NE2V2)c(NẼ1

V2).

We now obtain a more detailed description of the situation, for future reference.
As for S2:
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Lemma 2.1. S2 is isomorphic to S1, hence to B`∆P̌2 × P̌2.

Proof: By Lemma 1.5 (1), S2 is the blow-up of S1 along a divisor, thus it is
isomorphic to S1.

A description of B2 is gotten as follows:
Let λ̃ be a point in B1 mapping to λ3 ∈ B0 via B1 −→ B0 (i.e. ‘λ with two

distinguished points’). The fiber of B2 above λ̃ can be identified with the space
P((Sym3Q̌)λ̃/(Sym2Q̌)λ̃), where (Sym2Q̌)λ̃ ↪→ (Sym3Q̌)λ̃ is the multiplication by
λ. P((Sym3Q̌)λ̃/(Sym2Q̌)λ̃) is the 3-dimensional space of cubics on λ: a point in
the fiber of B2 above λ̃ corresponds then to a triple of points on λ, and we will
refer to points of B2 as to lines with a pair of distinguished points and a triple of
distinguished points.

Lemma 2.2.

(1) B2 intersects S2
∼= B`∆P̌2 × P̌2 along e.

(2) The line-conditions in V2 are generically smooth along B2.

Proof: (1) Recall that S1 is tangent to E1 along e (Remark 1.4 (2)). Thus S2 ∩
E2 ⊂ Ẽ1 ∩ E2 = B2.

(2) By Lemma 1.5 (2), the line-conditions in V1 are generically smooth along
B1.

This gives us the additional information about conditions we will need in the
computation in §4:

Lemma 2.3. j∗2P2 = 3h, j∗2L2 = 12h − 2ε − ϕ. The full intersection classes for
point- and line-conditions with respect to B2 are

B2 ◦ P2 = 3h , B2 ◦ L2 = 1 + 12h− 2ε− ϕ.

Proof: P2 = π∗2P1; L2 = π∗2L1−E2. P2 doesn’t contain B2, and eB2L2 = 1 follows
from Lemma 2.2 (2).

In the local coordinates given for V1 in §3.1, equations for B1 are

b3 = 0, 3b6 − 2b1 = 0, 3b7 − b1b4 = 0,
3b8 − b2b4 = 0, 3b9 − 2b2b5 = 0,

(Remark 1.7 (2)) thus we can choose coordinates (c1, . . . , c9) in an open set in V2

so that

c1 = b1 c2 = b2 c3c6 = b3

c4 = b4 c5 = b5 c6 = 3b6 − 2b1
c7c6 = 3b7 − b1b4 c8c6 = 3b8 − b2b4 c9c6 = 3b9 − 2b2b5 .

In the coordinates (c1, . . . , c9), equations for E2 and Ẽ1 are c6 = 0 and c3 = 0
respectively.
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Recall that S1 is the isomorphic image of a map φ1 : B`∆P̌2 × P̌2 ↪→ V1 (see
Lemma 1.3) given in local coordinates by

(α1, α2;u, t) 7→ (3α1 + u, 3α2 + ut,−u2, 2t, t2, 2α1, 2α1t, 2α2t, 2α2t
2).

Now φ1 lifts to a map φ2 : B`∆P̌2× P̌2 ↪→ V2; a local coordinate expression for φ2 is

(*) (α1, α2;u, t) 7→ (3α1 + u, 3α2 + ut,
u

2
, 2t, t2,−2u, t, t2, t3).

Remark 2.4.

(1) From this it follows φ∗2E2 = e.
(2) Using (*), one checks that in terms of the descriptions of e as set of lines

with distinguished point, and of B2 as set of lines with distinguished pair and
triple of points, φ2 acts e −→ B2 by mapping the line λ with distinguished
point p to the line λ with distinguished double point p and triple point p.

Lemma 2.5. Let λ̄ be a point on B2, i.e. a line λ with distinguished pair of
points p1, p2 and triple of points q1, q2, q3, and consider the line-condition Lµ in V2

corresponding to a line µ 6= λ. Then:

(1) Lµ is tangent to E2 at λ̄ if ∃i, pi ∈ µ;

(2) Lµ is tangent to Ẽ1 at λ̄ if ∃i, qi ∈ µ.

Proof: We can assume λ = x0, µ = x1, by invariance under projective transfor-
mations. In local coordinates, the equation for Lµ is then

4c3c35 + c6c
2
9 = 0 ,

and coordinates for λ̄ have c5 = 0 if the pair touches µ, c9 = 0 if the triple touches
µ. The verifications are immediate.

§3.3. The third blow-up. Let V3 = B`B2V2, write π3 : V3 −→ V2 for the blow-up
map, E3 for the exceptional divisor, and denote by S3, P3, L3 the proper transforms
of S2, P2, L2. Then P3 = π∗3P2, and L3 = π∗3L2 − E3 (Lemma 2.2 (2)).

In V3 the line-conditions will intersect in the proper transform S3 of S2, a 4-
dimensional smooth variety isomorphic to the blow-up of P̌2× P̌2 along the diagonal
(Lemma 3.1, Proposition 3.2). We will choose S3 as the center B3 for the fourth
blow-up.

We first of all remark:

Lemma 3.1. S3 is isomorphic to S2, hence to B`∆P̌2 × P̌2.

Proof: By Lemma 2.2 (1), S3 is the blow-up of S2 along a divisor.

Then
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Proposition 3.2. The intersection of all line-conditions in V3 is supported on the
4-dimensional smooth irreducible variety S3.

Proof: We have to verify that the line-conditions intersect in E3 only along S3∩E3.
Since B2 has codimension 2 in V2, E3 is a P1-bundle over B2. A general line-
condition is smooth at λ̄ ∈ B2 (Lemma 2.2 (2)), thus the line-conditions in V3 can
intersect in at most one point over each λ̄ ∈ B2. We have then to check that the
line-conditions in V3 can intersect in E3 only above B2 ∩S2, i.e. only above λ̄ ∈ B2

with coincident pair and triple of points (see Remark 2.4 (2))
Notice that since B2 = Ẽ1 ∩ E2, the proper transforms of Ẽ1, E2 in V3 cut the

fiber of E3 over any λ̄ ∈ B2 in distinct points, say r1, r2. Fix now λ̄ ∈ B2, i.e. a
line λ with distinguished pair p1, p2 and triple q1, q2, q3, and let µ 6= λ be a line. As
a consequence of Lemma 2.5:

if µ touches the pair, then the line-condition in V3 corresponding to µ contains
r2;

if µ touches the triple, then the line-condition in V3 corresponding to µ contains
r1.

We conclude that the line-conditions can intersect over λ̄ only if p1 = p2 = q1 =
q2 = q3, i.e. if λ̄ ∈ B2 ∩ S2.

Therefore in V3 the line-conditions intersect along the smooth and irreducible
4-dimensional variety S3

∼= B`∆P̌2 × P̌2. We choose S3 as the center for the next
blow-up: in other words, we let B3 be S3.

Note that B3
∼= B`∆P̌2 × P̌2 has two natural projections onto P̌2: let `, m be the

pull-backs via these projections of the hyperplane class in P̌2, and denote by e the
exceptional divisor.

Theorem III (4). B3
∼= B`∆P̌2 × P̌2.

(i) The intersection ring of B3 is generated by `,m, e, and the relations em = e`,
`3 = m3 = 0, ∫

B3

`2m2 = 1,
∫
B3

e2`2 = −1,∫
B3

e3` = −3,
∫
B3

e4 = −6 ;

(ii) cNB3V3) = 1+7`+17m−16e+126m2+99`m+21`2−315e`+105e2+582`m2+
237`2m−2517e`2+1611e2`−358e3+1026`2m2+9174e2`2−3912e3`+652e4.

Proof: (i) Call k the hyperplane class in P̌2 ∼= ∆
δ
↪→ P̌2 × P̌2. Since k = δ∗` = δ∗m,

then `,m, e generate the intersection ring of B3 (cf. [F, Example 8.3.9]). em = e`
is clear, while the other relations are checked observing that e−e2 +e3−e4 pushes-
forward to

s(∆, P̌2 × P̌2) =
1

(1 + k)3
.

(ii) j∗3c(TV3), c(TB3) can be obtained by applying the blow-up Chern classes for-
mula (cf. [F, Theorem 15.4]).

24



Then c(NB3V3) is computed as j∗3c(TV3)/c(TB3).

In the local coordinates given for V2 in §3.2, equations for B2 are

c3 = 0, c6 = 0

(recall that B2 = Ẽ1 ∩ E2), thus we can choose coordinates (d1, . . . d9) in an open
set in V3 such that

d1 = c1 d2 = c2 d3 = c3

d4 = c4 d5 = c5 d6d3 = c6

d7 = c7 d8 = c8 d9 = c9 .

The equation of the exceptional divisor is d3 = 0.
The map φ2 : B`∆P̌2 × P̌2 −→ V2 lifts to a map φ3 : B`∆P̌2 × P̌2 −→ V3, given in

coordinates by

(α1, α2;u, t) 7→ (3α1 + u, 3α2 + ut,
u

2
, 2t, t2,−4, t, t2, t3).

Lemma 3.3. j∗3P3 = `+ 2m, j∗3L3 = 4`+ 8m− 6e; the full intersection classes for
points- and line-conditions with respect to B3 are

B3 ◦ P3 = `+ 2m , B3 ◦ L3 = 1 + 4`+ 8m− 6e.

Proof: j∗3P3 = `+ 2m because of the commutativity of the diagram

B3 = S3
j3−−−−→ V3y y

P̌2 × P̌2 φ0−−−−→ V0

,

by the definition of φ0 in §3.0, and since P3 is the pull-back of a hyperplane from V0.
j∗3L3 = 4`+ 8m− 6e because L3 = π∗3L2 − E3, L2 = π∗2L1 − E2, L1 = π∗1L0 − 2E1,
L0 is a hypersurface of degree 4 in V0, and φ∗1E1 = 2e (Remark 1.4 (2)), φ∗2E2 = e
(Remark 2.4 (1)), and φ∗3E3 = e. No point-conditions in V3 contain B3, therefore
eB3P3 = 0; eB3L3 = 1 follows from Lemma 0.1 (1), since V0 and V3 are isomorphic
away from B0 and from the exceptional divisors.

Remarks 3.4.

(1) The equations of the line-conditions in V3 corresponding to lines through the
point (1 : 0 : 0) are written in terms of d4, . . . , d9 only, as seen by direct
computation.

(2) On the other hand, the last six coordinates d4, . . . , d9 of the image of a point
via φ3 are constant along divisors {t = const.} in B`∆P̌2 × P̌2.
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Therefore, the behavior of line-conditions corresponding to lines containing the
point (1 : 0 : 0) is constant along the sets {t = const.} in B`∆P̌2 × P̌2. For example,
to check the transversality of line-conditions corresponding to lines through (1 : 0 :
0) at all points of the image of B`∆P̌2 × P̌2, it is enough to check it for points not
contained in e. This argument will be applied in §§3.4, 3.5; it can also be used to
give a second proof of Proposition 3.2.

§3.4. The fourth blow-up. Let V4 = B`B3V3, write π4 : V4 −→ V3 for the blow-up
map, E4 for the exceptional divisor, and denote by P4, L4 the proper transforms of
P3, L3. Then P4 = π∗4P3, and L4 = π∗4L3 − E4 (Lemma 0.1 (1)).

In V4, the line-conditions will still intersect in a 4-dimensional smooth variety B4,
contained in E4 (Proposition 4.1). B4 will be the last center of blow-up.

Proposition 4.1. The intersection of all line-conditions in V4 is a smooth 4-
dimensional subvariety B4 of E4 = P(NB3V3). More precisely, B4 = P(L), L a
sub-line bundle of NB3V3.

Proof: First consider a point in B3
∼= B`∆P̌2×P̌2 not on the exceptional divisor e.

There exist isomorphic neighborhoods of such a point in V3 and of a point λµ2 ∈ S0,
λ 6= µ, in V0 = P9; by Lemma 0.1 (3) the tangent hyperplanes to the line-conditions
in V0 at λµ2 intersect in the 5-dimensional subspace Rµ of V0 consisting of the
cubics containing µ. In fact, if λ, µ don’t contain (1 : 0 : 0) it is enough to consider
line-conditions corresponding to lines containing (1 : 0 : 0).

The tangent space to Rµ at λµ2, Tλµ2Rµ, contains the 4-dimensional Tλµ2S0; as

λ, µ vary, Tλµ2Rµ/Tλµ2S0 determine a line-bundle
◦
L over S0−B0

∼= B3−e, and the
intersection of the line-conditions in V4 above points in B3 outside e is supported

on P(
◦
L) ↪→ P(NB3V3) = E4. By Remarks 3.4,

◦
L extends to a line bundle L over

the whole B3, and the line-conditions intersect along P(L) as claimed.

We choose B4 for the next (and last) center of blow-up: let j4 : B4 ↪→ V4 be the
inclusion. The next lemma gives the information needed to compute c(NB4V4).

Lemma 4.2. c1(L) = 3`+ 3m− 4e.

Proof: P(L) is isomorphic to B3 = B`∆P̌2 × P̌2 via the projection map. To
compute c1(L), notice that the restriction of O(−1) from P(NB3V3) = E4 to P(L)
is the pull-back of L, so that, via the isomorphism P(L) −→ B3, c1(L) = j∗4E4.

Consider then the divisor F0 in V0 with equation∣∣∣∣∣∣
3a0 a1 a2

2a1 2a3 a4

2a2 a4 2a5

∣∣∣∣∣∣ = 12a0a3a5 − 3a0a
2
4 − 4a2

1a5 + 4a1a2a4 − 4a2
2a3 = 0.

The rows of the determinant are coefficients of second partial derivatives of the
equation of a cubic, therefore it is clear that this divisor contains S0 (the cubics in
S0 have a triple point). If F1, F2, F3 denote the proper transforms of F0 in V1, V2, V3,
one checks that F1 = π∗1F0 − 2E1, F2 = π∗2F1, F3 = π∗3F2. Since F0 has degree 3,
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it follows that j∗3F3 = 3`+ 6m− 4e. Now F0 has multiplicity 1 along S0: thus F3

has multiplicity 1 along B3, and if F4 is the proper transform of F3 in V4 we get

c1(L) = 3`+ 6m− 4e− j∗4F4.

By the description of L given in the proof of Proposition 4.1, F4 meets B4 = P(L)
at a point mapping to λµ2 ∈ V0−B0 if the tangent hyperplane to F0 at λµ2 contains
the space Rµ of cubics containing µ. Using this fact, one computes j∗4F4 = 3m,
getting

c1(L) = 3`+ 6m− 4e− 3m = 3`+ 3m− 4e

as needed.

Note that B4 is isomorphic to B3 = B`∆P̌2 × P̌2 via the projection P(L) −→ B3;
thus its intersection ring is generated by the pull-backs of `,m, e, which we will still
denote `,m, e, with the relations stated in Theorem III (4):

Theorem III (5). B4
∼= B3.

(i) The intersection ring of B4 is generated by `,m, e, and em = e`, `3 = m3 = 0,

∫
B3

`2m2 = 1,
∫
B3

e2`2 = −1,∫
B3

e3` = −3,
∫
B3

e4 = −6 ;

(ii) c(NB4V4) = 1−5`+5m+18m2−27`m+3`2 +21e`−7e2−30`m2 +75`2m−
225e`2 + 135e2`− 30e3 + 75`2m2.

Proof: (i) is noticed above.
(ii) The Euler sequence

0 −→ OE4 −→ NB3V3 ⊗O(1) −→ TE4|B3 −→ 0

restricts to
0 −→ OP(L) −→ NB3V3 ⊗ Ľ −→ TE4|B3 −→ 0

on P(L) (for ease of reading, we have suppressed the pull-back signs). Since B4 =
P(L) ∼= B3 via the projection, it follows

c(NB4E4) = c(TE4|B3) = c(NB3V3 ⊗ Ľ),

so that
c(NB4V4) = j∗4c(NE4V4)c(NB4E4) = c(L)c(NB3V3 ⊗ Ľ),

and (ii) follows.
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Lemma 4.3. j∗4P4 = ` + 2m, j∗4L4 = ` + 5m − 2e. The full intersection classes for
the point- and line-conditions with respect to B4 are

B4 ◦ P4 = `+ 2m , B4 ◦ L4 = 1 + `+ 5m− 2e.

Proof: P4 = π∗4P3 implies j∗4P4 = ` + 2m. The restriction of O(−1) from E4 =
P(NB3V3) to P(L) is the pull-back of L, so j∗4L4 = j∗4 (π∗4L3−E4) = 4`+ 8m− 6e−
c1(L) = ` + 5m − 2e (Lemma 4.2). The point-conditions in V4 don’t contain B4;
the line-conditions in V4 are generically smooth along B4 since the line-conditions
in V3 are generically smooth along B3.

§3.5. The fifth blow-up. Let V5 = B`B4V4, write π5 : V5 −→ V4 for the blow-up
map, E5 for the exceptional divisor, denote by Ẽ4, P5, L5 the proper transforms of
E4, P4, L4.

Finally, we will see that the line-conditions ‘separate’ in V5 (Proposition 5.3),
concluding the proof of Theorem III.

Consider Ẽ4 ∩ E5 = P(NB4E4).
Denote by O1(−1) (resp. O2(−1)) the pull-back of the universal line-bundle

from the first (resp. second) factor of P̌2 × P̌2 to P̌2 × P̌2. Recalling that B3 − e ∼=
S0 −B0 ↪→ P̌2 × P̌2 (and omitting pull-backs for sake of notations)

NB3−eV3
∼= NS0−B0V0 = TP9/T P̌2 × P̌2;

if P2 = PQ, so that P9 = P(Sym3Q̌), then TP9 is given by the Euler sequence

0 −→ OP9 −→ Sym3Q̌⊗OP9(1) −→ TP9 −→ 0, thus

NB3−eV3
∼= (Sym3Q̌⊗OP9(1)/OP9)/T P̌2 × P̌2

∼= (Sym3Q̌⊗O1(1)⊗O2(2)/OB3−e)/T P̌2 × P̌2.(*)

NB4E4
∼= TE4|B4 is given by

0 −→ OE4 −→ NB3V3 ⊗OE4(1) −→ TE4|B4 −→ 0,

restricting on B4 = P(L) to

0 −→ OB4 −→ NB3V3 ⊗ Ľ −→ NB4E4 −→ 0.

On the other hand, over B3 − e the line bundle L restricts to

◦
L ∼= (Sym2Q̌⊗OP5(1)/OP5)/T P̌2 × P̌2

∼= (Sym2Q̌⊗O1(1)⊗O2(1)/OB3−e)/T P̌2 × P̌2(**)
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(this follows from the description of
◦
L given in the proof of Proposition 4.1). By

(*) and (**),
NB4E4

∼= (NB3V3 ⊗ Ľ)/OB4
∼= (NB3V3/L)⊗ Ľ

restricts over B4 − e to

Sym3Q̌

Sym2Q̌⊗O2(−1)
⊗O1(1)⊗O2(2)⊗ Ľ.

Therefore, over a point in B4−e, mapping to λµ2 ∈ S0 −∆, the fiber of NB4E4 can
be identified with the space Sym3Q̌/Sym2Q̌, where the inclusion Sym2Q̌ ↪→ Sym3Q̌
is given by the multiplication by µ. This space is canonically isomorphic to the space
of homogeneous degree-3 polynomials on the line with equation µ = 0; consequently,
a point of Ẽ4 ∩ E5 = P(NB4E4) over λµ2, λ 6= µ, can be pictured as a cubic
consisting of a line and a double line, with three distinguished points on the double
line.

For λ 6= µ lines in P2, consider a point λµ2 ∈ Ẽ4∩E5, i.e. λµ2 ‘with a distinguished
triple of points specified on µ’, and a line ν ⊂ P2.

Lemma 5.1. Suppose ν does not contain λ ∩ µ. Then the line-condition in V5

corresponding to ν contains λµ2 if and only if ν contains a point of the triple on µ.

Proof: Let Li be the line-condition in Vi corresponding to ν. Since ν + λ ∩ µ,
then L0 is non-singular at λµ2 by Lemma 0.1 (1). Let Hp ⊂ Sym3Q̌ denote the
space of cubic polynomials on Q vanishing at p. As λµ2 varies in S0, the Hν∩µ
define a subbundle H of Sym3Q̌ over a neighborhood of λµ2; notice that H ⊃
Sym2Q̌⊗O2(−1). By Lemma 0.1 (3), the tangent space to L0 at λµ2 is contained
in Tλµ2P9 as the image of H⊗OP9(1); tracing the argument preceding this Lemma
identifies then the fiber of L5 ∩ Ẽ4 ∩E5 over λµ2 with P(Hν∩µ/Sym2Q̌), the space
of triples on µ touching ν.

Remark 5.2. Notice that this Lemma implies that the intersection of all line-
conditions in V5 must be disjoint from Ẽ4 ∩ E5. We will prove that it is empty by
showing that it must also be contained in Ẽ4 ∩ E5.

Proposition 5.3. The intersection of all line-conditions in V5 is empty.

Proof: The line-conditions can intersect only in E5. By Remarks 3.4, it is enough
to check that the intersection is empty above B4−e; and since the matter is invariant
under projective transfomations, it is enough to check that the intersection of all
line-conditions in V5 is empty over a single point λµ2 ∈ B4, with λ 6= µ.

The fiber (E5)λµ2 of E5 = P(NB4V4) over λµ2 is a 4-dimensional projective space
P4. For ν + λ ∩ µ, the association

ν line in P2 7→ (E5)λµ2∩ line-condition in V5 corresponding to ν

determines a rational map P̌2 · · · > P̌4. Notice that by the non-singularity of P̌2,
this extends in codimension 1, so it must be defined for at least all ν 6= λ, µ. Let
then ν ⊃ λ ∩ µ, ν 6= λ, µ, denote by λµ2 also the point on B4 over λµ2 ∈ P9,
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and write Lν′ for the line-condition in V4 corresponding to a line ν′ + λ ∩ µ. A
coordinate computation shows that as ν′ approaches ν, its tangent space at λµ2

Tλµ2Lν′ approaches Tλµ2E4 (as subspaces of Tλµ2V4). It follows that the image of ν
under P̌2 · · · > P̌4 is the intersection of Ẽ4 with the fiber of E5: this implies that the
intersection of all line-conditions in V5 is included in Ẽ4 ∩ E5. On the other hand,
by Remark 5.2 the intersection must be disjoint from Ẽ4 ∩ E5: therefore, it must
be empty.

A different proof of an equivalent statement can be found in [St, II], p. 146.

Proposition 5.3 concludes the proof of Theorem III: Ṽ = V5 is a smooth variety of
complete cubics. By Corollary I, the number of smooth cubics containing np points
and tangent to n` lines in general position (np +n` = 9) is then

∫
V5
P
np

5 Ln`
5 . In the

next section we will apply Theorem II to compute these intersection numbers.

§4 Computation of the characteristic numbers. We work over an algebraically
closed field of characteristic 6= 2, 3. The notations for this section are those used in
the statement of Theorem III: V0 = P9, Vi is the i-th blow-up, Bi the center for the
i+ 1-th blow-up, the intersection rings of the Bi’s are generated by various subsets
of {h, ε, φ, `,m, e}, with the relations listed in Theorem III. Furthermore (as in the
rest of §3) Pi, Li denote respectively the point- and line-conditions in Vi; we found
in §3 that the full intersection classes of Pi, Li with respect to Bi, i = 0, . . . , 4, are
respectively

B0 ◦ P0 = 3h , B0 ◦ L0 = 2 + 12h
B1 ◦ P1 = 3h , B1 ◦ L1 = 1 + 12h− 2ε
B2 ◦ P2 = 3h , B2 ◦ L2 = 1 + 12h− 2ε− ϕ
B3 ◦ P3 = `+ 2m , B3 ◦ L3 = 1 + 4`+ 8m− 6e
B4 ◦ P4 = `+ 2m , B4 ◦ L4 = 1 + `+ 5m− 2e.

Also, Theorem III lists the total Chern classes c(NBi
Vi) and the relations in dimen-

sion 0 in the Chow groups of the Bi’s. Therefore, the following statement translates
the computation of the characteristic numbers of a family F into the computation
of a degree and of five full intersection classes Bi ◦ Fi:

Theorem IV. (Notations of Theorem III) Let F an r-dimensional subvariety in
P9 parametrizing a family of reduced cubics, and let Fi be the proper transform in
Vi of the closure F0 of F . Also, let f be the degree of the closure of F . Then the
number NF (npP, n`L) of elements (counted with multiplicities) of F containing np
given points and tangent to n` given lines in general position, with np + n` = r, is

NF (npP, n`L) = 4n` · f −
4∑
i=0

∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)n`(Bi ◦ Fi)
c(NBi

Vi)
.

Furthermore, the elements containing the given points and properly tangent to the
given lines are counted with multiplicity 1.
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Proof: This follows from

∫
V0

P
np

0 Ln`
0 F0 = 4n` · f(1) ∫

Vi+1

P
np

i+1L
n`
i+1Fi+1 =

∫
Vi

P
np

i Ln`
i Fi

−
∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)n`(Bi ◦ Fi)
c(NBi

Vi)

(2)

NF (npP, n`L) =
∫
V5

P
np

5 Ln`
5 F5 :(3)

(1) follows from Bézout’s Theorem, (2) from Theorem II, and (3) from Theorems I
and III.

For the family F of smooth cubics, we have Fi = Vi, so that Bi ◦Fi = [Bi]. Also,
all tangencies are proper, thus the numbers given by Theorem IV are in fact the
‘characteristic numbers’. Writing N(npP, n`L) = NF (nP, n`L) in this case, we get

Corollary IV. The characteristic numbers for the family of smooth plane cubics
are given by

N(npP, n`L) =



1 np = 9, n` = 0
4 np = 8, n` = 1

16 np = 7, n` = 2
64 np = 6, n` = 3

256 np = 5, n` = 4
976 np = 4, n` = 5

3424 np = 3, n` = 6
9766 np = 2, n` = 7

21004 np = 1, n` = 8
33616 np = 0, n` = 9

.

Proof: Theorem IV gives

(*) N(npP, n`L) = 4n` −
4∑
i=0

∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)n`

c(NBi
Vi)

;
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listing only the non-zero contributions, and understanding np = 9− n`:

∫
B0

(3h)np(2 + 12h)n`(1 + h)3

(1 + 3h)10
=


1152 n` = 7

16128 n` = 8
125952 n` = 9

∫
B1

(3h)np(1 + 12h− 2ε)n`(1 + 2h− ε)6

(1 + ε)(1 + 3h− ε)10
=


441 n` = 7

5229 n` = 8
32214 n` = 9

∫
B2

(3h)np(1 + 12h− 2ε− ϕ)n`

(1 + ϕ)(1 + ε− ϕ)
=


2295 n` = 7

21411 n` = 8
97146 n` = 9

∫
B3

(`+ 2m)np(1 + 4`+ 8m− 6e)n`

(1 + 7`+ 17m− 16e+ . . . )
=



24 n` = 5
390 n` = 6

1572 n` = 7
18 n` = 8

−22635 n` = 9

∫
B4

(`+ 2m)np(1 + `+ 5m− 2e)n`

(1− 5`+ 5m+ . . . )
=



24 n` = 5
282 n` = 6

1158 n` = 7
1746 n` = 8
−4149 n` = 9

Each of these computations is performed by extracting the 0th dimensional terms
in the series and using the relations in the rings of the Bi’s listed in Theorem III.
For example:∫

B4

(1 + `+ 5m− 2e)9

(1− 5`+ 5m+ . . . )

=
∫
B4

48654`2m2 + 126129e2`2 − 29508e3`+ 2533e4

= 48654 · 1 + 126129 · (−1)− 29508 · (−3) + 2533 · (−6)
= −4149.

The computations were carried out using Macsyma.
These results and (*) above give N(npP, n`L) = 4n` for n` = 0, . . . , 4 and np =
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9− n`, and N(npP, n`L) =

=



1024− 0− 0− 0− 24− 24 = 976
4096− 0− 0− 0− 390− 282 = 3424

16384− 1152− 441− 2295− 1572− 1158 = 9766
65536− 16128− 5229− 21311− 18− 1746 = 21004

262144− 125952− 32214− 97146 + 22635 + 4149 = 33616

for n` = 5, . . . , 9 as stated.

Corollary IV agrees with Maillard and Zeuthen’s result.

More generally, the relevant information needed to apply Theorem IV to a family
F is the behavior of the proper transforms Fi of the closure F0 of F , with respect
to the Bi’s. For example, if F0 is a divisor of P9, all one needs is the degree of F0

and the five multiplicities of the Fi along the Bi (for Fi divisors, this information
gives (Bi ◦ Fi)). For example, for F0 the divisor of singular cubics the multiplicities
are 8,5,3,6,6, as we will compute in a forthcoming note. These multiplicities and
the degree of F0 (12) are enough to compute the NF (npP, n`L) for nodal cubics.
From them, the characteristic numbers for nodal cubics will be obtained by further
applications of Theorem IV to the families of nodal cubics with node on given line
and node at a given point.

§5 A codimension-2 condition. Maillard and Zeuthen’s results for smooth cu-
bics go further than Corollary IV above. After computing the characteristic num-
bers involving point- and line-conditions, they list the numbers also involving the
codimension-2 conditions expressing tangency to a line at a given point.

Such conditions are linear: in a sense they are the intersection of two ‘infinitely
near’ point-conditions. The numbers reflect this fact by agreeing with appropriate
characteristic numbers from Corollary IV for low n`; but as n` grows larger and
non-reduced curves enter into the picture, their position with respect to the flag
becomes relevant and one expects discrepancies to occur. It is natural to inquire
whether the information we need to apply Theorem IV to the computation of the
numbers involving codimension-1 conditions is enough to obtain these other results;
this is indeed the case, as we will show in this section.

The geometry of the situation is captured in five full intersection classes (Propo-
sition 5.1); once they are computed, a statement analogous to Theorem IV gives
the numbers involving these codimension-2 conditions for a family F if the classes
Bi ◦ Fi are known. As in §4, the application to the family of smooth plane cubics
(over an algebraically closed field of characteristic 6= 2, 3) is then immediate.

We will keep the style of the notations introduced in §1: call point-line-condi-
tions M the linear subspaces PN−2 ↪→ PN formed by the plane curves tangent to a
given line at a given point; for any variety Ṽ mapping to PN , isomorphically over
PN − S, call point-line-conditions in Ṽ the proper transforms M̃ of the conditions
M of PN . M̃ is regularly imbedded outside the inverse image of S in Ṽ ; therefore,

33



if the intersection of M̃ with a subvariety F̃ of Ṽ is proper and has no components
lying over S, then the product M̃ · F̃ is defined.

Theorem I′. Let Ṽ be a variety of complete curves of degree d, F an r-dimensio-

nal subvariety in PN parametrizing a family of reduced curves, and let F̃ be the

proper transform in Ṽ of the closure of F . Then the number of elements (counted
with multiplicities) of F containing np given points, tangent to n` given lines,
and tangent to nm given lines at specified points (all choices being general), with

np + n` + 2nm = r, is P̃np · L̃n` · M̃nm · F̃ . Furthermore, the elements satisfying
the conditions and properly tangent to the lines are counted with multiplicity one.

Proof: We just sketch the arguments here, since they closely resemble those in §1.
We also assume the notations and the basic set-up from §1. The main observation
is the analogous for point-line-conditions of Lemma 1 in §1, namely:

Claim. For F ⊂ PN , there exists a point-line-condition M such that M̃ ∩ F =
M̃ ∩ F̃ .

Indeed, one has to check that M̃ ∩ F̃ doesn’t have components over S. But a
point-line-condition M is contained in the intersection of the corresponding point-
condition P and line-condition L, so that M̃ ∩ F̃ ⊂ L̃ ∩ P̃ ∩ F̃ . We can choose the
point so that P̃ ∩ F̃ has no components over S (Lemma 2 in §1), and for a general
line through that point we can get L̃ ∩ P̃ ∩ M̃ with no components over S (the set
of line-conditions corresponding to lines through a point is non-degenerate in P̌M ).

The claim implies the first part of the theorem, by the same argument in the
proof of Theorem I (1) in §1.

The proof of the statement about multiplicities is likewise similar to the proof of
Theorem I (2) in §1.

Before stating Theorem IV′, we compute the full intersection classes Bi ◦ Mi,
i = 0, . . . , 4, for point-line-conditions. Here the notations are those used in Theorem
III, M0 denotes a point-line-condition in V0 = P9, and Mi is the proper-transform
of Mi−1 in Vi (i.e., a ‘point-line-condition’ in Vi).

Proposition 5.1. (Full intersection classes for point-line-conditions)

(1) B0 ◦M0 = 2h+ 9h2

(2) B1 ◦M1 = h+ 9h2 − 2εh
(3) B2 ◦M2 = h+ 9h2 − 2εh− φh
(4) B3 ◦M3 = m+ `2 + 4`m+ 4m2 − 6e`
(5) B4 ◦M4 = m+ `2 + `m+m2 − 2e` .

Proof: The main tools are the geometry of the blow-ups (§3), and (iii) from §2.
(1) M0 is non-singular, has codimension 2 and intersects B0 along the pen-

cil P1 ⊂ P2 = B0 of triple lines through the given point; therefore B0 ◦M0 =
[B0 ∩M0] +B0 ·M0. An algebraic check gives [B0 ∩M0] = 2h; and since the hy-
perplane in P9 = V0 pulls-back to 3h on B0, (1) follows.

(2) Notice that M0 is contained in the line-condition L0 corresponding to the
given line, and in the point-condition P0 corresponding to the point. The fiber of
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M1 over a point of B0 ∩M0 is 5-dimensional and contained into (therefore coinciding
with) the irreducible 5-dimensional fiber of L1 over the same point. It follows that
B1 ∩M1 is (set-theoretically) the fiber in B1 of B0 ∩M0. Also, dim(SingM1) ≤
dimB0 ∩M0 = 1, thus M1 is generically non-singular along B1 ∩M1; it follows
B1 ◦M1 = [B1 ∩M1] +B1 ·M1. SinceM1 ⊂ L1 ∩ P1, L1 is generically non-singular
along B1 (Lemma 1.5 (2) in §3), and P1 cuts transversally B1, then [B1 ∩M1] = h.
Finally, one applies Fulton’s blow-up formula (Theorem 6.7 in [F]) to get B1 ·M1 =
9h2 − 2εh, as stated.

(3), (4) and (5) are obtained using the same arguments.

Now we can state the extension of Theorem IV:

Theorem IV′. (Notations of Theorem III) Let F an r-dimensional subvariety in P9

parametrizing a family of reduced cubics, and let Fi be the proper transform in Vi of
the closure F0 of F . Also, let f be the degree of the closure of F . Then the number
NF (npP, n`L, nmM) of elements (counted with multiplicities) of F containing np
given points, tangent to n` given lines, and tangent to nm given lines at specified
points (all choices being general), with np + n` + 2nm = r, is

NF (npP, n`L, nmM) =

= 4n` · f −
4∑
i=0

∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)n`(Bi ◦Mi)nm(Bi ◦ Fi)
c(NBiVi)

.

Furthermore, the elements containing the given points and properly tangent to the
given lines are counted with multiplicity one.

Proof: Similarly to Theorem IV, this is a consequence of

∫
V0

P
np

0 Ln`
0 Mnm

0 F0 = 4n` · f(1) ∫
Vi+1

P
np

i+1L
n`
i+1M

nm
i+1Fi+1 =

∫
Vi

P
np

i Ln`
i M

nm
i Fi−

−
∫
Bi

(Bi ◦ Pi)np(Bi ◦ Li)n`(Bi ◦Mi)nm(Bi ◦ Fi)
c(NBi

Vi)

(2)

NF (npP, n`L) =
∫
V5

P
np

5 Ln`
5 Mnm

5 F5 ,(3)

where now (3) follows from Theorem I′ and III.

This applies immediately to the family of smooth cubics; denoting the numbers
in this case by N(npP, n`L, nmM):
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Corollary IV′.

N(npP, n`L, 1M) =



1 np = 7, n` = 0
4 np = 6, n` = 1

16 np = 5, n` = 2
64 np = 4, n` = 3

244 np = 3, n` = 4
856 np = 2, n` = 5

2344 np = 1, n` = 6
4726 np = 0, n` = 7

;

N(npP, n`L, 2M) =



1 np = 5, n` = 0
4 np = 4, n` = 1

16 np = 3, n` = 2
62 np = 2, n` = 3

220 np = 1, n` = 4
576 np = 0, n` = 5

;

N(npP, n`L, 3M) =


1 np = 3, n` = 0
4 np = 2, n` = 1

16 np = 1, n` = 2
58 np = 0, n` = 3

;

N(npP, n`L, 4M) =
{

1 np = 1, n` = 0
4 np = 0, n` = 1

.

Proof: This follows from Theorem IV′ applied to the family of smooth cubics; in
this case, Bi ◦ Fi = [Bi]. We just list here the relevant contributions:

N((7− n`)P, n`L, 1M) =

=


256− 0− 0− 0− 6− 6 = 244 n` = 4

1024− 0− 0− 0− 99− 69 = 856 n` = 5
4096− 384− 147− 765− 240− 216 = 2344 n` = 6

16384− 4992− 1596− 6372 + 1287 + 15 = 4726 n` = 7

;

N((5− n`)P, n`L, 2M) =

=


64− 0− 0− 0− 1− 1 = 62 n` = 3

256− 0− 0− 0− 21− 15 = 220 n` = 4
1024− 128− 49− 255 + 13− 29 = 576 n` = 5

;

N(0P,3L, 3M) = 64− 0− 0− 0− 3− 3 = 58 .
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Corollary IV′ also agrees with Maillard and Zeuthen’s results.
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