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Abstract. We use a sequence of blow-ups over the projective space parametrizing
plane curves of degree d to obtain some enumerative results concerning smooth plane

curves of arbitrary degree. For d = 4, this gives a first modern verification of results

of H. G. Zeuthen.

§0. Introduction. The k-th ‘characteristic number’ of the d(d+3)
2 -dimensional

family of smooth plane curves of degree d, denoted Nd(k) in the following, is the
number of such curves which are tangent to k lines and contain d(d+3)

2 − k points
in general position in the plane. Elementary considerations and Bézout’s theorem
(see §1 below) show that Nd(k) = (2d− 2)k for k < 2d− 1.

In this paper we compute the next two cases as a closed form in terms of the
degree d; our result is

Nd(2d− 1) = (2d− 2)2d−1 − 2d−3d(d− 1)(d2 − d + 2)

Nd(2d) = (2d− 2)2d − 2d−4d(d− 1)(8d4 − 21d3 + 19d2 − 20d + 32)

Also, for d=4 we obtain the next characteristic number N4(9) = 9,840,040.
The characteristic numbers of a family are its basic enumerative information; the

problem of computing them for families of plane curves has received quite some
attention in the recent past. For the family of smooth plane curves of degree d,
the modern literature lists the numbers N2(k), N3(k) for smooth conics and cubics
([F], [A], [KS]); for d = 4, the numbers N4(7) = 279,600, N4(8) = 1,668,096 and
N4(9) = 9,840,040 computed here verify classic results of H.G.Zeuthen’s ([Z], in
which –among many others– all the characteristic numbers N4(k) for smooth plane
quartics are obtained). For degree ≥ 5, the results of this paper seem to be new
(we know of recent work of Leendert van Gastel on this problem, from a different
viewpoint).

Our approach is in the spirit of the computation of the characteristic numbers
for smooth plane cubics in [A]. Let PN be the projective space parametrizing plane
curves of degree d. Call ‘point-condition’ the hyperplane in PN formed by the
curves C ∈ PN which contain a given point, and ‘line-condition’ the hypersurface
(of degree 2d−2) consisting of the curves C ∈ PN which are tangent to a given line.
The intersection of all line-conditions is supported on the set S ⊂ PN consisting of
all curves C ∈ PN containing a multiple component.

Let now Ṽ be a smooth variety mapping birationally onto PN , and denote by P̃ , L̃
resp. the classes of the proper transforms of the general point- and line- conditions.
In [A], Corollary I, we observed that if the intersection of the proper transforms of
all line-conditions is empty, then Nd(k) = P̃N−k · L̃k. We call such a Ṽ a smooth
variety of ‘complete plane curves of degree d’. The computation of the numbers for
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smooth plane cubics in [A] is achieved by constructing a variety of complete cubics
by a sequence of five blow-ups along smooth centers over P9.

The point is to construct Ṽ while maintaining control of its Chow ring; this can be
accomplished e.g. by blowing-up along smooth centers. In this sense, constructing
a ‘nice’ variety of complete curves of degree d for d ≥ 4 seems a formidable task.
However, for a specific k, it suffices to construct the variety over an open set of PN

containing the intersection of k line-conditions and N − k point-conditions chosen
generally; for example, PN itself can be used if k ≤ 2d − 2. For the results in this
note (i.e. k ≤ 2d), we will consider an open basically big enough as to contain the
smooth part of the set B ⊂ PN consisting of curves decomposing into a ‘double
line’ and a curve of degree d − 2. For all d, we will use two blow-ups to construct
a variety Ṽ satisfying our requirements for k ≤ 2d − 1 (§3). For k = 2d, a third
blow-up (along a non-reduced center for d > 4) would be necessary to construct
the variety over the locus consisting of curves decomposing into a curve of degree
d − 2 and a double line tangent to the curve. However, this last step amounts to
the computation of the contribution of isolated points to the intersection number
of N divisors in Ṽ , and it seems easier to evaluate this contribution directly (§4).

For d = 4 it is easy to analyze the third blow-up and construct the variety over
the set of quartics consisting of a smooth conic and a double line tangent to it. As
a bonus we get a third characteristic number in this case, after evaluating directly
the contribution due to a double conic and to quartics consisting of a triple of lines,
one of which double, meeting at a point (§5).

The two blow-ups we give in §3 generalize to arbitrary degree the last two blow-
ups considered in [A] for d = 3. As in [A], after constructing the variety Ṽ as a
sequence of blow-ups, we compute P̃N−k ·L̃k, k = 2d−1, 2d, by using an intersection
formula involving some information about the normal bundles of the centers of the
blow-ups (§4).

A technical difficulty in this approach to the computation is the determination
of the intersection of all proper transforms of line-conditions at each new blow-
up. Heuristically speaking, more blow-ups are needed over points at which the
scheme-intersection of all line-conditions is richer in structure; an essential step in
our computation is the estimation of this factor. Let S be a subscheme of a smooth
variety, and p a simple point of the support S of S. We define the ‘thickness’ of S
at p, thp(S) to be the maximum length of the intersection of S with a curve germ
centered at p and transversal to S. For S ⊂ PN denoting (as above) the set of non-
reduced curves, and S being the scheme-theoretic intersection of all line-conditions,
supported on S, we compute in a Lemma (§2) the thp(S) for p ∈ PN corresponding
to certain plane curves decomposing into a double line µ and a curve C of degree
d− 2. We get thp(S) = 2 if µ is not tangent to C, thp(S) = 3 if µ is tangent to C
at a single smooth point of C. This information is used crucially to show that two
blow-ups suffice for k = 2d − 1, and to gather information necessary to treat the
case k = 2d.

It should be pointed out that in fact the case k = 2d−1 amounts to the evaluation
of the contribution to the intersection multiplicity of N divisors in PN due to isolated
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points of intersection (corresponding to singular curves). Given the geometry of the
situation (the tangent spaces to the conditions intersect in a d-dimensional space),
the minimum that the contribution of each point ‘could be’ is 2d (see the remark in
§4); our result for k = 2d− 1 shows that this is precisely the case. For k = 2d, we
are computing the total contribution of a union of curves to the intersection number
of N divisors in PN . It would be interesting to interpret this result similarly, in
terms of simple geometry considerations, as a ‘minimal allowed’ contribution.

I would like to thank Alberto Collino, William Fulton, Joe Harris, and Sheldon
Katz for several inspiring conversations.

§1. Basic facts and notations. Let V be a three-dimensional complex vector
space, P2 = P(V), and PN = P(SymdV̌) the projective space of dimension N =
d(d+3)

2 parametrizing plane curves of degree d. In the following it will be convenient
to assume d ≥ 4: however, the main results hold as stated for conics and cubics as
well.

If p is a point in the plane, the curves that contain p determine a hyperplane Pp

in PN : a ‘point-condition’ in PN . Similarly, the curves tangent to a given line `
form a hypersurface L` of degree 2d − 2: a ‘line-condition’ in PN . If p1, . . . , pN−k

and `1, . . . , `k are general points and lines, we are interested in the number Nd(k)
of smooth curves containing p1, . . . , pN−k and tangent to `1, . . . , `k, i.e. the number
of points in the intersection Pp1 ∩ · · · ∩ PpN−k

∩ L`1 ∩ · · · ∩ L`k
that correspond to

smooth curves.
Suppose now that Ṽ is a variety mapping birationally to PN , such that the in-

tersection of the proper transforms in Ṽ of all line-conditions is empty. We call any
such variety a ‘variety of complete curves of degree d’ (such varieties exist: for ex-
ample, blow-up PN along the scheme-theoretic intersection of the line-conditions).
The proper transforms of the general point-condition P and line-condition L de-
termine divisor classes P̃ , L̃ in Ṽ ; we observed in [A], Corollary I, that if Ṽ is a
variety of complete curves, then Nd(k) = P̃N−k · L̃k for all k. We will use this fact
in a more specific formulation.

For any variety Ṽ mapping birationally to PN , call ‘point-conditions’ and ‘line-
conditions’ in Ṽ the proper transforms of the point- and line-conditions in PN .
Denote as above by P̃ and L̃ the divisor classes of the general point- and line-
condition in Ṽ .

Lemma I. Suppose Ṽ
π−→ PN is a birational morphism such that, for general point-

conditions P1, . . . , PN−k in PN , the intersection of all line-conditions in Ṽ is disjoint

from π−1(P1 ∩ · · · ∩ PN−k). Then Nd(k) = P̃N−k · L̃k.

Proof: Let L1, . . . , Lk be general line-conditions in PN . If P̃i, L̃j are the proper
transforms of Pi, Lj in Ṽ , the hypotheses guarantee that Ṽ is isomorphic to a variety
of complete curves of degree d in a neighborhood of P̃1 ∩ · · · ∩ P̃N−k ∩ L̃1 ∩ · · · ∩ L̃k.
The claim follows then from the fact that P̃N−k ·L̃k is a sum of local contributions.

The intersection of all line-conditions on PN is supported on the set S consisting of

3



curves with multiple components. The structure of S is in general very complicated;
however, for our purposes the relevant observation is quite simple:

Lemma 1.1. The highest dimensional component in S is the set B formed by curves
containing a double line. B has codimension 2d − 1 in PN ; the other components
of S and the singular locus of B have codimension > 2d.

Proof: B is the image of a map

P
(d−2)(d+1)

2 × P̌2 i−→ P
d(d+3)

2

(C, µ) 7→ Cµ2

where P
(d−2)(d+1)

2 = P(Symd−2V̌) parametrizes plane curves of degree d − 2, and
P̌2 parametrizes lines. One verifies easily that i is an embedding at points (C, µ)
with C reduced and not containing µ (di is injective if C does not contain µ). The
statement follows then from simple dimension computations.

We will denote by Cµ2 a point of B decomposing into the degree-(d− 2) curve C
and the double line supported on the line µ. As observed in the proof, B is smooth
at Cµ2 e.g. if C is reduced and intersects µ properly.

Lemma I gives immediately

Proposition 1.2. For k < 2d− 1, Nd(k) = (2d− 2)k.

Proof: Indeed, for k < 2d−1 and N −k general point-conditions P1, . . . , PN−k in
PN , P1 ∩ · · · ∩PN−k ∩S = ∅ (this follows from Lemma 1.1 and e.g. from Remark 1,
§1 in [A]). We can then apply Lemma I to Ṽ = PN and π =identity, and compute
P̃N−k · L̃k using Bézout’s Theorem.

For k ≥ 2d−1, the intersection of N−k point-conditions is never disjoint from S.
In section 3 we will construct a Ṽ fitting the hypotheses of Lemma I for k = 2d− 1,
by two successive blow-ups over PN .

Lemma 1.3. (1) For k = 2d− 1, and P1, . . . , PN−k general point-conditions in PN ,

P1 ∩ · · · ∩PN−k ∩ S consists of d(d−1)(d2−d+2)
8 points Cµ2 ∈ B, with C smooth and

µ transversal to C.
(2) For k = 2d and P1, . . . , PN−k general point-conditions in PN , P1∩· · ·∩PN−k∩S

consists of 1-dimensional subsets of B. All Cµ2 ∈ P1∩· · ·∩PN−k∩S have C reduced,
and µ intersecting C properly, at smooth points of C. For finitely many such Cµ2,
µ will be simply tangent (at a single point) to C.

In particular, for k = 2d− 1 or 2d and P1, . . . , PN−k general point-conditions in
PN , P1 ∩ · · · ∩ PN−k ∩ S is entirely contained in the smooth part of B.

Proof: Both (1) and (2) follow again easily from [A], Remark 1, §1 and dimension
counts. The point is that one can choose N − k point-conditions such that P1 ∩
· · · ∩ PN−k is disjoint from given subsets of PN of codimension > k. For example,
as observed in Lemma 1.1 all components of S other than B and the singular locus
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of B have codimension > 2d: therefore, the intersection of N − 2d or more general
point-conditions will miss these loci. As for the number d(d−1)(d2−d+2)

8 , this is the

number
((d

2)+1

2

)
of lines containing 2 out of d(d+3)

2 −2d+1 =
(
d
2

)
+1 general points.

In view of Lemma 1.3 (1), to apply Lemma I for k = 2d− 1 we need to produce
a variety Ṽ and a birational morphism π : Ṽ −→ PN , such that the intersection of
all line-conditions in Ṽ is disjoint from each fiber π−1(Cµ2) with µ a line and C
a reduced curve of degree d − 2 intersecting µ transversally. As we will see, two
blow-ups over PN will produce a variety Ṽ satisfying this requirement. Ṽ will not
suffice for k = 2d: as we shall see, the intersection of all line-conditions meets (at
one point) the fiber over Cµ2 when µ is tangent to C. However, the contribution
given by this residual intersection can be computed directly.

§2. Thickness. Let S be a subscheme of a smooth variety V , and p a simple point
of the support S of S. We define the ‘thickness’ of S at p, thp(S) to be the maximum
length of the intersection of S with a curve germ centered at p and transversal to S.
In this section we compute the ‘thickness’ thp(S) of the scheme-theoretic intersection
S of all line-conditions in PN at points p of B. Our basic observation is: suppose
S is cut out by smooth hypersurfaces H1, . . . ,Hm, let Ṽ

π−→ V be the blow-up of V

along S, and denote by H̃i the proper transform of Hi; also, denote by S̃ the scheme
cut out by H̃1, . . . , H̃m in Ṽ . Then, for p ∈ S, S̃ ∩ π−1(p) 6= ∅ ⇐⇒ thp(S) ≥ 2:
indeed, thp(S) ≥ 2 precisely when there is a direction normal to S and tangent to
all the Hi. Also, if p̃ ∈ S̃ ∩ π−1(p), then in good hypotheses thp̃(S̃) < thp(S) (in
our applications these facts will follow directly from the definition). The result of
our computation will be needed at several places in §3 and §4; for the moment, the
hasty reader may want to assume Lemma II as stated below and skip the rest of
this section.

We keep the notations of §1: PN is the projective space parametrizing degree-d
plane curves, and we call ‘line-condition’ corresponding to a line ` the hypersurface
of PN consisting of all curves tangent to `. The intersection of all line-conditions
in PN is supported on the set formed by curves containing a multiple component;
B denotes the subvariety of PN consisting of curves Cµ2 decomposing in a degree-
(d− 2) curve and a ‘double line’.

Let Cµ2 ∈ B ⊂ PN , with C a reduced curve of degree d− 2, and µ a line
intersecting C at finitely many smooth points (we noticed in §1 that B is non-
singular at such a Cµ2). The intersection of all line-conditions is a scheme S one
of whose components is supported on B. Denote by thCµ2(S) (the ‘thickness’ of S
at Cµ2) the maximum length of the intersection with S at Cµ2 of the germ of a
smooth curve centered at Cµ2 and transversal to B. Also, if X is a plane curve not
containing µ, denote by Xµ the divisor cut by X on µ. We are going to show:

Lemma II.

(1) If µ is transversal to C, then thCµ2(S) = 2;
(2) If µ is simply tangent to C at precisely one smooth point, then thCµ2(S) = 3.
(3) In case (2), the thickness is 3 only along directions Cµ2 + tKµ with K a

degree-(d− 1) curve such that K2
µ ≥ Cµ.
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(1), (2) and (3) deal with curve germs and certain hypersurfaces in the PN

parametrizing degree-d curves in P2; we first analyze an analogous situation in
the Pd parametrizing degree-d effective divisors in P1. In this Pd we have the dis-
criminant hypersurface ∆d: let α, β be homogeneous coordinates on P1, so that
points in Pd are zeros of polynomials c0α

d + c1α
d−1β + · · ·+ cdβ

d; then ∆d is given
by the vanishing of the discriminant ∆d(c0, c1, . . . , cd) of such polynomials.

Let γ be a curve germ centered at a general point D in ∆d; up to linear trans-
formations, we can assume D is double (only) at (0 : 1), and write

γ(t) = c0(t)αd + c1(t)αd−1β + · · ·+ cd(t)βd,

with c0(0) = c1(0) = 0, c2(0) 6= 0. We are interested in conditions on the ci(t)’s
related to the order of contact (∆d, γ)0 of γ and ∆d at t = 0.

Claim. (i) (∆d, γ)0 ≥ 2 ⇐⇒ c′0(0) = 0;
(ii) (∆d, γ)0 ≥ 3 ⇐⇒ c′0(0) = 0 and c′1(0)2 = 2c2(0)c′′0(0);
(iii) (∆d, γ)0 ≥ 4 ⇐⇒ c′0(0) = 0, c′1(0)2 = 2c2(0)c′′0(0), and 2c2(0)2c′′′0 (0) −

3c2(0)c′1(0)c′′1(0) + 6c2(0)c′2(0)c′′0(0)− 3c3(0)c′1(0)c′′0(0) = 0.

Proof: The discriminant hypersurface is the projection of the codimension-2 sub-
variety of Pd × P1 defined by{

dc0α
d−1+(d− 1)c1α

d−2β + · · ·+cd−1β
d−1=0

c1α
d−1+ 2c2α

d−2β + · · ·+ dcdβ
d−1=0

.

By the projection formula, (∆d, γ)0 is the intersection multiplicity of this variety
with the germ of surface (γ(t), s) in Pd × P1. In other words, (∆d, γ)0 is the inter-
section multiplicity at the origin of the curves{

dc0(t)+(d− 1)c1(t)s + · · ·+cd−1(t)sd−1=0

c1(t)+ 2c2(t)s + · · ·+ dcd(t)sd−1=0
.

in the (s, t)-plane.
Now observe that if d > 4, then the term cd(t)sd−1 vanishes to order at least 4

at the origin: therefore this term is irrelevant to whether (∆d, γ)0 ≤ 4. Hence, if
d > 4 we may assume ∀t, cd(t) = 0: i.e., we may assume that all divisors γ(t) in P1

contain the point at infinity (1 : 0). Also, since γ(0) was general we may assume
cd−1(0) 6= 0.

Next, observe ∆d(c0, . . . , cd−1, 0) = c2
d−1∆d−1(c0, . . . , cd−1): therefore, if d > 4

then the conditions for d are the same as the conditions for d−1. I.e., in determining
these conditions we may assume d = 4, and a direct computation gives (i), (ii) and
(iii).

Now consider a curve γ(t) in PN , such that γ(0) = Cµ2 ∈ B (C reduced, µ
intersecting C at finitely many smooth points), and transversal to B at 0. We write

γ(t) = P + Qt + Rt2 + St3 + . . . ,
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where P,Q,R, · · · ∈ PN . Choosing homogeneous coordinates (x0 : x1 : x2) in P2,
we will write e.g.

P = P (x0 : x1 : x2) = Pd(x1 : x2) + Pd−1(x1 : x2)x0 + Pd−2(x1 : x2)x2
0 + . . . ,

with Pi(x1 : x2) homogeneous polynomials of degree i in x1, x2. In this notation,

γ(t) = (Pd(x1 : x2)+Pd−1(x1 : x2)x0 +Pd−2(x1 : x2)x2
0 + . . . )

+(Qd(x1 : x2)+Qd−1(x1 : x2)x0+Qd−2(x1 : x2)x2
0 + . . . )t

+(Rd(x1 : x2)+Rd−1(x1 : x2)x0+Rd−2(x1 : x2)x2
0 + . . . )t2 + . . . .

Assuming γ(0) = Cµ2 imposes Pd = Pd−1 = 0, Pd−2 6= 0.
Let ` be a general line. Up to a linear transformation of the plane, we can

assume ` has equation `2x1 − `1x2 = 0, i.e. it contains the point (1 : 0 : 0). Then `
is parametrized by (α : β) via x0 = β, x1 = `1α, x2 = `2α; for any t the degree-d
curve γ(t) ∈ PN cuts on ` the degree-d divisor

γ`(t) = (Pd−2(`1 : `2)αd−2β2 + . . . )

+(Qd(`1 : `2)αd+Qd−1(`1 : `2)αd−1β+Qd−2(`1 : `2)αd−2β2 + . . . )t

+(Rd(`1 : `2)αd+Rd−1(`1 : `2)αd−1β+Rd−2(`1 : `2)αd−2β2 + . . . )t2 + . . . .

Applying part (i) of the claim gives:
γ is tangent to the line-condition corresponding to ` at Cµ2 if and only if Qd(`1 :

`2) = 0.
Therefore, γ is tangent to all line-conditions if and only if Qd(`1 : `2) = 0 for all

`1, `2: i.e. if and only if Qd = 0. Assume this is the case, so that

γ(t) = (Pd−2(x1 : x2)x2
0 + . . . )

+(Qd−1(x1 : x2)x0+Qd−2(x1 : x2)x2
0 + . . . )t

+(Rd(x1 : x2) +Rd−1(x1 : x2)x0+Rd−2(x1 : x2)x2
0 + . . . )t2 + . . . .

Qd = 0 means that γ is tangent to the line Cµ2 + Kµt, with K a degree-(d− 1)
curve. Notice that Pd−2 gives the divisor Cµ on µ, and Qd−1 gives Kµ. γ is
transversal to B at Cµ2 if Kµ � Cµ, i.e. if Pd−2 does not divide Qd−1 (see §3.1,
(1)). Such γ are tangent to all line-conditions and transversal to B; therefore
thCµ2(S) ≥ 2. We have to show that thCµ2(S) ≥ 3 only if µ is tangent to C, and
that thCµ2(S) ≤ 3 if µ is simply tangent to C at exactly one smooth point.

Restricting to ` as above, γ(t) cuts now the divisor

γ`(t) = (Pd−2(`1 : `2)αd−2β2 + . . . )

+(Qd−1(`1 : `2)αd−1β+Qd−2(`1 : `2)αd−2β2 + . . . )t

+(Rd(`1 : `2)αd +Rd−1(`1 : `2)αd−1β+Rd−2(`1 : `2)αd−2β2 + . . . )t2 + . . .
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By the claim, γ has contact with order at least 3 with the line-condition correspond-
ing to ` if and only if

(*) Qd−1(`1 : `2)2 = 4Rd(`1 : `2)Pd−2(`1 : `2) ;

this can be realized for all `1, `2 if and only if Pd−2 divides Q2
d−1: therefore, γ

is transversal to B and meets all line-conditions with order at least 3 at Cµ2 if
and only if Pd−2 does not divide Qd−1 but Pd−2 divides Q2

d−1: i.e., if and only if
Kµ � Cµ but K2

µ ≥ Cµ. This can happen only if Cµ has a ‘double’ point, i.e. only
if µ is tangent to C: Lemma II (1) and (3) follow. We note in passing that in fact
this conclusion follows from requiring (*) for 2d− 1 general lines (i.e. 2d− 1 general
pairs `1, `2).

To finish the proof of Lemma II we need to show that, in the hypotheses of (2), γ
cannot meet all line-conditions with order ≥ 4 at Cµ2. This follows from part (iii)
of the claim: γ meets all line-conditions with order at least 4 if and only if

(**) 2P 2
d−2Sd − Pd−2Qd−1Rd−1 + 2Pd−2Qd−2Rd − Pd−3Qd−1Rd = 0;

but the first three terms in this sum have multiplicity at least 2 at the double point
in Cµ, while the last has multiplicity 1 (Pd−3 cannot vanish there since we are
assuming C to be smooth at all intersections with µ), so this cannot occur.

§3. The blow-ups. The general plan is to blow-up the support S of the inter-
section of all line-conditions, then the support of the intersection of their proper
transforms. As remarked in §1, for our purposes we actually need only deal with
the component B of S consisting of all curves containing a ‘double line’; and in
fact we are interested in analyzing the situation above non-singular points of B (cf.
Lemma 1.3 in §1).

3.1. The first blow-up. As above, we denote by B the subset of PN formed
by curves Cµ2 containing a ‘double line’; we will first blow-up PN along B. Let
B◦ ⊂ B be the open subset of B consisting of all Cµ2 with C reduced and not
containing µ; recall that B◦ is smooth (cf. Lemma 1.1 in §1). Also, if µ 6⊂ X denote
by Xµ the divisor cut by the curve X on the line µ. The reader will easily check
the following facts:

(1) The tangent space in PN to B at a point Cµ2 ∈ B◦ consists of all Kµ ∈ PN

with Kµ ≥ Cµ or µ ⊂ K.
(2) Let L be the line-condition in PN corresponding to a line `. For Cµ2 ∈ B◦

and ` general, L is non-singular at Cµ2, and the tangent space in PN to L at Cµ2

consists of all X ∈ PN with ` ∩ µ ∈ X.
In particular, it follows from (2) that the intersection of the tangent spaces of all

line-conditions at a point Cµ2 ∈ B◦ consists of all X ∈ PN that contain µ: indeed,
a curve of degree d cutting a line in more than d points must contain it.

Let then V1
π1−→ PN be the blow-up of PN along B, and call E1 the exceptional

divisor. Call ‘point-’ and ‘line-conditions’ in V1 the proper transforms of the condi-
tions in PN . As seen in §1, we need to analyze the blow-up over B◦.
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Consider π−1(B◦), the subset of E1 lying over B◦. As B◦ is smooth, π−1(B◦) −→
B◦ is a projective bundle: specifically, if N denotes the normal bundle to B◦ in PN ,
then π−1(B◦) = P(N ). So a point in π−1(B◦) is a normal direction to B centered
at a point Cµ2 ∈ B◦.

Proposition 3.1. Denote by S1 the intersection of all line-conditions in V1. Then
S1 ∩ π−1(B◦) is supported on a Pd−3-bundle B◦

1 over B◦.

Specifically (as we will see in the proof), the immersions Symd−1V̌ ↪→ SymdV̌
given by multiplication by linear forms determine naturally a rank-(d−2) subbundle
G of N , and B◦

1 = P(G).
Proof: Call B◦

1 the support of S1∩π−1(B◦). By (2) above, S1 intersects the fiber
over Cµ2 ∈ B◦ along normal directions to B lying in the space of curves X ∈ PN

containing µ. These directions (i.e. the fiber of B◦
1 over each Cµ2) form a Pd−3; in

fact, B◦
1 is the projectivization P(G) of a rank-(d−2) subbundle of N . To show this

(and to collect information we will use in §4.2), recall from §1, proof of Lemma 1.1,
that B◦ is isomorphic to an open set in P

(d−2)(d+1)
2 × P̌2, via (C, µ) 7→ Cµ2. Denote

by O1(1) (resp. O2(1)) the pull-back to B◦ of O(1) from the first (resp. second)
factor of P

(d−2)(d+1)
2 × P̌2. The Euler sequence giving the tangent bundle to PN :

0 −→ OPN −→ SymdV̌⊗OPN (1) −→ TPN −→ 0

pulls-back on B◦ to:

0 −→ OB◦ −→ SymdV̌⊗O1(1)⊗O2(2) −→ TPN |B◦ −→ 0 .

Now, the immersion Symd−1V̌⊗O2(−1) ↪→ SymdV̌ gives an immersion

Symd−1V̌⊗O1(1)⊗O2(1) ↪→ SymdV̌⊗O1(1)⊗O2(2)

and determines a subbundle G′ of TPN |B◦ containing TB◦, and hence a subbundle
G of N . The fiber of G′ over Cµ2 ∈ B◦ is the tangent space at Cµ2 to the set of
curves of degree d containing µ, therefore (by the description of B◦

1 given above),
B◦

1 = P(G).
As seen above, the fiber of B◦

1 over Cµ2 consists of the (d − 3)-dimensional
projective space of normal directions to B centered at Cµ2 and lying in the subspace
of PN formed by curves containing µ. Call {K}Cµ2 the point in B◦

1 determined by
the line Cµ2 + tKµ (parametrized by t), where K is a degree-(d− 1) curve. Notice
that for K to determine a point of B◦

1 –i.e. for Cµ2 + tKµ to determine a normal
direction to B– we must have (by (1) above) Kµ � Cµ.

Now each point p in C ∩ µ determines a hyperplane in the fiber of B◦
1 over

Cµ2: namely the hyperplane consisting of all {K}Cµ2 with p ∈ K. If µ and C
intersect transversally, then µ ∩ C consists of d − 2 distinct points, and the d − 2
corresponding hyperplanes in the fiber have empty intersection (because Kµ � Cµ

for all {K}Cµ2 ∈ B◦
1).

If on the other hand µ is tangent to C (at one point), the d−3 points of intersection
of µ and C determine d − 3 hyperplanes in the fiber, intersecting at exactly one
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point. This determines a subset T ◦
1 ⊂ B◦

1 , mapping bijectively onto the set T ◦ =
{Cµ2 ∈ B◦ s.t. µ is tangent to C}. Equivalently, T ◦

1 consists of all {K}Cµ2 ∈ B◦

with Kµ � Cµ, K2
µ ≥ Cµ. This set will play an important role in the following:

by Lemma 1.3 in §1, T ◦ is disjoint from the intersection of N − 2d + 1 general
point-conditions, and meets the intersection of N − 2d general point-conditions at
finitely many points –in fact, finitely many points Cµ2 with µ tangent to C at a
single smooth point.

Finally, we let B1, T1 be the closures of B◦
1 , T ◦

1 in V1. B1 will be the center for
our second blow-up.

§3.2. The second blow-up. Let V2
π2−→ V1 be the blow-up of V1 along B1, and

call E2 the new exceptional divisor. Again, we call ‘point-conditions’ and ‘line-
conditions’ in V2 the proper transforms of the conditions in V1.

As before, we need only analyze the part of this blow-up lying over B◦. Now B◦
1

is non-singular, therefore π−1
2 (B◦

1) ⊂ E2 is a projective bundle over B◦
1 : denoting

by N1 the normal bundle to B◦
1 in V1, we have π−1

2 (B◦
1) = P(N1).

Denote by E1 the normal bundle to B◦
1 in E1: then the proper transform Ẽ1 of

E1 in V2 intersects π−1
2 (B◦

1) along P(E1) ⊂ P(N1). The fiber of Ẽ1 over a point of
B◦

1 is a hyperplane in the fiber of E2; we first show that the line-conditions in V2

don’t meet anywhere along these hyperplanes:

Lemma 3.2. The intersection S2 of all line-conditions in V2 is disjoint from

π−1
2 (B◦

1) ∩ Ẽ1.

Proof: Consider the Euler sequences for B◦
1 = P(G) and π−1

1 (B◦) = P(N ) (nota-
tions as in the proof of Proposition 3.1):

0 −−−−→ OP(G) −−−−→ G ⊗OP(G)(1) −−−−→ TP(G)|B◦ −−−−→ 0y y y
0 −−−−→ OP(N ) −−−−→ N ⊗OP(N )(1) −−−−→ TP(N )|B◦ −−−−→ 0

These give (with some abuse of notations):

E1 = TP(N )|B◦/TP(G)|B◦ = (N/G)⊗OP(G)(1) .

Recalling how G was obtained:

E1 = (TPN /G′)⊗OP(G)(1) =
SymdV̌

Symd−1V̌⊗O2(−1)
⊗O1(1)⊗O2(2)⊗OP(G)(1).

Let p ∈ B◦
1 , mapping to Cµ2 ∈ B◦. The fiber of P(E1) over p can be identified

with P(SymdV̌/Symd−1V̌), where the inclusion Symd−1V̌ ↪→ SymdV̌ is given by
multiplication by µ.

Therefore Ẽ1 ∩ π−1
2 (p) can be identified with the space of d-tuples of points over

µ; via this identification, the line-condition L` in V2 corresponding to a general line
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` contains a point in Ẽ1∩π−1
2 (p) if and only if ` goes through a point of the d-tuple.

The assertion of the lemma follows from this.
Since the general line-condition in V1 is non-singular at a point p ∈ B◦

1 , then
π−1

2 (p) ∩ S2 is (set-theoretically) the intersection of hyperplanes of the fiber of
P(N1), and is therefore itself a linear space. By Lemma 3.2, this intersection misses
a hyperplane in each fiber, hence it consists of at most one point over each p ∈ B◦

1 .
Lemma 3.2 is the main tool in our next observation. Recall that, over B◦, the

intersection S1 of all line-conditions in V1 is supported on B◦
1 . Also, we found a

‘special’ subvariety T ◦
1 ⊂ B◦

1 : denoting (as in §1) by {K}Cµ2 points of B◦
1 , T ◦

1

consists of all {K}Cµ2 ∈ B◦
1 with K2

µ ≥ Cµ.

Lemma 3.3. (1) thp(S1) = 1 if p ∈ B◦
1 − T ◦

1

(2) thp(S1) ≥ 2 if p ∈ T ◦
1 , and thp(S1) = 2 if p = {K}Cµ2 , with µ tangent to C

at a single smooth point.

Proof: The thickness of S1 is (vacuously) at least 1 at all p ∈ B◦
1 ; we have to show

it is at most 1 outside of T ◦
1 , and precisely 2 on T ◦

1 if p maps to Cµ2, µ tangent to
C at a single smooth point.

Let p = {K}Cµ2 ∈ B◦
1 . It follows from Lemma 3.2 that a non-singular curve

in V1 tangent to E1 and transversal to B1 at p must be transversal to the general
line-condition in V1 at p: indeed, otherwise the line-conditions in V2 would intersect
along Ẽ1 ∩ E2 above p. Therefore, germs centered at p, transversal to B1 and
tangent to E1 intersect S1 with multiplicity 1 at p. On the other hand, consider a
smooth curve germ γ(t) centered at {K}Cµ2 , transversal to B1 and E1; such a γ

maps down to a smooth curve germ in PN , centered at Cµ2 and transversal to B.
Then (1) and (2) follow from Lemma II, by e.g. [F], Theorem 12.4 (a).

The last lemma is the main ingredient for:

Proposition 3.4. S2 ∩ π−1
2 (B◦

1) is supported on a variety B◦
2 mapping bijectively

onto T ◦
1 .

Proof: By Lemma 3.2, the intersection consists of at most one point in each fiber
over p ∈ B◦

1 . Now the line-conditions in V2 cannot intersect above points p ∈ B◦
1

where thp(S1) < 2, and they must intersect above p if thp(S1) ≥ 2 (since the line-
conditions in V1 share a normal direction to B◦

1 in this case). The statement then
follows from the computation of thp(S1) in Lemma 3.3.

In fact B◦
2 is a section of E2 over T ◦

1 ; we set Ṽ = V2, and let B2 be the closure of
B◦

2 in Ṽ . In §4, we will use Ṽ to compute Nd(2d− 1) and Nd(2d).
We summarize the results of this section in:

Lemma III. Let P̃ , L̃ denote the classes of the general point- and line-condition in

Ṽ . Then

(1) Nd(2d− 1) = P̃N−2d+1 · L̃2d−1, and

(2) Nd(2d) = P̃N−2d · L̃2d− c, where c is a (positive) contribution due to finitely
many points in B◦

2 .

Proof: This follows from Lemma I, Lemma 1.3 and Proposition 3.4: the intersec-
tion of N − 2d + 1 general point-conditions in Ṽ is disjoint from S2 (giving (1)),
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while the intersection of N − 2d general point-conditions in Ṽ meets S2 at finitely
many points of B◦

2 , so that P̃N−2d · L̃2d is the sum of Nd(2d) and of a positive
contribution c.

§4. Two characteristic numbers for all degrees. In this section we apply the
construction in §3 to prove:

Theorem IV. Denote by Nd(k) the number of smooth plane curves of degree d

tangent to k lines and containing d(d+3)
2 − k points in general position. Then

(1) Nd(2d− 1) = (2d− 2)2d−1 − 2d−3d(d− 1)(d2 − d + 2)

(2) Nd(2d) = (2d− 2)2d − 2d−4d(d− 1)(8d4 − 21d3 + 19d2 − 20d + 32)

Remark. By Bézout’s theorem in PN and Lemma 1.3, (2d − 2)2d−1 must be the
sum of Nd(2d − 1) and of a contribution given by the d(d−1)(d2−d+2)

8 non-reduced
curves Cµ2 ∈ PN that contain N − 2d + 1 general points p1, . . . , pN−2d+1. Sup-
pose Cµ2 is one such curve, and that p1, p2 ∈ µ, p3, . . . , pN−2d+1 ∈ C. Now d
general line-conditions and the point-conditions corresponding to p3, . . . , pN−2d+1

intersect in a (d + 1)-dimensional variety Z ⊂ PN non-singular at Cµ2: their tan-
gent hyperplanes intersect on the (d + 1)-dimensional subspace formed by curves
containing p3, . . . , pN−2d+1 and d points q1, . . . , qd on µ (cf. (2) in §3.1). A general
line-condition will now intersect Z in a divisor non-singular at Cµ2, whose tan-
gent space at Cµ2 is the set of all curves containing µ (a degree-d curve containing
d + 1 aligned points must contain the line through them); the same holds for the
point-conditions corresponding to p1 and p2.

Therefore the contribution of Cµ2 to the total intersection number is the contri-
bution of an isolated point of intersection of d + 1 non-singular divisors all tangent
to one another in a (d + 1)-dimensional variety. Such a contribution is at least 2d

([F], Example 8.2.2). Part (1) of Theorem IV implies that the contribution of each
non-reduced curve in this enumerative problem is precisely 2d.

The rest of this section is devoted to deriving Theorem IV from Lemma III. We
will use a formula relating intersections under blow-ups (see [A], §2 for the proof of
a statement implying this):

Proposition. Let V be a smooth n-dimensional variety, B
i

↪→ V a smooth subva-
riety, X1, . . . , Xn divisor of V , and denote by eBX the multiplicity of X along B.

Let Ṽ
π−→ V be the blow-up of V along B, and X̃1, . . . , X̃n the proper transforms

of X1, . . . , Xn. Then

π∗(X̃1 · . . . · X̃n) = X1 · . . . ·Xn + i∗

{∏
j(eBXj [B] + i∗[Xj ])

c(NBV )

}
0

in A0(
⋂

j Xj) (here {α}0 denotes the 0-dimensional component of the class α).

If e.g. B and V are complete, we can use this formula to compare the degrees
of the intersection of X1, . . . , Xn in V and of X̃1, . . . , X̃n in Ṽ . We want to apply
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this formula to the two blow-ups examined in §3; a little extra care has to be
taken since we studied the blow-ups only over certain (open) subsets of the varieties
involved. Suppose then that V is a complete n-dimensional variety, i : B −→ V ,
π : Ṽ −→ V are proper maps, X1, . . . , Xn are divisors in V , and X̃1, . . . , X̃n are
divisors in Ṽ . Suppose that there exists a non-singular dense open set V ◦ ⊂ V such
that B◦ = i−1(V ◦) ↪→ V ◦ is an embedding of smooth varieties, π−1(V ◦) −→ V ◦ is
the blow-up of V ◦ along B◦, X̃j ∩ π−1(V ◦) are the proper transforms of Xj ∩ V ◦,
and X1 ∩ · · · ∩ Xn ⊂ V ◦, X̃1 ∩ · · · ∩ X̃n ⊂ π−1(V ◦) (i.e., the situation pulls-back
to that of the proposition when restricting to V ◦). Then, denoting by eBX the
multiplicity of X along B◦:

(*)
∫

Ṽ

X̃1 · . . . · X̃n =
∫

V

X1 · . . . ·Xn +
∫

B

∏
j(eBXj [B] + i∗[Xj ])

c(NBV )
,

where c(NBV ) is any class that pulls-back to c(NB◦V ◦) on B◦.
This follows from the proposition above, since all the terms are sums of local

contributions. As the reader will check, Lemma 1.3 and our choices guarantee that
the hypotheses are satisfied at both stages of our computation.

§4.1. The first blow-up. We apply (*) to

P
(d−2)(d+1)

2 × P̌2 i−→ P
d(d+3)

2

(C, µ) 7→ Cµ2

(cf. the proof of Lemma 1.1). Keeping the notation as in §3.1, the image of this
map is B; we analyzed the blow-up over B◦, which is identified via this map with
the subset B◦ ⊂ P

(d−2)(d+1)
2 × P̌2 consisting of the pairs (C, µ) with C reduced and

not containing µ. If P,L denote resp. point- and line-conditions in PN , then eBP =
0, eBL = 1 (line-conditions are generically smooth along B, cf. (2) in §3.1). The
Chow ring of P

(d−2)(d+1)
2 × P̌2 is generated by the pull-backs `,m of the hyperplane

classes from the factors, with the relations `imj = 0 if i > (d−2)(d+1)
2 or j > 2, and∫

`
(d−2)(d+1)

2 m2 = 1. Also, i∗P = ` + 2m, i∗L = (2d− 2)` + (4d− 4)m. Denoting by
P1, L1 the classes of the line-conditions in V1, Bézout’s Theorem and (*) give (for
k ≤ 2d):

PN−k
1 · Lk

1 = (2d− 2)k −
∫

(` + 2m)N−k (1 + (2d− 2)` + (4d− 4)m)k

c(NBPN )
,

where c(NBPN ) is any class on P
(d−2)(d+1)

2 × P̌2 restricting to c(NB◦PN ) on B◦.
Such is

i∗c(TPN )

c(TP
(d−2)(d+1)

2 × P̌2)
=

(1 + ` + 2m)(
d+2
2 )

(1 + `)(
d
2)(1 + m)3

= 1 + (2d + 1)` + (d2 + 3d− 1)m + . . .
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(only these terms are relevant for k ≤ 2d). Therefore:

PN−2d+1
1 · L2d−1

1 = (2d− 2)2d−1 −
∫

(` + 2m)(
d
2)+1

= (2d− 2)2d−1 − 4
((

d
2

)
+ 1
2

)
, and

PN−2d
1 · L2d

1 = (2d− 2)2d −
∫

(` + 2m)(
d
2) (1 + 2d(2d− 2)` + 2d(4d− 4)m)

1 + (2d + 1)` + (d2 + 3d− 1)m

= (2d− 2)2d −
∫

(` + 2m)(
d
2)((4d2 − 6d− 1)` + (7d2 − 11d + 1)m).

§4.2. The second blow-up; Nd(2d − 1). The center of the second blow-up is
the closure of B◦

1 , a Pd−3-bundle over B◦. More precisely (see proposition 3.1)
the immersion Symd−1V̌ ⊗ O1(1) ⊗ O2(1) ↪→ SymdV̌ ⊗ O1(1) ⊗ O2(2) determines
a subbundle G′ of TPN |B◦ containing TB◦, therefore a subbundle G of the normal
bundle N to B◦ in PN , and B◦

1 = P(G).
Now call P(G) any compactification of P(G) filling the diagram

P(G) i1−−−−→ V1

p

y yπ1

P
(d−2)(d+1)

2 × P̌2 i−−−−→ P
d(d+3)

2

with i1 proper, identifying i−1
1 B◦

1 with B◦
1 , and B◦

1
p−→ B◦ with the bundle P(G)

defined above. Also, denote by `,m the pull-backs of `,m via p, and by e the class
of the ‘universal line bundle’ (i.e., the pull-back of the class of E1 via i1).

Lemma 4.1.

p∗e
j =


0, j < d− 3

(−1)d−1, j = d− 3

(−1)d−1(d` +
d2 + d− 6

2
m), j = d− 2

.

Proof: The codimension of the complement of B◦ in P
(d−2)(d+1)

2 × P̌2 is ≥ 2, so
it’s enough to observe that, over B◦,

∑
j ej pushes forward to the Segre class s(G)

of G: tracing the definition of G

s(G) =
c(TP

(d−2)(d+1)
2 × P̌2)

c(G′)
=

c(TP
(d−2)(d+1)

2 )c(P̌2)
c(Symd−1V̌⊗O1(1)⊗O2(1))

=
(1 + `)(

d
2)(1 + m)3

(1 + ` + m)(
d+1
2 )

= 1− d`− d2 + d− 6
2

m + . . . .
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Denote (as above) by P1, L1 the classes of the point- and line-conditions in V1,
and by P̃ , L̃ the classes of the conditions in Ṽ = V2. We have eB1P1 = 0, eB1L1 = 1,
and i∗1P1 = ` + 2m, i∗1L1 = (2d− 2)` + (4d− 4)m− e, i∗1E1 = e. Therefore (*) gives
(for k ≤ 2d)

P̃N−k · L̃k = PN−k
1 · Lk

1 −
∫

(` + 2m)N−k (1 + (2d− 2)` + (4d− 4)m− e)k

c(NB1V1)
,

where c(NB1V1) is any class on P(G) restricting to c(NB◦
1
V1) on B◦

1 . Now NB◦
1
V1 is

an extension of NE1V1 and E1 = NB◦
1
E1 (notations as in §3.2); we computed E1 in

the proof of Lemma 3.2, getting

E1 =
SymdV̌

Symd−1V̌⊗O2(−1)
⊗O1(1)⊗O2(2)⊗OP(G)(1) .

Putting all together, we can set

c(NB1V1) = (1 + e)
(1 + ` + 2m− e)(

d+2
2 )

(1 + ` + m− e)(
d+1
2 )

.

Hence in order to apply (*) we have to evaluate the degree on P (G) of

(` + 2m)N−k (1 + (2d− 2)` + (4d− 4)m− e)k(1 + ` + m− e)(
d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

for k = 2d− 1, 2d, or equivalently the degree on P
(d−2)(d+1)

2 × P̌2 of

(` + 2m)N−kp∗
(1 + (2d− 2)` + (4d− 4)m− e)k(1 + ` + m− e)(

d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

.

For k = 2d− 1, the only relevant term comes from the push-forward via p of the
term of degree d− 3 in

(1 + (2d− 2)` + (4d− 4)m− e)2d−1(1 + ` + m− e)(
d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

.

By the projection formula and Lemma 4.1, the only degree-(d − 3) monomial in
`,m, e with non-zero push-forward is ed−3; thus the only relevant term is the term
of degree d− 3 in

(1− e)2d−1(1− e)(
d+1
2 )

(1 + e)(1− e)(
d+2
2 )

=
(1− e)d−2

1 + e
.
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This is (−1)d−1(2d−2 − 1)ed−3, therefore Lemma 4.1 gives∫
(` + 2m)(

d
2)+1p∗

(1 + (2d− 2)` + (4d− 4)m− e)2d−1(1 + ` + m− e)(
d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

=
∫

(2d−2 − 1)(` + 2m)(
d
2)+1

= 4(2d−2 − 1)
((

d
2

)
+ 1
2

)
.

This computation, Lemma III at the end of §3, and PN−2d+1
1 · L2d−1

1 as obtained
in §4.1 yield

Nd(2d− 1) = P̃N−2d+1 · L̃2d−1 = (2d− 2)2d−1 − 2d

((
d
2

)
+ 1
2

)
,

which is part (1) of Theorem IV.

For k = 2d, the computation runs along the same lines. We need now the term
of degree d− 2 in

(1 + (2d− 2)` + (4d− 4)m− e)2d(1 + ` + m− e)(
d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

;

by Lemma 4.1, the only monomials with non-zero push-forward are ed−2, `ed−3,
med−3. As above, the coefficient of ed−2 in the expression is the coefficient of ed−2

in
(1− e)2d(1− e)(

d+1
2 )

(1 + e)(1− e)(
d+2
2 )

=
(1− e)d−1

1 + e
,

i.e. (−1)d(2d−1 − 1). One computes similarly the coefficients of `ed−3,med−3; the
result is that the only relevant term in the expression above is

(−1)d

(
(2d−1 − 1)ed−2 − (2d−2 − 1)[(4d2 − 5d− 1)` +

15d2 − 21d− 4
2

m]
)

.

Applying Lemma 4.1, the push-forward of this class is

− (2d−1− 1)(d`+
d2 + d− 6

2
m)+ (2d−2− 1)[(4d2− 5d− 1)`+

15d2 − 21d− 4
2

m])

= 2d−3((4d2−9d−1)`+(13d2−23d+8)m)+
4d2 − 7d− 1

2
`+(7d2−11d+1)m,

hence applying (*) and the computation of PN−2d
1 · L2d

1 in §4.1 yields P̃N−2d · L̃2d:

(2d− 2)2d −
∫

(` + 2m)(
d
2)(2d−2(4d2 − 7d− 1)` + 2d−3(13d2 − 23d + 8)m)

= (2d− 2)2d − 4
((

d
2

)
2

)
2d−2(4d2 − 7d− 1)− 2

(
d

2

)
2d−3(13d2 − 23d + 8), or
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P̃N−2d · L̃2d = (2d− 2)2d − 2d−3d(d− 1)(4d4 − 11d3 + 11d2 − 8d + 10).

In the next section, we use this result and Lemma III(2) from §3 to conclude the
proof of Theorem IV.

§4.3 Nd(2d). By Lemma III(2) and the result in §4.2, in Ṽ

P̃N−2d · L̃2d = (2d− 2)2d − 2d−3d(d− 1)(4d4 − 11d3 + 11d2 − 8d + 10)

is the sum of Nd(2d) and of a contribution due to finitely many points of B2.
More precisely, let P̃1, . . . , P̃N−2d be general point-conditions, and let L̃1, . . . , L̃2d

be general line-conditions in Ṽ = V2 (notations as in §3). We have shown that
P̃1 ∩ · · · ∩ P̃N−2d ∩ L̃1 ∩ · · · ∩ L̃2d consists of Nd(2d) ‘good’ points corresponding
to smooth degree-d curves satisfying the conditions, and finitely many ‘bad’ points
in B◦

2 . The intersection is transversal at the good points; we have to evaluate the
contribution to P̃1 · . . . · P̃N−2d · L̃1 · . . . · L̃2d due to points of B◦

2 . Our plan is the
following: we will basically produce explicitly the (scheme-theoretic) component B2

of L̃1 ∩ · · · ∩ L̃2d that contains the ‘bad’ points. B2 is supported on B2; in fact, we
will compute [B2] = 2d−4[B2]. Then

P̃N−2d · L̃2d = Nd(2d) + 2d−4P̃1 · . . . · P̃N−2d ·B2 ;

part (2) of Theorem IV follows by comparing this to the other expression for P̃N−2d ·
L̃2d obtained above.

Let p ∈ B2 be a ‘bad’ point; by Lemma 1.3 (2), p maps down to a Cµ2 ∈ B
with µ tangent to C at a single smooth point. We have to express B2 explicitly in
a neighborhood of p; the main observation to this effect is:

Claim 1. S2 ⊂ E2 scheme-theoretically in a neighborhood of p.

Proof: Choose local parameters {f1, . . . , fN} for V2 at p, such that f1 = 0 is a
local equation for E2 at p, and {f2, . . . , fN} are local parameters for E2 at p. Let
Ip(S2) be the ideal of S2 in the local ring for V2 at p; since S2 is contained in E2

set-theoretically in a neighborhood of p, then there is a least integer k such that
fk
1 ∈ Ip(S2). We claim that k = 1. Indeed, consider the curve germ γ defined by

γ(t) = (t, 0, . . . , 0). γ is transversal to E2, and intersects S2 with multiplicity k at
0; therefore it maps down to a curve germ π2(γ) transversal to B1 at π2(p) ∈ T ◦

1 ,
intersecting S1 with multiplicity k + 1 at 0. But the thickness of S1 at π2(p) is 2
(Lemma 3.3), so this implies k = 1.

In fact this argument shows that, for 2d general line-conditions L̃1, . . . , L̃2d, we
have L̃1 ∩ · · · ∩ L̃2d ⊂ E2 scheme-theoretically in a neighborhood of p (the inclusion
holds set-theoretically, and the thickness of the intersection of the corresponding
line-conditions in V1 is 2 by the same argument used in §3.3); since there are only
finitely many ‘bad’ points, for a general choice of lines the inclusion will hold in a
neighborhood of all of them.

By the preceding observation, L̃1 ∩ · · · ∩ L̃2d = (L̃1 ∩ E2) ∩ · · · ∩ (L̃2d ∩ E2) in a
neighborhood of the bad points. This is useful because the L̃j∩E2 can be described
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very explicitly by mean of the computation in §2. Indeed, consider Cµ2 ∈ B◦ ⊂ PN ,
and {K}Cµ2 ∈ B◦

1 (recall {K}Cµ2 denotes the point in E1 determined by the
line Cµ2 + Kµt, with K a degree-(d − 1) curve such that Kµ � Cµ). We can
assume µ is the line x0 = 0; also, choose forms P and Q of degree d in x0, x1, x2

representing Cµ2 and Kµ. If Rd is a form of degree d in x1, x2, look at the curve
γ : γ(t) = P +Qt+Rdt

2. Any such curve determines a point in the fiber of E2 over
{K}Cµ2 ; this identifies the (d+1)-dimensional vector space of forms over µ with the
complement of Ẽ1 in the fiber of E2 over {K}Cµ2 (the identification depends on the
choice of P and Q). We have seen in §2 (equation (*)) that γ has contact of order
at least 3 with the line-condition corresponding to a (general) line ` intersecting µ
at (0 : `1 : `2) if and only if (notations as in §2)

(**) Qd−1(`1, `2)2 − 4Rd(`1, `2)Pd−2(`1, `2) = 0.

Let L̃` be the line-condition in V2 corresponding to `. In terms of the above iden-
tification, (**) gives the equation of the fiber of L̃` ∩ E2 over {K}Cµ2 (given P , Q
and `1, `2 there is an affine hyperplane of Rd’s satisfying (**)). Imposing that (**)
be true for all `1, `2 gives the equation

Q2
d−1 − 4RdPd−2 = 0

for the scheme-theoretic intersection of the line-conditions in Ṽ over {K}Cµ2 . As
{K}Cµ2 moves in B◦

1 , this defines a scheme B◦2 supported on B◦
2 .

Claim 2. In a neighborhood of the bad points, B◦2 is the part of S2 supported on
B◦

2 .

Proof: It suffices to observe that S2 is the intersection
⋂

` L̃` of all line-conditions
in Ṽ , while by definition B◦2 is the intersection of S2 with E2 near bad points . As
seen above, S2 ⊂ E2 near such points, and the assertion follows.

In fact, this argument shows B◦2 coincides with L̃1 ∩ · · · ∩ L̃2d in a neighborhood
of the bad points, where L̃1, . . . , L̃2d are general line-conditions in Ṽ2.

Let now B2 be the closure of B◦2 . So far, the discussion above shows that P̃1 ∩
· · ·∩ P̃N−2d∩ L̃1∩ · · ·∩ L̃2d consists of the good points and of P̃1∩ · · ·∩ P̃N−2d∩B2;
therefore

P̃N−2d · L̃2d = Nd(2d) + P̃1 · . . . · P̃N−2d · [B2] .

For the next step in our program we need to show

Claim 3. [B2] = 2d−4[B2].

Proof: B2 is a subscheme of E2 of codimension 2d−1. We are going to cut B2 with
a (2d−1)-dimensional variety Z intersecting the support B2 of B2 transversally at a
point p. To prove the assertion we must show that Z intersects B2 with multiplicity
2d−4 at that point.

To obtain Z, we fix µ to be the line x0 = 0; fix a 2-dimensional net of degree-(d−2)
curves C cutting µ into divisors

(x2
1 + αx1x2 + βx2

2)(x
d−4
1 + xd−5

1 x2 + · · ·+ xd−4
2 );
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this gives a 2-dimensional family of curves Cµ2 in B, parametrized by α, β, hence
determining a (d − 1)-dimensional subvariety of B1: all {K}Cµ2 with C and µ as
above. We define the (d− 2)-dimensional subvariety of B1 obtained by considering
{K}Cµ2 with Cµ2 as above and K in the form

x1(xd−4
1 + c1x

d−5x2 + · · ·+ cd−4x
d−4
2 )x2

2.

This in turn determines a (2d− 1)-dimensional subvariety Z of E2. The reader will
easily verify that Z intersects B2 transversally at a point p over the point {K}Cµ2

determined by α = β = 0, c1 = · · · = cd−4 = 1.
We can parametrize the fiber over such {K}Cµ2 near p as above by forms

1
4
(a0x

d
1 + a1x

d−1
1 x2 + · · ·+ adx

d
2);

this parametrizes Z at p by the data

(α, β; c1, . . . , cd−4; a0, . . . , a3; a4, . . . , ad);

in these terms p has coordinates (0, 0; 1, . . . , 1; 0, . . . , 0; 1, . . . , 1). We can now restrict
the equations for B2 to Z: we get

x2
1(x

d−4
1 + c1x

d−5x2 + · · ·+ cd−4x
d−4
2 )2x4

2 = (x2
1 + αx1x2 + βx2

2)·
· (xd−4

1 + xd−5
1 x2 + · · ·+ xd−4

2 )(a0x
d
1 + a1x

d−1
1 x2 + · · ·+ adx

d
2),

i.e., 2d − 1 equations in α, β, c1, . . . , cd−4 and a0, . . . , ad−4. Checking that the
multiplicity of intersection of the corresponding loci at p is 2d−4 is a standard
computation, which we also leave to the reader.

It follows from the above that the contribution to

P̃1 ∩ · · · ∩ P̃N−2d ∩ L̃1 ∩ · · · ∩ L̃2d

due to the ‘bad’ points (c in the statement of Lemma III(2)) is

2d−4P̃1 · . . . · P̃N−2d · [B2] = 2d−4P̃N−2d · [B2].

The computation in Nd(2d) will now be complete if we show

Claim.
∫

Ṽ
P̃N−2d · [B2] = d(d− 1)(d− 3)(d− 2)(d + 2).

Proof: Observe that the general line-condition P̃ in Ṽ is actually the pull-back of
the general line-condition P in PN (indeed, the centers of the blow-ups cut point-
conditions properly). Also, recall that B2 maps down on PN to the subvariety T of
B consisting of Cµ2 with C tangent to µ. Then, by the projection formula∫

Ṽ

P̃N−2d · [B2] =
∫

PN

PN−2d · [T ].
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On the other hand, consider the subvariety T0 of P
(d−2)(d+1)

2 × P̌2 given by all pairs
(C, µ) with C tangent to µ. Then i∗[T0] = [T ] (notations as in §3.1), and since
i∗P = ` + 2m we get, again by the projection formula,∫

Ṽ

P̃N−2d · [B2] =
∫

P
(d−2)(d+1)

2 ×P̌2
(` + 2m)N−2d[T0].

Now [T0] = (2d−6)`+(d−2)(d−3)m (indeed, 2(d−2)−2 curves of degree d−2 in
a pencil are tangent to a given line, and (d− 2)(d− 3) lines in a pencil are tangent
to a given curve of degree d− 2); therefore∫

Ṽ

P̃N−2d · [B2] =
∫

(` + 2m)N−2d((2d− 6)` + (d− 2)(d− 3)m)

= d(d− 1)(d− 3)(d− 2)(d + 2).

Thus, we have shown

P̃N−2d · L̃2d = Nd(2d) + 2d−4d(d− 1)(d− 3)(d− 2)(d + 2).

Comparing with

P̃N−2d · L̃2d = (2d− 2)2d − 2d−3d(d− 1)(4d4 − 11d3 + 11d2 − 8d + 10)

(from §4.2) gives

Nd(2d) = (2d− 2)2d − 2d−4d(d− 1)(8d4 − 21d3 + 19d2 − 20d + 32),

which concludes the proof of Theorem IV.

§5. N4(9). In his Almindelige Egenskaber ved Systemer af plane Kurver , Zeuthen
provides an exhaustive analysis of families of plane quartics, and lists many enu-
merative results (several of these appear also in [S], §26). We are very far from
recovering all his results; however, for smooth quartics, Proposition 1.2 and Theo-
rem IV in §4 give for d = 4

N4(k) = 6k 0 ≤ k ≤ 6, N4(7) = 279,600, N4(8) = 1,668,096,

in agreement with Zeuthen. In this section we indicate how to extend the construc-
tion of §3 to obtain the next characteristic number:

Theorem V. The number of smooth quartics containing 5 general points and
tangent to 9 general lines in the plane is

N4(9) = 9,840,040

The result again agrees with Zeuthen’s computations. To our knowledge, the
remaining 5 characteristic numbers for smooth plane quartics still await a modern
verification.
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The approach is roughly the following: by the considerations in §4.3, B2 is gener-
ically reduced for d = 4; it will then be easy to blow-up V2 along B2, thereby
extending the construction of a variety of complete quartics over the set of curves
consisting of a smooth conic and a double line tangent to it. In the new variety, the
intersection of 5 general point-conditions and 9 general line-conditions will consist
of isolated points: N4(9) ‘good’ points, the double conic containing the 5 points,
and finitely many points corresponding to quartics consisting of a triple of distinct
lines, one of which double, meeting at a point. The contribution of the degenerate
points can be computed directly, giving the result.

Executing this plan involves the same techniques we employed in the rest of the
note: we will indicate the main points here, leaving many details to the reader.

§5.1. The third blow-up. We keep the notations of the rest of the note: for
d = 4, S ⊂ P14 denotes the the locus of non-reduced quartics, B is the set of curves
Cµ2 containing a double line µ, and T ⊂ B is the set of curves Cµ2 with µ tangent
to C. B◦ is the set of quartics Cµ2 consisting of a double line µ and of a reduced
conic C not containing µ, and T ◦ = T ∩B◦; both B◦ and T ◦ are non-singular. Also,
we will denote by U the subset of T consisting of quartics Cµ2 with C a singular
conic, and µ a line intersecting C at a singular point; and we will let U◦ = U ∩ T ◦:
so points of U◦ are triples of distinct lines, one of them double, meeting at a point.

In Lemma II we computed the thickness of S at points of B − T and T − U ; the
additional information we need now is

Lemma II. (4) If p ∈ U◦, then thp(S) = 4.

The verification is left to the reader: it is analogous to the proof of Lemma II in
§2.

The analogue of Lemma 1.3 in the new situation is:

Remark. The intersection of 5 general point-conditions and S in P14 consists of
an isolated point corresponding to the double conic containing the 5 given points,
and of a 2-dimensional subset of B◦. This subset contains a 1-dimensional subset
of T ◦ and finitely many points of U◦.

In §3 we analyzed the two blow-ups over B◦: by this remark that discussion takes
care of the new situation as well. We get an extension of Lemma III for d = 4:

Lemma III. (3) Denote by P2, L2 the classes of the general point and line-conditions
in V2. Then P 5

2 ·L9
2 is the sum of N4(9) and of a contribution due to a 1-dimensional

subset of B◦
2 and to an isolated point (corresponding to a double conic).

Recall that B◦
2 is isomorphic to T ◦; also, T ◦ ∼= B◦

2 is smooth for d = 4. We are
going to blow-up V2 along B2, and examine the preimage of points of B◦

2 : denoting
by U◦

2 the subset of B◦
2 identified with U◦, U◦

2 will be the set that ‘survives’ the
third blow-up.

Let then V3
π3−→ V2 be the blow-up of V2 along B2, Ẽ2 the proper transform of

E2 in V3.

Proposition 5.1. Denote by S3 the intersection of all line-conditions in V3. Then
S3 ∩ π−1

3 (B◦
2) is supported on a variety B◦

3 mapping bijectively onto U◦
2 .
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Proof: This follows from the discussion in §4.3. First observe that B◦2 := S2 ∩
π−1

2 (B◦
1) coincides with B◦

2 for d = 4 (cf. §4.3: we gave equations for B◦2 for all d;
for d = 4 the equations define a reduced scheme). As a consequence, much as in
Lemma 3.2, S3 ∩ π−1

3 (B◦
2) must be disjoint from Ẽ2, and therefore it consists of

at most one point over each point of B◦
2 . On the other hand, by Claim 2 in §4.3,

B◦
2 = B◦2 coincides with the scheme-intersection S2 of the line-conditions along

B◦
2 −U◦

2 : therefore S3∩π−1
3 (B◦

2 −U◦
2 ) = ∅. The assertion amounts then to showing

that S3 ∩ π−1
3 (U◦

2 ) 6= ∅: which follows from the fact that thp(S) ≥ 4 if p ∈ U◦

(Lemma II (4) above), similarly to Lemma 3.3.
We let B3 be the closure of B◦

3 in V3. From Proposition 5.1 we get the main tool
for the computation:

Lemma 5.2. Let P3, L3 be the classes of the general point- and line-conditions in
V3. Then P 5

3 · L9
3 is the sum of N4(9) and of a contribution due to finitely many

points of B◦
3 and to an isolated point (corresponding to a double conic).

This follows from Lemma I, the remark in the beginning of this section, and
Proposition 5.1.

§5.2. P5
3 · L9

3. The computation of N4(9) is now reduced to applying formula (*)
in §4 (in order to compute P 5

3 ·L9
3), and evaluating the contribution due to the ‘bad’

points in V3. The only new element needed to apply (*) is an explicit realization of
T ◦ ∼= T ◦

1
∼= B◦

2 .
The first two stages of the computation follow the steps of §4.1, 4.2:

P 5
1 · L9

1 = 69 −
∫

(` + 2m)5
(1 + 6` + 12m)9(1 + `)6(1 + m)3

(1 + ` + 2m)15

= 10, 077, 696− 67, 131 = 10, 010, 565 ,

and (using p∗e = −1, p∗e
2 = −4`− 7m, and p∗e

3 = −10`2− 38`m− 28m2 obtained
as in Lemma 4.1)

P 5
2 · L9

2 = P 5
1 · L9

1 −
∫

(` + 2m)5
(1 + 6` + 12m− e)9(1 + ` + m− e)10

(1 + e)(1 + ` + 2m− e)15

= 10, 010, 565− 149, 465 = 9, 861, 100 .

To apply formula (*) from §4 to the third blow-up, we need to gather information
about B◦

2 : specifically, we need a compactification T of T ◦ ∼= T ◦
1
∼= B◦

2 with a
manageable Chow ring and a class restricting to c(NB◦

2
V2) on T ◦.

Now, T ◦ parametrizes pairs (C, µ) where C is a reduced conic and µ 6⊂ C is a line
tangent to C. We choose for T the closure of the subset of P5 × P̌2 × P2 consisting
of triples (C, µ, p) where µ is a line, p ∈ µ, and C is a smooth conic tangent to µ
at p. T is smooth (as a P3-bundle over a P1-bundle over P2) and contains T ◦ as an
open set. The Chow ring of T is generated by the hyperplane classes ` of P5, m of
P̌2, and k of P2; the reader will easily check the relations:∫

`4m2 = 2,

∫
`5m = 2,

∫
k`3m2 = 1,

∫
k`4m = 3,∫

k`5 = 2,

∫
k2`3m = 1,

∫
k2`4 = 1
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(all other degree-6 monomials give 0).
The class of the point-conditions pulls-back to ` + 2m via the natural map T −→

P5× P̌2 −→ P14. We also need the pull-back (to B◦
2) of the classes of E1 and E2; the

key observation is

Claim. The pull-back of the classes of E1 and E2 to B◦
2 coincide.

Proof: This follows from Lemma 3.2, which showed that B◦
2 is disjoint from Ẽ1.

B◦
2 is a section of E2 over T ◦

1 , say B◦
2 = P(L) ⊂ P(NB◦

1
V1) = E2 for L a rank-1

subbundle of NB◦
1
V1 (notations as in §3.2). Tautologically L = OP(L)(−1) is the

restriction of OP(NB◦
1

V1)(−1), so that c1(L) is the pull-back of the class of E2; on

the other hand, since B◦
2 is disjoint from Ẽ1, then L is transversal to NB◦

1
E1|T◦1 in

NB◦
1
V1|T◦1 , so L ∼= NE1V1|T◦1 : therefore c1(L) is also the restriction of the class of

E1.
By consistency with the notation of §4, we denote by e a class of T restricting to

the pull-back of the class of E1 (or E2) on B◦
2 . At this stage we can apply (*) from

§4 and write

P 5
3 · L9

3 = P 5
2 · L9

2 −
∫

T

(` + 2m)5
(1 + 6` + 12m− 2e)9

c(NB2V2)
,

where c(NB2V2) is any class of T restricting to c(NB◦
2
V2) on B◦

2 . To obtain c(NB2V2)
we apply a few Euler sequences as usual. With some abuse of notation, we get:

c(NB2V2) = c(NT1B1)c(NB1V1 ⊗ Ľ)c(L)

= c(NT B)c(G ⊗ Ľ)c(NB1V1 ⊗ Ľ)c(L) ,

with L as in the proof of the claim and G as in §4.2. This gives in particular

c1(NB2V2) = (2` + 2m) + (4` + 7m− 2e) + (5` + 20m− 10e) + e

= 11` + 29m− 11e .

Therefore

P 5
3 · L9

3 = P 5
2 · L9

2 −
∫

T

(` + 2m)5
(1 + 6` + 12m− 2e)9

(1 + 11` + 29m− 11e + . . . )
.

Claim. e = 3` + 6m− 3k on T .

Proof: Let L be as above: so L is the restriction of OE1(−1) to T ◦
1
∼= T ◦, and e

restricts to c1(L). Notice that then L is a subbundle of (the restriction of) G on
T ◦, and T ◦

1 = P(L) ⊂ P(G). Now there is a natural map

T −→ T × P9

sending the triple (C, µ, p) to (C, µ, p, Cµ) (thinking of Cµ as a plane cubic ∈ P9).
Tracing the definitions of L and G, we find that c1(G/L) is the pull-back to T of the
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divisor in T × P9 consisting of quadruples (C, µ, p, K), with K a cubic containing
p. Therefore

c1(G/L) = ` + m + 3k ,

and the claim follows from this and the previously known c1(G) = 4` + 7m (cf.
Lemma 4.1).

We can finally deduce

P 5
3 · L9

3 = P 5
2 · L9

2 −
∫

T

(` + 2m)5
(1 + 6k)9

(1− 22`− 37m + 33k + . . . )
= 9, 861, 100− 4, 526 = 9, 856, 574 .

§5.3. N4(9) = 9,840,040. Combining the computation of §5.2 and Lemma 5.2 in
§5.1, we can claim now that N4(9) = 9, 856, 574 minus a contribution due to finitely
many points of B3 and to a point corresponding to a double conic.

The computation of the contribution due to the points in B3 is similar to the
computation in §4.3. By Proposition 5.1, the scheme-intersection S3 of all line-
conditions is supported on B3 in a neighborhood of the points; the reader will
verify that S3 is reduced in a neighborhood of these points (similarly to §4.3, one
can use (**) from §2 to write equations for S3 in a neighborhood of the points), so
that the contribution equals

∫
V3

P 5
3 · [B3]. By the projection formula, this equals∫

P14 P 5 · [U ]; and by the projection formula again this is∫
P5×P̌2

(` + 2m)5[U0] ,

where U0 ⊂ P5 × P̌2 is the set of pairs (C, µ) ∈ P5 × P̌2 with µ a line intersecting
the (singular) conic C at a singular point. The class of U0 in P5 × P̌2 is easily
found to be 3`2 + 3`m (indeed, `5[U0] = 0, `4m[U0] = 3, `3m2[U0] = 3), so that the
contribution equals

∫
(` + 2m)5(3`2 + 3`m) = 150. Therefore

N4(9) + contr. due to a double conic = 9, 856, 574− 150 = 9, 856, 424 .

Finally, we have to evaluate the contribution due to the double conic containing
the 5 given points. Since this depends only on local data, we may compute it in
P14.

Double conics form a subvariety D ⊂ P14, the image of the second Veronese
embedding of P5. Denote by h the hyperplane class in P5; then point-conditions
restricts to 2h on D. At a general point C2 of D, the line-condition corresponding
to a general line λ has multiplicity 2, and in fact its tangent cone is the union of
the point-conditions corresponding to the two points of intersection of λ and C.

Now blow-up P14 along D. From the above it follows that the proper transforms
of the line-conditions do not meet over a general point of D; a last application of
(*) from §4 computes then the contribution of a double conic to the intersection of
5 point-conditions and 9 line-conditions by∫

P5
(2h)5

(2 + 12h)9

(1 + . . . )
= 214 .
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Therefore
N4(9) = 9, 856, 424− 16, 384 = 9,840,040 ,

as claimed.
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