
How many smooth plane cubics with given j-invariant are
tangent to 8 lines in general position?

Paolo Aluffi

Abstract. We employ a variety of ‘complete cubics’ to give formulas for the char-
acteristic numbers of families parametrized by hypersurfaces F in the P9 of plane

cubics, in terms of information easily accessible given the equation of F . As exam-

ples, we obtain explicit results for families of cubics with given j-invariant and for
other families arising naturally from the geometry of plane cubics.

§0. Introduction.
The answer to the question posed in the title is 50,448 for j 6= 0, 1728; 16,816

for j = 0; and 25,224 for j = 1728 (Theorem III, §3). These are ‘characteristic
numbers’ for the corresponding families of plane cubics: in general, if a family of
cubics is parametrized by a subvariety F of the P9 of all plane cubics, then its ‘k-th
characteristic number’ (denoted F (k) in the following), is the number of elements
in the family that are tangent at smooth points to k lines and contain dim F − k
points in general position in the plane.

In [A1] we have studied a five blow-up construction over P9 (also considered by
U. Sterz, [St]) yielding a smooth variety of ‘complete cubics’, and employed it to
compute the characteristic numbers for the family of all smooth cubics (verifying
classic results of Maillard [M] and Zeuthen [Z]). Such a variety should in fact contain
in nuce the answer to all enumerative questions about contacts of (reduced) plane
cubics. Unfortunately, our analysis in [A1] doesn’t provide one with such a clear
picture as say the famous variety of ‘complete conics’, and applying the construction
to obtain the characteristic numbers for a given family of cubics requires in general
a rather involved analysis of the behavior of the family through the blow-up stages.
Examples of such computations are worked out in [A1], §5 for families of cubics
tangent to given lines at given points, and in [A2] for various families of singular
cubics.

In this note we will discuss one case in which the process is most transparent and
the answer can be expressed most explicitly: the case of families parametrized by
hypersurfaces of P9. We will see that for such families the characteristic numbers
can be written explicitly in terms of just three pieces of information: the degree
of the hypersurface parametrizing the family, and two numbers recording the local
structure of the family along the set of ‘triple lines’ and along the set of cubics con-
sisting of a line and a ‘double line’ (see Theorem I, §1). This is a modern version
of a formula of Zeuthen’s (in [Z]); Kleiman and Speiser [KS] also prove a similar
statement, from a viewpoint closer to Zeuthen’s (we see Theorem I in §1 as the
meeting point of the two approaches of [A1] and [KS]). We want to stress the new
element in our result: the analysis of [A1] makes the set of data straightforward to

The author is grateful to the DFG Forschungschwerpunkt Komplexe Mannigfaltigkeiten for partial

support during this research



obtain if the hypersurface is given explicitly (Theorem II, §2). In fact, we will give
in an appendix a Maple procedure that will compute all characteristic numbers of
an 8-dimensional family of smooth plane cubics, given the equation of the hyper-
surface parametrizing it. We hope that this tool will be of some use in probing the
field in search of general properties of these numbers, or as a cross-check for other
approaches.

The numbers listed in the first paragraph can be obtained by applying the proce-
dure to the equations of the degree-4 and degree-6 invariants of plane cubics (which
we give explicitly in §3), giving the answer for j = 0, 1728 respectively, and extend-
ing the result to all other finite j’s with a simple argument. The case j = ∞, i.e.
the discriminant hypersurface in P9, parametrizing all singular cubics, is special:
contributions to the characteristic numbers may come in this case from configura-
tions in which the singular point lies on one of the lines. We have studied this case
in detail in [A2], so here we will deal with it only in passing.

Other concrete examples we have chosen to illustrate the procedure are hyper-
surfaces expressing special positions of a flex or of a flex line of the cubic: the
computation of the characteristic numbers for these families becomes an elemen-
tary exercise (see the appendix); one of the results also settles the computation of
a pair of constants left unknown in [Z].

On a different track, Theorem I exposes general features of the characteristic
numbers for 8-dimensional families of cubics; some of these could be expected from
the general set-up of the problem, some others seem to us quite remarkable. For
example, the 8-th characteristic number of a family of plane cubics parametrized by
a hypersurface F of P9 depends only on the degree of F and on its local structure
along the set of triple lines: that this number doesn’t depend on the behavior along
the larger set of non-reduced cubics reflects the fact that the limit of the dual of
a curve as it approaches the union of a line and a (distinct) double line forms a
set of dimension < 8 in the image of the dual map (this is also a result in [KS],
or can be derived from [K], Examples 3.4 d,e). The fact that the characteristic
numbers depend on just three numbers reflects the fact that the Picard group of the
normalization of the graph of the dual map (dominated by the variety constructed
in [A1]) has three basic generators, a result of [KS].

Another curious consequence of the formulas in Theorem I in §1 is that the
characteristic numbers of any family parametrized by a hypersurface of a given
degree d are congruent to d mod 3. This also explains why the 10 characteristic
numbers for smooth cubics are all congruent to 1 mod 3: these can all be expressed
as characteristic numbers of the degree-4 hypersurface of cubics tangent to a given
line, and of the hyperplane of cubics containing a given point.

I thank the Mathematisches Institut of the Universität Erlangen-Nürnberg for
hospitality and for the use of its computing facilities. I’d especially like to thank
W. Ruppert for discussions that led me to write this paper.

§1. The main formula. As in [A1], we work over an algebraically closed field of
characteristic 6= 2, 3.
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Our main formula comes from specializing the results of [A1] (specifically Theo-
rem IV) to the case in which the family considered is parametrized by a codimension-
1 (maybe non-complete) subvariety F of P9. As observed in [A1], §1, the charac-
teristic numbers don’t change if F is replaced by its closure in P9; so we just refer
to F as a hypersurface, unless this might create ambiguities; also, we assume that
the closure of F does not contain the discriminant hypersurface. As shown in [A1],
computing the characteristic numbers for F amounts then to computing five ‘full
intersection classes’

Bi ◦ Fi = c(NBiVi)s(Bi ∩ Fi, Fi) ,

where B0, . . . , B4 are the varieties described in Theorem III in [A1], V0 = P9, Vi is
the blow-up of Vi−1 along Bi−1, and Fi denotes the proper transform in Vi of the
closure F0 of F in P9.

Given F , denote by mi, i = 0, . . . , 4 the multiplicity of Fi along the center Bi of
the (i + 1)-th blow-up; then let

M = 2m0 + m1 + m2, N = m3 + m4.

So with each hypersurface F of P9 there are associated three numbers: the degree
d of F and the two numbers M,N .

Theorem I. Suppose (the closure of) F does not contain the discriminant hyper-
surface. Then, with d, M, N as above, the characteristic numbers for F are

F (k) =



d

4d

16d

64d

256d− 24N

976d− 240N

3424d− 885N − 360M

9766d− 1470N − 2520M

21004d− 8400M

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

Note. These imply formula (1) in [Z], p. 727. Zeuthen proceeds then to find the
values for M , N (= B/40, A in his notations1) for the hypersurface formed by the
cubics tangent to a given line, by a very beautiful interplay of different relations
with other enumerative results. The point of Theorem I here is not so much to give
a modern version of Zeuthen’s formulas (for which we could quote [KS], Corollary
3.2 and Propositions 5.5, 6.2), but the fact that the blow-ups of [A1] give the
integers M,N explicitly. We’ll exploit this in §3, and give a method to compute
M,N directly for any given hypersurface of P9.

1This denominator ‘40’ is nicely explained at the end of the introduction of [KS].
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Proof: We can assume that F is irreducible, and that the general element of F is
non-singular as a plane cubic: so (in the terminology of [A1]) the tangencies will
be automatically proper, and by Theorem I in [A1] elements of F will contribute
with multiplicity one. By Theorem IV in [A1], the k-th characteristic number for
F is given by

F (k) = 4k · d−
4∑

i=0

∫
Bi

(Bi ◦ Pi)8−k(Bi ◦ Li)k(Bi ◦ Fi)
c(NBi

Vi)

where Bi ◦ Pi, Bi ◦ Li, c(NBi
Vi) are given in Theorem III in [A1]. Also, Bi ◦ Fi =

mi[Bi] + Bi · Fi (by [A1], §2): it’s clear then that all the information is there. As
an illustration, the computation for k = 6 runs:

F (6) = 46 · d−
∫

B0

(3h)2(2 + 12h)6(1 + h)3(m0 + 3dh)
(1 + 3h)10

−
∫

B1

etc.

= 4096d− (576m0)− (81m0 + 279m1)− (639m0 + 369m1 + 648m2)
− (390d + 1092m3 − 360m0 − 180m1 − 180m2)− (282d− 207m3

+ 885m4 − 216m0 − 108m1 − 108m2)
= 3424d− 885(m3 + m4)− 360(2m0 + m1 + m2)
= 3424d− 885N − 360M .

The fact that all contributions of the mi’s will group in each case to contribution
of M = 2m0 + m1 + m2 and N = m3 + m4 seems rather magic, but finds partly
an explanation in the Picard group of the normalization of the graph of the dual
map having three basic generators (see [KS], particularly section 2): indeed, the
characteristic numbers compute the pull-back of nine intersection products from
the graph (which is dominated by Ṽ ), so they all depend only on the three numbers
specifying the class in the graph of the divisor determined by F .

We quote a couple of immediate consequences of Theorem I here, since they raise
questions that seem rather interesting to us.

Corollary 1. The maximum characteristic numbers for a hypersurface F of P9

of degree d are achieved by all and only the hypersurfaces not containing the set of
triple lines, and they are in such case

d, 4d, 16d, 64d, 256d, 976d, 3424d, 9766d, 21004d

Proof: M,N ≥ 0 always; for hypersurfaces not containing the locus of triple lines,
M = N = 0.

Can one give a lower bound? Is there a hypersurface F of some degree d for
which M = 5d/2? Such a family would have the impressively low F (8) = 4d. Can
this be achieved?
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Corollary 2. The characteristic numbers of a family of cubics parametrized by
a hypersurface of degree d of P9 are congruent to d modulo 3.

Proof: Just read Theorem I modulo 3.
It is tempting to conjecture that such a pleasant symmetry must be an instance of

a very general statement. The obvious guess is that the the statement of Corollary 2
holds for plane curves of any degree, modulo a suitable integer. Unfortunately this
is in contrast with known results about quartic curves, so such general statement
must be discarded. What is the right conjecture?

§2. The blow-ups in coordinates. As shown in §1, the characteristic numbers
for a family parametrized by a hypersurface F of P9 are determined by the degree
of F and by two numbers encoding the behavior of F through the five blow-ups
constructing the variety of complete cubics. Computing these two numbers from
the equation of F will be easy once the blow-ups are explicitly written out in
coordinates, over suitable open sets of the Vi’s (the only requirement on these open
sets is not to be disjoint from the Bi’s).

A description of the first three blow-ups was already needed in [A1], and we
simply reproduce it here. We give homogeneous coordinates (x0 : x1 : x2) to P2 and
(a0 : a1 : · · · : a9) to P9, so that the cubic of coordinates (a0 : · · · : a9) has equation

a0x
3
0 + a1x

2
0x1 + a2x

2
0x2 + a3x0x

2
1 + a4x0x1x2

+ a5x0x
2
2 + a6x

3
1 + a7x

2
1x2 + a8x1x

2
2 + a9x

3
2 = 0 .

Then we have coordinates (a1, . . . , a9) for the open set {a0 6= 0} in P9, and one
can give coordinates (b1, . . . , b9) in V1, (c1, . . . , c9) in V2, and (d1, . . . , d9) in V3 such
that ([A1], §§3.1,2,3)

(1)
b1 = a1 b2 = a2 b3 = 3a3 − a2

1

b4b3 = 3a4 − 2a1a2 b5b3 = 3a5 − a2
2 b6b3 = 9a6 − a1a3

b7b3 = 3a7 − a2a3 b8b3 = 3a8 − a1a5 b9b3 = 9a9 − a2a5

(2)
c1 = b1 c2 = b2 c3c6 = b3

c4 = b4 c5 = b5 c6 = 3b6 − 2b1

c7c6 = 3b7 − b1b4 c8c6 = 3b8 − b2b4 c9c6 = 3b9 − 2b2b5

(3)
d1 = c1 d2 = c2 d3 = c3

d4 = c4 d5 = c5 d6d3 = c6

d7 = c7 d8 = c8 d9 = c9

.

For the fourth and fifth blow-ups, recall that the centers B3, B4 are isomorphic
to the blow-up of P2 × P2 along its diagonal: we give coordinates (α1, α2, u, t) in
B3, B4 so that the blow-up map to P2 × P2 is

(α1, α2, u, t) 7→ ((α1 + u, α2 + ut), (α1, α2)) .
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With this description, the map B3 ↪→ V3 can be written ([A1], §3.3)

(α1, α2, u, t) 7→ (3α1 + u, 3α2 + ut,
u

2
, 2t, t2,−4, t, t2, t3) .

Equations for B3 in (this open set of) V3 are therefore

4d5 − d2
4 = 0

d6 + 4 = 0
2d7 − d4 = 0

4d8 − d2
4 = 0

8d9 − d3
4 = 0

,

and we can choose coordinates (e1, . . . , e9) for (an affine open set of) V4 so that

(4)

e1 = d1 e2 = d2 e3 = d3

e4 = d4 e5 = 4d5 − d2
4 e6e5 = d6 + 4

e7e5 = 2d7 − d4 e8e5 = 4d8 − d2
4 e9e5 = 8d9 − d3

4

To obtain equations for B4 in V4, recall its construction from [A1], §3.4. If a point
(α1, α2, u, t) ∈ B3, and u 6= 0, then a neighborhood of its image in V3 is isomorphic
to a neighborhood of the cubic

(x0 + (α1 + u)x1 + (α2 + ut)x2)(x0 + α1x1 + α2x2)2

in P9, consisting of the line x0 + (α1 + u)x1 + (α2 + ut)x2 = 0 and of the double
line supported on x0 + α1x1 + α2x2 = 0. The tangent space to B3 at (α1, α2, u, t)
is then identified with the four-dimensional space of cubics consisting of the line
x0 + α1x1 + α2x2 = 0 and of a conic containing the point (α1t− α2 : −t : 1) where
the two lines intersect. The five-dimensional space of cubics containing the line
x0 + α1x1 + α2x2 = 0 determines then a point in the exceptional divisor E4 over
(α1, α2, u, t): and B4 is the set of all such points obtained as (α1, α2, u, t) moves in
B3. To get a parametrization of B4, consider the direction (in P9)

s 7→ (x0 + α1x1 + α2x2)2(x0 + (α1 + u)x1 + (α2 + ut)x2) + s(x0 + α1x1 + α2x2)x2
2.

This is normal to B3 and lies in the five-dimensional space defined above, so it
determines the point in B4 above (α1, α2, u, t). Tracing the coordinates, this gives
the curve

s 7→ (3α1 + u, 3α2 + ut,
u

2
, 2t,−12

s

u2
, 0, 0,

1
2
, 3t)

in V4, converging to

(3α1 + u, 3α2 + ut,
u

2
, 2t, 0, 0, 0,

1
2
, 3t)
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as s → 0. This parametrization globalizes over {u = 0} as well, so equations for B4

are 

e5 = 0
e6 = 0
e7 = 0

2e8 − 1 = 0
2e9 − 3e4 = 0

,

and we can choose coordinates (f1, . . . , f9) in V5 so that

(5)
f1 = e1 f2 = e2 f3 = e3

f4 = e4 f5 = e5 f6f5 = e6

f7f5 = e7 f8f5 = 2e8 − 1 f9f5 = 2e9 − 3e4

.

The equation of the exceptional divisor in V5 = Ṽ is then f5 = 0.

Composing the maps described by the set of equations (1)–(5), we get a coordinate
description of the map Ṽ −→ P9 from the variety of complete cubics to the P9 of
ordinary cubics. Explicitly, one finds the rather unpleasant-looking list of equations:

a1 = f1, a2 = f2, a3 = −4
3

f2
3 +

1
3

f2
3 f2

5 f6 +
1
3

f2
1 ,

a4 = −4
3

f4f
2
3 +

1
3

f4 f2
3 f2

5 f6 +
2
3

f1f2,

a5 = −1
3

f2
4 f2

3 +
1
12

f2
4 f2

3 f2
5 f6 −

1
3

f5f
2
3 +

1
12

f3
5 f2

3 f6 +
1
3

f2
2

a6 =
16
27

f3
3 −

8
27

f3
3 f2

5 f6 +
1
27

f3
3 f4

5 f2
6 −

4
9

f1f
2
3 +

1
9

f1f
2
3 f2

5 f6 +
1
27

f3
1 ,

a7 =
8
9

f4f
3
3 −

4
9

f4f
3
3 f2

5 f6 +
1
18

f4f
3
3 f4

5 f2
6 +

8
9

f7f
2
5 f3

3 −
4
9

f7f
4
5 f3

3 f6

+
1
18

f7f
6
5 f3

3 f2
6 −

4
9

f1f4f
2
3 +

1
9

f1f4f
2
3 f2

5 f6 −
4
9

f2f
2
3 +

1
9

f2f
2
3 f2

5 f6 +
1
9

f2f
2
1 ,

a8 =
4
9

f2
4 f3

3 −
2
9

f2
4 f3

3 f2
5 f6 +

1
36

f2
4 f3

3 f4
5 f2

6 +
2
9

f8f
2
5 f3

3 −
1
9

f8f
4
5 f3

3 f6

+
1
72

f8f
6
5 f3

3 f2
6 +

2
9

f5f
3
3 −

1
9

f3
5 f3

3 f6 +
1
72

f5
5 f3

3 f2
6 −

4
9

f2f4f
2
3 +

1
9

f2f4f
2
3 f2

5 f6

− 1
9

f1f
2
4 f2

3 +
1
36

f1f
2
4 f2

3 f2
5 f6 −

1
9

f1f5f
2
3 +

1
36

f1f
3
5 f2

3 f6 +
1
9

f1f
2
2 ,

a9 =
2
27

f3
4 f3

3 −
1
27

f3
4 f3

3 f2
5 f6 +

1
216

f3
4 f3

3 f4
5 f2

6 +
1
27

f9f
2
5 f3

3 −
1
54

f9f
4
5 f3

3 f6

+
1

432
f9f

6
5 f3

3 f2
6 +

1
9

f4f5f
3
3 −

1
18

f4f
3
5 f3

3 f6 +
1

144
f4f

5
5 f3

3 f2
6 −

1
9

f2f
2
4 f2

3

+
1
36

f2f
2
4 f2

3 f2
5 f6 −

1
9

f2f5f
2
3 +

1
36

f2f
3
5 f2

3 f6 +
1
27

f3
2 ;

these give the other main tool in the computation:
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Theorem II. (Notations of Theorem I) If F (a0 : · · · : a9) = 0 is the equation of
the hypersurface parametrizing the family, then the numbers M,N are resp. the
highest power of f3, f5 dividing

F (1 : f1 : f2 : −4
3
f2
3 +

1
3
f2
3 f2

5 f6 +
1
3
f2
1 : . . . ) .

Proof: The highest powers of f3, f5 dividing F (1 : f1 : f2 : . . . ) are resp. the
coefficients of the third and fifth exceptional divisors in the inverse image of the
hypersurface, and these are easily seen to be M,N . Or, simply trace (1)–(5) and the
definition of the multiplicities m0, . . . ,m5: for example, m0 is the highest power of
b3 dividing F (1 : b1 : b2 : 1

3b3 + 1
3b2

1 : . . . ), therefore the highest power of c3 dividing
F (1 : c1 : c2 : . . . ); and m0 + m1 is the highest power of c6 dividing F (1 : c1 : c2 :
. . . ), so M = 2m0 +m1 +m2 is the highest power of d3 dividing F (1 : d1 : d2 : . . . ).
The statement for M follows easily.

Notice that the coordinate description does not cover the case F = a0; but in
this case M = N = 0, and the statements hold trivially.

As an illustration, consider the family parametrized by

F (a0 : · · · : a9) = a2
3 − 3a1a6 ;

pulling-back to Ṽ :

F (1 : f1 : f2 : . . . ) = (−4
3

f2
3 +

1
3

f2
3 f2

5 f6 +
1
3

f2
1 )2 − 3f1(

16
27

f3
3 −

8
27

f3
3 f2

5 f6

+
1
27

f3
3 f4

5 f2
6 −

4
9

f1f
2
3 +

1
9

f1f
2
3 f2

5 f6 +
1
27

f3
1 )

= −1
9
f2
3 (−4 + f2

5 f6)(−f2
3 f2

5 f6 + f1f3f
2
5 f6 + f2

1 + 4f2
3 − 4f1f3)

Therefore M = 2, N = 0 by Theorem II, and the characteristic numbers for this
family are

2, 8, 32, 128, 512, 1952, 6128, 14492, 25208

as k = 0, . . . , 8, by Theorem I.
As an other example,

F (a0 : · · · : a9) = 4a3
5a0 − 18a9a2a5a0 − a2

2a
2
5 + 4a3

2a9 + 27a2
9a

2
0

is the equation of the set of all cubics tangent to the line x1 = 0; therefore its
characteristic numbers will be the last 9 of the characteristic numbers for the family
of all smooth cubics. For this equation

F (1 : f1 : f2 : . . . ) =
1

6912
f6
3 f2

5 (f2
5 f6 − 4)3(f2

9 f4
5 f6 + 6f9f

3
5 f4f6 + 4f3

4 f9f
2
5 f6

+ 9f2
4 f6f

2
5 − 4f2

9 f2
5 + 12f4

4 f5f6 − 24f9f5f4 + 16f5 + 4f6
4 f6 − 16f3

4 f9 + 12f2
4 )
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so M = 6, N = 2, and the characteristic numbers are indeed

4, 16, 64, 256, 976, 3424, 9766, 21004, 33616 ,

as listed in [Z], [KS], or [A1].

§3. Cubics with given j-invariant. We want to illustrate Theorems I and II by
applying them to families of smooth cubic curves with a given j-invariant. Recall
then that the equation of such a family is

j =
1728C3

4

C3
4 − C2

6

(j 6= 0, 1728)

where C4, C6 are the classic degree-4 and degree-6 invariants of plane cubics, suit-
ably normalized (see e.g. [Si], III, §1). For j = 0 or 1728, the above equation
becomes resp. C3

4 = 0, C2
6 = 0 (as the extra automorphisms of the corresponding

curves cause these hypersurfaces to wrap on themselves); reduced equations are
then C4 = 0, C6 = 0.

What are C4, C6 explicitly in the coordinates a0 : · · · : a9 of §2? At a loss with a
reference, we have to list them here! We will actually list 16C4 and 64C6, to avoid
denominators:

• 16C4:

a4
4 + 16a2

2a
2
7 + 16a2

1a
2
8 + 16a2

3a
2
5 − 48a2a

2
3a9 − 48a0a3a

2
8 − 48a2

1a7a9 − 48a0a5a
2
7

− 16a2a3a5a7 + 144a1a2a9a6 + 24a1a3a4a9 − 216a0a4a9a6 + 24a0a4a7a8

− 16a1a3a5a8 − 8a2a
2
4a7 + 24a2a4a5a6 − 8a1a

2
4a8 − 16a1a2a7a8 + 144a0a5a8a6

+ 24a2a3a4a8 − 48a1a
2
5a6 + 24a1a4a5a7 − 8a3a

2
4a5 + 144a0a3a7a9 − 48a2

2a8a6

• 64C6:

a6
4 − 64a3

5a
3
3 − 64a3

2a
3
7 − 64a3

8a
3
1 − 864a3

5a0a
2
6 − 576a2

7a0a3a
2
5 + 36a8a0a

3
4a7

+ 864a2
8a0a2a4a6 + 216a2

9a
2
3a

2
1 − 1296a8a0a6a2a5a7 − 144a5a0a8a

2
7a1

+ 720a5a0a8a3a7a4 − 72a5a0a
2
4a

2
7 + 288a2a0a5a

3
7 − 144a8a0a2a4a

2
7i

− 144a2
8a0a7a4a1 − 144a5a8a7a4a

2
1 − 864a3

8a
2
0a6 − 144a2

8a0a3a7a2 + 216a2
8a

2
0a

2
7

+ 48a5a8a3a7a2a1 + 864a7a0a4a6a
2
5 − 5832a2

9a
2
0a

2
6 − 864a2

9a0a
3
3 − 12a8a

4
4a1

+ 288a9a2a5a
3
3 − 864a9a

2
0a

3
7 − 12a4

4a3a5 + 48a2
4a

2
3a

2
5 + 288a3

5a3a6a1

+ 96a8a
2
2a

2
7a1 − 864a2

9a6a
3
1 − 72a2

5a6a
2
4a1 − 576a2

8a
2
2a6a1 − 144a8a

2
3a2a4a5

+ 36a9a3a
3
4a1 + 216a2

5a
2
2a

2
6 − 12a2a

4
4a7 + 864a5a0a

2
8a6a1 + 3888a2a0a5a9a

2
6

− 864a3
2a9a

2
6 + 216a2

8a
2
3a

2
2 − 576a2

2a
2
3a9a7 − 72a9a

2
3a

2
4a2 + 864a2

2a4a6a9a3

+ 96a5a3a
2
2a

2
7 + 36a2a5a

3
4a6 − 72a8a6a

2
4a

2
2 − 144a8a6a

2
2a5a3 + 96a2

5a
2
3a7a2

− 144a3a
2
5a6a4a2 + 288a8a9a7a

3
1 + 48a2

2a
2
4a

2
7 + 36a8a

3
4a2a3 + 24a3a5a

2
4a2a7

+ 48a2
8a

2
4a

2
1 + 864a8a0a

2
3a9a4 + 216a2

7a
2
5a

2
1 − 576a5a0a

2
8a

2
3 + 288a8a6a

3
2a7
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+ 864a8a0a6a
2
5a3 − 144a2

2a4a6a5a7 + 864a5a6a9a4a
2
1 − 576a9a

2
7a2a

2
1

+ 864a8a6a9a2a
2
1 + 96a2

8a7a2a
2
1 + 96a5a

2
8a3a

2
1 + 96a8a

2
3a

2
5a1 − 144a8a9a4a3a

2
1

+ 540a9a0a6a
3
4 − 144a5a

2
3a9a4a1 − 144a8a

2
3a9a2a1 + 36a5a

3
4a7a1

− 144a8a3a4a
2
2a7 − 576a8a6a

2
5a

2
1 − 648a9a6a

2
4a2a1 + 864a2

2a6a9a7a1

+ 720a2a4a3a9a7a1 − 1296a5a6a9a2a3a1 − 144a2
5a6a2a7a1 − 144a5a2a4a

2
7a1

+ 720a8a6a4a2a5a1 − 72a2
8a0a3a

2
4 + 288a3

8a0a3a1 − 72a9a
2
4a7a

2
1

− 1296a8a0a6a9a4a1 − 144a5a3a9a7a
2
1 − 144a2

5a3a7a4a1 − 144a2
8a3a4a2a1

+ 24a8a
2
4a2a7a1 + 24a8a

2
4a5a3a1 − 1296a8a0a6a9a2a3 + 3888a8a

2
0a6a9a7

− 1296a8a0a3a9a7a1 + 864a5a0a
2
3a9a7 + 864a9a0a3a

2
7a2 − 648a9a0a

2
4a7a3

+ 864a9a0a
2
7a4a1 − 648a8a0a6a

2
4a5 + 3888a2

9a0a3a6a1 − 1296a5a0a3a6a9a4

− 1296a5a0a6a9a7a1 − 1296a2a0a4a6a9a7 .

Manipulating such (seemingly huge) polynomials is well within reach of today’s
personal computers. We used the Maple implementation on a Cadmus computer to
apply Theorem II and get

for C4: M = 8, N = 4 ;
for C6: M = 12, N = 6 .

Thus Theorem I gives immediately

Theorem III(1). The characteristic numbers for the families F(0), F(1728) of cubic
curves with j-invariant = 0, 1728 are

F(0)(k) =



4
16
64
256
928
2944
7276
13024
16816

F(1728)(k) =



6
24
96
384
1392
4416
10914
19536
25224

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

For all other j, the equation is

(*) (j − 1728)C3
4 − jC2

6 = 0

Now, the initial form with respect to f3, f5 of the pull-backs of C4, C6 to Ṽ , in the
coordinates (f1, . . . , f9) are

–for C4:
64
81

f8
3 f4

5 (16f2
4 f2

7 + f6 − 8f7f9 + 4f2
8 − 8f4f7f8)
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–for C6:

− 512
729

f12
3 f6

5 (−108f2
7 − 6f8f6 + 64f3

4 f3
7 − f2

9 f6 + 8f3
8 + 24f4f7f6

− 24f2
8 f4f7 − 9f2

8 f6f
2
4 − 48f2

4 f8f
2
7 − 36f4

4 f6f
2
7 + 36f3

4 f8f6f7 + 96f9f4f
2
7

− 12f9f6f
2
4 f7 − 24f8f9f7 + 6f8f6f9f4)

One can then write the initial form for (*) in (f1, . . . , f9), and check that it doesn’t
vanish for any j. By Theorem II, we can conclude that for all j 6= 0, 1728

M = 24, N = 12 .

Theorem I yields then

Theorem III(2). The characteristic numbers for the family F(j) of plane cubic
curves with given j-invariant 6= 0, 1728 are

F(j)(k) =



12
48
192
768
2784
8832
21828
39072
50448

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

It seems to us that the geometry behind these numbers should be as follows. Fix
a general collection of 8 points and lines, and consider the smooth cubics with given
j-invariant that contain the points and are tangent to the lines. As j → 0 (or 1728),
all these curves will move toward each other 3 by 3 (or 2 by 2), and as j hits 0 (or
1728), when the curves acquire an extra order-3 (or order-2) automorphism, they
collide in groups of 3 (or 2). So

F(0)(k) =
1
3
F(j)(k), F(1728)(k) =

1
2
F(j)(k)

for j 6= 0, 1728. What Theorem III indicates is that for no j do these curves fly off
and converge to non-reduced cubics (is there an a priori reason why this should be
the case?).

A word about the case j = ∞, i.e. the discriminant hypersurface. Similar com-
putations as above reveal M = 24, N = 12 in this case as well (these are G/40, F
in Zeuthen’s notation for formula (4) in [Z], p. 727, derived on p. 728), so the list
of Theorem III(2) holds for the discriminant (see also [KS], Proposition 7.4); but
it loses enumerative significance, since curves that are not ‘properly’ tangent to the
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lines will contribute to these numbers. We discuss the situation in [A2], together
with another (more ‘geometric’) derivation of the same list (Proposition 3.1, first
column). It is interesting to observe that the intermediate multiplicities m0, . . . ,m4

(see §1) are for all finite j 6= 0, 1728

m0 = 8, m1 = 444, m2 = 444, m3 = 6, m4 = 6 ;

while for j = ∞ they are

m0 = 8, m1 = 555, m2 = 333, m3 = 6, m4 = 6

(see [A2]). As it happens, this difference does not influence M,N . Is this an
accident, or is it the manifestation of a general principle?

Appendix: A Maple procedure. Here we work over the complex numbers.
The Maple2 procedures that follow will compute the characteristic numbers of a

family of plane cubics parametrized by a hypersurface F , given its equation. This
simply implements Theorem I and II from §§1,2.

Note. The procedures as listed below are not ‘exact’: they employ Maple’s
random number generator to speed the computation of the highest power of f3, f5

dividing F (1 : f1 : f2 . . . ) (as requested by Theorem II). Of course it is possible
that the ‘random’ choices produce a zero of the initial form of F (1 : f1 : . . . ), and
therefore a miscalculation of M,N . To reassure the reader of the statistical relia-
bility of our shortcut, we should point out that the procedures below have never
been caught wrong (of course all results listed in this paper have been checked with
an exact—but slower—procedure): for example, in a test we have run them 5, 000
times on the degree-4 invariant C4 of §3, without observing a single mistake. How-
ever, to obtain exact procedures just replace the lines from die := rand(1..500);
to the next end; with
multi := proc(exp)
expand(subs(blowup,exp));
[ldegree(",f3),ldegree(",f5)];
end;
In the version below, the procedures are quite fast: for example, the implemen-

tation of Maple on the Cadmus at the Math. Inst. of Erlangen processes C4 in less
than 5 seconds, and C6 in less than 40.

blowup := {a0 = 1,a1 = f1,a2 = f2,
a3 = -4/3*f3**2+1/3*f3**2*f5**2*f6+1/3*f1**2,
a4 = -4/3*f4*f3**2+1/3*f4*f3**2*f5**2*f6+2/3*f1*f2,
a5 = -1/3*f4**2*f3**2+1/12*f4**2*f3**2*f5**2*f6-1/3*f5*f3**2+
1/12*f5**3*f3**2*f6+1/3*f2**2,
a6 = 16/27*f3**3-8/27*f3**3*f5**2*f6+1/27*f3**3*f5**4*f6**2
-4/9*f1*f3**2 +1/9*f1*f3**2*f5**2*f6+1/27*f1**3,
a7 = 8/9*f4*f3**3-4/9*f4*f3**3*f5**2*f6+8/9*f7*f5**2*f3**3

2Maple is a trademark of the University of Waterloo

12



+1/18*f4*f3**3*f5**4*f6**2-4/9*f7*f5**4*f3**3*f6
+1/18*f7*f5**6*f3**3*f6**2-4/9*f1*f4*f3**2
+1/9*f1*f4*f3**2*f5**2*f6-4/9*f2*f3**2+1/9*f2*f3**2*f5**2*f6
+1/9*f2*f1**2,
a8 = 4/9*f4**2*f3**3-2/9*f4**2*f3**3*f5**2*f6
+1/36*f4**2*f3**3*f5**4*f6**2+2/9*f8*f5**2*f3**3
-1/9*f8*f5**4*f3**3*f6+1/72*f8*f5**6*f3**3*f6**2+2/9*f5*f3**3
-1/9*f5**3*f3**3*f6+1/72*f5**5*f3**3*f6**2-4/9*f2*f4*f3**2
+1/9*f2*f4*f3**2*f5**2*f6-1/9*f1*f4**2*f3**2
+1/36*f1*f4**2*f3**2*f5**2*f6-1/9*f1*f5*f3**2
+1/36*f1*f5**3*f3**2*f6+1/9*f1*f2**2,
a9 = 2/27*f4**3*f3**3-1/27*f4**3*f3**3*f5**2*f6
+1/216*f4**3*f3**3*f5**4*f6**2+1/27*f9*f5**2*f3**3
-1/54*f9*f5**4*f3**3*f6+1/432*f9*f5**6*f3**3*f6**2
+1/9*f4*f5*f3**3-1/18*f4*f5**3*f3**3*f6
+1/144*f4*f5**5*f3**3*f6**2-1/9*f2*f4**2*f3**2
+1/36*f2*f4**2*f3**2*f5**2*f6-1/9*f2*f5*f3**2
+1/36*f2*f5**3*f3**2*f6+1/27*f2**3};

die := rand(1..500);
multi := proc (exp)
subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),
f8 = die(),f9 = die(),f5 = die(),blowup);
subs(f1 = die(),f2 = die(),f4 = die(),f6 = die(),f7 = die(),
f8 = die(),f9 = die(),f3 = die(),blowup);
expand(subs("",exp)); expand(subs("",exp));
[ldegree("",f3),ldegree(",f5)];
end;

process:=proc (M, N, g)
[g,4*g,16*g, 64*g, 256*g-24*N, 976*g-240*N, 3424*g-885*N-360*M,
9766*g-1470*N-2520*M, 21004*g-8400*M];
end;

numbers:=proc (exp)
mult:=multi(exp);
answer:=process(op("),degree(exp));
end;

The procedure multi computes M,N by applying Theorem II; the procedure
process computes the characteristic numbers from M,N and the degree of F ,
by use of Theorem I; and numbers executes both procedures. At the end of the
computation, the variable answer contains the list of characteristic numbers; the
variable mult contains M,N .
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Examples

> a9;

a9

> numbers(");

[1, 4, 16, 64, 256, 976, 3424, 9766, 21004]

These are the characteristic numbers for the family of plane cubics containing the
point (0 : 0 : 1); of course they give the first 9 characteristic numbers for the family
of all smooth cubics.

3 2 2 3 2 2

4 a5 a0 - 18 a9 a2 a5 a0 - a2 a5 + 4 a2 a9 + 27 a9 a0

> numbers(");

[4, 16, 64, 256, 976, 3424, 9766, 21004, 33616]

This is the family of cubics tangent to the line x1 = 0, cf. §2.

In case the equation is given by a determinant, the following modifications (re-
place the highlighted lines) will accelerate the computation considerably, as Maple
won’t have to compute the determinant until the last moment:
· · ·
die := rand(1..500); with(linalg,det);

multi := proc (exp)

· · ·
f8 = die(),f9 = die(),f3 = die(),blowup);

det(subs("",op(exp))); det(subs("",op(exp)));

[ldegree(′′ ′′,f3),ldegree(′′,f5)];

· · ·
end;

numbers:=proc (exp,g)

mult:=multi(exp);

answer:=process(op("),g);

end;

In this case, provide the degree of the expression together with a matrix whose
determinant gives the polynomial.

Examples

—Characteristic numbers for the family of cubics with flex on a given line.

We can choose the line. We require then the cubic (a0 : · · · : a9) and its hessian
to vanish simultaneously somewhere on the line x0 = 0, which amounts to the
simultaneous vanishing of

C = a6x
3 + a7x

2 + a8x + a9
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and

H = −6a2
4x

3a6 − 8a2
3x

3a8 − 6a2
4a9 − 8a1x

3a2
7 − 8a2a

2
8 − 8a2

5a7 + 24a1x
3a8a6

+ 8a4x
3a3a7 + 24a2a9a7 + 8a5a4a8 − 8a1x

2a8a7 + 72a1x
2a9a6 + 24a1xa9a7

− 8a1xa2
8 + 24a2a8x

2a6 − 8a2a8xa7 + 72a2a9a6x− 8a2a
2
7x

2 − 24a4x
2a5a6

+ 2a2
4xa8 − 24a2

5a6x + 16a5a3x
2a7 + 16a5a3xa8 − 24a2

3x
2a9 − 24a3xa4a9

+ 2a2
4x

2a7

The equation is the resultant of these two polynomials with respect to x, a degree-12
polynomial. Its characteristic numbers are then:
> with(linalg,bezout):
> matr:=bezout(C,H,x):
> numbers(matr,12);

[12, 48, 192, 768, 2856, 9552, 25563, 51042, 75648]
The combined multiplicities are in this case M = 21, N = 9.

—Characteristic numbers for the family of cubics with flex line containing a given
point.

We can choose the point. We have to impose that the cubic with coordinates
(a0 : · · · : a9) restricts to a triple point on some line between say (1 : 0 : 0) and
(0 : 1 : s). The cubic restricts to the polynomial (in t)

a0t
3 + a1t

2 + a2t
2s + a3t + a4ts + a5ts

2 + a6 + a7s + a8s
2 + a9s

3

on such a line; requiring that its second derivative vanishes where the polynomial
and its first derivative do amounts to the simultaneous vanishing of

Q = 2a3
1 + 6a2

1a2s + 6a1a
2
2s

2 + 2a3
2s

3 − 9a3a1a0 − 9a3a2sa0 − 9a4a1a0s

− 9a4a2s
2a0 − 9a5a1a0s

2 − 9a5a2s
3a0 + 27a6a

2
0 + 27a7sa

2
0 + 27a8s

2a2
0

+ 27a9s
3a2

0

and
R = −a2

1 − 2a1a2s− a2
2s

2 + 3a3a0 + 3a4sa0 + 3a5s
2a0 .

So the degree-9 equation for this hypersurface is the resultant of Q, R with respect
to s, divided by its factor a3

0. The characteristic numbers:
> with(linalg,bezout):
> matr:=bezout(Q,R,s):
> numbers(matr,9);

[9, 36, 144, 576, 2232, 8064, 23841, 53244, 88236]
(By specifying that the degree is 9, the contribution of a3

0 to the resultant is
discarded, as it doesn’t affect M = 12, N = 3.)

Did Zeuthen know these numbers? He considers this last family (‘c′ ’ in formulas
(2) and (3) in [Z], p. 727) in deriving his relations, but he stops short of determining
the key coefficients giving the characteristic numbers (C, D in his notations), maybe
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because he didn’t need them for his immediate purposes. The result listed above
implies C = D = 1.
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