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Abstract. Two blow-ups over the projective space PN parametrizing plane curves of

a given degree yield a compactification of the space of reduced curves used in [2] to

obtain partial enumerative results for families of non-singular plane curves. In this
paper it is shown how to employ the construction to obtain enumerative results for

families of plane curves with a node or a cusp. The results recover known results
for cubics, give a first modern verification of some computations of of Zeuthen’s

for quartics, and are new for higher degree. The heart of the computation is the

derivation of key Segre classes relating the intersection calculus at the different stages
of the blow-up construction.

0. Introduction. The k-th ‘characteristic number’ of an r-parameter family F of
plane curves of degree d is the number of curves of F which are tangent at smooth
points to k lines and contain r − k points in general position in the plane.

Assume d > 2. Denote resp. by Sd(k), S`d(k), Spd(k), Cd(k), C`d(k), Cpd(k) the
k-th characteristic number for the family of degree d:
• nodal curves;
• nodal curves with singularity on a given line;
• nodal curves with singularity at a given point;
• cuspidal curves;
• cuspidal curves with cusp on a given line;
• cuspidal curves with cusp at a given point;

then multiplicity calculations and Bézout’s theorem in the projective space PN =
P

d(d−3)
2 parametrizing all plane curves of degree d yield (see Corollary 1.9 in §1)

Sd(k) = 2k−1(d− 1)k−2(6(d− 1)4 − 6(d− 1)2k + k(k − 1)) for k < 2d− 2

S`d(k) = 2k(d− 1)k−1(3(d− 1)2 − k) for k < 2d− 3

Spd(k) = 2k(d− 1)k for k < 2d− 3

Cd(k) = 3 · 2k−2(d− 1)k−2(16(d− 1)4 − 16(d− 1)3

− 16(d− 1)2k + 8(d− 1)k + 3k(k − 1)) for k < 2d− 3

C`d(k) = 2k(d− 1)k−1(8(d− 1)(2d− 3)− 3k) for k < 2d− 4

Cpd(k) = 2k+1(d− 1)k for k < 2d− 4

In each of these cases, we compute here the next characteristic number, for which
the geometry of PN alone does not provide adequate information. We work in a
different compactification (obtained in [2]) of the variety parametrizing reduced
plane curves of degree d; our result is

Sd(2d− 2) = 22d−2(d− 1)2d−3(3d3 − 15d2 + 23d− 12) + 2d+1

((
d
2

)
+ 1
2

)
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S`d(2d− 3) = 22d−3(d− 1)2d−4(3d2 − 8d + 6)− 2d

((
d
2

)
+ 1
2

)
Spd(2d− 3) = 22d−3(d− 1)2d−3 − 2d−1

(
d

2

)
Cd(2d− 3) = 3 · 22d−4(d− 1)2d−5(8d4 − 56d3

+ 142d2 − 161d + 70) + 3 · 2d

((
d
2

)
+ 1
2

)
C`d(2d− 4) = 22d−3(d− 1)2d−5(4d2 − 13d + 12)− 2d

((
d
2

)
+ 1
2

)
Cpd(2d− 4) = 22d−3(d− 1)2d−4 − 2d−1

(
d

2

)
.

For d = 3 these results recover a few of the many known enumerative results about
singular plane cubics (modern references for these are [5], [6] or [3]). Notice that the
formulas above give for the 7-parameter family of cuspidal cubics the characteristic
numbers C3(k) = 24, 60, 114, 168 for k = 0, 1, 2, 3; since cuspidal cubics are self-
dual, one can argue that necessarily C3(k) = C3(7 − k), so that the results in this
note suffice to give a derivation of the whole list:

C3(k) = 24, 60, 114, 168, 168, 114, 60, 24 k = 0, . . . , 7 .

For d = 4, the above formulas give

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

S4(k)
27
144
760
3960
20304
101952

498336

S`4(k)
9
52
300
1728
9936

56688

Sp4(k)
1
6
36
216
1296

7728

C4(k)
72
372
1890
9396
45360

210960

C`4(k)
20
114
648
3672

20400

Cp4(k)
2
12
72
432

2544

verifying results in [9] (in [9] all characteristic numbers for many families of singular
quartics are presented!). The boxed numbers are the ones for which we work in a
compactification other than the projective spaces parametrizing plane curves.

For d ≥ 5 the results are new: for example, to our knowledge the number
432,016,832 of plane nodal quintics containing 11 points and tangent to 8 lines in
general position in the plane doesn’t appear elsewhere in the literature. We know
of promising work in progress on similar questions that makes use of techniques
originally developed by Z. Ran to compute the degrees (i.e., the ‘0-th’ characteris-
tic numbers) of varieties parametrizing families of singular plane curves. However,
those techniques apparently have not yet yielded higher characteristic numbers for
the varieties studied here.

Let PN = P
d(d+3)

2 be the projective space parametrizing degree-d plane curves
over e.g. C, and let F ⊂ PN parametrize a family of curves. Any enumerative
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problem about the family is readily translated in a problem of intersections in PN :
the set of curves containing a given point forms a hyperplane in PN , and the set of
curves tangent to a given line forms a hypersurface (of degree 2d − 2) in PN (we
call these resp. ‘point-conditions’ and ‘line-conditions’). If dim F = r, then the k-th
characteristic number of the family is the number of certain special points in the
intersection of F with k general line-conditions and r − k general point-conditions:
specifically, those points corresponding to curves in F that are tangent to the given
lines at smooth points. One can check (cf. [1], Theorem I) that the intersection is
transversal at such points; it is therefore natural to hope Bézout’s theorem in PN

should yield information about their number.
Problems with this approach arise because the intersection of the point- and line-

conditions along F may very well contain curves that don’t satisfy the requirement
on ‘proper’ tangency. For example, the intersection of the set of singular cubics
with 8 general line-conditions contains the whole 4-dimensional set of non-reduced
cubics, as well as points corresponding to curves tangent to 7 of the lines and having
the node on the 8th, and points corresponding to curves tangent to 6 of the lines
and having a node at the intersection of the remaining 2.

The first issue–the presence of non-reduced curves–is the more fundamental one.
This is approached by lifting the question to another compactification of the space
of reduced curves, in which non-reduced curves don’t enter into play: to obtain such
a compactification, one can for example resolve the rational map associating with
every smooth plane curve its dual (cf. [1], §1). This program is executed in [1], [3] to
obtain enumerative results about smooth and singular plane cubics; unfortunately,
constructing such compactifications for higher degree while mantaining control of
the relevant intersection calculus seems a very hard task. In [2] we show that
a suitable sequence of two blow-ups at smooth centers over PN produces a variety
that suits our needs as long as the only non-reduced curves in the intersection consist
of a ‘double line’ and a (reduced) degree-(d− 2) curve intersecting transversally.

In this note we use the same compactification. The limitation of the kind of non-
reduced curves we can admit imposes severe restrictions on the results: for each
family, our construction will only reach here the first characteristic number beyond
the ones involving only reduced curves. The actual computation of the intersection
numbers we need is performed by the same techniques of [2]: the missing information
we have to compute here amounts essentially to Segre classes of the intersection of
the centers of the blow-ups with the parameter spaces of the families (or their proper
transforms).

The second issue–reduced curves that appear among the intersections because
they have singularities along the given lines–is easier to handle. The main remark
is that, for each configuration, the number of such curves is itself a characteristic
number of another family. It will be easy to relate the intersection numbers we
compute to the actual characteristic numbers, the only complication being that we
will have to consider several families at once.

The families we treat in this note are families of nodal and of cuspidal plane
curves of degree d. We see these objects as projections to PN of subvarieties of
P2×PN : for example, the discriminant hypersurface in PN will be the projection of
the bundle over P2 whose fiber over p is the PN−3 of curves singular at p. Similarly,
the proper transforms of these objects will be projections of varieties lying in the
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product of the blow-ups by P2.

Some of the geometry underlying these projections is used in §1, to relate the
characteristic numbers to intersection numbers in a compactification of the set of
reduced curves (Theorem I). As an immediate application, the first stock of char-
acteristic numbers is computed by applying the result to suitable intersections in
PN (Corollary 1.9). In §2 we exploit the blow-ups of [2] to obtain the Segre classes
(Propositions 2.3, 2.5, 2.7); these are used in §3 to compute the relevant inter-
sections numbers (Theorem II), and to complete the computations of the harder
characteristic numbers (Theorem III).

I would like to thank the Mathematisches Institut of the University of Erlangen-
Nürnberg for hospitality while completing this project.

1. Families of singular curves. We work over an algebraically closed field of
characteristic 0. The families we are going to consider are parametrized by subsets
of the projective space PN = P(H0OP2(d)), d > 2, parametrizing degree-d plane
curves. In this section we will describe these subsets as birational projections of
subvarieties from P2 × PN . This choice will make it relatively easy to obtain infor-
mation such as the relevant degrees and multiplicities, and the relations between
the characteristic numbers and intersection numbers in a suitable compactification
of the family of reduced curves.

To state these relations, we need to recall some of the notations in [1]. For
any birational map Ṽ −→ PN , call ‘point-conditions’ and ‘line-conditions in Ṽ ’ the
proper transforms of the conditions in PN (defined in the introduction). We say
that Ṽ is a ‘variety of complete curves of degree d’ if the intersection of all line-
conditions in Ṽ is empty . Also, we denote by P̃ , L̃ the classes of the general point-
and line-condition in Ṽ .

Consider the following subsets of PN :
• S: singular curves;
• S`: singular curves with singularity on a given line;
• Sp: singular curves with singularity at a given point;
• C: cuspidal curves;
• C`: cuspidal curves with cusp on a given line;
• Cp: cuspidal curves with cusp at a given point.
As in the introduction, denote the characteristic numbers of the corresponding

families by Sd(k), S`d(k), . . . . In this section we will prove:

Theorem I. Let Ṽ be a variety of complete curves of degree d, and denote by

S̃, S̃`, etc. the proper transforms in Ṽ of S, S`, etc. Then

Sd(k) = P̃N−1−k · L̃k · S̃ − 2kS`d(k − 1)− 4
(

k

2

)
Spd(k − 2)

S`d(k) = P̃N−2−k · L̃k · S̃`− 2kSpd(k − 1)

Spd(k) = P̃N−3−k · L̃k · S̃p

Cd(k) = P̃N−2−k · L̃k · C̃ − 3kC`d(k − 1)− 9
(

k

2

)
Cpd(k − 2)
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C`d(k) = P̃N−3−k · L̃k · C̃`− 3kCpd(k − 1)

Cpd(k) = P̃N−4−k · L̃k · C̃p .

Remark. Basically, this says that for e.g. a configuration of k general lines and
N−1−k general points, curves tangent to k−1 lines and having a node on the k-th
one ‘count with multiplicity 2’, and curves tangent to k−2 lines and with a node at
the intersection of the remaining 2 ‘count with multiplicity 4’ (a similar statement
can be phrased mutatis mutandis for cuspidal curves). This is certainly folklore in
both classical and modern enumerative geometry; we establish these results here for
lack of a reference, and since we need them in the context of ‘varieties of complete
curves’. In a somewhat different context, such results are implicit (at least for
d = 3) in e.g. [6], [7] (cf. Proposition 7.4 in [7]).

1.1. Families of nodal curves. To describe the loci S, S`, Sp, give coordinates
(x0 : x1 : x2) to P2 and consider the codimension-3 subvariety Ŝ of P2×PN defined
by

(p, f) ∈ Ŝ ⇐⇒



∂f

∂x0
(p) = 0

∂f

∂x1
(p) = 0

∂f

∂x2
(p) = 0

.

Restricting the projections P2×PN p1−→ P2, P2×PN p2−→ PN , gives maps Ŝ −→ P2,
Ŝ −→ PN ; observe that the fiber p−1

1 (p) ∩ Ŝ of Ŝ over p ∈ P2 consists of all degree-d
curves singular at p, while the fiber p−1

2 (f) ∩ Ŝ of Ŝ over f ∈ PN is the singular
scheme of f (in P2). In fact Ŝ

p1−→ P2 is a PN−3 bundle; in particular, Ŝ is smooth.
If ` ⊂ P2 is a line, denote by Ŝ` the inverse image p−1

1 (`) ∩ Ŝ; if p ∈ P2, let
Ŝp = p−1

1 (p)∩ Ŝ. Then clearly S = p2(Ŝ), S` = p2(Ŝ`), Sp = p2(Ŝp), and moreover
the restrictions of p2 to Ŝ, Ŝ`, Ŝp are birational maps.

Let now k, h resp. denote the hyperplane class in P2, PN , and their pull-backs.
The definitions give immediately the total Chern classes of the normal bundles:

Lemma 1.1. (i) c(N
Ŝ
P2 × PN ) = (1 + (d− 1)k + h)3;

(ii) c(N
Ŝ`

Ŝ) = (1 + k);

(iii) c(N
Ŝp

Ŝ) = (1 + k)2;

(iv) Also: [Ŝ`]2 = [Ŝp], [Ŝ`]3 = 0 in Ŝ.

All we need to compute the first characteristic numbers for S, S`, Sp is the first
part of Theorem I (which we will prove in a moment) and the degrees of S, S`, Sp.
These are:

Proposition 1.2. (i) deg(S) = 3(d− 1)2;
(ii) deg(S`) = 3(d− 1);
(iii) deg(Sp) = 1.
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Proof: As (i) is well known, and (iii) is a triviality, we only detail (ii). Denoting
the degree of a class by

∫
:

deg(S`) =
∫

PN

hN−2 · S`

=
∫

P2×PN

hN−2 · Ŝ` by the projection formula

=
∫

P2×PN

hN−2(1 + k)(1 + (d− 1)k + h)3 by Lemma 1.1 (i) and (ii)

=
∫

P2×PN

hN−2 · 3(d− 1)h2k2 = 3(d− 1) .

To prove the first part of Theorem I, let L be the line-condition in PN corre-
sponding to a general line ` ⊂ P2, and L̂ = p−1

2 (L) ⊂ P2×PN . Then L̂ intersects Ŝ

along Ŝ` and along the closure L̂
Ŝ

of the subset of Ŝ consisting of pairs (q, f) with
f singular at q and tangent to ` at smooth points.

We claim that to prove the first part of Theorem I we just need to show

Lemma 1.3. [L̂ ∩ Ŝ] = [L̂
Ŝ
] + 2[Ŝ`] as cycles on Ŝ.

Indeed, suppose this has been established. Let L̃ be the line-condition in Ṽ

corresponding to `. L̃ ∩ S̃ splits in S̃` and (at least) another component L̃
S̃

(the
‘complete curves’ tangent to ` at smooth points). The characteristic numbers are
the intersection numbers of P̃ ’s and L̃

S̃
’s: the intersection is supported on the ‘right’

points, and transversal by Theorem I in [1]. So for example S`d(k) = [P̃ ∩ S̃]N−2−k ·
[L̃

S̃
]k · [S̃`] in S̃.

Now observe that Ŝ and S̃ are birational, as they are both birational to S. Let S◦

be a dense open subset of S isomorphic to subsets (which we identify with S◦) of Ŝ

and S̃. Apply Theorem I from [1] to S◦: general points and lines can be chosen so
that the corresponding conditions in Ṽ meet only in S◦; in computing P̃ r−k · L̃k · S̃
we may therefore restrict first to S◦.

So we may assume [L̃∩ S̃] = [L̃
S̃
]+2[S̃`], since this equality holds after restricting

to S◦ (as it holds on Ŝ), by Lemma 1.3. Also, we may assume [S̃`]2 = [S̃p], [S̃`]3 = 0
since this holds on S◦, by Lemma 1.1 (iv). Putting all together:

[L̃ ∩ S̃]k · [S̃p] = ([L̃
S̃
] + 2[S̃`])k · [S̃p] = [L̃

S̃
]k · [S̃p]

[L̃ ∩ S̃]k · [S̃`] = ([L̃
S̃
] + 2[S̃`])k · [S̃`] = [L̃

S̃
]k · [S̃`] + 2k[L̃

S̃
]k−1 · [S̃p]

[L̃ ∩ S̃]k = ([L̃
S̃
] + 2[S̃`])k = [L̃

S̃
]k + 2k[L̃

S̃
]k−1 · [S̃`] + 4

(
k

2

)
[L̃

S̃
]k−2 · [S̃p]

and the first part of Theorem I follows.
We then need to verify [L̂ ∩ Ŝ] = [L̂

Ŝ
] + 2[Ŝ`].

Proof of Lemma 1.3: Equivalently, we can verify that [L ∩ S] = [LS ] + 2[S`] in
PN , where LS denotes the closure of the set of singular curves tangent at a smooth
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point to the line ` ⊂ P2. To get this, we produce a curve in S and compare the
restrictions of L and of LS , S` to it. Let X ∈ S be a general plane curve with one
node: we consider the curve X◦γ(t) in S obtained by translating X by elements in a
1-parameter family γ(t) of linear transformations of the plane: we have to examine
the restriction L`|X◦γ(t) of the line-condition L` corresponding to `.

Now, clearly we may keep X fixed and move ` instead: i.e., L`|X◦γ(t) equals
L`◦γ(t)−1 |X as divisors on the t-line. Since the line-conditions on P2 are just point-
conditions on the dual plane P̌2, L`◦γ(t)−1 |X is the restriction X̌|`◦γ(t)−1 of the dual
X̌ of X to the curve ` ◦ γ(t)−1 in P̌2. So to obtain the statement we only need to
remark that (see for example [8, IV.6]) for X a degree-d plane curve with one node
and no other singularities, X̌ consists of a simple component, giving the restriction
of LS with multiplicity 1; and of a multiple component, supported on the line in
P̌ 2 dual to the node of X, with multiplicity 2: giving the restriction of S`, with
multiplicity 2.

1.2. Families of cuspidal curves. We say that a curve is ‘cuspidal’ at p if it is
singular at p and its tangent cone at p is a double line. C ⊂ S is the closure of the
set of cuspidal curves: i.e., the image in PN of the divisor Ĉ of Ŝ defined by

(p, f) ∈ Ĉ ⇐⇒



∂f

∂x0
(p) = 0

∂f

∂x1
(p) = 0

∂f

∂x2
(p) = 0

,



[(
∂2f

∂x0∂x1

)2

− ∂2f

∂x2
0

∂2f

∂x2
1

]
(p) = 0[(

∂2f

∂x0∂x2

)2

− ∂2f

∂x2
0

∂2f

∂x2
2

]
(p) = 0[(

∂2f

∂x1∂x2

)2

− ∂2f

∂x2
1

∂2f

∂x2
2

]
(p) = 0

.

As with Ŝ, restricting the projections gives maps Ĉ −→ P2, Ĉ −→ PN ; the fiber of
C over p ∈ P2 consists of a quadric in the PN−3 of curves singular at p, and the
fiber over f ∈ PN is what we would call the ‘cuspidal scheme’ of f .

Letting Ĉ` = p−1
1 (`) ∩ Ĉ and Ĉp = p−1

1 (p) ∩ Ĉ, then C` = p2(Ĉ`), Cp = p2(Ĉp),
and the restrictions of p2 to Ĉ, Ĉ`, Ĉp are birational morphisms.

As in §1.1, let k, h denote the hyperplane class in P2, PN resp., and their pull-
backs. Then we get the Chern classes:

Lemma 1.4. (i) c(N
Ĉ

Ŝ) = (1 + 2(d− 3)k + 2h);
(ii) c(N

Ĉ`
Ĉ) = (1 + k);

(iii) c(N
Ĉp

Ĉ) = (1 + k)2;

(iv) Also: [Ĉ`]2 = [Ĉp], [Ĉ`]3 = 0 on Ĉ.

Proof: The only point that requires an argument is (i). Notice that, outside
{x0 = 0}, the equation for Ĉ in Ŝ is

(*)

[(
∂2f

∂x1∂x2

)2

− ∂2f

∂x2
1

∂2f

∂x2
2

]
(p) = 0 ;
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therefore, globally (*) defines a divisor in Ŝ consisting of Ĉ and of some multiple
αk of the divisor {x0 = 0}. Restricting to a curve in Ŝ intersecting {x0 = 0}
transversally away from Ĉ (e.g.: t 7→ ((t : 0 : 1), x0x1x

d−2
2 − tx1x

d−1
2 )) shows

α = 2, i.e. the divisor determined by (*) equals Ĉ + 2k. Since (*) is quadratic in
the coordinates of PN , and of degree 2(d − 2) in (x0 : x1 : x2), Ĉ must have class
2h− 2(d− 2)k − 2k = 2h− 2(d− 3)k, giving (i).

To compute the first characteristic numbers for C,C`,Cp we need the second
part of Theorem I and the degrees of C,C`,Cp.

Proposition 1.5. (i) deg(C) = 12(d− 1)(d− 2);
(ii) deg(C`) = 4(2d− 3);
(iii) deg(Cp) = 2.

Proof: These follow immediately from Lemma 1.4. For example:

deg(C) =
∫

PN

hN−2 · C

=
∫

P2×PN

hN−2 · Ĉ by the projection formula

=
∫

P2×PN

hN−2(1 + 2(d− 3)k + 2h)(1 + (d− 1)k + h)3

=
∫

P2×PN

hN−2 · (6(d− 1)2 + 6(d− 1)(2d− 3))h2k2

= 12(d− 1)(d− 2) .

The argument to show the second part of Theorem I is entirely analogous to the
argument for the first part, detailed in §1.1. If now we denote by L̂

Ĉ
the closure of

the subset of Ĉ consisting of pairs (q, f) with f cuspidal at q and tangent to a line
` ⊂ P2 at a smooth point, the key computation is:

Lemma 1.6. [L̂ ∩ Ĉ] = [L̂
Ĉ

] + 3[Ĉ`].

Proof: By the same argument as in the proof of Lemma 1.3, we just need to remark
that the dual of a degree-d plane curve with one cusp (and no other singularities)
consists of a simple component (that accounts for [L̂

Ĉ
]) and of the line dual to the

cusp, with multiplicity 3 (accounting for 3[Ĉ`]).

1.3. Characteristic numbers, I. The information collected in §1.1,2 suffices to
compute the characteristic numbers of S, S`, . . . for configurations involving only
reduced curves. Indeed, PN is isomorphic to a variety of complete curves outside of
the set of non-reduced curves (this point is made more formal in [2], Lemma I, for
characteristic numbers of non-singular curves. We don’t repeat the argument here,
leaving the straightforward adjustments to the reader).

All we need to spot the right configurations is a dimension count from [2]:

Lemma 1.7. For j > N − 2d + 1 and P1, . . . , Pj general point-conditions in PN ,
P1∩· · ·∩Pj meets S, S`, C, C` only at points corresponding to reduced curves; also,
P1 ∩ · · · ∩ Pj−1 meets Sp,Cp only at points corresponding to reduced curves.
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Proof: This follows from Lemma 1.1 in [2] and Remark 1, §1 in [1], since the
set of non-reduced curves is contained in S, S`, C, C` and cut in codimension 1 by
Sp,Cp.

Proposition 1.8. Let Ṽ be a variety of complete curves of degree d. Denote by

P̃ , L̃ resp. the classes of the general point- and line-conditions in Ṽ ; also, denote by

S̃, S̃`, . . . the proper transforms of S, S`, . . . . Then

P̃N−1−k · L̃k · S̃ = 3(d− 1)2(2d− 2)k for k < 2d− 2

P̃N−2−k · L̃k · S̃` = 3(d− 1)(2d− 2)k for k < 2d− 3

P̃N−3−k · L̃k · S̃p = (2d− 2)k for k < 2d− 3

P̃N−2−k · L̃k · C̃ = 12(d− 1)(d− 2)(2d− 2)k for k < 2d− 3

P̃N−3−k · L̃k · C̃` = 4(2d− 3)(2d− 2)k for k < 2d− 4

P̃N−4−k · L̃k · C̃p = 2(2d− 2)k for k < 2d− 4

Proof: In the specified ranges, we can choose point-conditions to avoid the locus
of non-reduced curves, by Lemma 1.7. Therefore the intersection numbers can be
computed in PN , where they are given by Bézout’s Theorem: the degree of the
line-conditions in PN is (2d − 2), and the degrees of S, S`, . . . are computed in
Propositions 1.2 and 1.5.

The first results listed in the introduction follow now immediately from Proposi-
tion 1.8 and Theorem I:

Corollary 1.9.

Sd(k) = 2k−1(d− 1)k−2(6(d− 1)4 − 6(d− 1)2k + k(k − 1)) for k < 2d− 2

S`d(k) = 2k(d− 1)k−1(3(d− 1)2 − k) for k < 2d− 3

Spd(k) = 2k(d− 1)k for k < 2d− 3

Cd(k) = 3 · 2k−2(d− 1)k−2(16(d− 1)4 − 16(d− 1)3

− 16(d− 1)2k + 8(d− 1)k + 3k(k − 1)) for k < 2d− 3

C`d(k) = 2k(d− 1)k−1(8(d− 1)(2d− 3)− 3k) for k < 2d− 4

Cpd(k) = 2k+1(d− 1)k for k < 2d− 4

2. Segre classes. To apply Theorem I to the first cases not covered by the formulas
in Corollary 1.9, we need to evaluate the intersection products

P̃N−2d+1 · L̃2d−2 · S̃ P̃N−2d+1 · L̃2d−3 · C̃

P̃N−2d+1 · L̃2d−3 · S̃` , P̃N−2d+1 · L̃2d−4 · C̃`

P̃N−2d · L̃2d−3 · S̃p P̃N−2d · L̃2d−4 · C̃p

(notations as in Theorem I) in a variety of complete curves. As in §1.3, we will
compute these products in a variety isomorphic to a variety of complete curves
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along an open set containing the intersection points of a general choice of conditions.
Following the notations of [2], denote by B ⊂ PN the set of curves cµ2 consisting of
a degree-(d− 2) curve c and of the double line supported on a line µ. Also, denote
by B◦ the open subset of B formed by curves cµ2 with c reduced and transversal
to µ. The analogue of Lemma 1.7 in the new situation is:

Lemma 2.1. For j = N − 2d + 1 and P1, . . . , Pj general point-conditions in PN ,
P1 ∩ · · · ∩Pj meets S, S`, C, C` at points corresponding to either reduced curves or
curves in B◦. The same conclusion applies to the intersection of P1∩· · ·∩Pj−1 and
Sp,Cp.

Proof: As for Lemma 1.7, this follows from Lemma 1.1 in [2] and Remark 1, §1
in [1] (also, cf. Lemma 1.3 in [2]).

Lemma 2.1 gives us the prescription to fulfill to compute the products P̃N−2d+1 ·
L̃2d−2 · S̃, etc. above: the products may be computed in any variety Ṽ

π−→ PN such
that π−1(B◦) is disjoint from the intersection of all line-conditions in Ṽ . Indeed,
such a Ṽ is isomorphic to a variety of complete curves along an open subset con-
taining π−1(B◦), and general conditions won’t intersect in the complement of this
open set, by Lemma 2.1.

Such a variety is the variety obtained in [2], §3, by the following procedure.1

Let V1
π1−→ PN be the blow-up of PN along B. B is smooth along B◦ (cf. Lemma

1.1 in [2]), so the fiber π−1
1 (cµ2) over a cµ2 ∈ B◦ is the P2d−2 consisting of all

normal directions to B in PN centered at cµ2. Those directions determined by lines
cµ2 + tkµ in PN (k being a degree-(d− 1) curve) define a Pd−3 in π−1

1 (cµ2), and a
Pd−3-bundle B◦

1 over B◦ as cµ2 moves in B◦. We let B1 be the closure of B◦
1 in V1.

Next, let V2
π2−→ V1 be the blow-up of V1 along B1. It follows from Proposition 3.4

in [2] that π−1
2 π−1

1 (B◦) is disjoint from the intersection of all line-conditions in V2:
V2 is therefore a variety satisfying our requirement.

Let then Ṽ be V2, P̃ , L̃ be the classes of the general point- and line-conditions
in Ṽ = V2, etc.: by the above discussion, this switch in notation won’t affect the
result of computing P̃N−2d+1 · L̃2d−2 · S̃, etc.

In the rest of this section we will get the main ingredients needed to compute
these intersection products: i.e., an information amounting to certain terms in the
Segre classes s(B ∩ S, S), s(B ∩ S`, S`), . . . and terms in corresponding classes of
loci in V1. In §3 we will use these results to compute the intersection products
listed at the beginning of this section; these in turn (by Theorem I) will give the
characteristic numbers.

In fact, to optimize the computations, we will obtain here the classes in a different
form. For W ⊂ V non-singular varieties, and X ⊂ V a subscheme, we denote by
W ◦X the class c(NW V ) ∩ s(W ∩X, X) (this is the ‘full intersection class’ of [1],
§2). In §2.1 below we will compute relevant terms in the classes B◦ ◦S, B◦ ◦S`, etc.
These are classes in B◦ ∩ S, B◦ ∩ S` etc.; however, the terms we will compute here
will extend uniquely to classes of B, (since their codimension will be lower than

1In [2] we had a blanket assumption d > 3; however, this construction and the results we will

quote from [2] work for d = 3 as well.
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the codimension of the complement of B◦), therefore we will write these classes as
classes of B, and denote them by B ◦S, B ◦S`, etc. for short. Similar considerations
and choice of notations apply to the classes B1 ◦ S1, B1 ◦ S`1, etc. (denoting by
S1, S`1, etc. the proper transforms of S, S`, etc. in V1), which we will compute in
§2.2, and to classes B̂ ◦ Ŝ, etc.

We should mention that only a small portion of the information encoded in the
above classes is needed for our computations. For example, as S is the discriminant
hypersurface and B ⊂ S, the information we obtain here about B ◦ S is basically
just the multiplicity of the discriminant along the set of curves containing a double
line.

2.1. Classes in PN . Call B the locus of curves containing a double line (as above).
B is the image of a map P

(d−2)(d+1)
2 × P̌2 −→ PN , where P̌2 parametrizes the double

line and P
(d−2)(d+1)

2 parametrizes the residual degree-(d− 2) curve; B◦ is identified
via this map with an open subset of P

(d−2)(d+1)
2 × P̌2 (cf. Lemma 1.1 in [2]). Let

now B̂ = P2 ×B be the inverse image p−1
2 (B) in P2 × PN ; so B̂◦ = p−1

2 (B◦) can be
identified with an open subset of P2 × P

(d−2)(d+1)
2 × P̌2.

We denote by k, h resp. the classes of the hyperplane in P2, PN (and their pull-
backs). The Chow ring of P

(d−2)(d+1)
2 × P̌2 is generated by the pull-backs `,m of

the hyperplane classes from the factors, with obvious relations: so h pulls-back
to ` + 2m. The classes of B that we will consider will be push-forward of classes
by P

(d−2)(d+1)
2 × P̌2 −→ B; classes in B̂ will be push-forward of classes by P2 ×

P
(d−2)(d+1)

2 × P̌2 −→ B̂. To ease the exposition we will suppress push-forward and
pull-back notations, so that e.g. classes in B̂ will be denoted simply as polynomials
in k, `, m (unless we fear ambiguity).

—Nodal curves.

Recall the notations of §1: we have described the discriminant S ⊂ PN as the
projection to PN of a codimension-3 smooth subvariety Ŝ of P2 × PN ; similarly,
S`, Sp are projections of subvarieties Ŝ`, Ŝp of Ŝ.

Lemma 2.2. With the above notations:

(i) B ◦ S = coefficient of k2 in B̂ ◦ Ŝ

(ii) B ◦ S` = coefficient of k1 in B̂ ◦ Ŝ

(iii) B ◦ Sp = coefficient of k0 in B̂ ◦ Ŝ

Proof: (i) follows from the birational invariance of Segre classes ([4], Proposition
4.2): since p2 maps Ŝ birationally to S, s(B ∩ S, S) = p2∗s(B̂ ∩ Ŝ, Ŝ); then the
projection formula gives (i), since the only terms that don’t vanish after pushing
forward via p2 are the terms multiplying k2, and N

B̂◦P2 × PN is the pull-back of
NB◦PN .

(ii), (iii) follow by the same argument, after remarking that s(B̂◦ ∩ Ŝ`, Ŝ`) =
k · s(B̂◦ ∩ Ŝ, Ŝ), s(B̂◦ ∩ Ŝp, Ŝp) = k2 · s(B̂◦ ∩ Ŝ, Ŝ) (cf. Lemma 1.1 (ii), (iii), and
observe that Ŝ`, Ŝp cut properly (in Ŝ) the support of the cone of B̂◦ ∩ Ŝ in Ŝ).

The highest dimensional terms in the classes for nodal curves are given by:
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Proposition 2.3.
B ◦ S = 2(2d− 3)[B] + . . .
B ◦ S` = [B] + . . .
B ◦ Sp = m + . . .

Proof: By Lemma 2.2, we need to show that, discarding all but the highest di-
mensional terms involving powers of k:

B̂ ◦ Ŝ = m + k + 2(2d− 3)k2 + . . .

Now, since B̂◦, Ŝ and P2 × PN are non-singular,

B̂ ◦ Ŝ = c(N
B̂◦P2 × PN )s(B̂◦ ∩ Ŝ, Ŝ)

= c(N
Ŝ
P2 × PN )s(B̂◦ ∩ Ŝ, B̂◦)

= (1 + 3(d− 1)k + . . . )s(B̂◦ ∩ Ŝ, B̂◦)

(this follows from [4], Example 4.2.6. The class c(N
Ŝ
P2 × PN ) was computed in

Lemma 1.1). Regarding s(B̂◦ ∩ Ŝ, B̂◦), pull-back the equations for Ŝ via P2 ×
P

(d−2)(d+1)
2 × P̌2 −→ P2 × PN . In codimension ≤ 2 we find B̂◦ ∩ Ŝ is supported

on a divisor of B̂◦, consisting of pairs (p, cµ2) with p ∈ µ, and has an embedded
component supported on the set of pairs (p, cµ2) with p ∈ c ∩ µ. The reader will
easily verify that the classes of these loci are m + k, (m + k)(` + (d− 2)k) resp., so
that

s(B̂◦ ∩ Ŝ, B̂◦) = (m + k)− (m + k)2 + · · ·+ (m + k)(` + (d− 2)k) + . . .

= (m + k) + (m + k)(`−m + (d− 3)k) + . . .

Thus

B̂ ◦ Ŝ = (1 + 3(d− 1)k + . . . )((m + k) + (m + k)(`−m + (d− 3)k) + . . . )

= (m + k) + (2(2d− 3)k2 + . . . ) + . . .

as claimed.

—Cuspidal curves.
Again as in §1, the set C of cuspidal curves is the projection to PN of a divisor

Ĉ (whith class 2(d− 3)k + 2h) of Ŝ. C`,Cp are projection of subvarieties Ĉ`, Ĉp of
Ĉ.

Lemma 2.4.
(i) B ◦ C = coefficient of k2 in B̂ ◦ Ĉ

(ii) B ◦ C` = coefficient of k1 in B̂ ◦ Ĉ

(iii) B ◦ Cp = coefficient of k0 in B̂ ◦ Ĉ

Proof: As in Lemma 2.2, these follow from the birational invariance of Segre
classes.

The highest dimensional terms in the classes for cuspidal curves are now given
by
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Proposition 2.5.
B ◦ C = 6(d− 2)[B] + . . .
B ◦ C` = [B] + . . .
B ◦ Cp = m + . . .

Proof: By Lemma 2.4, we need to compute the highest dimensional terms involv-
ing powers of k in B̂◦Ĉ. Now we observe that Ĉ contains B̂∩Ŝ scheme-theoretically
(another coordinate computation); by Lemma 1.4, the class of Ĉ in Ŝ is 2(d−3)k+h,
restricting on B̂ to 2(d− 3)k + ` + 2m; we have then

s(B̂◦ ∩ Ĉ, Ĉ) = (1 + 2(d− 3)k + ` + 2m)s(B̂◦ ∩ Ŝ, Ŝ)

and therefore

B̂ ◦ Ĉ = (1 + 2(d− 3)k + ` + 2m)B̂ ◦ Ŝ

= (1 + 2(d− 3)k + ` + 2m)(m + k + 2(2d− 3)k2 + . . . )

= m + k + (2(d− 3) + 2(2d− 3))k2 + . . .

= m + k + 6(d− 2)k2 + . . .

from which the statement follows.

2.2. Classes in V1. π1 : V1 −→ PN is the blow-up of PN along B, E is the
exceptional divisor. For cµ2 ∈ B◦, the fiber π−1

1 (cµ2) consists of the P2d−2 of
normal directions to B in PN centered at cµ2. The directions determined by lines
cµ2 + tkµ in PN determine, as cµ2 varies in B◦, a subvariety B◦

1 of E; and we let
B1 be the closure of B◦

1 in V1.
Denote by S1, S`1, etc. the proper transforms of S, S1, etc. in V1; also, denote by

Ŝ1, Ŝ`1, etc. the proper transforms of Ŝ, Ŝ`, etc. via the map P2×V1
id.×π1−−−−→ P2 × PN ,

i.e. the blow-up of P2 × PN along B̂. Finally, let B̂◦
1 = P2 ×B◦

1 , B̂1 = P2 ×B1.

Lemma 2.6.
B1 ◦ S1 = coeff. of k2 in B̂1 ◦ Ŝ1

B1 ◦ S`1 = coeff. of k1 in B̂1 ◦ Ŝ1

B1 ◦ Sp1 = coeff. of k0 in B̂1 ◦ Ŝ1

B1 ◦ C1 = coeff. of k2 in B̂1 ◦ Ĉ1

B1 ◦ C`1 = coeff. of k1 in B̂1 ◦ Ĉ1

B1 ◦ Cp1 = coeff. of k0 in B̂1 ◦ Ĉ1

Proof: These follow again from the birational invariance of Segre classes, as in
Lemmas 2.2, 2.4.

Since B◦
1 is a projective bundle over B◦, classes of B◦

1 can be expressed in terms of
those of B◦ and of the class of the universal line bundle on B◦

1 : this is the restriction
of the class of the exceptional divisor, which we denote e. This time we need the
highest dimensional terms involving powers of e. These are

Proposition 2.7.
B1 ◦ S1 = 2(2d− 3)(1− e) + . . .
B1 ◦ S`1 = (1− e)2 + . . .
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B1 ◦ Sp1 = m(1− e)2 + . . .
B1 ◦ C1 = 6(d− 2)(1− e)2 + . . .
B1 ◦ C`1 = (1− e)3 + . . .
B1 ◦ Cp1 = m(1− e)3 + . . .

Proof: By Lemma 2.6, we have to show

B̂1 ◦ Ŝ1 = m + k − 2em− 2ek + 2(2d− 3)k2 + e2m + e2k − 2(2d− 3)ek2 + . . .

B̂1 ◦ Ĉ1 = m + k − 3em− 3ek + 6(d− 2)k2 + 3e2m + 3e2k

− 12(d− 2)ek2 − e3m− e3k + 6(d− 2)e2k2 + . . .

(omitting all but the highest dimensional terms involving monomials eikj).
Computing these classes is a little tricky. Let ˜P2 × PN be the blow-up of P2×PN

along the incidence correspondence I = {(p, cµ2) ∈ B̂ : p ∈ c∩µ} (recall B̂◦∩ Ŝ has
an embedded component along this locus). Let ˜P2 × V1 be the blow-up of P2 × V1

along (id. × π1)−1(I). By the universal property of blow-ups, ˜P2 × V1 is also the
blow-up of ˜P2 × PN along the proper transform of B̂:

˜P2 × V1
Blow-up (id.×π1)

−1(I)−−−−−−−−−−−−−−−→ P2 × V1

Blow-up proper transf. of B̂

y yid.×π1˜P2 × PN Blow-up I−−−−−−−−−−−−−−→ P2 × PN

Notice that the bottom map blows-up each P2 × cµ2 ⊂ B̂◦ at the finite set of
points c ∩ µ. The proper transform of Ŝ in ˜P2 × PN cuts each of these blown-up
P2 along the proper transform of µ and along the exceptional divisors. By chasing
the above diagram, one concludes that, above B̂◦, Ŝ1 intersects Ê = P2 × E in
two irreducible components, whose closures we denote Ê1, Ê2: Ê1 dominates the
support of B̂◦ ∩ Ŝ, Ê2 dominates I, i. e. the embedded component in B̂◦ ∩ Ŝ. One
can also see, again working in coordinates, that Ŝ1 intersects B̂◦

1 precisely along
the divisor of B̂◦

1 mapping to the support of B̂◦ ∩ Ŝ (this time without embedded
components). So, with our convention of omitting pull-back notations:

s(B̂◦
1 ∩ Ŝ, B̂◦

1) = (m + k)− (m + k)2 + . . .

Next, we compute the first Chern class of the normal bundle to Ŝ1 in ˜P2 × V1

(Ŝ1 is regularly embedded in low codimension). We leave to the reader to chase the
above diagram and verify that: if b denotes the codimension of B̂ in P2 × PN , then
c1(TP2 × V1) = c1(TP2 × PN ) − (b − 1)Ê restricts on Ŝ to c1(TP2 × PN ) − (b −
1)Ê1 − 2(b− 1)Ê2; while c1(T Ŝ1) = c1(T Ŝ)− (b− 3)Ê1 − (2b− 5)Ê2. So

c1(NŜ1
P2 × V1) = c1(NŜ

P2 × PN )− 2Ê1 − 3Ê2 = c1(NŜ
P2 × PN )− 2Ê + Ê2
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(cf. this computation for d = 3 in [3]; there b = 5). Now, on B̂1, c1(NŜ
P2 × PN )

pulls-back to 3(d − 1)k + 3` + 6m (Lemma 1.1), Ê restricts to e, and Ê2 restricts
to ` + (d− 2)k (cf. the proof of Proposition 2.3), so

c1(NŜ1
P2 × V1) restricts to 3(d− 1)k + 3` + 6m− 2e + ` + (d− 2)k

= (4d− 5)k − 2e + 4` + 6m .

Applying again [4], Example 4.2.6 (as in Proposition 2.3) gives the first terms of
B̂1 ◦ Ŝ1:

B̂1 ◦ Ŝ = c(N
B̂◦

1
P2 × V1)s(B̂◦

1 ∩ Ŝ1, Ŝ1)

= c(N
Ŝ1

P2 × V1)s(B̂◦
1 ∩ Ŝ1, B̂

◦
1)

= (1 + (4d− 5)k − 2e + 4` + 6m + . . . )((m + k)− (m + k)2 + . . . )
= (m + k) + (m + k)(2(2d− 3)k − 2e + 4` + 5m) + terms in cod.≥ 3

Finally, we observe that the only term in codimension ≥ 3 in B̂1 ◦ Ŝ1 is B̂1 · Ŝ1

(as defined in [4]; see the Lemma in [1], §2); i.e., the pull-back to B̂1 of the class
of Ŝ1. This latter can be obtained by applying [4], Theorem 6.7; in terms of ‘full
intersection classes’ (and omitting pull-backs as usual):

[Ŝ1] = [Ŝ]− E · cod. 2 terms in
B̂ ◦ Ŝ

1 + E

(see the Claim in the proof of Theorem II in [1], §2, with r = 1). By Lemma 1.1,
(i), Ŝ has class ((d− 1)k + h)3; so

B̂1 · Ŝ1 = ((d− 1)k + ` + 2m)3 − e · cod. 2 terms in
m + k + 2(2d− 3)k2 + . . .

1 + e

= e2m + e2k − 2(2d− 3)ek2 + · · ·

omitting all but the highest dimensional terms involving eikj . Putting all together
(and omitting irrelevant terms):

B̂1 ◦ Ŝ1 = m + k − 2em− 2ek + 2(2d− 3)k2 + e2m + e2k − 2(2d− 3)ek2 + . . .

as claimed.
To get B̂1 ◦ Ĉ1 we proceed as in Proposition 2.5: one checks that Ĉ1 contains

B̂◦
1 ∩ Ŝ1 = B̂◦

1 ; and since Ĉ contains B̂◦ ∩ Ŝ and is generically smooth along it, the
class of the divisor Ĉ1 in Ŝ1 must be 2(d− 3)k +h− e (cf. Lemma 1.4). So, arguing
as in Proposition 2.5,

B̂1 ◦ Ĉ1 = (1 + 2(d− 3)− e + . . . )B̂1 ◦ Ŝ1 ,

which gives the result stated at the beginning of the proof.

15



3. Characteristic numbers, II. After Propositions 2.3, 2.5, 2.7, computing the
intersection numbers

P̃N−2d+1 · L̃2d−2 · S̃ P̃N−2d+1 · L̃2d−3 · C̃

P̃N−2d+1 · L̃2d−3 · S̃` , P̃N−2d+1 · L̃2d−4 · C̃`

P̃N−2d · L̃2d−3 · S̃p P̃N−2d · L̃2d−4 · C̃p

is a rather straightforward procedure, given the details of the blow-up construction
(as in [2], §4). The main tool is a formula from [1]:

Proposition. Let B ⊂ V be smooth varieties, X1, . . . , Xn subvarieties of V , Ṽ −→
V the blow-up of V along B, and X̃1, . . . , X̃n the proper transforms of X1, . . . , Xn

in Ṽ . If the codimensions of the Xi’s add to the dimension of V , then

(*) X̃1 · . . . · X̃n = X1 · . . . ·Xn −
∫

B

∏
j(B ◦Xj)
c(NBV )

([1], Theorem II). As seen in [2], §4, this extends to our case: each of the two
blow-up restricts to the situation of the proposition on a dense open set containing
all the intersection points. In fact, we can use for B in (*) (as in [2], §4.2,3) suitable
varieties mapping birationally onto the centers of the blow-ups: P

(d−2)(d+1)
2 × P̌2 for

the first blow-up, and a variety we called P(G) in [2], §4.2, for the second. Concern-
ing P(G), we only need to remark that there is a surjection P(G)

p−→ P
(d−2)(d+1)

2 × P̌2,
making the diagram

P(G) −−−−→ V1

p

y yπ1

P
(d−2)(d+1)

2 × P̌2 −−−−→ PN

commutative; if we denote by e the pull-back of the exceptional divisor from V1 to
P(G), then

Lemma 3.1. p∗e
j = 0 for j < d− 3; p∗e

d−3 = (−1)d−1.

Proof: See [2], Lemma 4.1.

We apply (*) to the two blow-ups giving the variety Ṽ of §2:

Proposition 3.2. For X = S, S`, . . . ; X1 = S1, S`1, . . . the proper transform of

X in V1; X̃ = S̃, S̃`, . . . the proper transform of X1 in Ṽ ; P,L, P1, L1, P̃ , L̃ resp.

point- and line-conditions in PN , V1, Ṽ ; and c = codimPN X,

PN−k−c
1 · Lk

1 ·X1 = PN−k−c · Lk ·X −
∫

P
(d−2)(d+1)

2 ×P̌2
(` + 2m)N−k−cB ◦X

P̃N−k−c · L̃k · X̃ = PN−k−c
1 · Lk

1 ·X1 −
∫

P(G)

(` + 2m)N−k−c (1− e)k−d+1

(1 + e)
B1 ◦X1
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where k ≤ 2d − 2 for X = S, k ≤ 2d − 3 for X = S`, Sp, C, and k ≤ 2d − 4 for
X = C`,Cp.

Proof: This are just the results obtained applying (*) and omitting terms that
give no contribution in the specified range. For example, applying (*) to the second
blow-up gives really

P̃N−k−c · L̃k · X̃ = PN−k−c
1 · Lk

1 ·X1 −
∫

P(G)

(` + 2m)N−k−c

· (1 + (2d− 2)` + (4d− 4)m− e)k(1 + ` + m− e)(
d+1
2 )

(1 + e)(1 + ` + 2m− e)(
d+2
2 )

B1 ◦X1

(see [2] §4.2); however, in the specified range the fraction contributes terms in
codimension d−3; and by Lemma 3.1 and the projection formula, the only monomial
in `,m, e that can have non-zero degree in codimension d − 3 is ed−3; so ` and m
can be discarded in the fraction, and one gets the second formula as stated.

Now the computation of the intersection numbers is a straightforward application
of Propositions 1.2, 1.5, 2.3, 2.5, 2.7. and 3.2. As an illustration, we trace the
computation for the locus of cuspidal curves:

—by Proposition 1.5,

PN−2d+1 · L2d−3 · C = (2d− 2)2d−3 · 12(d− 1)(d− 2)

= 3 · 22d−1(d− 1)2d−2(d− 2);

—by Proposition 2.5 and the first formula in Proposition 3.2,

PN−2d+1
1 ·L2d−3

1 · C1 = 3 · 22d−1(d− 1)2d−2(d− 2)−
∫

(` + 2m)N−2d+1B ◦X

= 3 · 22d−1(d− 1)2d−2(d− 2)−
∫

(` + 2m)N−2d+1(6(d− 2) + . . . )

= 3 · 22d−1(d− 1)2d−2(d− 2)− 24(d− 2)
((

d
2

)
+ 1
2

)

—by Proposition 2.7 and the second formula in Proposition 3.2,

P̃N−2d+1 · L̃2d−3 · C̃ = 3 · 22d−1(d− 1)2d−2(d− 2)− 24(d− 2)
((

d
2

)
+ 1
2

)
−

∫
P(G)

(` + 2m)N−2d+1 (1− e)d−4

(1 + e)
(6(d− 2)(1− e)2 + . . . );

since the term of degree d− 3 in
(1− e)d−2

(1 + e)
is (−1)d−1(2d−2 − 1)ed−3, Lemma 3.1
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and the projection formula give

P̃N−2d+1 · L̃2d−3 · C̃ = 3 · 22d−1(d− 1)2d−2(d− 2)− 24(d− 2)
((

d
2

)
+ 1
2

)
− 6(d− 2)(2d−2 − 1)

∫
P

(d−2)(d+1)
2 ×P̌2

(` + 2m)N−2d+1

= 3 · 22d−1(d− 1)2d−2(d− 2)− 24(d− 2)
((

d
2

)
+ 1
2

)
− 6(d− 2)(2d−2 − 1) · 4

((
d
2

)
+ 1
2

)
= 3 · 22d−1(d− 1)2d−2(d− 2)− 3 · 2d+1(d− 2)

((
d
2

)
+ 1
2

)
This procedure, applied to all loci, gives the list:

Theorem II.

P̃N−2d+1 · L̃2d−2 · S̃ = 3 · 22d−2(d− 1)2d − 2d+1(2d− 3)
((

d
2

)
+ 1
2

)
P̃N−2d+1 · L̃2d−3 · S̃` = 3 · 22d−3(d− 1)2d−2 − 2d

((
d
2

)
+ 1
2

)
P̃N−2d · L̃2d−3 · S̃p = 22d−3(d− 1)2d−3 − 2d−1

(
d

2

)
P̃N−2d+1 · L̃2d−3 · C̃ = 3 · 22d−1(d− 1)2d−2(d− 2)− 3 · 2d+1(d− 2)

((
d
2

)
+ 1
2

)
P̃N−2d+1 · L̃2d−4 · C̃` = 22d−2(2d− 3)(d− 1)2d−4 − 2d

((
d
2

)
+ 1
2

)
P̃N−2d · L̃2d−4 · C̃p = 22d−3(d− 1)2d−4 − 2d−1

(
d

2

)
By the discussion in the beginning of §2, these are the intersection numbers of the

loci in any varieties of complete curves Ṽ , so we can proceed and apply Theorem I
from §1 to conclude the computation of the characteristic numbers. Taking again
cuspidal curves as an example,

Cpd(2d− 5) = 22d−4(d− 1)2d−5

by Corollary 1.9, so

C`d(2d− 4) = P̃N−2d+1 · L̃2d−4 · C̃`− 3(2d− 4)Cpd(2d− 5)

= 22d−2(2d− 3)(d− 1)2d−4 − 2d

((
d
2

)
+ 1
2

)
− 3 · 22d−3(d− 1)2d−5(d− 2)

= 22d−3(d− 1)2d−5(4d2 − 13d + 12)− 2d

((
d
2

)
+ 1
2

)
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by Theorem I and Theorem II; and therefore

Cd(2d− 3) = P̃N−2d+1 · L̃2d−3 · C̃ − 3(2d− 3)C`d(2d− 4)

− 9
(

2d− 3
2

)
Cpd(2d− 5)

= 3 · 22d−1(d− 1)2d−2(d− 2)− 3 · 2d+1(d− 2)
((

d
2

)
+ 1
2

)
− 3(2d− 3)

[
22d−3(d− 1)2d−5(4d2 − 13d + 12)− 2d

((
d
2

)
+ 1
2

)]

− 9
(

2d− 3
2

) [
22d−4(d− 1)2d−5

]
= 3 · 22d−4(d− 1)2d−5(8d4 − 56d3 + 142d2 − 161d + 70) + 3 · 2d

((
d
2

)
+ 1
2

)
by Theorems I and II again.

This procedure gives

Theorem III.

Sd(2d− 2) = 22d−2(d− 1)2d−3(3d3 − 15d2 + 23d− 12) + 2d+1

((
d
2

)
+ 1
2

)
S`d(2d− 3) = 22d−3(d− 1)2d−4(3d2 − 8d + 6)− 2d

((
d
2

)
+ 1
2

)
Spd(2d− 3) = 22d−3(d− 1)2d−3 − 2d−1

(
d

2

)
Cd(2d− 3) = 3 · 22d−4(d− 1)2d−5(8d4 − 56d3

+ 142d2 − 161d + 70) + 3 · 2d

((
d
2

)
+ 1
2

)
C`d(2d− 4) = 22d−3(d− 1)2d−5(4d2 − 13d + 12)− 2d

((
d
2

)
+ 1
2

)
Cpd(2d− 4) = 22d−3(d− 1)2d−4 − 2d−1

(
d

2

)
as stated in the introduction.
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