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§0. Introduction

The group PGL(2) of linear transformations of the projective line P1 acts natu-
rally on the set of configurations of points on the line. We call each configuration
of d points (some of which may coincide in the same point on the line) a ‘d-tuple’
of points; for a given d, the set of d-tuples of points in P1 forms a dimension-d
projective space Pd. In this note we are concerned with the orbits of this action of
PGL(2) on Pd. The closure of each orbit is a projective subvariety of Pd of which
we determine the degree (§1), the ‘boundary’–i.e., the complement of an orbit in
its closure–(§2), and the multiplicity at points of the boundary (§3). These results
are used to provide a complete classification of the non-singular orbit closures, and
criteria for an orbit closure to be non-singular in codimension 1 (§4).

Although seemingly natural objects of study, we didn’t find a lot of work on
these orbits in the literature. Some of the results presented here appear also in
[Mukai-Umemura], in one form or another; and the ‘combinatorial’ computation
of the degree that we will sketch in this introduction goes back to [Enriques-
Fano]. But for example Mukai and Umemura establish the non-singularity of the
orbit closures of a specific 6-tuple and a specific 12-tuple by an ad-hoc coordinate
computation. We hope to provide here a more unifying approach. Lucy Moser-
Jauslin has developed techniques for the study of embeddings of SL(2) and PGL(2),
and the degree of the orbits can be computed within her framework ([Moser], §8).

Our main motivation in this study is to prepare the ground for the much richer
case of the action of PGL(3) on spaces parametrizing plane curves. The approach
we use in this note is susceptible to be employed in higher dimensions, although
the technical difficulties mount very rapidly. The reader wishing to approach the
PGL(3) case (see [Aluffi-Faber]) will find here a sample of the essential techniques.

The main idea for the degree and multiplicity computations is the following: for
each given d-tuple of points on P1, build a smooth variety Ṽ and a proper map from
this to the closure of the orbit of the d-tuple. In fact this Ṽ will be a compactification
of PGL(2), determined by the d-tuple, which we obtain by a suitable blow-up of
the P3 of 2 × 2 (homogeneous) matrices. After the construction, we reduce the
calculations to calculations on Ṽ , where some intersection calculus (particularly,
the formalism of Segre classes of [Fulton]) allows us to perform them. The blow-up
construction also allows us to determine explicitly the boundary of the orbit.

The classification of smooth orbit closures follows from the multiplicity compu-
tations of §3; we use the classification of finite subgroups of PGL(2), which can be
found for example in [Weber].

We now sketch here the easy ‘combinatorial’ computation of the degree of the
orbit closure of a d-tuple consisting of d ≥ 3 distinct points. In this case the orbit
closure is 3-dimensional, so its degree may be computed as the intersection product
with three hyperplanes of Pd.



For the hyperplanes, take 3 distinct ‘point-conditions’, i.e., hyperplanes in Pd

consisting of the d-tuples that contain a certain given point. One checks easily
that the intersection multiplicity of the orbit closure and three point-conditions
(determined by three distinct points p1, p2, p3) at a d-tuple equals the product of
the multiplicities of p1, p2 and p3 in the d-tuple: so the intersection is automatically
transversal if the d-tuple consists of d distinct points. Therefore, in this case the
degree is just the number of points of intersection: the computation then comes
down to counting the number of elements of PGL(2) that send a given d-tuple
(consisting of d distinct points) to a d-tuple that contains 3 (distinct) given points.
Since an element of PGL(2) is uniquely determined by prescribing the images of 3
distinct points, one sees that the answer must be

d(d− 1)(d− 2).

To get the degree of the orbit closure, we have to divide this number by the number
of elements of PGL(2) sending a d-tuple to itself: i.e., the order of the stabilizer of
the d-tuple. For example:

(1) The stabilizer of a 3-tuple consisting of 3 distinct points is S3, so the degree
of the orbit closure is 1 (the orbit closure is P3).

(2) A general 4-tuple has stabilizer C2×C2, so the degree of the orbit closure is
4·3·2

4 = 6. The 4-tuples with j = 0 (resp. 1728) have stabilizers A4 (resp. D4),
so that the orbit closure has degree 2 (resp. 3).

(3) For d ≥ 5, a general d-tuple has trivial stabilizer, so the degree of the orbit
closure is d(d− 1)(d− 2).

It would be easy to apply the same procedure to examine the case in which
some points of the d-tuples appear with multiplicity. However, we don’t see how
to obtain by this approach a unified treatment of all cases; more importantly, this
approach wouldn’t help us to study the singularity of these orbit closures, and more
important still we don’t see how this kind of computations could be interpreted to
attack higher dimensional cases such as the one dealt with in [Aluffi-Faber].

Acknowledgement. Both authors wish to thank the Max-Planck-Institut für
Mathematik for the wonderful hospitality.

§1. The predegree of the orbit closure.

We work over an algebraically closed field of characteristic 0.
The first question we consider is the computation of the degree of the closure

(in Pd) of the orbit of a d-tuple under the action of PGL(2). Here we think of Pd

as the space parametrizing homogeneous forms of degree d on P1, and each point
of this space is identified with the d-tuple of zeros of the form corresponding to it.
Also, we will denote by s the number of distinct points in the d-tuple. As mentioned
in the introduction, the main ingredient in the computation is the construction for
each d-tuple of a non-singular variety dominating the orbit closure.

First we observe this is not necessary if the whole d-tuple is concentrated in one
point (that is, if s = 1). We’ll refer to this particular d-tuple as to the ‘d-fold point’,
and the reader should have no difficulties in checking that the orbit of the d-fold
point (that is, the set of all such d-tuples) is simply the degree-d rational normal
curve in Pd.
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Next, let’s consider the case when the d-tuple is distributed among 2 distinct
points, that is one r-fold point and one distinct (d − r)-fold point. Again, in this
case the reader will see immediately that the orbit consists of all d-tuples with the
same multiplicity data.

Proposition 1.1. The orbit closures of d-tuples consisting of an r-fold point and
a (d − r)-fold (distinct) point are surfaces in Pd, of degree: 2r(d − r) if r 6= d/2,
r(d− r) = r2 if r = d/2.

Proof: For this, we dominate the orbit closure with P1 × P1, using the map P1 ×
P1 −→ Pd defined by

((a0 : a1), (b0 : b1)) 7→ (a1x− a0y)r(b1x− b0y)d−r :

it is clear that this map is finite, and that the complement of the diagonal in P1×P1

maps onto the orbit we are considering. Also, it is clear that the degree of this map
is 1 if d 6= 2r, and 2 if d = 2r: so to get the statement we just need to check that
the self-intersection of the pull-back of the hyperplane class from Pd to P1 × P1 via
the above map is 2r(d−r). This is straightforward: if h1, h2 denote the hyperplane
class of the factors, the pull-back of the hyperplane class from Pd is (rh1+(d−r)h2),
and ∫

P1×P1
(rh1 + (d− r)h2)2 =

∫
P1×P1

2r(d− r)h1h2 = 2r(d− r) .

(Here and in the following
∫

will denote ‘degree’ in the sense of [Fulton])
It’s worth observing that if r = d/2, then the orbit closure is a (regular) projection

to Pd of the r-th Veronese embedding of P2—the degree is indeed r2 in this case,
as it should be. For example, for r = 2 this is the (non-singular) projection of the
Veronese surface in P5 to P4.

Now we move to the most interesting case, that of a d-tuple distributed in s ≥ 3
points. In this case the orbit and its closure have dimension 3. In order to construct
a non-singular threefold dominating the orbit closure of a given d-tuple, we resolve
the indeterminacies of a rational map associated naturally to the given d-tuple.

Choose coordinates (x : y) in P1, and let C stand for a homogeneous form in
(x : y) of degree d ≥ 3, and for the d-tuple of points on P1 corresponding to it. The
PGL(2)-orbit of C in Pd is the image of the map

c : PGL(2) → Pd

sending α ∈ PGL(2) to the form C ◦ α. Observe that this map is finite (if at
least three points of the d-tuple are distinct), and its degree equals the order of the
stabilizer of C. This map determines a rational map from the P3 of 2× 2 matrices
to Pd, which we also denote by c.

Now we will resolve this rational map: i.e., we will construct a variety Ṽ filling a
commutative diagram

PGL(2) ⊂ Ṽ
c̃−−−−→ Pd∥∥∥ π

y ∥∥∥
PGL(2) ⊂ P3 c

- - - -> Pd
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The image of c̃ in Pd is precisely the orbit closure. Thus the degree of the
orbit closure can be found by computing the third power of the pull-back of the
hyperplane class of Pd to Ṽ , and dividing by the order of the stabilizer of C. We
call ‘predegree’ the product of the degree by the order of the stabilizer: since the
d-tuple is supported on at least 3 points, this term will be synonymous for the 3-fold
self-intersection of the pull-back of the hyperplane from Pd.

The base locus of c : P3 - - ->Pd consists of the matrices α for which the form
C ◦ α is identically zero. This happens exactly when α is a rank-1 matrix with
image a point of the d-tuple C. The base locus of c is therefore supported on a
finite number of ‘parallel’ lines in the (non-singular) quadric of rank-1 matrices.
There are as many distinct lines as there are distinct points in the d-tuple C.

Proposition 1.2. A variety Ṽ as above can be obtained by blowing up P3 along
the support of the base locus of c.

Proof: To see this, call ‘point-conditions in P3’ the inverse image of the point-
conditions of Pd (defined above). The map c is then the map defined by the linear
system generated by the point-conditions in P3, and therefore the base locus of c is
actually cut out by the point-conditions. Now we argue that a point-condition in
P3 is a degree-d hypersurface consisting of nothing but a collection of hyperplanes,
one for each point in the d-tuple C, each appearing with the same multiplicity as
the corresponding point appears in C. This is immediate: give coordinates(

p0 p1

p2 p3

)
to the P3 of matrices; and suppose C is given by the equation

F (x : y) = 0 .

Then the point-condition corresponding to e.g. the point (1 : 0) has equation

F (p0 : p2) = 0 ,

so is indeed a union of hyperplanes as argued.
Let Ṽ be the blow-up of P3 along the lines supporting the base locus of c. The

(a priori rational) map c̃ making the above diagram commute is then defined by the
linear system on Ṽ generated by the proper transforms of the point-conditions: so
the base locus of c̃ is cut out by the proper transforms in Ṽ of the point-conditions.
But since the point-conditions are supported on unions of hyperplanes, they neces-
sarily intersect transversally in P3 along the base locus of c: therefore their inter-
section in Ṽ is empty, and we can conclude that the map c̃ : Ṽ −→ Pd is indeed a
morphism.

Now computing the 3-fold self-intersection of the class of the proper transform
of a point-condition (i.e., the predegree of the orbit closure) is a straightforward
intersection calculus exercise. We use [Aluffi-Faber], Proposition 3.2: the self-
intersection is computed as the self-intersection of the point-condition in P3 (i.e.,
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d3) minus contributions coming from each component of the base locus of c. The
formula gives

predegree = d3 −
s∑

i=1

∫
Li

(mi + dh)3

1 + 2h
,

where the summation runs over the distinct points p1, . . . , ps of the d-tuple, Li is
the line in the base locus corresponding to pi, mi is the multiplicity of pi in the
d-tuple (thus the multiplicity of the point-conditions along Li), and h denotes the
hyperplane class in Li. The degree is computed by taking the coefficient of h in the
expression under

∫
. Doing this gives:

Proposition 1.3. For d ≥ 3, the predegree of the orbit closure of a d-tuple is

d3 − 3d(
s∑

i=1

m2
i ) + 2(

s∑
i=1

m3
i ) .

So the predegree of a d-tuple C can be written in terms of just d and two numbers,
each of which is a sum of ‘local contributions’ given by each point of C. For example,
if the d-tuple consists of d− r simple points and one r-fold point, then

s∑
i=1

m2
i = r2 + d− r,

s∑
i=1

m3
i = r3 + d− r,

so

predegree = d3 − 3d(r2 + d− r) + 2(r3 + d− r)
= (d− r)(d− r − 1)(d + 2r − 2) .

As seen in [Aluffi-Faber], this general feature of the predegree (being determined
by a few numbers recording local data) is preserved in the PGL(3) case, at least for
smooth curves.

For s = 1 or 2, the formula of this proposition gives 0: which reflects the fact
that in these cases the orbits have dimension < 3. We also remark that the P1×P1

used to dominate the orbit closure in the case s = 2 in Proposition (1.1) can also be
seen as one component of the exceptional divisor of the same blow-up construction
used for the case s ≥ 3.

§2. The boundary of an orbit closure

We turn now to the question of determining the ‘boundary’ of the orbit of a d-
tuple C, by which we mean the complement of the orbit in its closure. Observe that
the boundary of an orbit is necessarily itself the union of orbits, and has dimension
≤ 2. Since the orbit of a d-tuple has dimension 3 as soon as the d-tuple consists
of at least 3 distinct points, we can conclude right away that the boundary of the
orbit of a given d-tuple must consist of a union of orbits of d-tuples concentrated
in at most two points. We will show:
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Proposition 2.1. The boundary of the (3-dimensional) orbit of C is the union of
the 1-dimensional orbit of xd and of those 2-dimensional orbits of xryd−r for which
r is the multiplicity of a point of C.

Proof: We use again the variety Ṽ constructed in §1. The rank-1 matrices not
in the base locus have image in the orbit of xd; so we only have to determine the
image in Pd of the components of the exceptional divisor in Ṽ . Give coordinates(

p0 p1

p2 p3

)
to the P3 of matrices; the locus of rank-1 matrices is given by p0p3 − p1p2 = 0.
Suppose the d-tuple C has equation a0x

d +a1x
d−1y + · · ·+ady

d = 0, corresponding
to the point (a0 : a1 : · · · : ad) ∈ Pd (with obvious choice of coordinates there).
Assume that (1 : 0) is a point of multiplicity r ≥ 1 in C, i.e., a0 = a1 = · · · =
ar−1 = 0, ar 6= 0. Then p2 = p3 = 0 is a component of the base locus of c and we
can study Ṽ locally by blowing up P3 along p2 = p3 = 0.

On the affine piece p0 = 1 we have coordinates (p1, p2, p3). On an affine piece of
the blow-up, coordinates (q1, q2, q3) are given by

p1 = q1

p2 = q2

p3 = q2q3

The map induced by c is then given by

(q1, q2, q3) 7→ (b0 : b1 : · · · : bd)

with

b0x
d + · · ·+ bdy

d ∼ ar(x + q1y)d−r(q2x + q2q3y)r + · · ·+ ad(q2x + q2q3y)d.

Note that we can factor out q2
r from the last expression, so that

b0x
d + · · ·+ bdy

d ∼ ar(x + q1y)d−r(x + q3y)r

+ ar+1q2(x + q1y)d−r−1(x + q3y)r+1 + · · ·+ adq
d−r
2 (x + q3y)d.

The exceptional divisor is given here by q2 = 0. The restriction of the map c̃ : Ṽ −→
Pd to the component of the exceptional divisor of Ṽ corresponding to the r-fold
point is then given by restricting the last expression to q2 = 0: we get d-tuples
corresponding to points

(*) b0x
d + · · ·+ bdy

d ∼ ar(x + q1y)d−r(x + q3y)r :

we conclude that the image of the exceptional divisor corresponding to a point in
C of multiplicity r is the closure of the PGL(2)-orbit of xd−ryr. (The boundary of
this orbit is the orbit of xd.) The statement follows.
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§3. Multiplicities.

We will now use the blow-up construction described in §1 to compute the mul-
tiplicity of the closure of an orbit along the orbits making up its boundary. For
s = 1 and s = 2, r = d/2 (notations as in §1) we have remarked that the orbit
closure is essentially a Veronese, so it is non-singular. To analyze the situation for
s = 2, r 6= d/2 and s ≥ 3, we first need the following fact.

Identify Pd with the space of d-tuples of points on P1, by giving it coordinates
(a0 : · · · : ad) and associating with every A = (a0 : · · · : ad) the d-tuple of zeros of
FA(x : y) = a0x

d + a1x
d−1y + · · · + ady

d. Then let HA(x : y) denote the Hessian
of this form with respect to x, y, a form itself of degree 2d − 4 in (x : y) for each
given A. For a given (ξ : η) in P1, the equation HA(ξ : η) = 0 determines the
quadric of all d-tuples A whose Hessian vanishes at (ξ : η). We’ll use freely a few
facts about the Hessians, whose verification will generally be left to the reader; the
most important is the following, which we want to highlight:

Lemma 3.1. The orbit of the d-fold point in Pd is cut out scheme-theoretically by
the equations HA(ξ : η) = 0, (ξ : η) ∈ P1.

Proof: Clearly the Hessian of xd is identically zero. On the other hand, if the
Hessian of a form is identically zero, then after a change of coordinates a column
in the matrix of second derivatives vanishes. Since the characteristic of the ground
field is zero, the form is in the orbit of xd. To finish the proof it suffices to show that
the quadrics HA(ξ : η) cut out the orbit at the d-tuple xd = 0. Now the tangent
space to HA(ξ : η) at (1 : 0 : · · · : 0) is

d∑
i=0

i(i− 1)aiξ
2d−i−2ηi−2 = 0 ,

so the intersection of the tangent spaces at (1 : · · · : 0) is given by a2 = · · · = ad = 0,
the tangent space to the orbit.

To evaluate the multiplicity of the orbit closure of a d-tuple at points of its
boundary, we use the techniques of [Fulton], Chapter 4: the multiplicity of a
variety Y along an irreducible subvariety X is the coefficient of [X] in the Segre
class s(X, Y ) of X in Y ([Fulton], §4.3), and Segre classes behave well with respect
to proper maps ([Fulton], §4.2). For each component of the boundary of an orbit
closure, we’ll pull-back equations for the component (essentially provided by the
above lemma) to the varieties constructed in the degree computations. Computing
the relevant term in the Segre class will be manageable on these varieties as they
are non-singular. A push-forward will then give the Segre class in the orbit closure,
and compute the multiplicity.

The boundary of the orbit closure of a d-tuple supported on a pair of points
consists just of the orbit of a d-fold point.

Proposition 3.2. (s = 2) If r 6= d/2, the orbit closure of a d-tuple consisting of
one r-fold point and one (d− r)-fold point has multiplicity 2 along its boundary. If
r = d/2, this orbit closure is non-singular.

Proof: Pull back all equations HA(ξ : η) = 0 via the map P1×P1 −→ Pd considered
in Proposition (1.1). With the notations of §1, HA(ξ : η) pulls back to

(a1b0 − a0b1)2(d− 1)(d− r)r(a1ξ − a0η)2r−2(b1ξ − b0η)2(d−r)−2 ;
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as (ξ : η) varies in P1 we see that the equations of the orbit of the d-tuple pull
back to the square of the equation of the diagonal in P1 × P1. The diagonal maps
isomorphically onto the orbit of the d-fold point, and the map from P1 × P1 to the
orbit closure has degree 1 if r 6= d/2: thus, pushing forward to Pd, it follows that
the first term in the Segre class of the orbit of the d-fold point in the orbit closure
is twice the class of the orbit. The first assertion follows. If r = d/2, the map from
P1 × P1 to the orbit closure has degree 2: thus the first term in the Segre class
is the orbit of the d-fold point, with coefficient 2/2 = 1. So the orbit closure is
non-singular in this case, as already observed earlier.

s ≥ 3. If the d-tuple consists of at least 3 distinct points, then its stabilizer in
PGL(2) is finite, so its orbit closure is a threefold in Pd. We have seen in §2 that the
boundary of the orbit of a d-tuple consists of the union of the 1-dimensional orbit of
xd and the 2-dimensional orbits of xryd−r, for all r that appear as the multiplicity
of a point in the d-tuple.

We call ‘premultiplicity’ the product of the multiplicity of the orbit closure of a
d-tuple C (with s ≥ 3) and the order of its stabilizer. Given C, consider its Hessian
HC , this time specifically as a degree-(2d− 4) form on P1, and thus as a (2d− 4)-
tuple determined by C. An important role is going to be played by the points of
this (2d− 4)-tuple that lie away from C. We state the results first:

Proposition 3.3. The premultiplicity of the orbit closure of C along the orbit of
the d-fold point is ∑

i

k2
i + 4s− 8 ,

where the summation runs over all zeros of the Hessian HC external to the d-tuple,
and the ki denote the multiplicity of HC at such points.

For example, suppose the Hessian is simple at all points external to C; since the
Hessian has degree 2d − 4, and each point with multiplicity r on C contributes
precisely a (2r − 2)-fold point to the Hessian, we find that in this case HC has
exactly 2s− 4 simple points outside of C, so the premultiplicity along the orbit of
the d-fold point must be

(2s− 4) + (4s− 8) = 6(s− 2) .

In particular, the orbit closure of the general d-tuple, d ≥ 5, has multiplicity 6(d−2)
along this orbit.

Next for the 2-dimensional components of the boundary. For every point p of C
of multiplicity r, denote by Cp the residual (d − r)-tuple to p in C. In this case it
matters whether the point p of C is a point of the Hessian of its residual Cp in C
(thus automatically external to Cp !).

As seen in §2, p contributes to the boundary of the orbit closure of C by the orbit
of xryd−r. The next result may be seen as a refinement of that statement:

Proposition 3.4. Each r-fold point p of the d-tuple contributes to the premulti-
plicity of the orbit closure along the orbit of xryd−r by

2 + mult. of p in HCp
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if r 6= d/2, and
4 + 2 (mult. of p in HCp

)

if r = d/2.

So the orbit closure of the general d-tuple has multiplicity 2d along its only
boundary component (i.e., the orbit of xyd−1), for d ≥ 5.
Proofs: For the first computation (multiplicity along orbit of the d-fold point),
every point (ξ : η) in P1 gives one equation for the orbit of the d-fold point in Pd,
i.e. HA(ξ : η) = 0 (see Lemma (3.1)). Now if ϕ ∈ P3, the Hessian of the translate
by ϕ is given by

HA◦ϕ = (detϕ)2 HA ◦ ϕ :

therefore each of the above equations for the orbit of xd pulls-back in P3 to the
square of the equation of the locus D of rank-1 matrices, times the equation of
the point-condition in P3 relative to the Hessian of the d-tuple. As seen in §1,
point-conditions are separated above the base locus by the blow-up resolving the
rational map determined by the d-tuple, and as shown in the proof of Proposition
2.1, the exceptional divisors are mapped onto 2-dimensional boundary components.
Equations for the inverse image of the orbit of xd in the blow-up are therefore

D̃2 H̃(ξ : η) , (ξ : η) ∈ P1

where D̃ is the equation for the proper transform of D, and H̃(ξ : η) is the point-
condition in the blow-up relative to the points in the Hessian not contained in the
d-tuple. The scheme-theoretic inverse image consists then of a non-reduced scheme
supported on the proper transform of the locus of rank-1 matrices, with length
2 over the support, and embedded components along pencils of matrices whose
image is a point of the Hessian not contained in the d-tuple; each of these pencils
maps isomorphically to the 1-dimensional orbit of xd. To examine the situation
along these pencils, observe that every point of the Hessian (say of multiplicity k),
determines a component of every H̃(ξ : η), in fact a k-fold plane containing the
pencil. As (ξ : η) moves in P1, these components define a scheme supported on the
pencil. The defining ideal is the k-th power of that of the pencil and its algebraic
multiplicity ([Fulton], §4.3) is equal to k2. By [Fulton], Proposition 9.2, applied
to

D̃ ⊂ c̃−1(orbit of xd) ⊂ Ṽ ,

the contribution of each embedded pencil to the Segre class is then k2 times its
class, and this gives the term

∑
k2

i in the formula. It remains therefore to be seen
that the proper transform D̃ of the locus of rank-1 matrices accounts for the term
4s − 8 in the premultiplicity. Now we claim that all we have to check is that D̃2

pushes forward to (2−s) times the class of the orbit of xd: indeed, it will follow that
the contribution of D̃ to the 1-dimensional term of the Segre class (i.e., −(2D̃)2)
pushes forward in Pd to (4s − 8) times the class of the orbit of xd, and we will be
done. Now a straightforward computation shows that the push-forward of D̃2 is
the push-forward from P3 of D2 minus the s lines of the base locus (which map
isomorphically to the orbit of xd). Finally, D2 consists, as a class on the quadric
D, of 2 lines of each ruling, and the ruling parametrizing matrices with given kernel
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pushes forward to 0 in Pd; so the push-forward is indeed 2 − s times the orbit, as
needed.

For the second statement (the multiplicity along the orbit of xryd−r), suppose p
is a point of multiplicity r in the d-tuple, and factor the map P3 - - ->Pd through

P3 - - ->P1 × Pd−r −→ Pd ,

where P3 maps to each factor P1 and Pd−r as usual, by extending the action of
PGL(2) on the r-fold point p and its residual (d−r)-tuple Cp respectively; the orbit
closure of this point (p, Cp) in P1×Pd−r maps surjectively to the orbit closure of the
d-tuple in Pd. The point is that the map P1 × Pd−r −→ Pd is an immersion at every
point (p, (d− r)q) if p 6= q; moreover, in this case the inverse image of rp + (d− r)q
consists of precisely (p, (d− r)q) if r 6= d/2, and of the two points (p, (d− r)q) and
(q, rp) if r = d/2. Thus we only have to show that the premultiplicity of the orbit
closure of (p, Cp) in P1 × Pd−r is 2 + mult. of p in the Hessian of Cp.

For this, we observe that equations for the set of points in P1 × Pd−r of type
(p, (d − r)q) are (again by Lemma (3.1)) given by HA(ξ : η) = 0, where now the
Hessian is taken for A ∈ Pd−r. Pulling back to P3, and recalling again that the
Hessian of a translate is the translate of the Hessian multiplied by the square of the
determinant of the translation, we find that equations in P3 for the inverse image
of the locus of pairs (p, (d− r)q) are

(detϕ)2 HCp
(ϕ(ξ : η)) = 0.

Now blow-up P3 as usual, and study it over the pencil of all ϕ whose image is the
r-fold point p of the d-tuple. By arguing as in §1, one sees that the blow-up resolves
the map P3 - - ->P1×Pd−r; pulling back the above equation to the blow-up, we find
that (near the pencil) the inverse image of the locus of pairs (p, (d−r)q) is supported
on the proper transform of the determinant hypersurface (with length 2), and on
the component of the exceptional divisor over the pencil (with length 2+mult. of p
in HCp

). Now pairs (p, (d − r)q) with p 6= q don’t come from the determinant
hypersurface (which maps to d-fold points only), so the premultiplicity equals the
length of the part supported on the exceptional divisor, and this concludes the proof
of the last claim.

§4. Smooth orbit closures and more.

The results of §3, together with a description of the finite subgroups of PGL(2)
(see [Weber], §§67-77), allow us to give an immediate classification of the smooth
PGL(2)-orbit closures.

First we present the following lemma, some instances of which appeared already
above. Its proof may be left to the reader.

Lemma 4.1. The map Pd → Pmd, f 7→ fm is an embedding.

If the d-tuple corresponding to f is supported on s ≥ 3 points, the orbit closure
of fm has degree equal to m3 times the degree of the orbit closure of f (for exam-
ple by Proposition 1.3), whereas the multiplicities along corresponding boundary
components are equal.
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Because of the lemma, in the remainder of this section we will only consider
d-tuples for which the g.c.d. of the multiplicities of the s points equals one. We will
also assume that s ≥ 3; recall that the orbit (closure) of xd is smooth and that the
orbit closure of xryd−r is smooth if and only if d = 2r.

With these assumptions, we have:

Proposition 4.2. The smooth 3-dimensional PGL(2)-orbit closures are:

(1) the orbit closure of x3 + y3, with stabilizer D3 = S3;
(2) the orbit closure of x4 + xy3, with stabilizer A4;
(3) the orbit closure of x5y − xy5, with stabilizer S4;
(4) the orbit closure of x11y + 11x6y6 − xy11, with stabilizer A5.

Proof: The orbit closure of a d-tuple f is smooth if and only if its multiplicity
along the orbit of xd equals one, i.e., the premultiplicity along that orbit equals
the order of the stabilizer of f . From Proposition (3.3), this premultiplicity equals∑

k2
i + 4s − 8, where the ki are the multiplicities of the points of the Hessian

of f external to f . Counted with multiplicity, there are 2s − 4 such points (i.e.,∑
ki = 2s− 4), so the premultiplicity is ≥ 6(s− 2).
Assuming that f has smooth orbit closure, it follows that the order of its stabilizer

is ≥ 6(s − 2). In particular, its stabilizer is non-trivial. It now suffices to consider
the action of the finite subgroups G of PGL(2) on P1 and the orbits of points with
non-trivial stabilizer. Following [Weber], §68, we list these groups and the lengths
of the special orbits:

(0) G = Cn; lengths 1, 1;
(1) G = Dn; lengths 2, n, n;
(2) G = A4; lengths 4, 4, 6;
(3) G = S4; lengths 6, 8, 12;
(4) G = A5; lengths 12, 20, 30.

Determining the d-tuples f with smooth orbit closure is now an easy matter:

(0) Assume Stab(f) = Cn. Then n ≥ 6(s−2) > s. It follows that f is supported
on one or two points, a contradiction.

(1) Assume Stab(f) = Dn. Then 2n ≥ 6(s − 2) so n ≥ 3(s − 2) ≥ s. Again,
if n > s it follows that s = 2, a contradiction; so we get n = s = 3 and
Stab(f) = D3 = S3. Clearly the multiplicities of the 3 points are all equal,
thus by our assumption they are all one. So this is the orbit closure of x3+y3,
which is P3. Of course smoothness also follows from considering the Hessian
of f .

(2) Assume Stab(f) = A4. Then 12 ≥ 6(s − 2) so s ≤ 4. It follows that s = 4
and that all multiplicities are equal (to one). This is the orbit closure of
x4 + xy3; computing the Hessian, we see that it is indeed smooth.

(3) Assume Stab(f) = S4. Then 24 ≥ 6(s−2) so s ≤ 6. It follows that s = 6 and
that all multiplicities are equal to one. This is the orbit closure of x5y−xy5,
which is indeed smooth, as its Hessian has simple zeros.

(4) Assume Stab(f) = A5. Then 60 ≥ 6(s − 2) so s ≤ 12. It follows that
s = 12 and that all multiplicities are equal to one. This is the orbit closure
of x11y + 11x6y6 − xy11 ([Weber], §74). It is smooth as its Hessian has 20
simple zeros.
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It turns out that it is also possible to classify the orbit closures that are smooth
in codimension one. The answer is particularly pretty in case the multiplicities of
the s points of the d-tuple are all equal. In that case we may and will assume that
they are all equal to one, so that d = s; call such a d-tuple simple. Note that the
orbit closure of a simple d-tuple has at most one boundary component.

Proposition 4.3. The orbit closure of a simple d-tuple f is smooth in codimension
one if and only if f is a special orbit for the action of a finite subgroup G of PGL(2)
on P1 (i.e., f is an orbit of length smaller than the order of G).

Proof: Let f be a simple d-tuple (so d = s). If d = 1 (resp. 2) the orbit closure
of f is smooth; take G = Cn (resp. Dn) for an n ≥ 2. So we assume d ≥
3. From Proposition (3.4), the premultiplicity of the orbit closure of f along its
only boundary component equals

∑
(2 + mult. of p in HCp

), where the summation
runs over the d points p of f . Assuming that the orbit closure of f is smooth in
codimension one, it follows that the stabilizer of f has order ≥ 2d. The “only if”
part of the proposition follows. It remains to check that the orbit closures of the
special orbits are indeed smooth in codimension one. This is an easy verification
(see below).

It is perhaps worthwhile to remark that the proposition above seems to consti-
tute an answer to the question raised in [Mukai-Umemura], Remark (3.6): the
PGL(2)-orbit closures of special G-orbits (G ⊂ PGL(2) finite) may be characterized
as the orbit closures of simple d-tuples that are smooth in codimension one.

The general case is somewhat harder. Let f be a d-tuple supported on s ≥
3 points, and assume that the orbit closure of f is smooth in codimension one.
Suppose that there are sa points with multiplicity a. Then the stabilizer of f has
order at least 2sa. We conclude that f is supported on the special orbits for the
action of its stabilizer G on P1. Clearly G is not cyclic, so there are 3 such orbits.
Call them A, B and C, and write f = AaBbCc with a, b and c positive integers.
Call A-multiplicity the contribution of the points of A to the multiplicity of the
orbit closure of f along the orbit of xayd−a. By Proposition (3.4), this equals

dA(2 + mult. of p in the Hessian of Aa
pBbCc)

order of G

where dA is the degree of A, p a point of A and Ap the residual (dA − 1)-tuple.
Similarly we define the B-multiplicity and the C-multiplicity. The following result

is an immediate consequence.

Proposition 4.4. Let G be a finite, non-cyclic subgroup of PGL(2). Denote by
A, B and C the three special orbits for the action of G on P1. Let f = AaBbCc,
with a, b and c positive integers. Assume that G is the PGL(2)-stabilizer of f . The
PGL(2)-orbit closure of f is smooth in codimension one if and only if a, b and c are
mutually distinct and the A-multiplicity, the B-multiplicity and the C-multiplicity
are equal to one.

When one or two of a, b and c are zero, the proposition remains true, mutatis
mutandis.

Computing the multiplicity of the Hessian at p becomes simpler when one chooses
the right coordinates. Namely, p is one of the two fixed points of an element of G
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(of order m = (order of G)/dA). Choose coordinates x, y so that p and the other
fixed point are given by x = 0 and y = 0 respectively. Writing out Ap, B and C in
these coordinates, we see that only powers of xm occur:

Ap = ydA−1 + A1y
dA−1−mxm + A2y

dA−1−2mx2m + . . . ,

B = ydB + B1y
dB−mxm + B2y

dB−2mx2m + . . . ,

C = ydC + C1y
dC−mxm + C2y

dC−2mx2m + . . . .

Now one immediately checks that the multiplicity of the Hessian of Aa
pBbCc at p is

m− 2 when
A1a + B1b + C1c 6= 0;

that it is 2m− 2 when

A1a + B1b + C1c = 0 and

(A2
1 − 2A2)a + (B2

1 − 2B2)b + (C2
1 − 2C2)c 6= 0,

etc. Thus the A-multiplicity is 1, 2, . . . , correspondingly.
Finally we list for each of the finite, non-cyclic subgroups G of PGL(2) the spe-

cial orbits and the relevant equations. (Some of these results were obtained using
Maple.)

(1) G = Dn: A = xy, B = xn + yn, C = xn − yn; the A-multiplicity is 1 iff

b 6= c;

the B-multiplicity is 1 iff

−a +
(n− 1)(n− 2)

6
b +

n(n− 1)
2

c 6= 0;

the C-multiplicity is 1 iff

−a +
n(n− 1)

2
b +

(n− 1)(n− 2)
6

c 6= 0.

(2) G = A4: A = x4 +2
√
−3x2y2 +y4, B = x4−2

√
−3x2y2 +y4, C = x5y−xy5;

the A-multiplicity is 1 iff

a− 8b + 20c 6= 0,

otherwise it is 2; the B-multiplicity is 1 iff

8a− b− 20c 6= 0,

otherwise it is 2; the C-multiplicity is 1 if

a 6= b;
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it is 2 when a = b (unless c = 14a = 14b, in which case it is 4); note
however that when a = b the stabilizer is S4, so the actual multiplicities are
1, respectively 2 (see also below).

(3) G = S4: A = x5y−xy5, B = x8+14x4y4+y8, C = x12−33x8y4−33x4y8+y12;
the A-multiplicity is 1 iff

a− 14b + 33c 6= 0,

otherwise it is 2; the B-multiplicity is 1 iff

20a− 7b− 88c 6= 0,

otherwise it is 2; the C-multiplicity is 1 iff

45a− 84b− 11c 6= 0,

it is 2 when 45a−84b−11c = 0, unless (a, b, c) ∼ (5852, 561, 19656), in which
case it is 3.

(4) G = A5:

A = x11y + 11x6y6 − xy11,

B = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20,

C = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30;

the A-multiplicity is 1 iff

11a− 228b + 522c 6= 0,

otherwise it is 2; the B-multiplicity is 1 iff

88a− 57b− 580c 6= 0,

otherwise it is 2; the C-multiplicity is 1 iff

99a− 285b− 58c 6= 0,

it is 2 otherwise, unless (a, b, c) ∼ (26864005, 431607, 43733250), in which
case it is 3.
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