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We compute the multiplicity of the discriminant of a line bundle L over a nonsingular

variety S at a given section X, in terms of the Chern classes of L and of the cotangent

bundle of S, and the Segre classes of the jacobian scheme of X in S. For S a surface,
we obtain a precise formula that expresses the multiplicity as a sum of a term due to

the non-reduced components of the section, and a term that depends on the Milnor

numbers of the singularities of Xred. Also, under certain hypotheses, we provide
formulas for the “higher discriminants” that parametrize sections with a singular

point of prescribed multiplicity. As an application, we obtain criteria for the various
discriminants to be “small”.

0. Introduction.

Let S ⊂ P
N be a smooth variety over an algebraically closed field of character-

istic 0. Denote by D ⊂ P̌N the dual variety of S, consisting of all the hyperplanes
in P

N that are tangent to S. The basic question that we consider in this note is: if
X ∈ D is a singular hyperplane section of S, what is the multiplicity mXD of D at
X?

Our answer is in the style of the well known formula for the degree of the dual
in terms of the Chern classes of S and of the hyperplane bundle L (see for example
[3], p. 63). We associate with each hyperplane section X a zero-dimensional class
in the Chow group of S, obtained by capping the Segre class in S of the singular
scheme of X by the Chern classes of the bundle P 1L of principal parts of order
one (which are easily expressible in terms of the classes of L and of the cotangent
bundle of S). Assuming that D is a hypersurface, the multiplicity of D at X is
then essentially the degree of this class. For example, if S = P2, and one writes the
section X as

∑
i miXi with mi natural numbers and Xi irreducible divisors, then

mX(D) has a simple expression in terms of the integers mi, the degrees of the Xi,
and the singularities of Xred =

∑
i Xi (see 3.1).

The main general formula is stated in §1, in a more general setting also addressing
the same question for the ‘higher discriminants’ D(r) ⊂ P̌N , consisting of sections
of S that have a point of multiplicity at least r + 1. The formula gives mXD(r)

under a hypothesis on the dimension of the osculating planes of S (automatic in
the case of dual varieties) and assuming that the discriminants have the expected
dimension. In these hypotheses, the formula also specializes easily to compute the
degree of the discriminants (Corollary 1.1).

In fact the class introduced in §1 can be used to detect whether the dual variety
is not a hypersurface—that is, whether it is ‘small’: we show (Proposition 1.3) that
the class vanishes if and only if the dual is small—again, we prove the corresponding
result for all discriminants, under the same hypothesis on the osculating planes.

The main difficulty in applying the theorem to specific situations lies in the
computation of the Segre class s(JrX, S) of the Jacobian schemes of a hyperplane
section. One important case occurs when S is a surface, or more generally when the
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singularities of Xred are isolated: then one can write the Segre class—and therefore
the multiplicity of D(r) at X—as the sum of an easily computable term and a
contribution µr due to the singularities of Xred. The result is stated in Corollary 1.2
for all discriminants. The rôle of µ1 is clarified in §2, where we discuss the dual of
a surface using Lefschetz pencils and show (Proposition 2.1) that in this case the
contribution µ1 is the sum of the Milnor numbers of the singularities of Xred. This
particular case was our main original motivation; §2 may be read independently of
the other sections.

In §3 we provide several examples of explicit computations of multiplicities. Also,
we give a simple proof of a known criterion for the product of projective spaces
Pn1 × · · · × Pnr to have small dual under the Segre embedding (Example 3.5).

Another approach to the computation of the multiplicity of a dual variety can
be found in [12], generalizing earlier results ([1], [11]): there the multiplicity is
written in terms of generalized Milnor numbers associated with the singularities of
the section and of its intersections with general linear subspaces.
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that originated this work. Also, we are grateful to Piotr Pragacz for useful con-
versations. The first named author wishes to thank the Max-Planck-Institut für
Mathematik for the support and the hospitality during part of the preparation of
this note. An earlier version of this work appeared as MPI preprint 92/21.

§1. Multiplicities of discriminants.

Let L be a line bundle on a smooth n-dimensional variety S, and fix a vector
space V mapping linearly to H0(S,L). If X ∈ PV and some representative of X
maps to a section s �= 0 of L, then we can associate with X the divisor of zeros of s.
We say that X ‘has multiplicity > r’ at a point p of S if the corresponding divisor
does. More precisely, let P rL denote the r-th bundle of principal parts of L (see
[8], [13]). We recall that P 0L = L and for r ≥ 0, P rL is locally free of rank

(
r+n

n

)
.

One has natural morphisms of locally free sheaves

tr : S × H0(S,L) −→ P rL
that can be thought of as ‘truncated Taylor expansion’ maps. Then X has mul-
tiplicity > r at p if tr(p)(s) = 0. We will abuse notations and denote by X the
divisor of S determined by X ∈ PV ; or S itself if all representatives of X map to
the zero-section (observe that in this latter case X has multiplicity > r for all r).

For r ≥ 0 we define the ‘r-th discriminant D(r) of L’ by

D(r) = {X ∈ PV s.t. X has a point of multiplicity > r} .

Thus D(0) = PV , and D(1) is the ordinary discriminant in PV ; if (V , L) is very
ample, then D(1) is the dual variety of S ⊂ PV ∨. Given a specific X ∈ PV , we aim
to computing the multiplicity mXD(r) of the r-th discriminant at X .

We shall denote by V the trivial bundle S × V , and by αr the composition

αr : V −→ S × H0(S,L) tr−→ P rL .

The ‘r-th osculating plane’ of S at p ∈ S in PV ∨ will be the linear subspace of PV ∨

defined by the fiber of the kernel of αr over p. For example, if (V,L) is very ample
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then the first osculating plane to S at p is the tangent space to S at p. Comparing
ranks, we observe that the dimension of the r-th osculating plane at any p ∈ S is
necessarily bounded by the minimum of dim PV and

(
r+n

n

) − 1.
Also, for X ∈ PV corresponding to a section s of L, let JrX denote the scheme

of zeros of tr(s) (that is, the subscheme defined locally by all derivatives up to
order r of s): thus J1X is the ordinary Jacobian scheme of X , supported on its
singularities; J2X is supported on the subset of S along which X has multiplicity
> 2, and so on.

Finally, let γi be the degree (in the sense of [3], Definition 1.4) deg[J iX ] of the
cycle [J iX ] for the general element X ∈ D(i). So in particular γi = 0 if the set of
points along which the general X has multiplicity > i has positive (pure) dimension.
γi = 1 if the general element of D(i) has exactly one point of multiplicity i + 1: for
example this is the case for i = 1 (in char. 0) if (V,L) is very ample and the dual
of X is a hypersurface ([9]).

Theorem. With notations as above, suppose that at each p ∈ S the r-th osculating
plane has dimension

(
n+r

n

)− 1; also, denote by Ω the cotangent bundle of S. Then
for 0 < i ≤ r

γi · mXD(i) = deg
{
c(Symi(Ω ⊕O) ⊗ L) ∩ s(J iX, S)

}
0

.

(Here and in the following, c(·), s(·) denote resp. Chern and Segre classes, in the
sense of [3]; {·}0 denotes the component of dimension 0 of the class between brack-
ets)

Remarks. The condition on the dimension of the osculating planes amounts to
requiring that the map αr : V −→ P rL be surjective. V surjects onto P 0L = L
when the natural map S −→ PV ∨ has no base locus; V surjects onto P 1L if the
same map is locally a closed immersion. For higher i, this surjectivity assumption
is ‘reasonable’ if the image of S in PV ∨ is nondegenerate and n +

(
r+n

n

) ≤ dim V .
The assumption may still hold beyond this bound, but then severe restrictions on
S and L come into effect. For example, it is shown in [4] that if

(
n+r

n

)
= dimV and

the surjectivity condition is satisfied, then the image of S in PV ∨ is necessarily the
r-th Veronese embedding of Pn.

Applying the theorem to V ⊕ 1, with X the section corresponding to the second
summand, gives

Corollary 1.1. In the hypotheses of the theorem,

γi · deg D(i) = deg
{
c(Symi(Ω ⊕O) ⊗L) ∩ [S]

}
0

.

(indeed, the discriminant in P(V ⊕ 1) is the cone over the discriminant in PV , with
vertex X .) For i = 1, this is equivalent to the computation of the degree of the dual
variety in [3], p. 63.

Next, denote by X(r) the cycle of codimension 1 in S on which JrX is supported
(so e.g., X(r) = 0 if JrX has no components of codimension 1 in S). That is,
if X =

∑
αiXi with Xi irreducible divisors, then X(r) =

∑
(αi − r)Xi, the sum

extended over the i’s such that αi > r. Abusing notations, we write X for X(0);
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thus X(1) = X − Xred, and X(r) is the r-th iteration of this operation. Observe
that JrX and X(r) coincide away from the singular locus of Xred.

Now if Xred has only isolated singularities, then with this notation and using [3],
Prop. 9.2, one gets:

s(JrX, S) = s(X(r), S) + µr =
d∑

j=1

(−1)j+1X(r)j + µr

where µr is a contribution (in dimension 0) supported on the singularities of Xred:
more precisely, µr is the Segre class in S of the residual scheme to X(r) in JrX .
Note that only singular points of Xred at which X has multiplicity > r contribute
to µr.

In the case when S is a surface, writing out c1(Symi(Ω ⊕O) ⊗ L) and using the
above observation gives:

Corollary 1.2. Let S be a smooth surface. With the above notations, suppose
that at each p ∈ S the r-th osculating plane has dimension

(
r+2
2

) − 1; and let K
denote the canonical divisor of S. Then for 0 < i ≤ r

γi · mXD(i) =
[(

i + 2
2

)
X − X(i) +

(
i + 2

3

)
K

]
· X(i) + µi .

In §2 we will approach this case over C from a different angle; and comparing
the formula we will obtain with this result it follows that in fact µ1 is the sum of
the Milnor numbers of the singularities of Xred when S is a surface. It would be
interesting to have a similar interpretation for the contributions µi, i > 1.

Proof of the theorem: The proof is a straightforward application of the theory
of Segre classes and multiplicities, as developed in [3], Chapter 4.

Thinking of X as a point of D(i), one has s(X, D(i)) = mXD(i)X ([3], 4.3):
thus mXD(i) = deg s(X, D(i)). Now we see D(i) ⊂ PV as the projection from
S × PV = PV of the correspondence

D(i) = {(p, X) ∈ PV s.t. X has multiplicity > i at p} .

In other words, D(i) = PNi, where Ni is the kernel of the ‘truncated Taylor map’
V −→ P iL. Also, observe that by identifying the fiber of PV over X with S, the fiber
of D(i) is identified with J iX ; and the number γi of the statement of the theorem
is the degree of the projection D(i) −→ D(i).

If π denotes the projection D(i) −→ D(i), then Proposition 4.2 (a) from [3] and
the above observations give γi · s(X, D(i)) = π∗ s(J iX,D(i)); taking degrees, we get

γi · mXD(i) = deg s(J iX,D(i)) .

So we are after this latter Segre class. Now both S and D(i) (= PNi) are non-
singular, so [3], 4.2.6 gives

c(TD(i)) ∩ s(J iX,D(i)) = c(TS) ∩ s(J iX, S) ,
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from which
s(J iX,D(i)) = c(TD(i)|S)−1 ∩ s(J iX, S)

where TD(i)|S is the relative tangent bundle of D(i) over S. Its classes are computed
by using the Euler sequence for D(i) = PNi; since the restriction of OPNi

(1) to the
fiber over X is trivial, we get

s(J iX,D(i)) = c(Ni)−1 ∩ s(J iX, S) .

To finish off we just have to show that c(Ni)−1 = c(Symi(Ω⊕O)⊗L) for 0 < i ≤ r,
in the hypotheses of the theorem. But if V −→ P rL is surjective, then following with
the truncation surjections P iL −→ P i−1L shows that αi : V −→ P iL is surjective for
0 ≤ i ≤ r: thus c(Ni)−1 = c(P iL) since Ni = ker(αi).

Now use the standard exact sequence for the bundles of principal parts:

0 −→ SymkΩ ⊗ L −→ P kL −→ P k−1L −→ 0 .

Recalling P 0L = L, this gives at once

c(P iL) = c(L)c(Ω ⊗ L)c(Sym2Ω ⊗ L) · · · c(SymiΩ ⊗L) :

and this equals c(Symi(Ω ⊕O) ⊗ L), as stated.

In a different vein, we can derive from the theorem a criterion for the r-th dis-
criminant to be “small”. Under the surjectivity of αr, it follows easily that the
codimension of D(r) in PV is ≥ (

r+n
n

) − n. We say that the r-th discriminant is
small if its codimension in PV is >

(
r+n

n

) − n.

Proposition 1.3. Suppose that at each p ∈ S the r-th osculating plane has di-
mension

(
n+r

n

) − 1. Then the following are equivalent:

(1) For all X ∈ PV

{c(Symr(Ω ⊕O) ⊗ L) ∩ s(JrX, S)}0 = 0 ;

(2) For some X ∈ D(r)

deg {c(Symr(Ω ⊕O) ⊗ L) ∩ s(JrX, S)}0 = 0 ;

(3)
deg {c(Symr(Ω ⊕O) ⊗ L) ∩ [S]}0 = 0 ;

(4) the r-th discriminant D(r) is small.

Proof: The implications (1) =⇒ (2) =⇒ (4) and (3) ⇐⇒ (4) are immediate,
in view of the theorem and Corollary 1.1.

Thus we just have to show that (4) implies (1), that is that if the projection
π : D(r) = PNr −→ D(r) is not generically finite, then the class in (1) vanishes for all
X ∈ D(r) (the class vanishes automatically if X /∈ D(r)). Observe that the theorem
implies immediately that the degree of the class is 0 if (4) holds, since in this case
γr = 0; proving that the class itself is 0 requires a little more work.

Recall from the proof of the theorem that the class between brackets in (1) equals
the Segre class s(JrX,D(r)), and that JrX = π−1(X). Thus we have to show that
if π is not generically finite then {s(π−1(X),D(r))}0 = 0 (notice that this follows
immediately from [3], Proposition 4.2 (b) if π is flat over a neighborhood of X).
This is a consequence of the following general remark.
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Lemma. Let π : Y ′ −→ Y be an onto morphism of irreducible schemes, with
dimY ′ > dimY ; let X ∈ Y be a closed point, and denote by X ′ = π−1(X) the
inverse image scheme. Then {s(X ′, Y ′)}0 = 0.

Proof: Let C, C′ resp. denote the normal cones to X in Y , and X ′ to Y ′ resp. In
this set up we get (see [3], proof of Prop. 4.2) an induced morphism

P(C′ ⊕ 1) G−→ P(C ⊕ 1) ,

such that the canonical line bundle on P(C′ ⊕ 1) is the pull-back G∗O(1) of the
canonical line bundle on P(C ⊕ 1). If q′ denotes the projection from P(C′ ⊕ 1) to
X ′, then

{s(X ′, Y ′)}0 = q′∗
(
c1(G∗O(1))dimY ′ ∩ [P(C′ ⊕ 1)]

)
;

but this is necessarily 0: indeed, certainly there exist dim Y ′ sections of O(1) which
don’t vanish simultaneously anywhere on P(C ⊕ 1) (because dimY < dim Y ′), and
these pull-back to dimY ′ sections of G∗(O(1)) that don’t vanish simultaneously
anywhere on P(C′ ⊕ 1).

This proves the Lemma, and concludes the proof of the proposition.

Remarks. If the D(r) is small then not only the degree, but the class itself in
(3) must vanish (by (1), cf. the argument for Corollary 1.1).

We find the implications (3) =⇒ (1), (2) =⇒ (1) rather striking, as they
impose in the hypotheses of the theorem a strong condition on the Segre classes of
the Jacobian schemes of divisors. For example, the vanishing of the class for one
singular hyperplane section of a smooth variety S ⊂ Pn (in fact, the vanishing of its
degree suffices) implies the vanishing of the class for all hyperplane sections, and
that the dual of S is small. See Example 3.5 for an illustration of this fact.

2. The case dim(S) = 2.

In this section we give an independent derivation of Corollary 1.2 for i = 1,
over the complex numbers. In this particular situation we obtain more precise
information, namely, that µ1 is the sum of the Milnor numbers of the singularities
of Xred.

Let S be a smooth compact algebraic surface over the complex numbers, |L| a
very ample complete linear system on S and D = D(1) ⊂ |L| the discriminant
hypersurface, consisting of singular members of |L|. It is known [2] that the dual
variety D is actually a hypersurface.

Our goal is to determine, for each X ∈ |L|, the multiplicity mX(D) of the hyper-
surface D at the point X . Suppose that

(1) X =
∑

1≤i≤r

niXi

where Xi is reduced and irreducible. Take a general Y ∈ |L| (i.e., a Y intersecting
Xred =

∑
1≤i≤r Xi transversally) and denote by L ⊂ |L| the pencil containing X

and Y . Then

(2) mX(D) = deg (D) − s
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where s is the number of singular members of L different from X (each of these
singular members has one node as singular set). In order to determine s we shall
blow up S to construct a family parametrized by L and use Lefschetz’ formula ([7],
page 509).

For each 1 ≤ i ≤ r, denote by pij (1 ≤ j ≤ Y · Xi) the points of intersection of
Y and Xi. Let Ŝ denote the surface obtained from S by blowing up at each pij ni

times (in the direction of Y ). The induced pencil on Ŝ is base-point-free and gives
a map f : Ŝ → P1. If Ek

ij , k = 1, . . . , ni are the exceptional divisors at pij then the
fiber of f at the point 0 corresponding to X is

f∗(0) = X +
∑
i,j

∑
1≤k≤ni−1

(ni − k)Ek
ij

In other words, the special fiber is isomorphic to X with strings of P1’s (each P1 with
a certain multiplicity) attached at the points pij ; each string has ni−1 components.
We now denote

X ′ = (f∗(0))red = Xred +
∑
i,j

Tij

the reduced (i.e., set-theoretic) fiber of f at 0, where Tij =
∑

1≤k≤ni−1 Ek
ij is

the (reduced) string attached at pij . The argument in [7] works in the present
circumstance (the topology does not “see” the multiplicities of the special fiber)
and gives

χ(S) = 2χ(Y ) − Y · Y + (χ(X ′) − χ(Y )) +
∑

1≤λ≤s

(χ(Yλ) − χ(Y ))

where χ denotes topological Euler characteristic and Yλ are the singular fibers for
λ �= 0. Since χ(Yλ)−χ(Y ) = 1 ([7] or (5) below) and deg(D) = χ(S)−2χ(Y )+Y.Y
([7] or Corollary (1.1)), combining with (2) we obtain

(3) mX(D) = χ(X ′) − χ(Y )

In order to compute χ(X ′), denoting T =
⋃

i,j Tij we have

χ(X ′) = χ(Xred ∪ T ) = χ(Xred) + χ(T ) − χ(Xred ∩ T )

= χ(Xred) +
∑
i,j

χ(Tij) −
∑
i,j

χ({pij}) = χ(Xred) +
∑
i,j

ni −
∑
i,j

1

= χ(Xred) + X · (X − Xred)

(4)

Now we compute χ(Xred). Let Z =
∑

1≤i≤r Zi be a reduced (connected, for sim-
plicity) curve with normalization

ρ : Z̃ =
∐

1≤i≤r

Z̃i → Z

If p ∈ Z is a singular point, denote B(p) = ρ−1(p) the set of branches of Z at p.
Topologically, Z is obtained from the smooth surface Z̃ by identifying each of the
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sets B(p) to a point p. Recall from [6], page 96, that if X is a topological space and
A ⊂ X is a subspace such that (X, A) is a collared pair then χ#(X)− χ#(X/A) =
χ#(A), where X/A is the space obtained from X by identifying A to a point and χ#

is Euler characteristic for augmented homology. If X is a manifold and A consists
of a points then χ#(X) − χ#(X/A) = χ(X) − χ(X/A) = a − 1. Applying this for
each singular point we obtain

(5) χ(Z̃) − χ(Z) =
∑
p∈Z

(b(Z, p) − 1)

where b(Z, p) is the number of branches of Z at p. Also, from the exact sequence
of sheaves

0 → OZ → ρ∗OZ̃
→ ρ∗OZ̃

/OZ → 0

we obtain 1 − r +
∑

p∈Z δ(Z, p) − h1(OZ) + h1(O
Z̃
) = 0, where we let δ(Z, p) =

lengthp(ρ∗OZ̃
/OZ), and then, combining with (5),

(6) χ(Z) = 2 − 2pa(Z) +
∑
p∈Z

µ(Z, p)

where µ(Z, p) = 2δ(Z, p) − b(Z, p) + 1 is the Milnor number of (Z, p). Combining
(3), (4) and (6) we obtain

mX(D) = χ(Xred) − χ(Y ) + X · (X − Xred)

= (2 − 2pa(Xred)) − (2 − 2pa(Y )) + X · (X − Xred) +
∑

p∈Xred

µ(Xred, p)

= (KS + Y ) · Y − (KS + Xred) · Xred + X · (X − Xred) +
∑

p∈Xred

µ(Xred, p)

and rearranging we finally obtain

Proposition 2.1. If S is a smooth compact algebraic surface over the complex
numbers then -with notation as above- for any X ∈ D we have

mX(D) = (X − Xred) · (KS + 2X + Xred) +
∑

p∈Xred

µ(Xred, p)

Comparing with Corollary 1.2, i = 1, yields µ1 =
∑

p∈Xred
µ(Xred, p) as claimed

at the beginning of this section.

3. Examples.

In this section we apply the results obtained thus far to a few concrete situations,
to illustrate the actual ‘computability’ of the formulas.

Example 3.1. Applying the result in §2 we may compute the multiplicity of the
discriminant of the space of plane curves of a given degree d at a singular curve X .
If d(1) is the degree of X(1) = X − Xred, then Proposition 2.1 gives

mXD =
[
3(d − 1) − d(1)

]
d(1) + µ
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where µ is the sum of the Milnor numbers of the singularities of Xred. Thus the
multiplicity of the discriminant of plane conics at a double line is 2, while for degree
3 and 4, the following ‘kinds’ of singular (resp., non-reduced) curves occur, with the
indicated multiplicity (arrows denote ‘specialization’):

8

14

15 15

12

18

11 11

101

2 2

3 3

4

6

Example 3.2. For higher discriminants, let again S = P2, L = O(d), and V =
H0(P2,O(d)). For 0 < i ≤ d let d(i) = deg X(i); then Corollary 1.2 gives

mXD(i) =
[(

i + 2
2

)
(d − i) − d(i)

]
d(i) + µi .

(Indeed K has degree −3, and the map S × H0(P2,O(d)) −→ P iO(d) is clearly
surjective for i ≤ d. Also, it is clear that γi = 1 in this case.)

For example, for X a d-fold line one has µi = 0 for all i > 0 (since Xred is non-
singular), and d(i) = d − i; so we get the multiplicity md,r of the locus of degree-d
plane curves with a ≥ r-tuple point, along the locus of d-fold lines, for 0 < r ≤ d:
(let i = r − 1 in the above)

md,r =
((

r + 1
2

)
− 1

)
(d − r + 1)2

=
(r + 2)(r − 1)

2
(d − r + 1)2 .

In fact the computation runs just as easily to give the multiplicity mn,d,r of the
locus degree-d hypersurfaces in Pn with a ≥ r-tuple point, along the locus of d-fold
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hyperplanes. First, for S = Pn the
(
n+i
n

)
Chern roots of Symi(Ω ⊕O) are all equal

to −iH, where H is the hyperplane class (indeed, the n + 1 Chern roots of Ω ⊕O
are all equal to −H since c(Ω ⊕O) = (1 − H)n+1) so

c(Symi(Ω ⊕O) ⊗O(d)) = (1 + (d − i)H)(
n+i

n ) ;

with the same notation, X(i) = (d − i)H; thus, applying the theorem gives

mn,d,r = deg
{
c(Symr−1(Ω ⊕O) ⊗O(d)) ∩ s(X(r−1), Pn)

}
0

= coeff. of Hn in
[
(1 + (d − r + 1)H)(

n+r−1
n ) (d − r + 1)H

1 + (d − r + 1)H

]

= (d − r + 1)n ·
((

n+r−1
n

) − 1
n − 1

)
.

For r = 2 this gives the well–known multiplicity n(d− 1)n of a d-fold hyperplane in
the ordinary discriminant. At the other end of the spectrum, we get the multiplicity
of a d-fold hyperplane in the locus of degree-d hypersurfaces with a d-tuple point
(i.e., the cones from a point over a degree-d hypersurface of P

n−1):

((
n+d−1

n

) − 1
n − 1

)
.

Example 3.3. To illustrate a case in which the singularities of Xred are not iso-
lated, consider S = P3, L = O(d), and X = union of three planes, with multiplicities
d1, d2, d3 adding up to d. We are going to compute the multiplicity mX of the or-
dinary discriminant at X . In this case c((Ω⊕O)⊗O(d)) = (1 + (d− 1)H)4, where
H denotes the hyperplane class; so we only need to compute the Segre class of
J1X . One can distinguish several cases: in decreasing order of speciality (and thus
necessarily with decreasing multiplicities)

—If d2 = d3 = 0, then X is simply a d-fold plane, so the previous example gives
the multiplicity as

3(d − 1)3 .

—If d1 �= 0, d2 �= 0, d3 = 0, then X is the union of two distinct planes, say with
equation xd1yd2 = 0. The Jacobian scheme J1X has ideal (xd1−1yd2 , xd1yd2−1), that
is the divisor xd1−1yd2−1 = 0 with an embedded component along the line (x, y) at
which the planes intersect. The Segre class of J1X in P3 can then be obtained for
example by applying [3], Prop. 9.2: the reader will check that s(J1X, P3) pushes
forward to P3 to

(d − 2)H + (1 − (d − 2)2)H2 + ((d − 2)3 − 3(d − 2) − 2)H3

and applying the theorem yields

mX = (d − 1)2(3d − 4) .
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—If d1 �= 0, d2 �= 0, d3 �= 0 and the three (distinct) planes intersect along a
common line, then the same procedure gives for s(J1X, P3)

(d − 3)H + (4 − (d − 3)2)H2 + ((d − 3)3 − 12(d − 3) − 16)H3 ,

from which
mX = (d − 1)2(3d − 5) .

—Finally, if the three planes are in general position, say the equation for X is
xd1yd2zd3 . Then J1X is the divisor xd1−1yd2−1zd3−1 with an embedded component
along (xy, xz, yz), supported along three ‘coordinate’ lines. To compute s(J1X, P3)
one can blow-up P3 at the point common to the lines, then blow-up again along the
proper transforms of the lines: the inverse image of J1X is a Cartier divisor in the
top blow-up, and pushing forward the Segre class of this latter to P3 gives

s(J1X, P3) = (d − 3)H + (3 − (d − 3)2)H2 + ((d − 3)3 − 9(d − 3) − 10)H3 :

from which, applying the theorem again, we get

mX = (d − 2)(d − 1)(3d − 2) .

Example 3.4. Again let S = P3, and let L = O(d1 + d2). Let X1, X2 be smooth
hypersurfaces of degrees d1, d2, intersecting along a curve C. If X = X1 ∪X2, then
X is singular along C; the multiplicity mX of the discriminant at X is then

mX = d1d2(3(d1 + d2) − 4) .

Indeed, in this case J1X = C is regularly embedded in S = P3, so s(J1X, S) =
c(NCP3)−1 ∩ [C] pushes forward to P3 to

d1d2H
2

(1 + d1H)(1 + d2H)
= d1d2(H2 − (d1 + d2)H3)

(where again H is the hyperplane class in P
3), while c((Ω⊕O)⊗O(d)) = (1 + (d−

1)H)4 : so

mX = deg
{
(1 + 4(d1 + d2 − 1)H) · d1d2(H2 − (d1 + d2)H3)

}
0

with the above result. More generally, say a complete intersection curve C is
(scheme-theoretically) a connected component of the singular scheme of a degree-d
hypersurface X in Pn, and deg C = r, deg(c1(TC)) = 2 − 2g; then C ‘contributes’
to mX by

deg
{

(1 + (d − 1)H)n+1 rHn−1 + c1(TC)
(1 + H)n+1

}
0

= r(d − 2)(n + 1) + 2 − 2g .

However, at least when C is smooth there are strong constraints on what r, d, n, g
can actually be realized, so that for example the genus of the curve is determined
by r, d, n. One can show that in this case the multiplicity will necessarily be

r(4 + (d − 2)(n + 3))
2

.
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These constraints can be derived by comparing the theorem in §1 to Parusiǹski’s
results ([12]). For example, a smooth curve of genus 2 cannot appear as the singular
scheme of a hypersurface of P

n. We will prove these facts elsewhere.

Example 3.5. Let S = P
n1 × · · · × P

nr , let H1, . . . , Hr be the pull-backs of the
hyperplane classes from the factors, and L = O(H1 + · · ·+Hr)—that is, the bundle
defining the Segre embedding of S. With this embedding, when is the dual variety
of S a hypersurface? The following criterion is proved in [5], §3, and can be deduced
from more general criteria in [10] (see [5], Theorem 1.3 and Lemma 3.5). We give
here a simple direct argument.

Proposition 3.1. The dual variety of S = Pn1 ×· · ·×Pnr is a hypersurface if and
only if 2ni ≤ n =

∑
j nj for all i.

Proof: Let xi = (xi
0, . . . , x

i
ni

) denote homogeneous coordinates on Pni . If h ∈
H0(S,L) then h is a multilinear function in x1, . . . , xr, and h is a singular section
if and only if the system of equations

∂h

∂xi
j

= 0 (1 ≤ i ≤ r, 0 ≤ j ≤ ni)

has a non-trivial solution (i.e. a solution with xi �= 0 for all i).
Suppose that the condition 2ni ≤ n for all i is not satisfied; for simplicity of

notation let us assume that it fails for i = 1, so that n1 > m1 =
∑

j>1 nj .
Let h ∈ H0(S,L) denote any singular section. We claim that the singular lo-
cus of h is positive-dimensional, and hence the dual of S is small. In fact, let
x = (x1, x2, . . . , xr) denote a singular point of h; it is easy to see from the system of
equations above that the singular points of h of the form (y1, x2, . . . , xr), y1 ∈ P

n1 ,
form a family of dimension n1 − m1.

Conversely, suppose 2ni ≤ n for all i. We prove by induction on r that there
exist sections h with isolated singularities. The initial case r = 2 is easy; for r > 2,
arrange the indices so that ni ≥ ni+1 for all i, let S′ = P

n2 × · · · × P
nr , and

L′ = O(H2 + · · ·+ Hr). We claim that there exist h0 ∈ H0(S′,L′) with singularity
locus of dimension at most n1 (notice that n1 ≤ m1 = dim(S′)). To see this, we treat
two separate cases: first, if n2 ≤ N =

∑
j>2 nj then by the inductive hypothesis

there exists h0 ∈ H0(S′,L′) with isolated singularities; second, if n2 > N take
h0 =

∑
0≤j≤N x2

jfj(x3, . . . , xr) where the fj are general multilinear forms in the
indicated variables. It is easy to see (as in the argument above) that the singular
locus of h0 has dimension n2 − N < n1. Choose then such an h0 and choose
non-singular sections h1, . . . , hn1 ∈ H0(S′,L′) so that the set h1 = · · · = hn1 = 0
intersects the singular locus of h0 in isolated points (since L′ is very ample, this can
be achieved). It is now easy to check that h =

∑
x1

i hi has isolated singularities.
It is natural to try to use Proposition 1.3 to prove (3.1). Curiously, if one uses (3)

in Prop. 1.3 (or equivalently [3], p. 63), the combinatorics becomes rather involved;
but it is easy to show that the dual of S is small if the numerical conditions are not
satisfied, using Prop. 1.3 (2). By just choosing one singular section and showing
that the class in (2) is 0, one shows that all singular sections must have positive
dimensional singular locus.
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So we need to produce a singular divisor X on S such that

deg
{
c((Ω ⊕O) ⊗ L) ∩ s(J1X, S)

}
0

= 0 ;

the trick is to choose X so that J1X is ‘contained in one factor’ of the product, so
that the computation of the Chern class becomes manageable.

Using the above notation, n1 > m1. Let (x0 : · · · : xn1) be coordinates in Pn1 ,
and choose m1 sections hi ∈ H0(S′,L′) for 0 ≤ i < m1 that are non-singular and
intersect transversally. Then let X be the divisor on S defined by h =

∑
0≤i<m1

xihi:
J1X has ideal (h0, . . . , hm1−1, x0, . . . , xm1−1)—that is, it consists of the disjoint
union of several spaces Pn1−m1 = Pn1−m1 × {(p2, . . . , pr)}, as (p2, . . . , pr) runs
through the list of the points of intersection of h0, . . . , hm1−1. It’s enough then to
show that the above degree is 0 for each of these components. Now notice that
H2, . . . , Hr are trivial on each component, so with obvious notations

{
c((Ω ⊕O) ⊗L) ∩ s(Pn1−m1 , S)

}
0

=
{

c((ΩPn1 ⊕Om1+1) ⊗O(H1)) ∩ [Pn1−m1 ]
(1 + H1)m1

}
0

=
{

(1 + H1)m1
[Pn1−m1 ]

(1 + H1)m1

}
0

=
{
[Pn1−m1 ]

}
0

= 0

since n1 > m1.
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