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1. Introduction

In this note we compare two notions of Chern class of an algebraic scheme X
(over C) specializing to the Chern class of the tangent bundle c(TX) ∩ [X] when
X is nonsingular. The first of such notions is MacPherson’s Chern class, defined
by means of Mather-Chern classes and local Euler obstructions [5]. MacPherson’s
Chern class is functorial with respect to a push-forward defined via topological Euler
characteristics of fibers; in particular, mapping to a point shows that the degree of
the zero-dimensional component of MacPherson’s Chern class of a complete variety
X equals the Euler characteristic χ(X) of X. We denote MacPherson’s Chern class
of X by cMP (X). The second notion is Fulton’s intrinsic class of schemes X ′ that can
be embedded in a nonsingular variety M : Fulton shows ([3], Example 4.2.6) that the
class

cF (X ′) = c(TM) ∩ s(X ′,M)

is independent of the choice of embedding of X ′. This class has the advantage of
being defined over arbitrary fields and in a completely algebraic fashion, but does not
satisfy at first sight nice functorial properties: cf. [3], p. 377. (MacPherson’s class
can also be defined algebraically over any field of characteristic 0: this is done in [4].)

To state our result we need to remind the reader that if W is a scheme supported
on a Cartier divisor X of a nonsingular variety M , then the Segre class of W in M
can be written in terms of the Segre class of X and the Segre class of the residual
scheme J to X in W : for a precise statement of this fact, see [3], Proposition 9.2,
or section 2 below. By modifying this expression, we can make sense of the “Segre
class” in M of an object “X \ J” in which J is intuitively speaking “removed” from
X. Since this object has a Segre class, we can define its Fulton–Chern class as above.
Here is our result:

Theorem 1. Let X be a section of a very ample line bundle on a nonsingular complex
variety M , and let J be its singular subscheme. Then

cMP (X)
.
= cF (X \ J)

Here
.
= means that the classes equal after push-forward via the map to a projective

space determined by L = O(X). We strongly suspect that the classes are actually
equal in the Chow group of X, and that the hypothesis on L is unnecessary (in
fact, our proof works whenever L is globally generated and the corresponding map
to projective space is gen. finite); and that a suitable generalization should hold for
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arbitrary schemes over an algebraically closed field; but the methods we use in this
note can only go so far. On the other hand, our proof of this theorem is remarkably
simple (once granted the results of [2]), and is enough for example to imply:

Corollary 1. Under the hypotheses of the theorem,

χ(X) =

∫
cF (X \ J)

where
∫

denotes degree.

The statement of theorem 1 is philosophically satisfying in that it highlights pre-
cisely in what cMP and cF must differ: Fulton’s class equals MacPherson’s after the
scheme is ‘corrected’ for the presence of singularities. At the moment we take this
corrected “X \J” purely as a formal object, although we wonder whether a more con-
crete geometric meaning can be attached to it (after all this object has a well-defined
Chern class!)

Section 2 in the paper defines cF (X \ J) precisely, and introduces notations that
we found helpful in these computations. The proof of the theorem is in section 3, and
a simple example illustrating the result is in section 4.

2. cF (X \ J)

Let X be a Cartier divisor of a nonsingular proper n-dimensional variety M (over an
algebraically closed field), and let J be a subscheme of M whose support is contained
in X. Our task in this section is to define a class cF (X \J) in the Chow group A∗(X)
of X. This class can be written explicitly in terms of the Segre classes of X and J
in M :

cF (X \ J) = c(TM) ∩ s(X \ J,M) ,

where the term of dimension m of s(X \ J,M) is defined to be

s(X \ J,M)m = s(X,M)m + (−1)n−m
n−m∑
j=0

(
n−m
j

)
Xj · s(J,M)m+j .

However, we feel we should motivate this definition; in doing so we will also introduce
notations that will be useful in §3.

Let I, J be respectively the ideal sheaves of X and J in M . For any nonnegative
integer t we may consider the subscheme W (t) of M with ideal sheaf I J t: that is,
W (t) is a subscheme of M containing X and such that the residual scheme to X in
W (t) is the subscheme with ideal sheaf J t.

Definition 1. For t a nonnegative integer, define

p(X, J, t) = cF (W (t))

where cF denotes Fulton’s intrinsic class (cf. section 1).

Lemma 1. p(X, J, t) is a polynomial in t (with coefficients in A∗(X)).
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The constant term of this polynomial will be

cF (X) = p(X, J, 0) ,

Fulton’s Chern class of X. Given lemma 1, we can define

cF (X \ J) = p(X, J,−1) :

intuitively, just as p(X, J, t) evaluates (for t ≥ 0) Fulton’s Chern class of a scheme
supported on X and with an embedded component along J ‘counted t times’, this
cF (X \ J) should stand for Fulton’s Chern class of an object obtained by ‘removing’
J from X. Of course the notation X \ J is not to be intended set-theoretically; we
do not know how to interpret this object ‘geometrically’.

Lemma 1 follows immediately from writing the class explicitly in terms of the
Segre classes of X and J in M : for this we could just quote [3], Proposition 9.2. We
prefer to introduce some notations which work as a good shorthand in writing and
manipulating formulas such as the raw expression for cF (X \ J) given above; these
notations will also save us some time in section 3. For completeness, we will rewrite
and prove Proposition 9.2 from [3] in terms of these notations.

Suppose A is a rational equivalence class on a scheme S, and write A = a0 +a1 + ...
with ai ∈ AiS (that is, the ai are indexed by codimension).

Definition 2. (1) The ‘dual’ of A, denoted A∨, is the class defined by

A∨ =
∑
i≥0

(−1)iai .

(2) More generally, the ‘d-th Adams’ of A, denoted A(d), is the class defined by

A(d) =
∑
i≥0

diai .

(3) For a line bundle L on S, the ‘tensor of A by L’, denoted A ⊗ L, is the class
defined by

A⊗ L =
∑
i≥0

ai

c(L)i
.

It is clear that the operations introduced in definition 2 are linear in A; further,
these definitions are compatible with corresponding vector bundle operations. For a
start, it is clear that if E is a vector bundle on S, then

(c(E∨) ∩ A) = (c(E) ∩ A∨)∨ ;

(A⊗ L)∨ = A∨ ⊗ L∨ should be equally clear from the definitions.
Next, there are compatibilities with tensoring after capping with Chern classes:

Proposition 1. If E is a rank-r vector bundle on S, then(
c(E) ∩ A

)
⊗ L =

1

c(L)r
c(E ⊗ L) ∩ (A⊗ L)

and (
c(E)−1 ∩ A

)
⊗ L = c(L)rc(E ⊗ L)−1 ∩ (A⊗ L)



4 P. ALUFFI

Proof. For the first formula, we may assume by linearity that A = aj. If ci = ci(E),
we have(

c(E) ∩ A
)
⊗ L =

(∑
i

ci ∩ aj
)
⊗ L =

∑
i

ci ∩ aj

c(L)i+j
=
∑
i

ci
c(L)i

∩ aj

c(L)j

=
1

c(L)r
c(E ⊗ L) ∩ (A⊗ L)

for example by [3], Remark 3.2.3 (b)).
For the second formula, simply replace A by c(E)−1 ∩ A in the first. �
Also, the notation is fully compatible with tensoring with line bundles:

Proposition 2. If M is another line bundle on S, then

(A⊗ L)⊗M = A⊗ (L ⊗M)

Proof. By linearity we may assume A = aj. Also, let ` = c1(L),m = c1(M); then
we have

(A⊗ L)⊗M =
aj

(1 + `)j
⊗M =

(∑
i

(
i+ j − 1

i

)
(−1)i`i ∩ aj

)
⊗M

=
∑
i

(
i+ j − 1

i

)
(−1)i

`i ∩ aj

(1 +m)i+j

=

(∑
i

(
i+ j − 1

i

)
(−1)i

`i

(1 +m)i

)
∩ aj

(1 +m)j

=
1

(1 + `
1+m

)j
∩ aj

(1 +m)j
=

aj

(1 + `+m)j

= A⊗ (L ⊗M)

as needed. �
Also, it is clear from the definition that if S1

π→ S2 is a proper map, A is a class on
S1, and L is a line bundle on S2, then

π∗(A⊗ π∗L) = c(L)dimS2−dimS1 ((π∗A)⊗ L)

Finally, note that if D is a Cartier divisor on S, then the Segre class of D in S can
be written in terms of ⊗:

s(D, V ) =
[D]

1 +D
= [D]⊗O(D)

(we are abusing notations a little here: the ⊗ is taken in S, while the result is a
class on D.) And note that if J is defined by the ideal J in S, and J (d) denotes
the subscheme defined by J d, then the segre class of J (d) in S is the d-th Adams of
s(J, S).

Here is a restatement of Proposition 9.2 from [3] in terms of our notations:
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Proposition 3. Let X ⊂ W ⊂M be closed embeddings, with X a Cartier divisor on
M . Let J be the residual scheme to X in W , and L = O(X). Then

s(W,M) = s(X,M) + c(L)−1 ∩ (s(J,M)⊗ L)

And here is the standard argument, written in our notations: Proof. If W = M ,
the statement amounts to the definition of s(X,M).

If W 6= M , let π : M̃ → M be the blow-up of M along J , and let W̃ = π−1(W ),

J̃ = π−1(J) and X̃ = π−1(X): then W̃ = X̃ + J̃ as Cartier divisors on M̃ . Let η be

the induced morphism from W̃ to W . By the birational invariance of Segre classes
and the remarks preceding the statement:

s(W,M) = η∗s(W̃ , M̃) = η∗

(
([X̃] + [J̃ ])⊗O(X̃ + J̃)

)
Letting L̃ = O(X̃) = π∗L and R̃ = O(J̃), and applying propositions 1 and 2,

([X̃] + [J̃ ])⊗O(X̃ + J̃) = ([X̃]⊗ R̃+ [J̃ ]⊗ R̃)⊗ L̃

= (c(R̃)−1 ∩ [X̃] + s(J̃ , M̃))⊗ L̃

= ([X̃]− X̃ · s(J̃ , M̃) + s(J̃ , M̃))⊗ L̃

= s(X̃, M̃) + (c(L̃∨) ∩ s(J̃ , M̃))⊗ L̃

= s(X̃, M̃) + c(L̃)−1 ∩ (s(J̃ , M̃)⊗ L̃) .

Pushing forward by η gives the statement. �
Proposition 3 yields an explicit expression for p(X, J, t): we have already observed

that the Segre class of the scheme J (t) defined by J t is s(J,M)(t), so

s(W (t),M) = s(X,M) + c(L)−1 ∩ (s(J,M)(t) ⊗ L) ,

and p(X, J, t) equals the class cF (W (t),M) = c(TM) ∩ s(W (t),M). In particular,
p(X, J, t) is a polynomial over A∗(X), as claimed in lemma 1, since s(J,M)(t) is.

We can now again write cF (X \ J) explicitly; our hope is that at this point this
definition will look more insightful than the (equivalent) expression given at the be-
ginning of this section:

Definition 3. We set cF (X \ J) = p(X, J,−1), that is

cF (X \ J) = c(TM) ∩
(
s(X,M) + c(L)−1 ∩ (s(J,M)∨ ⊗ L)

)
.

Our goal in this note is to show that if we work over C and choose J to be the
singular subscheme of X, then this class agrees with MacPherson’s Chern class of X
after push-forward by the map defined by L. This is done in the next section.

3. Proof of theorem 1

The statement again: if X is a hypersurface of a nonsingular variety M , and J is
its singular subscheme (that is: if F is a local equation of X and x1, . . . , xn are local
parameters on M , J is the subscheme defined locally by the ideal ( ∂F

∂x1
, . . . , ∂F

∂xn
)), then

cMP (X)
.
= cF (X \ J)
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where cMP (X) is MacPherson’s Chern class of X, cF (X \J) was defined in section 2,
and

.
= denotes equality after push-forward by the map defined by the linear system

|X|, which we are assuming to be very ample.
In other words, we have to check that for all j ≥ 0:∫

c1(L)j ∩ cMP (X) =

∫
c1(L)j ∩ cF (X \ J)

where L = O(X).
Our tool will be the µ-class of J with respect to L, introduced in [2]: this is the

class
µL(J) = c(T∨M ⊗ L) ∩ s(J,M) ,

where T∨M denotes the cotangent bundle of M .

Lemma 2. For all j ≥ 0, and letting n = dimM :∫
c(L)−jc1(L)j ∩ (cMP (X)− cF (X)) = (−1)n−j

∫
c1(L)j ∩ µL(J)

Proof. For j ≥ 0, let Mj denote the intersection of j general sections of L (with
M0 = M), and let Xj = Mj∩X. By Bertini’s theorem the Mj are all non-singular; Xj

are hypersurfaces of Mj, of class L = L|Mj
. We also let Jj be the singular subschemes

of the Xj.

Claim 1.

cMP (Xj) = c1(L)j ∩
(
c(L)−j ∩ cMP (X)

)
(1)

cF (Xj) = c1(L)j ∩
(
c(L)−j ∩ cF (X)

)
(2)

µL(Jj) = c1(L)j ∩ µL(J)(3)

(here and elsewhere we omit writing push-forwards implied by the context).
(1) follows from the compatibility of Nash blowups and Euler obstructions with

general sections, cf. for example [7], Lemmas 2.1 and 2.3.
For (2), cF (Xj) = c(TMj)∩s(Xj,Mj) by definition. NowMj is embedded inM with

normal bundle L⊕j, so c(TMj) = c(L)−jc(TM); and s(Xj,Mj) = c1(L)j ∩ s(X,M)
by repeated applications of Lemma A.3 from [1].

As for (3), this follows from Proposition 1.3 in [2].
Putting (1), (2) and (3) together we see that proving the statement of the lemma

amounts to showing that∫
cMP (Xj)− cF (Xj) = (−1)n−j

∫
µL(Jj)

for all j ≥ 0. Now recall that
∫
cMP (Xj) equals the topological Euler characteristic

of Xj; while
∫
cF (Xj) equals∫

c(TMj) ∩ s(Xj,Mj) =

∫
c(TMj)c(L)−1 ∩ [Xj] =

∫
c(TMj)c(L)−1 ∩ [Mj+1]

since [Xj] = [Mj+1] as divisors in Mj; since c(TMj)c(L)−1 = c(TMj+1), we see that∫
cF (Xj) equals the topological Euler characteristic of Mj+1, that is of the general

section of L in Mj.
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So the left-hand-side of the formula equals the difference

χ(Xj)− χ(Mj+1)

of the Euler characteristics of the special section Xj and the general section Mj+1 of L
on Mj. In [6], Corollary 1.7, Parusiǹski proves that this equals (−1)dimMjµ(Mj, Xj),
where µ(Mj, Xj) is his generalization to non-isolated singularities of the Milnor num-
ber. But this latter equals

∫
µL(Jj) by Proposition 2.1 in [2], so the above formula

holds. �
Next we use lemma 2 to obtain the class of cMP (X)− cF (X) (more precisely, of its

push-forward by the map defined by L); the result is best expressed in terms of the
notations introduced in definition 2:

Lemma 3.

cMP (X)− cF (X)
.
= c(L)n−1 ∩ (µL(J)∨ ⊗ L)

Proof. If A is a class on M , and an−j ∈ Q denotes

∫
c1(L)j ∩ A∫
c1(L)n ∩ [M ]

,

then

A
.
=
∑
i≥0

aic1(L)i ∩ [M ] .

We let then `i = c1(L)i ∩ [M ], and write

cMP (X)− cF (X)
.
= A = a0 + a1`+ a2`

2 + . . .

µL(J)
.
= B = b0 + b1`+ b2`

2 + . . .

Lemma 2 then can be restated as:

bi = (−1)i · coefficient of `i in
a0 + a1`+ a1`

2 + . . .

(1 + `)n−i

= (−1)i
i∑

k=0

(
n− k − 1

i− k

)
(−1)i−kak ,
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so we have

B =
n∑
i=0

(−1)i
i∑

k=0

(
n− k − 1

i− k

)
(−1)i−kak`

i

=
∑
k≥0

(−1)k

(
n∑
i=k

(
n− k − 1

i− k

)
`i

)
ak

=
∑
k≥0

(−1)k

(
n−k∑
j=0

(
n− k − 1

j

)
`j+k

)
ak

=
∑
k≥0

(−1)k(1 + `)n−k−1ak`
k

= (1 + `)n−1
∑
k≥0

(−1)kak`
k

(1 + `)k

= c(L)n−1 ∩ (A∨ ⊗ L) .

To get the statement of the lemma, we just need to “solve this for A”: start from

c(L)n−1 ∩ (A∨ ⊗ L) = B ;

cap by c(L)−(n−1):

A∨ ⊗ L = c(L)−(n−1) ∩B ;

tensor by L∨ and apply propositions 1 and 2:

A∨ = (c(L)−(n−1) ∩B)⊗ L∨ = c(L∨)n−1 ∩ (c(L ⊗ L∨)−(n−1) ∩ (B ⊗ L∨))
= c(L∨)n−1 ∩ (B ⊗ L∨)

Taking duals gives the statement. �
Theorem 1 follows now easily from the last lemma:

cMP (X)
.
= cF (X) + c(L)n−1 ∩ (µL(J)∨ ⊗ L)

by lemma 3; expanding the right-hand-side gives:

c(TM) ∩ s(X,M) + c(L)n−1 ∩ ((c(T∨M ⊗ L) ∩ s(J,M))∨ ⊗ L)

= c(TM) ∩ s(X,M) + c(L)n−1 ∩ ((c(TM ⊗ L∨) ∩ s(J,M)∨)⊗ L)

= c(TM) ∩ s(X,M) + c(L)−1c(TM) ∩ (s(J,M)∨ ⊗ L)

by proposition 1,

= c(TM) ∩
(
s(X,M) + c(L)−1 ∩ (s(J,M)∨ ⊗ L)

)
= cF (X \ J)

by the expression obtained in section 2. This concludes the proof of theorem 1.
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4. Example

We conclude with an explicit computation illustrating the result. Let X be a
surface in M = P3, with ordinary singularities: the singular locus is a curve Y , and
X has a certain number τ of triple points and a number ν of pinch points along Y .
More precisely, we assume that the completion of the local ring of X is isomorphic
to:

C[[x, y, z]]

(xy)
at a general point of Y

C[[x, y, z]]

(xyz)
at a triple point

C[[x, y, z]]

(z2 − x2y)
at a pinch point

Let d be the degree of Y in P3, and g the genus of its normalization. It is not
hard to compute that each pinch point “contributes 1 point” to the Segre class of the
singular subscheme J (supported on Y ) in P3, and each triple point “contributes −4
points”; that is,

s(J,P3)
.
= dh2 + (2− 2g − 4d− 4τ + ν)h3 ,

where h denotes the hyperplane class in P3.
On the other hand, it is easy to see that in this situation one has necessarily

g = 1− 2d+
dm

2
− ν

4
− 3τ

2
:

for example one may compute the µ-class of J with respect to O(mh) both extrin-
sically, using the above expression for s(J,P3), and intrinsically by using Theorem 6
in [2]; comparing the two expressions gives the above condition on g. Or see [8], p. 29.
Therefore

s(J,P3)
.
= dh2 +

(
−dm+

3ν

2
− τ
)
h3 .

From this we get the polynomial introduced in §2:

p(X, J, t) = c(TM) ∩
(
s(X,M) + c(L)−1 ∩ (s(J,M)(t) ⊗ L)

)
.
= mh+ (4m−m2 + dt2)h2+(

6m− 4m2 +m3 + (4d− 3dm)t2 +

(
−dm+

3ν

2
− τ
)
t3
)
h3

For t ≥ 0 this is (the push-forward to P3 of) Fulton’s Chern class of a scheme con-
sisting of X with an embedded copy of the ‘t-th thickening’ of its singular subscheme.
Evaluating at t = −1 gives

c(X \ J)
.
= mh+ (d+ 4m−m2)h2 +

(
6m− 4m2 +m3 − 2dm+ 4d− 3

2
ν + τ

)
h3 ;

by theorem 1, this is the push-forward to P3 of MacPherson’s Chern class of X. The
coefficient of h3 computes its Euler characteristic, in agreement with [8], p. 29.
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[7] A. Parusiǹski, P. Pragacz, Euler characteristic of degeneracy loci I; the general holomorphic map

case, preprint (1992).
[8] R. Piene Cycles polaires et classes de Chern pour les variétés projectives singuliéres, in Introduc-
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