MACPHERSON'S AND FULTON'S CHERN CLASSES OF HYPERSURFACES

PAOLO ALUFFI

1. Introduction

In this note we compare two notions of Chern class of an algebraic scheme X (over \mathbb{C}) specializing to the Chern class of the tangent bundle $c(T X) \cap[X]$ when X is nonsingular. The first of such notions is MacPherson's Chern class, defined by means of Mather-Chern classes and local Euler obstructions [5]. MacPherson's Chern class is functorial with respect to a push-forward defined via topological Euler characteristics of fibers; in particular, mapping to a point shows that the degree of the zero-dimensional component of MacPherson's Chern class of a complete variety X equals the Euler characteristic $\chi(X)$ of X. We denote MacPherson's Chern class of X by $c_{M P}(X)$. The second notion is Fulton's intrinsic class of schemes X^{\prime} that can be embedded in a nonsingular variety M : Fulton shows ([3], Example 4.2.6) that the class

$$
c_{F}\left(X^{\prime}\right)=c(T M) \cap s\left(X^{\prime}, M\right)
$$

is independent of the choice of embedding of X^{\prime}. This class has the advantage of being defined over arbitrary fields and in a completely algebraic fashion, but does not satisfy at first sight nice functorial properties: cf. [3], p. 377. (MacPherson's class can also be defined algebraically over any field of characteristic 0 : this is done in [4].)

To state our result we need to remind the reader that if W is a scheme supported on a Cartier divisor X of a nonsingular variety M, then the Segre class of W in M can be written in terms of the Segre class of X and the Segre class of the residual scheme J to X in W : for a precise statement of this fact, see [3], Proposition 9.2, or section 2 below. By modifying this expression, we can make sense of the "Segre class" in M of an object " $X \backslash J$ " in which J is intuitively speaking "removed" from X. Since this object has a Segre class, we can define its Fulton-Chern class as above. Here is our result:

Theorem 1. Let X be a section of a very ample line bundle on a nonsingular complex variety M, and let J be its singular subscheme. Then

$$
c_{M P}(X) \doteq c_{F}(X \backslash J)
$$

Here \doteq means that the classes equal after push-forward via the map to a projective space determined by $\mathcal{L}=\mathcal{O}(X)$. We strongly suspect that the classes are actually equal in the Chow group of X, and that the hypothesis on \mathcal{L} is unnecessary (in fact, our proof works whenever \mathcal{L} is globally generated and the corresponding map to projective space is gen. finite); and that a suitable generalization should hold for
arbitrary schemes over an algebraically closed field; but the methods we use in this note can only go so far. On the other hand, our proof of this theorem is remarkably simple (once granted the results of [2]), and is enough for example to imply:

Corollary 1. Under the hypotheses of the theorem,

$$
\chi(X)=\int c_{F}(X \backslash J)
$$

where \int denotes degree.
The statement of theorem 1 is philosophically satisfying in that it highlights precisely in what $c_{M P}$ and c_{F} must differ: Fulton's class equals MacPherson's after the scheme is 'corrected' for the presence of singularities. At the moment we take this corrected " $X \backslash J$ " purely as a formal object, although we wonder whether a more concrete geometric meaning can be attached to it (after all this object has a well-defined Chern class!)

Section 2 in the paper defines $c_{F}(X \backslash J)$ precisely, and introduces notations that we found helpful in these computations. The proof of the theorem is in section 3, and a simple example illustrating the result is in section 4 .

$$
\text { 2. } c_{F}(X \backslash J)
$$

Let X be a Cartier divisor of a nonsingular proper n-dimensional variety M (over an algebraically closed field), and let J be a subscheme of M whose support is contained in X. Our task in this section is to define a class $c_{F}(X \backslash J)$ in the Chow group $A_{*}(X)$ of X. This class can be written explicitly in terms of the Segre classes of X and J in M :

$$
c_{F}(X \backslash J)=c(T M) \cap s(X \backslash J, M)
$$

where the term of dimension m of $s(X \backslash J, M)$ is defined to be

$$
s(X \backslash J, M)_{m}=s(X, M)_{m}+(-1)^{n-m} \sum_{j=0}^{n-m}\binom{n-m}{j} X^{j} \cdot s(J, M)_{m+j}
$$

However, we feel we should motivate this definition; in doing so we will also introduce notations that will be useful in $\S 3$.

Let \mathcal{I}, \mathcal{J} be respectively the ideal sheaves of X and J in M. For any nonnegative integer t we may consider the subscheme $W(t)$ of M with ideal sheaf $\mathcal{I} \mathcal{J}^{t}$: that is, $W(t)$ is a subscheme of M containing X and such that the residual scheme to X in $W(t)$ is the subscheme with ideal sheaf \mathcal{J}^{t}.

Definition 1. For t a nonnegative integer, define

$$
p(X, J, t)=c_{F}(W(t))
$$

where c_{F} denotes Fulton's intrinsic class (cf. section 1).
Lemma 1. $p(X, J, t)$ is a polynomial in t (with coefficients in $A_{*}(X)$).

The constant term of this polynomial will be

$$
c_{F}(X)=p(X, J, 0)
$$

Fulton's Chern class of X. Given lemma 1, we can define

$$
c_{F}(X \backslash J)=p(X, J,-1) \quad:
$$

intuitively, just as $p(X, J, t)$ evaluates (for $t \geq 0$) Fulton's Chern class of a scheme supported on X and with an embedded component along J 'counted t times', this $c_{F}(X \backslash J)$ should stand for Fulton's Chern class of an object obtained by 'removing' J from X. Of course the notation $X \backslash J$ is not to be intended set-theoretically; we do not know how to interpret this object 'geometrically'.

Lemma 1 follows immediately from writing the class explicitly in terms of the Segre classes of X and J in M : for this we could just quote [3], Proposition 9.2. We prefer to introduce some notations which work as a good shorthand in writing and manipulating formulas such as the raw expression for $c_{F}(X \backslash J)$ given above; these notations will also save us some time in section 3. For completeness, we will rewrite and prove Proposition 9.2 from [3] in terms of these notations.

Suppose A is a rational equivalence class on a scheme S, and write $A=a^{0}+a^{1}+\ldots$ with $a^{i} \in A^{i} S$ (that is, the a^{i} are indexed by codimension).

Definition 2. (1) The 'dual' of A, denoted A^{\vee}, is the class defined by

$$
A^{\vee}=\sum_{i \geq 0}(-1)^{i} a^{i}
$$

(2) More generally, the 'd-th Adams' of A, denoted $A^{(d)}$, is the class defined by

$$
A^{(d)}=\sum_{i \geq 0} d^{i} a^{i}
$$

(3) For a line bundle \mathcal{L} on S, the 'tensor of A by \mathcal{L} ', denoted $A \otimes \mathcal{L}$, is the class defined by

$$
A \otimes \mathcal{L}=\sum_{i \geq 0} \frac{a^{i}}{c(\mathcal{L})^{i}}
$$

It is clear that the operations introduced in definition 2 are linear in A; further, these definitions are compatible with corresponding vector bundle operations. For a start, it is clear that if \mathcal{E} is a vector bundle on S, then

$$
\left(c\left(\mathcal{E}^{\vee}\right) \cap A\right)=\left(c(\mathcal{E}) \cap A^{\vee}\right)^{\vee}
$$

$(A \otimes \mathcal{L})^{\vee}=A^{\vee} \otimes \mathcal{L}^{\vee}$ should be equally clear from the definitions.
Next, there are compatibilities with tensoring after capping with Chern classes:
Proposition 1. If \mathcal{E} is a rank-r vector bundle on S, then

$$
(c(\mathcal{E}) \cap A) \otimes \mathcal{L}=\frac{1}{c(\mathcal{L})^{r}} c(\mathcal{E} \otimes \mathcal{L}) \cap(A \otimes \mathcal{L})
$$

and

$$
\left(c(\mathcal{E})^{-1} \cap A\right) \otimes \mathcal{L}=c(\mathcal{L})^{r} c(\mathcal{E} \otimes \mathcal{L})^{-1} \cap(A \otimes \mathcal{L})
$$

Proof. For the first formula, we may assume by linearity that $A=a^{j}$. If $c_{i}=c_{i}(\mathcal{E})$, we have

$$
\begin{aligned}
(c(\mathcal{E}) \cap A) \otimes \mathcal{L} & =\left(\sum_{i} c_{i} \cap a^{j}\right) \otimes \mathcal{L}=\sum_{i} \frac{c_{i} \cap a^{j}}{c(\mathcal{L})^{i+j}}=\sum_{i} \frac{c_{i}}{c(\mathcal{L})^{i}} \cap \frac{a^{j}}{c(\mathcal{L})^{j}} \\
& =\frac{1}{c(\mathcal{L})^{r}} c(\mathcal{E} \otimes \mathcal{L}) \cap(A \otimes \mathcal{L})
\end{aligned}
$$

for example by [3], Remark 3.2.3 (b)).
For the second formula, simply replace A by $c(\mathcal{E})^{-1} \cap A$ in the first.
Also, the notation is fully compatible with tensoring with line bundles:
Proposition 2. If \mathcal{M} is another line bundle on S, then

$$
(A \otimes \mathcal{L}) \otimes \mathcal{M}=A \otimes(\mathcal{L} \otimes \mathcal{M})
$$

Proof. By linearity we may assume $A=a^{j}$. Also, let $\ell=c_{1}(\mathcal{L}), m=c_{1}(\mathcal{M})$; then we have

$$
\begin{aligned}
(A \otimes \mathcal{L}) \otimes \mathcal{M} & =\frac{a^{j}}{(1+\ell)^{j}} \otimes \mathcal{M}=\left(\sum_{i}\binom{i+j-1}{i}(-1)^{i} \ell^{i} \cap a^{j}\right) \otimes \mathcal{M} \\
& =\sum_{i}\binom{i+j-1}{i}(-1)^{i} \frac{\ell^{i} \cap a^{j}}{(1+m)^{i+j}} \\
& =\left(\sum_{i}\binom{i+j-1}{i}(-1)^{i} \frac{\ell^{i}}{(1+m)^{i}}\right) \cap \frac{a^{j}}{(1+m)^{j}} \\
& =\frac{1}{\left(1+\frac{\ell}{1+m}\right)^{j}} \cap \frac{a^{j}}{(1+m)^{j}}=\frac{a^{j}}{(1+\ell+m)^{j}} \\
& =A \otimes(\mathcal{L} \otimes \mathcal{M})
\end{aligned}
$$

as needed.
Also, it is clear from the definition that if $S_{1} \xrightarrow{\pi} S_{2}$ is a proper map, A is a class on S_{1}, and \mathcal{L} is a line bundle on S_{2}, then

$$
\pi_{*}\left(A \otimes \pi^{*} \mathcal{L}\right)=c(\mathcal{L})^{\operatorname{dim} S_{2}-\operatorname{dim} S_{1}}\left(\left(\pi_{*} A\right) \otimes \mathcal{L}\right)
$$

Finally, note that if D is a Cartier divisor on S, then the Segre class of D in S can be written in terms of \otimes :

$$
s(D, V)=\frac{[D]}{1+D}=[D] \otimes \mathcal{O}(D)
$$

(we are abusing notations a little here: the \otimes is taken in S, while the result is a class on D.) And note that if J is defined by the ideal \mathcal{J} in S, and $J^{(d)}$ denotes the subscheme defined by \mathcal{J}^{d}, then the segre class of $J^{(d)}$ in S is the d-th Adams of $s(J, S)$.

Here is a restatement of Proposition 9.2 from [3] in terms of our notations:

Proposition 3. Let $X \subset W \subset M$ be closed embeddings, with X a Cartier divisor on M. Let J be the residual scheme to X in W, and $\mathcal{L}=\mathcal{O}(X)$. Then

$$
s(W, M)=s(X, M)+c(\mathcal{L})^{-1} \cap(s(J, M) \otimes \mathcal{L})
$$

And here is the standard argument, written in our notations: Proof. If $W=M$, the statement amounts to the definition of $s(X, M)$.

If $W \neq M$, let $\pi: \widetilde{M} \rightarrow M$ be the blow-up of M along J, and let $\widetilde{W}=\pi^{-1}(W)$, $\widetilde{J}=\pi^{-1}(J)$ and $\widetilde{X}=\pi^{-1}(X)$: then $\widetilde{W}=\widetilde{X}+\widetilde{J}$ as Cartier divisors on \widetilde{M}. Let η be the induced morphism from \widetilde{W} to W. By the birational invariance of Segre classes and the remarks preceding the statement:

$$
s(W, M)=\eta_{*} s(\widetilde{W}, \widetilde{M})=\eta_{*}(([\widetilde{X}]+[\widetilde{J}]) \otimes \mathcal{O}(\widetilde{X}+\widetilde{J}))
$$

Letting $\widetilde{\mathcal{L}}=\mathcal{O}(\widetilde{X})=\pi^{*} \mathcal{L}$ and $\widetilde{\mathcal{R}}=\mathcal{O}(\widetilde{J})$, and applying propositions 1 and 2 ,

$$
\begin{aligned}
([\widetilde{X}]+[\widetilde{J}]) & \otimes \mathcal{O}(\widetilde{X}+\widetilde{J})=([\widetilde{X}] \otimes \widetilde{\mathcal{R}}+[\widetilde{J}] \otimes \widetilde{\mathcal{R}}) \otimes \widetilde{\mathcal{L}} \\
& =\left(c(\widetilde{\mathcal{R}})^{-1} \cap[\widetilde{X}]+s(\widetilde{J}, \widetilde{M})\right) \otimes \widetilde{\mathcal{L}} \\
& =([\widetilde{X}]-\widetilde{X} \cdot s(\widetilde{J}, \widetilde{M})+s(\widetilde{J}, \widetilde{M})) \otimes \widetilde{\mathcal{L}} \\
& =s(\widetilde{X}, \widetilde{M})+\left(c\left(\widetilde{\mathcal{L}^{\vee}}\right) \cap s(\widetilde{J}, \widetilde{M})\right) \otimes \widetilde{\mathcal{L}} \\
& =s(\widetilde{X}, \widetilde{M})+c(\widetilde{\mathcal{L}})^{-1} \cap(s(\widetilde{J}, \widetilde{M}) \otimes \widetilde{\mathcal{L}}) .
\end{aligned}
$$

Pushing forward by η gives the statement.
Proposition 3 yields an explicit expression for $p(X, J, t)$: we have already observed that the Segre class of the scheme $J^{(t)}$ defined by \mathcal{J}^{t} is $s(J, M)^{(t)}$, so

$$
s(W(t), M)=s(X, M)+c(\mathcal{L})^{-1} \cap\left(s(J, M)^{(t)} \otimes \mathcal{L}\right)
$$

and $p(X, J, t)$ equals the class $c_{F}(W(t), M)=c(T M) \cap s(W(t), M)$. In particular, $p(X, J, t)$ is a polynomial over $A_{*}(X)$, as claimed in lemma 1 , since $s(J, M)^{(t)}$ is.

We can now again write $c_{F}(X \backslash J)$ explicitly; our hope is that at this point this definition will look more insightful than the (equivalent) expression given at the beginning of this section:

Definition 3. We set $c_{F}(X \backslash J)=p(X, J,-1)$, that is

$$
c_{F}(X \backslash J)=c(T M) \cap\left(s(X, M)+c(\mathcal{L})^{-1} \cap\left(s(J, M)^{\vee} \otimes \mathcal{L}\right)\right)
$$

Our goal in this note is to show that if we work over \mathbb{C} and choose J to be the singular subscheme of X, then this class agrees with MacPherson's Chern class of X after push-forward by the map defined by \mathcal{L}. This is done in the next section.

3. Proof of theorem 1

The statement again: if X is a hypersurface of a nonsingular variety M, and J is its singular subscheme (that is: if F is a local equation of X and x_{1}, \ldots, x_{n} are local parameters on M, J is the subscheme defined locally by the ideal $\left.\left(\frac{\partial F}{\partial x_{1}}, \ldots, \frac{\partial F}{\partial x_{n}}\right)\right)$, then

$$
c_{M P}(X) \doteq c_{F}(X \backslash J)
$$

where $c_{M P}(X)$ is MacPherson's Chern class of $X, c_{F}(X \backslash J)$ was defined in section 2 , and \doteq denotes equality after push-forward by the map defined by the linear system $|X|$, which we are assuming to be very ample.

In other words, we have to check that for all $j \geq 0$:

$$
\int c_{1}(\mathcal{L})^{j} \cap c_{M P}(X)=\int c_{1}(\mathcal{L})^{j} \cap c_{F}(X \backslash J)
$$

where $\mathcal{L}=\mathcal{O}(X)$.
Our tool will be the μ-class of J with respect to \mathcal{L}, introduced in [2]: this is the class

$$
\mu_{\mathcal{L}}(J)=c\left(T^{\vee} M \otimes \mathcal{L}\right) \cap s(J, M)
$$

where $T^{\vee} M$ denotes the cotangent bundle of M.
Lemma 2. For all $j \geq 0$, and letting $n=\operatorname{dim} M$:

$$
\int c(\mathcal{L})^{-j} c_{1}(\mathcal{L})^{j} \cap\left(c_{M P}(X)-c_{F}(X)\right)=(-1)^{n-j} \int c_{1}(\mathcal{L})^{j} \cap \mu_{\mathcal{L}}(J)
$$

Proof. For $j \geq 0$, let M_{j} denote the intersection of j general sections of \mathcal{L} (with $M_{0}=M$), and let $X_{j}=M_{j} \cap X$. By Bertini's theorem the M_{j} are all non-singular; X_{j} are hypersurfaces of M_{j}, of class $\mathcal{L}=\left.\mathcal{L}\right|_{M_{j}}$. We also let J_{j} be the singular subschemes of the X_{j}.

Claim 1.

$$
\begin{gather*}
c_{M P}\left(X_{j}\right)=c_{1}(\mathcal{L})^{j} \cap\left(c(\mathcal{L})^{-j} \cap c_{M P}(X)\right) \tag{1}\\
c_{F}\left(X_{j}\right)=c_{1}(\mathcal{L})^{j} \cap\left(c(\mathcal{L})^{-j} \cap c_{F}(X)\right) \tag{2}\\
\mu_{\mathcal{L}}\left(J_{j}\right)=c_{1}(\mathcal{L})^{j} \cap \mu_{\mathcal{L}}(J) \tag{3}
\end{gather*}
$$

(here and elsewhere we omit writing push-forwards implied by the context).
(1) follows from the compatibility of Nash blowups and Euler obstructions with general sections, cf. for example [7], Lemmas 2.1 and 2.3.

For (2), $c_{F}\left(X_{j}\right)=c\left(T M_{j}\right) \cap s\left(X_{j}, M_{j}\right)$ by definition. Now M_{j} is embedded in M with normal bundle $\mathcal{L}^{\oplus j}$, so $c\left(T M_{j}\right)=c(\mathcal{L})^{-j} c(T M)$; and $s\left(X_{j}, M_{j}\right)=c_{1}(\mathcal{L})^{j} \cap s(X, M)$ by repeated applications of Lemma A. 3 from [1].

As for (3), this follows from Proposition 1.3 in [2].
Putting (1), (2) and (3) together we see that proving the statement of the lemma amounts to showing that

$$
\int c_{M P}\left(X_{j}\right)-c_{F}\left(X_{j}\right)=(-1)^{n-j} \int \mu_{\mathcal{L}}\left(J_{j}\right)
$$

for all $j \geq 0$. Now recall that $\int c_{M P}\left(X_{j}\right)$ equals the topological Euler characteristic of X_{j}; while $\int c_{F}\left(X_{j}\right)$ equals

$$
\int c\left(T M_{j}\right) \cap s\left(X_{j}, M_{j}\right)=\int c\left(T M_{j}\right) c(\mathcal{L})^{-1} \cap\left[X_{j}\right]=\int c\left(T M_{j}\right) c(\mathcal{L})^{-1} \cap\left[M_{j+1}\right]
$$

since $\left[X_{j}\right]=\left[M_{j+1}\right]$ as divisors in M_{j}; since $c\left(T M_{j}\right) c(\mathcal{L})^{-1}=c\left(T M_{j+1}\right)$, we see that $\int c_{F}\left(X_{j}\right)$ equals the topological Euler characteristic of M_{j+1}, that is of the general section of \mathcal{L} in M_{j}.

So the left-hand-side of the formula equals the difference

$$
\chi\left(X_{j}\right)-\chi\left(M_{j+1}\right)
$$

of the Euler characteristics of the special section X_{j} and the general section M_{j+1} of \mathcal{L} on M_{j}. In [6], Corollary 1.7, Parusinski proves that this equals $(-1)^{\operatorname{dim} M_{j}} \mu\left(M_{j}, X_{j}\right)$, where $\mu\left(M_{j}, X_{j}\right)$ is his generalization to non-isolated singularities of the Milnor number. But this latter equals $\int \mu_{\mathcal{L}}\left(J_{j}\right)$ by Proposition 2.1 in [2], so the above formula holds.

Next we use lemma 2 to obtain the class of $c_{M P}(X)-c_{F}(X)$ (more precisely, of its push-forward by the map defined by \mathcal{L}); the result is best expressed in terms of the notations introduced in definition 2.

Lemma 3.

$$
c_{M P}(X)-c_{F}(X) \doteq c(\mathcal{L})^{n-1} \cap\left(\mu_{\mathcal{L}}(J)^{\vee} \otimes \mathcal{L}\right)
$$

Proof. If A is a class on M, and $a_{n-j} \in \mathbb{Q}$ denotes

$$
\frac{\int c_{1}(\mathcal{L})^{j} \cap A}{\int c_{1}(\mathcal{L})^{n} \cap[M]}
$$

then

$$
A \doteq \sum_{i \geq 0} a_{i} c_{1}(\mathcal{L})^{i} \cap[M]
$$

We let then $\ell^{i}=c_{1}(\mathcal{L})^{i} \cap[M]$, and write

$$
\begin{gathered}
c_{M P}(X)-c_{F}(X) \doteq A=a_{0}+a_{1} \ell+a_{2} \ell^{2}+\ldots \\
\mu_{\mathcal{L}}(J) \doteq B=b_{0}+b_{1} \ell+b_{2} \ell^{2}+\ldots
\end{gathered}
$$

Lemma 2 then can be restated as:

$$
\begin{aligned}
b_{i} & =(-1)^{i} \cdot \text { coefficient of } \ell^{i} \text { in } \frac{a_{0}+a_{1} \ell+a_{1} \ell^{2}+\ldots}{(1+\ell)^{n-i}} \\
& =(-1)^{i} \sum_{k=0}^{i}\binom{n-k-1}{i-k}(-1)^{i-k} a_{k}
\end{aligned}
$$

so we have

$$
\begin{aligned}
B & =\sum_{i=0}^{n}(-1)^{i} \sum_{k=0}^{i}\binom{n-k-1}{i-k}(-1)^{i-k} a_{k} \ell^{i} \\
& =\sum_{k \geq 0}(-1)^{k}\left(\sum_{i=k}^{n}\binom{n-k-1}{i-k} \ell^{i}\right) a_{k} \\
& =\sum_{k \geq 0}(-1)^{k}\left(\sum_{j=0}^{n-k}\binom{n-k-1}{j} \ell^{j+k}\right) a_{k} \\
& =\sum_{k \geq 0}(-1)^{k}(1+\ell)^{n-k-1} a_{k} \ell^{k} \\
& =(1+\ell)^{n-1} \sum_{k \geq 0} \frac{(-1)^{k} a_{k} \ell^{k}}{(1+\ell)^{k}} \\
& =c(\mathcal{L})^{n-1} \cap\left(A^{\vee} \otimes \mathcal{L}\right) .
\end{aligned}
$$

To get the statement of the lemma, we just need to "solve this for A ": start from

$$
c(\mathcal{L})^{n-1} \cap\left(A^{\vee} \otimes \mathcal{L}\right)=B
$$

cap by $c(\mathcal{L})^{-(n-1)}$:

$$
A^{\vee} \otimes \mathcal{L}=c(\mathcal{L})^{-(n-1)} \cap B
$$

tensor by \mathcal{L}^{\vee} and apply propositions 1 and 2 .

$$
\begin{aligned}
A^{\vee} & =\left(c(\mathcal{L})^{-(n-1)} \cap B\right) \otimes \mathcal{L}^{\vee}=c\left(\mathcal{L}^{\vee}\right)^{n-1} \cap\left(c\left(\mathcal{L} \otimes \mathcal{L}^{\vee}\right)^{-(n-1)} \cap\left(B \otimes \mathcal{L}^{\vee}\right)\right) \\
& =c\left(\mathcal{L}^{\vee}\right)^{n-1} \cap\left(B \otimes \mathcal{L}^{\vee}\right)
\end{aligned}
$$

Taking duals gives the statement.
Theorem 1 follows now easily from the last lemma:

$$
c_{M P}(X) \doteq c_{F}(X)+c(\mathcal{L})^{n-1} \cap\left(\mu_{\mathcal{L}}(J)^{\vee} \otimes \mathcal{L}\right)
$$

by lemma 3; expanding the right-hand-side gives:

$$
\begin{aligned}
& c(T M) \cap s(X, M)+c(\mathcal{L})^{n-1} \cap\left(\left(c\left(T^{\vee} M \otimes \mathcal{L}\right) \cap s(J, M)\right)^{\vee} \otimes \mathcal{L}\right) \\
& \quad=c(T M) \cap s(X, M)+c(\mathcal{L})^{n-1} \cap\left(\left(c\left(T M \otimes \mathcal{L}^{\vee}\right) \cap s(J, M)^{\vee}\right) \otimes \mathcal{L}\right) \\
& \quad=c(T M) \cap s(X, M)+c(\mathcal{L})^{-1} c(T M) \cap\left(s(J, M)^{\vee} \otimes \mathcal{L}\right)
\end{aligned}
$$

by proposition 1 ,

$$
\begin{aligned}
& =c(T M) \cap\left(s(X, M)+c(\mathcal{L})^{-1} \cap\left(s(J, M)^{\vee} \otimes \mathcal{L}\right)\right) \\
& =c_{F}(X \backslash J)
\end{aligned}
$$

by the expression obtained in section 2. This concludes the proof of theorem 1 .

4. Example

We conclude with an explicit computation illustrating the result. Let X be a surface in $M=\mathbb{P}^{3}$, with ordinary singularities: the singular locus is a curve Y, and X has a certain number τ of triple points and a number ν of pinch points along Y. More precisely, we assume that the completion of the local ring of X is isomorphic to:

$$
\begin{array}{ll}
\frac{\mathbb{C}[[x, y, z]]}{(x y)} & \text { at a general point of } Y \\
\frac{\mathbb{C}[[x, y, z]]}{(x y z)} & \text { at a triple point } \\
\frac{\mathbb{C}[[x, y, z]]}{\left(z^{2}-x^{2} y\right)} & \text { at a pinch point }
\end{array}
$$

Let d be the degree of Y in \mathbb{P}^{3}, and g the genus of its normalization. It is not hard to compute that each pinch point "contributes 1 point" to the Segre class of the singular subscheme J (supported on Y) in \mathbb{P}^{3}, and each triple point "contributes -4 points"; that is,

$$
s\left(J, \mathbb{P}^{3}\right) \doteq d h^{2}+(2-2 g-4 d-4 \tau+\nu) h^{3}
$$

where h denotes the hyperplane class in \mathbb{P}^{3}.
On the other hand, it is easy to see that in this situation one has necessarily

$$
g=1-2 d+\frac{d m}{2}-\frac{\nu}{4}-\frac{3 \tau}{2} \quad:
$$

for example one may compute the μ-class of J with respect to $\mathcal{O}(m h)$ both extrinsically, using the above expression for $s\left(J, \mathbb{P}^{3}\right)$, and intrinsically by using Theorem 6 in [2]; comparing the two expressions gives the above condition on g. Or see [8], p. 29. Therefore

$$
s\left(J, \mathbb{P}^{3}\right) \doteq d h^{2}+\left(-d m+\frac{3 \nu}{2}-\tau\right) h^{3}
$$

From this we get the polynomial introduced in §2:

$$
\begin{aligned}
p(X, J, t)= & c(T M) \cap\left(s(X, M)+c(\mathcal{L})^{-1} \cap\left(s(J, M)^{(t)} \otimes \mathcal{L}\right)\right) \\
\doteq m h+ & \left(4 m-m^{2}+d t^{2}\right) h^{2}+ \\
& \quad\left(6 m-4 m^{2}+m^{3}+(4 d-3 d m) t^{2}+\left(-d m+\frac{3 \nu}{2}-\tau\right) t^{3}\right) h^{3}
\end{aligned}
$$

For $t \geq 0$ this is (the push-forward to \mathbb{P}^{3} of) Fulton's Chern class of a scheme consisting of X with an embedded copy of the ' t-th thickening' of its singular subscheme. Evaluating at $t=-1$ gives
$c(X \backslash J) \doteq m h+\left(d+4 m-m^{2}\right) h^{2}+\left(6 m-4 m^{2}+m^{3}-2 d m+4 d-\frac{3}{2} \nu+\tau\right) h^{3} \quad ;$ by theorem 1, this is the push-forward to \mathbb{P}^{3} of MacPherson's Chern class of X. The coefficient of h^{3} computes its Euler characteristic, in agreement with [8], p. 29.

References

[1] P. Aluffi, The enumerative geometry of plane cubics. II: Nodal and cuspidal cubics, Math. Ann. 289 (1991), 543-572.
[2] P. Aluffi, Singular schemes of hypersurfaces, Duke. Math. J. 80 (1995), 325-351.
[3] W. Fulton, Intersection Theory, Ergebnisse der Math., 3 Ser. Vol. 2, Springer, New York, 1984.
[4] G. Kennedy, MacPherson's Chern classes of singular algebraic varieties, Comm. in Algebra, 18 (9), 2821-2839 (1990).
[5] R. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974), 423-432.
[6] A. Parusiǹski, A generalization of the Milnor number, Math. Ann. 281 (1988), 247-254.
[7] A. Parusinski, P. Pragacz, Euler characteristic of degeneracy loci I; the general holomorphic map case, preprint (1992).
[8] R. Piene Cycles polaires et classes de Chern pour les variétés projectives singuliéres, in Introduction à la Théorie des Singularités, II, Travaux en Cours 37, Hermann, Paris, 1988, 7-34.

Florida State University, Tallahassee FL 32306
E-mail address: aluffi@math.fsu.edu

