A remark on the Chern class of a tensor product

Paolo Aluffi ${ }^{1}$, Carel Faber ${ }^{2}$

${ }^{1}$ Math Dept., F. S. U., Tallahassee FL 32306, U.S.A.
${ }^{2}$ Faculteit W. e. I., Univ. van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

The following elementary observation has proven useful in several enumerative geometry computations.

Let X be any algebraic scheme over a field, and let $\alpha \in K^{0}(X)$ be an element in the Grothendieck group of vector bundles over X. Then α has a well-defined rank rk α, and Chern classes $c_{k}(\alpha)$. Also, as tensor product makes $K^{0}(X)$ a ring, we consider $\alpha \otimes[\mathcal{L}]$, where \mathcal{L} is an arbitrary line bundle on X.

Theorem. With notations as above,

$$
c_{\mathrm{rk} \alpha+1}(\alpha)=c_{\mathrm{rk} \alpha+1}(\alpha \otimes[\mathcal{L}])
$$

(So this class is independent of \mathcal{L}.)
Proof. Write $\alpha=[\mathcal{E}]-[\mathcal{F}]$, with \mathcal{E}, \mathcal{F} vector bundles of rank m and $n=m-r$ respectively. We have to show that the coefficient of t^{r+1} in the formal power series

$$
S(t)=\frac{c_{t}(\mathcal{E} \otimes \mathcal{L})}{c_{t}(\mathcal{F} \otimes \mathcal{L})}
$$

is independent of $\ell=c_{1}(\mathcal{L})$.
By [1], Example 3.2.2, we have $c_{t}(\mathcal{E} \otimes \mathcal{L})=(1+\ell t)^{m} c_{\tau}(\mathcal{E})$ with $\tau=t /(1+\ell t)$. Therefore

$$
S(t)=(1+\ell t)^{r} \frac{c_{\tau}(\mathcal{E})}{c_{\tau}(\mathcal{F})}=(1+\ell t)^{r} \sum_{k=0}^{\infty} c_{k}(\alpha) \tau^{k}
$$

[^0]Hence the coefficient of t^{r+1} in $S(t)$ equals that of t^{r+1} in

$$
\begin{aligned}
(1+\ell t)^{r} & \sum_{k=0}^{r+1} c_{k}(\alpha) \tau^{k} \\
& =(1+\ell t)^{r} c_{r+1}(\alpha) \tau^{r+1}+(1+\ell t)^{r} \sum_{k=0}^{r} c_{k}(\alpha) \tau^{k} \\
& =c_{r+1}(\alpha) \frac{t^{r+1}}{1+\ell t}+\sum_{k=0}^{r} c_{k}(\alpha) t^{k}(1+\ell t)^{r-k}
\end{aligned}
$$

The coefficient of t^{r+1} in the last expression equals $c_{r+1}(\alpha)$.

References

1. W. Fulton, Intersection theory, Springer Verlag, Berlin, 1984.

[^0]: ${ }^{1}$ Supported in part by NSF grant DMS-9500843

