A remark on the Chern class of a tensor product

Paolo Aluffi¹, Carel Faber²

¹ Math Dept., F. S. U., Tallahassee FL 32306, U.S.A.

 2 Faculteit W. e. I., Univ. van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

The following elementary observation has proven useful in several enumerative geometry computations.

Let X be any algebraic scheme over a field, and let $\alpha \in K^0(X)$ be an element in the Grothendieck group of vector bundles over X. Then α has a well-defined rank rk α , and Chern classes $c_k(\alpha)$. Also, as tensor product makes $K^0(X)$ a ring, we consider $\alpha \otimes [\mathcal{L}]$, where \mathcal{L} is an arbitrary line bundle on X.

Theorem. With notations as above,

$$c_{\mathrm{rk}\,\alpha+1}(\alpha) = c_{\mathrm{rk}\,\alpha+1}(\alpha \otimes [\mathcal{L}])$$

(So this class is independent of \mathcal{L} .)

Proof. Write $\alpha = [\mathcal{E}] - [\mathcal{F}]$, with \mathcal{E} , \mathcal{F} vector bundles of rank m and n = m - r respectively. We have to show that the coefficient of t^{r+1} in the formal power series

$$S(t) = \frac{c_t(\mathcal{E} \otimes \mathcal{L})}{c_t(\mathcal{F} \otimes \mathcal{L})}$$

is independent of $\ell = c_1(\mathcal{L})$.

By [1], Example 3.2.2, we have $c_t(\mathcal{E} \otimes \mathcal{L}) = (1 + \ell t)^m c_\tau(\mathcal{E})$ with $\tau = t/(1 + \ell t)$. Therefore

$$S(t) = (1 + \ell t)^r \frac{c_\tau(\mathcal{E})}{c_\tau(\mathcal{F})} = (1 + \ell t)^r \sum_{k=0}^\infty c_k(\alpha) \tau^k.$$

¹Supported in part by NSF grant DMS-9500843

Hence the coefficient of t^{r+1} in S(t) equals that of t^{r+1} in

$$(1+\ell t)^r \sum_{k=0}^{r+1} c_k(\alpha) \tau^k$$

= $(1+\ell t)^r c_{r+1}(\alpha) \tau^{r+1} + (1+\ell t)^r \sum_{k=0}^r c_k(\alpha) \tau^k$
= $c_{r+1}(\alpha) \frac{t^{r+1}}{1+\ell t} + \sum_{k=0}^r c_k(\alpha) t^k (1+\ell t)^{r-k}.$

The coefficient of t^{r+1} in the last expression equals $c_{r+1}(\alpha)$. \Box

References

1. W. Fulton, Intersection theory, Springer Verlag, Berlin, 1984.